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q(1+2/n). This allows us to construct a locally Lipschitz f satisfying the Osgood condition
Presented by the Editorial Board floo 1/f(s)ds = oo, which ensures global existence for initial data in L*°(£2), such that for
every g with 1 <q < oo there is a non-negative initial condition ug € L9(£2) for which the
corresponding semilinear problem has no local-in-time solution (‘immediate blow-up’).
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RESUME

Nous établissons un résultat de non-existence locale pour I'équation u; — Au = f(u)
avec des conditions aux limites de Dirichlet sur un domaine borné lisse 2 C R" et
des données initiales dans L9(£2) lorsque le terme de source f est non décroissant et
limsup;_, o, S~ f(s) = oo pour un exposant y > q(1+2/n). Ceci nous permet de construire
un f localement Lipschitz qui satisfait la condition de Osgood floo 1/f(s)ds = oo, ce qui
garantit I'existence globale pour des données initiales dans L°°(§2), de telle sorte que pour
chaque g tel que 1 < g < oo il existe une condition initiale non négative ug € L9(£2) pour
laquelle le probléme semi-linéaire correspondant n'admet pas de solution locale en temps
(«blow-up immédiat »).
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1. Introduction

In the previous paper [8] we showed that for locally Lipschitz f with f > 0 on (0, c©), the Osgood condition

T 1
i/‘mds=00, (1)

which ensures global existence of solutions of the scalar ODE x = f(x), is not sufficient to guarantee the local existence of
solutions of the ‘toy PDE’

ur=f@m), u®0) =ugel!(2) (2)

unless g = oo.
In [4] we considered the Cauchy problem for the semilinear PDE

ur = Au+ f(u), u(0) = ug, (3)

on the whole space R" and showed that even with the addition of the Laplacian, for each q with 1 <q < oo one can find a
non-negative, locally Lipschitz f satisfying the Osgood condition (1) such that there are non-negative initial data in L9(R")
for which there is no local-in-time integrable solution of (3).

In this paper we obtain a similar non-existence result for equation (3) when posed with Dirichlet boundary conditions
on a smooth bounded domain £2 C R". More explicitly, we focus throughout the paper on the following problem:

ur = Au+ f(u), ulage =0, u(x,0) =ug € L1(£2). (P)

In all that follows we assume that the source term f : [0, c0) — [0, c0) is non-decreasing. We show in Theorem 3.2 that
if f satisfies the asymptotic growth condition

limsups™ f(s) =00 (4)
5§—> 00
for some y > q(1 4+ 2/n) then one can find a non-negative ug € L9(£2) such that there is no local-in-time solution of (P).
We then (Theorem 4.1) construct a Lipschitz function f that grows quickly enough such that (4) holds for every y >0,
but nevertheless still satisfies the Osgood condition (1). This example shows that there are functions f for which (P) has
solutions for any ug belonging to L°°(£2), but that there are non-negative ug € L9(§2) for any 1 < q < oo for which the
equation has no local integral solution.
One can see this result as in some sense dual to that of Fila et al. [3] (see also Section 19.3 of [7]), who show that there
exists an f such that all positive solutions of x = f(x) blow up in finite time while all solutions of (P) are global and belong
to L*°(£2).

2. Alower bound on solutions of the heat equation

Without loss of generality we henceforth assume that £2 contains the origin. For r > 0, B(r) will denote the Euclidean
ball in R" of radius r centred at the origin, and w, the volume of the unit ball in R".

As an ingredient in the proof of Theorem 3.2, we want to show that the action of the heat semigroup on the characteristic
function of a ball

1 forxe B(R)

Xr(X) = {0 for x ¢ B(R)

does not have too pronounced an effect for short times.
We denote the solution of the heat equation on 2 at time t with initial data ug by Sg (t)ug, i.e. the solution of
ur —Au=0, Ulpo =0, u(x,0) =ug € LI(£2).

This solution can be given in terms of the Dirichlet heat kernel K (x, y; t) by the integral expression

[Se©uo](x) = / Ko (x, y; Ouo(y) dy.
2

We note for later use that Ko (x, y; t) = Ko (y, x; t) for all x, y € £2.
We use the following Gaussian lower bound on the Dirichlet heat kernel, which is obtained by combining various esti-
mates proved by van den Berg in [9] (Theorem 2 and Lemmas 8 and 9). A simplified proof is given in [5].
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Theorem 2.1. Let 2 be a smooth bounded domain in R", and denote by K¢ (x, y; t) the Dirichlet heat kernel on $2. Suppose that

€:= inf dist(z,d82) > 0, (5)
z€[x,y]

where [x, y] denotes the line segment joining x and y (so in particular [x, y] is contained in the interior of $2). Then for 0 <t < €2 /n?

1
Ko, y:6) = 7Gn(x, y; D), where Gn(x, y; t) = (4rrt) 2 K-yP/ac (6)

We can now bound S (t) xg from below.
Lemma 2.2. There exists an absolute constant c, > 1, which depends only on n, such that for any R for which B(2R) C 2,

1
Se®)xr > —XR/2: forall0 <t <R?/n?. (7)
n

Proof. Take x € B(R/2); then when y € B(R) certainly € > R, so (6) implies that for 0 <t < R?/n?

1 _ v vl2
[Se®xr](x) = f Kot y:t)dy = 2 (4mt)™? / e kyIF/argy,
B(R) B(R)

Since |x| < R/2, it follows that {w =x—y:y € B(R)} D B(R/2) and so
1
[S©Oxr](0) = e 4 (dmr) > [ e WP qy — Z " / e 7" dz
B(R/2) B(R/4/t)

T2 / e dz =1,
B(n/4)

e

N

since t <R%/n?. O
3. Non-existence of local solutions

In this section we prove the non-existence of local L9-valued solutions, taking the following definition from [7] as our
(essentially minimal) definition of such a solution. Note that any classical or mild solution is a local integral solution in the
sense of this definition [7, pp. 77-78], and so non-existence of a local L9-valued integral solution implies the non-existence
of classical and mild L9-valued solutions.

Definition 3.1. Given f > 0 and up > 0 we say that u is a local integral solution of (P) on [0, T) if u: 2 x [0, T) — [0, o] is
measurable, finite almost everywhere, and satisfies

t
u®) =Sauo + [ Satt -5 (u(s)ds ®)
0
almost everywhere in £2 x [0, T). We say that u is a local L9-valued integral solution if in addition u(t) € L9(£2) for almost
every t € (0, T).

We now prove our main result, in which we obtain non-existence of a local L9-valued integral solution for certain initial
data in L9(£2), 1 <q < oo, under the asymptotic growth condition (9) when f is non-decreasing.

Theorem 3.2. Let q € [1, o0). Suppose that f : [0, c0) — [0, 00) is non-decreasing. If

limsups™ f(s) = oo (9)

§—>00

forsome y >q(1+ %), then there exists a non-negative ug € L9(§2) such that (P) possesses no local L9-valued integral solution.

Proof. We find a ug € L9(£2) such that u(t) ¢ Lfoc(.Q) for all sufficiently small t > 0 and hence u(t) ¢ L9(£2) for all suffi-
ciently small t > 0. Note that this is a stronger form of ill-posedness than ‘norm inflation’ (cf. Bourgain & Pavlovi¢ [1]).



624 R. Laister et al. / C. R. Acad. Sci. Paris, Ser. 1 352 (2014) 621-626

Set o =(n+2)/y <n/q, so that

limsups~ "2/ f (s) = 0.
5§—> 00

Then in particular there exists a sequence ¢; — oo such that

f(¢i)¢i_(n+2)/a — 00 asi— oo. (]O)

Now choose R > 0 such that B(2R) C £2 (recall that we assumed that 0 € £2), and take ug = |x| ™% xr (x) € L9(£2). Noting
that by comparison u(t) > So (t)ug > 0, it follows from (8) that for every t > 0

t
/u(t)dxz / f[Sg(t—s)f(SQ(s)uo)](x)dsdx.

B(R) B(R) 0
Now choose and fix t € (0, R?/n?]. Observe that

U = Y Xy-1/a

for any ¥ > R™“. In particular, choosing ¥ = cp¢;, it follows from Lemma 2.2 and the monotonicity of S that for all i
sufficiently large

SR(S)U0 = GiX1 gy 0SS Stii= () 2/,

Therefore, for any i large enough that t; <t and c,¢; > R™¢,

ti
/u(t)dxz / /S.Q(t—5)f(¢iX%(Cn¢l.)—1/a)d5dX

B(R) B(R) 0

£
= f(¢l)/ / SQ(t - S)X%(Cﬂqgi)—wu dXdS,

0 B(R)

using Fubini's Theorem and the fact that f(0) > 0.
Now observe that since Kg (x, y; t) = Ko (y, x; t), for any t > 0 and r, R such that B(R), B(r) C £2,

/ [Se®xr ] dx= / / Ko(x, y; ) dy dx= / [Se®xr](y)dy.

B(R) B(R) B(r) B(r)

Thus

£
/ u(t)dxzf(qb,-)/ / So(t —s)xrdxds.

B(R) 0 B(3(cnd)™1/)

Since 1(cn¢i)™"/% <R/2 and t —s <t < R?/n? we can use Lemma 2.2 once more to obtain

15}
1
/ u(t)dXZf(¢i)/ / C—XR/dedS

BR) 0 B(3(ene)™1/)
w 1 "
= —”f(@)n-[—(cn«p,-)‘”“]
Cn 2

= [wn2_”c;17("+2)/a/n2]f(¢>i)¢;("+2)/°‘ — 00 asi— oo

due to (10). O

We note that if f(s) > cs for some ¢ > 0 then arguing as in [4, Theorem 4.1] there can in fact be no local integral solution
of (P) whatsoever.



R. Laister et al. / C. R. Acad. Sci. Paris, Ser. 1 352 (2014) 621-626 625

For the canonical Fujita equation

= Au+u?, (11)

our argument shows the non-existence of local solutions when p > q(1 + %). The sharp result in this case is known to be
p>1+ %q [11,12] with equality allowed if ¢ =1 [2].

The existence of a finite limit in (9) implies that f(s) < c(1 +sY), and hence by comparison with (11) is sufficient for
the local existence of solutions provided that y <1+ Zn—q [10]. We currently, therefore, have an indeterminate range of y,

2q 2
1+ —==<y=<q{1+-=
n n
for which we do not know whether (9) characterises the existence or non-existence of local solutions.
4. Avery ‘bad’ Osgood f

To finish, using a variant of the construction in [4], we provide an example of an f that satisfies the Osgood condition (1)
but for which

limsups™ f(s) = oo, foreveryy >0. (12)

5§—>00

Theorem 4.1. There exists a locally Lipschitz function f : [0, c0) — [0, co) such that f(0) =0, f is non-decreasing, and f satisfies
the Osgood condition

/mds—

but nevertheless (12) holds. Consequently, for this f, for any 1 < q < oo there exists a non-negative ug € L9(£2) such that (P) has no
local L9-valued integral solution.

Proof. Fix ¢9 =1 and define inductively the sequence ¢; via
i1 =e’.
Clearly, ¢;j — oo as i — oo. Now define f : [0, oco) — [0, co) by

(e—1)s, se]Jo:=[0,1],
f& =1 i —¢i—1, selj=[pi—1,¢i/2], i=1, (13)
Li(s), se Ji=(i/2,¢i), i =1,

where ¢; interpolates linearly between the values of f at ¢;/2 and ¢;. By construction f(0) =0, f is Lipschitz and non-
decreasing, and f is Osgood since

[ 1 /2 di
1/f— ;[stzg bi — hi1 - e
However, f(¢;) =e? — ¢;, and so for any y >0
lim ¢ f(g) > 00 asi— oo,
which shows that (12) holds. O

This example shows that there exist semilinear heat equations that are globally well-posed in L°°(£2), yet ill-posed in
every L9(£2) for 1 <q < oo.

5. Note added in proof

Since this paper was completed we have shown that condition (9) with y > 1+ 2n_q is enough to find a non-negative
ug € L9(£2) for which there exists no local solution that remains bounded in L9(§2) for t > 0 [6].
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