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RESUME

La transformée en ridelettes peut étre considérée comme une variable aléatoire sous-
exponentielle. On donne alors une application de ce résultat aux marches aléatoires.
© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction, notations, results

The ridgelet transform for Wiener functionals introduced by the author [9] is considered as a real random variable de-
fined on the measured space: (I',B(I'),A ® i ® ), with I' :=]0,4+o0[ x S x H, H denoting the Cameron-Martin space
and S its unit sphere, B(I') is the Borel set of I' and A (resp., w) is the Lebesgue measure (resp., Wiener measure),
by the following: for X € L*(u), ¥ = (@, wp, w1) € I —> R‘;,(X) = RS 1.y X) = (X, ¥))5 = (X, Wawp.n)s € R, where
(.,.)s is the inner product in L2(us), s being the Wiener measure of variance § (8 > 0), and Yy () = Ya,w,0, (©) 1=
a 2@ (@ [(w, wo)qwo — 1)), (., .)y being the inner product in H and ¥ e L?(p) is fixed. As in [9], we assume ¥ to be
spherically symmetric, i.e., ¥ (®) = n(|w|lg) = |o|la7(|®|l4), @ € H, with the admissibility condition

o0 o0
Co :=/dtt|n(t)|2=/dtt3|ﬁ(t)|2 < 00.
0 0

The concept of wavelets, ridgelets has been introduced during the last century (in the 1980s) and interest in them
has grown considerably (see [2,5,6]). The author’s investment in the subject [10] allowed him to give applications to the
regularity of Wiener functionals, or diffusion densities, and also for solving backward stochastic differential equations.

In this paper we first show that, if X is assumed to be Gaussian, then R?(X) is Gaussian. More generally, for all X € L2(u),
R3(X) is a subexponential random variable. We give the following application of this result. Let &;, &, ... be independent
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identically distributed random variables with a distribution F such that E(§1) = —«a < 0. Let Sg =0, S, =& + ... + &, for
n>1; let M, = max(S;,0 <i <n), the maximum of the random walk to time n and let M = sup(S,,n > 0) be its global
maximum. We denote: YA > 0,Ve > 0,By :={|Sj +aj| < je + A for all j <k, &1 > x+ ka}. Hence we show the following
main theorem.

Theorem. For any fixed € > 0,

n—1
o
lim lim inf By | My >x¢ > . 1
A—>ooX—>00n>1M{kL_JO k| Mn = }‘a—i—s (1)

This theorem is the well-known principle of a single big jump (PSBJ) for M, (see [5,6]). This principle until now underlies
the behaviour of sums of independent subexponential random variables [6]. A subexponential distribution is heavy-tailed
and further examples of heavy-tailed distributions that are of use in practical applications, e.g., the modelling of insurance
claim sizes, are given in [4]. These subexponential distributions are all well-behaved in a certain manner. However, math-
ematically there is a whole range of further possible distributions, and one of our aims is to provide a firm basis of tools
that does not exclude those which are in some sense pathological.

The PSB] not only abound in theory, but is also useful in modern probabilistic modelling, in such diverse areas as
insurance risk [1], communication networks [2,3]| and finance [7].

2. Gaussian case

Let X € L?(1) be a Gaussian Wiener functional. It has the following Ito-Wiener representation: X(w) = f01 dBs(w)hp(s)
with Bs(w) := w(s), the coordinate application, w € W := Cy(0, 1), the classical Wiener space, s € [0, 1] and hg € L2(0, 1) is
deterministic. With the help of this representation, we calculate the ridgelet transform.

Proposition 2.1. For all fixed § > 0 and any y = (a, wp, w1) € 10, +00[ x S x H, we have:
1

RS, (X) =a">/*8? / ds () Ep [ () Xs (@) (VW (8 As(wo, w)wo — w1), wo)y] )
0

assuming W to be C2-Fréchet differentiable and where E,[.] denotes expectation with respect to Wiener measure i, Xs(w) :=
fos dBr(w) ho(r) (Ito-Wiener stochastic integration) and As(wg, @) := f(f dr wy(r)a' (r), for wo, w € H.

Proof. R, (X) = (fy dBs() ho(s), Ya.mg.wy)s =~ /28 E,u[X1 (@)W (@~ [§A1(wo, @) — w1 ])].
With the help of Ito’s formula, we easily get (2). O

8
a,wp, w1

Theorem 2.2. The real random variable (a, wg, w1) € 10, +00o[ x S x H— R (X) € R is Gaussian, for any fixed § > 0.

Proof. The random variable As, defined on the probability space (S, B(S), i), is Gaussian. We easily deduce that the random
variable (wg, w1) €S x H— (V¥ (8As(wp, w)wy — w1), wo)y € R is Gaussian, hence from (2) the conclusion follows. O

3. Non-Gaussian case

Now, let X be any element of L2(u). It has the following Ito representation: X(w) = fol dBs(w)ho(s, w) with hg €
L?>(A ® w), hy being moreover an optional process with respect to the filtration on W: o{w € W — w(s) € R;s < t},
telo,1].

Theorem 3.1. The real random variable (a, wg, w1) € 10, +o0[ x S x H — Rg’woqwl (X) € Ris long-tailed for any fixed § > 0.

Proof. The tail function associated with R‘)S, (X) is:

o0
FR(;(X)(X):/ / V«(dwo)ﬂ(dwl)fdal{z5(wg,w1)>05/2x}
SxH 0

where
2% (o, w1) =R}, (X) = Go(X) + G1(x) (3)
with Go(0) = [ |73 (g ) <x 1(dw0) it (dw1)| Z° (@0, 1)) 2/ and G1(0) = F 73 (0.
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The long-tailedness of Go(x) follows from the equivalence: for any y > 0,

2/5 _
Go(X)N/ [ 11(dao) ()| 28 (o, 1) |°x 5 as x — oo.
|Z8 (wo,w1)|<x+y

Moreover, as the random variable wy € S —> As(wp, w) is Gaussian for any w € H, s € [0, 1], we easily deduce the
long-tailedness of G1(x).
Equality (3) implies then the required long-tailedness. O

Now we prove the following.

8

Theorem 3.2. The real random variable (a, wg, w1) € 10, +00o[ x S x H — RG wo.0n

Even more, this real random variable is a strong subexponential.

(X) € R is subexponential for any fixed § > 0.

Proof. We prove that there exists ¢ > 0 such that FRsy(X)(2x) > cFRsy(X)(x), for all x, hence with the help of Theorem 3.29

in [8] we deduce the required subexponentiality and strong subexponentiality.
Decomposing (3) of FR(; X (x) allows us to show that, FR‘;(X) (2x) >272/> FRst/(X> x). O

4. Finite-time horizon asymptotics

We give here a sketch of the proof of the main theorem introduced in the first section. We shall proceed as in [8]. We
show the following:

X+no
w{My > x} > w / F(y)dy asx— oo, uniformlyinn>1 (4)
¢ X
where u =0(1) means that u — 0 as x — o0,
X+no
WMy > x} ~ é / F(y)dy asx— oo, uniformlyinn > 1 (5)
X

where u ~ v means that u/v — 1 as x — oco. To show (4) and (5), we put: 51()/) = R},(sn). We moreover shall assume

Cy = [y det?/27j(t) < oo and 7j(t) > 0 Vt. &1, &, ... are identically distributed random variables defined on the measured
space (]0,+oo[ x S x H, B(]0, +00[) ® B(S) ® BH), . ® u ® w); from Theorem 3.2 their common distribution is a strong
subexponential and we apply Theorem 5.4 in [8]. O
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