
C. R. Acad. Sci. Paris, Ser. I 352 (2014) 1029–1031
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Functional analysis/Probability theory

On the subexponentiality of the ridgelet transform

Sur la sous-exponentalité de la transformée en ridelettes

Claude Martias

Université des Antilles et de la Guyane, Faculté des sciences exactes et naturelles, Département de mathématiques et d’informatique, 
CEREGMIA, 97159 Pointe-à-Pitre cedex, Guadeloupe

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 December 2013
Accepted after revision 18 June 2014
Available online 23 October 2014

Presented by the Editorial Board

We show that we can consider the ridgelet transform for Wiener functionals as a 
subexponential random variable. We give an application of this result to random walks.
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r é s u m é

La transformée en ridelettes peut être considérée comme une variable aléatoire sous-
exponentielle. On donne alors une application de ce résultat aux marches aléatoires.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction, notations, results

The ridgelet transform for Wiener functionals introduced by the author [9] is considered as a real random variable de-
fined on the measured space: (Γ , B(Γ ), λ ⊗ μ ⊗ μ), with Γ := ]0, +∞[ × S × H, H denoting the Cameron–Martin space 
and S its unit sphere, B(Γ ) is the Borel set of Γ and λ (resp., μ) is the Lebesgue measure (resp., Wiener measure), 
by the following: for X ∈ L2(μ), γ = (a, ω0, ω1) ∈ Γ −→ Rδ

γ (X) = Rδ
a,ω0,ω1

(X) = 〈X, Ψγ 〉δ = 〈X, Ψa,ω0,ω1 〉δ ∈ R, where 
〈. , .〉δ is the inner product in L2(μδ), μδ being the Wiener measure of variance δ (δ > 0), and Ψγ (ω) = Ψa,ω0,ω1 (ω) :=
a−1/2Ψ (a−1[〈ω, ω0〉Hω0 − ω1]), 〈. , .〉H being the inner product in H and Ψ ∈ L2(μ) is fixed. As in [9], we assume Ψ to be 
spherically symmetric, i.e., Ψ (ω) = η(‖ω‖H) = ‖ω‖Hη̃(‖ω‖H), ω ∈ H, with the admissibility condition

CΨ :=
∞∫

0

dt t
∣∣η(t)

∣∣2 =
∞∫

0

dt t3
∣∣η̃(t)

∣∣2
< ∞.

The concept of wavelets, ridgelets has been introduced during the last century (in the 1980s) and interest in them 
has grown considerably (see [2,5,6]). The author’s investment in the subject [10] allowed him to give applications to the 
regularity of Wiener functionals, or diffusion densities, and also for solving backward stochastic differential equations.

In this paper we first show that, if X is assumed to be Gaussian, then Rδ(X) is Gaussian. More generally, for all X ∈ L2(μ), 
Rδ(X) is a subexponential random variable. We give the following application of this result. Let ξ1, ξ2, ... be independent 
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identically distributed random variables with a distribution F such that E(ξ1) = −α < 0. Let S0 = 0, Sn = ξ1 + ... + ξn for 
n ≥ 1; let Mn = max(Si, 0 ≤ i ≤ n), the maximum of the random walk to time n and let M = sup(Sn, n ≥ 0) be its global 
maximum. We denote: ∀A > 0, ∀ε > 0, Bk := {|S j + α j| ≤ jε + A for all j ≤ k, ξk+1 > x + kα}. Hence we show the following 
main theorem.

Theorem. For any fixed ε > 0,

lim
A→∞ lim

x→∞ inf
n≥1

μ

{
n−1⋃
k=0

Bk

∣∣∣ Mn > x

}
≥ α

α + ε
. (1)

This theorem is the well-known principle of a single big jump (PSBJ) for Mn (see [5,6]). This principle until now underlies 
the behaviour of sums of independent subexponential random variables [6]. A subexponential distribution is heavy-tailed 
and further examples of heavy-tailed distributions that are of use in practical applications, e.g., the modelling of insurance 
claim sizes, are given in [4]. These subexponential distributions are all well-behaved in a certain manner. However, math-
ematically there is a whole range of further possible distributions, and one of our aims is to provide a firm basis of tools 
that does not exclude those which are in some sense pathological.

The PSBJ not only abound in theory, but is also useful in modern probabilistic modelling, in such diverse areas as 
insurance risk [1], communication networks [2,3] and finance [7].

2. Gaussian case

Let X ∈ L2(μ) be a Gaussian Wiener functional. It has the following Ito–Wiener representation: X(ω) = ∫ 1
0 dBs(ω)h0(s)

with Bs(ω) := ω(s), the coordinate application, ω ∈ W := C0(0, 1), the classical Wiener space, s ∈ [0, 1] and h0 ∈ L2(0, 1) is 
deterministic. With the help of this representation, we calculate the ridgelet transform.

Proposition 2.1. For all fixed δ > 0 and any γ = (a, ω0, ω1) ∈ ]0, +∞[ × S × H, we have:

Rδ
γ (X) = a−5/2δ2

1∫
0

ds ω′
0(s)Eμ

[
ω′(s)Xs(ω)

〈∇Ψ
(
δAs(ω0,ω)ω0 − ω1

)
,ω0

〉
H

]
(2)

assuming Ψ to be C2-Fréchet differentiable and where Eμ[.] denotes expectation with respect to Wiener measure μ, Xs(ω) :=∫ s
0 dBr(ω) h0(r) (Ito–Wiener stochastic integration) and As(ω0, ω) := ∫ s

0 dr ω′
0(r)ω

′(r), for ω0, ω ∈ H.

Proof. Rδ
γ (X) = 〈∫ 1

0 dBs(ω) h0(s), Ψa,ω0,ω1 〉δ = a−1/2δEμ[X1(ω)Ψ (a−1[δA1(ω0, ω)ω0 − ω1])].
With the help of Ito’s formula, we easily get (2). �

Theorem 2.2. The real random variable (a, ω0, ω1) ∈ ]0, +∞[ × S × H −→ Rδ
a,ω0,ω1

(X) ∈R is Gaussian, for any fixed δ > 0.

Proof. The random variable As , defined on the probability space (S, B(S), μ), is Gaussian. We easily deduce that the random 
variable (ω0, ω1) ∈ S × H −→ 〈∇Ψ (δAs(ω0, ω)ω0 − ω1), ω0〉H ∈R is Gaussian, hence from (2) the conclusion follows. �
3. Non-Gaussian case

Now, let X be any element of L2(μ). It has the following Ito representation: X(ω) = ∫ 1
0 dBs(ω)h0(s, ω) with h0 ∈

L2(λ ⊗ μ), h0 being moreover an optional process with respect to the filtration on W: σ {ω ∈ W −→ ω(s) ∈ R; s ≤ t}, 
t ∈ [0, 1].

Theorem 3.1. The real random variable (a, ω0, ω1) ∈ ]0, +∞[ × S × H −→ Rδ
a,ω0,ω1

(X) ∈R is long-tailed for any fixed δ > 0.

Proof. The tail function associated with Rδ
γ (X) is:

F Rδ
γ (X)(x) =

∫ ∫
S×H

μ(dω0)μ(dω1)

∞∫
0

da 1{Z δ(ω0,ω1)>a5/2x}

where

Z δ(ω0,ω1) = a5/2 Rδ
γ (X) = G0(x) + G1(x) (3)

with G0(x) = ∫ ∫
δ μ(dω0)μ(dω1)|Z δ(ω0, ω1)|2/5x−2/5 and G1(x) = F |Z δ |(x).
|Z (ω0,ω1)|<x
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The long-tailedness of G0(x) follows from the equivalence: for any y > 0,

G0(x) ∼

∫ ∫
|Z δ(ω0,ω1)|<x+y

μ(dω0)μ(dω1)
∣∣Z δ(ω0,ω1)

∣∣2/5
x−2/5 as x → ∞.

Moreover, as the random variable ω0 ∈ S −→ As(ω0, ω) is Gaussian for any ω ∈ H, s ∈ [0, 1], we easily deduce the 
long-tailedness of G1(x).

Equality (3) implies then the required long-tailedness. �
Now we prove the following.

Theorem 3.2. The real random variable (a, ω0, ω1) ∈ ]0, +∞[ × S × H −→ Rδ
a,ω0,ω1

(X) ∈ R is subexponential for any fixed δ > 0. 
Even more, this real random variable is a strong subexponential.

Proof. We prove that there exists c > 0 such that F Rδ
γ (X)(2x) ≥ cF Rδ

γ (X)(x), for all x, hence with the help of Theorem 3.29 
in [8] we deduce the required subexponentiality and strong subexponentiality.

Decomposing (3) of F Rδ
γ (X)(x) allows us to show that, F Rδ

γ (X)(2x) ≥ 2−2/5 F Rδ
γ (X)(x). �

4. Finite-time horizon asymptotics

We give here a sketch of the proof of the main theorem introduced in the first section. We shall proceed as in [8]. We 
show the following:

μ{Mn > x} ≥ 1 + o(1)

α

x+nα∫
x

F (y)dy as x → ∞, uniformly in n ≥ 1 (4)

where u = o(1) means that u −→ 0 as x → ∞;

μ{Mn > x} ∼ 1

α

x+nα∫
x

F (y)dy as x → ∞, uniformly in n ≥ 1 (5)

where u ∼ v means that u/v −→ 1 as x → ∞. To show (4) and (5), we put: ξ̃n(γ ) = R1
γ (ξn). We moreover shall assume 

C̃Ψ := ∫ ∞
0 dt t3/2η̃(t) < ∞ and η̃(t) ≥ 0 ∀t . ξ̃1, ̃ξ2, ... are identically distributed random variables defined on the measured 

space (]0, +∞[ × S × H, B(]0, +∞[) ⊗ B(S) ⊗ B(H), λ ⊗ μ ⊗ μ); from Theorem 3.2 their common distribution is a strong 
subexponential and we apply Theorem 5.4 in [8]. �
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