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RESUME

Dans cette Note on démontre que si g est continue, monotone, de croissance quelconque
en y, g uniformément continue en z et (g(t,0,0))¢c[0,1] est de carré intégrable, alors
pour toute condition finale & de carré intégrable, en dimension un, I'équation différentielle
stochastique rétrograde (BSDE) de générateur g, a une solution unique. Ce résultat
généralise des résultats connus dans le cas de la dimension un.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the following one-dimensional backward stochastic differential equation (BSDE for short):

T T
yr=%‘+/g(s,ys,zs)d5—/zs-d35, tel[0,T], (1)

t t

where & is a square integral random variable termed the terminal condition, the random function g(w,t, y,z): 2 x [0, T] x
R x R? — R is progressively measurable for each (y,z), termed the generator of the BSDE (1), and B is a d-dimensional
Brownian motion. The solution (y.,z.) is a pair of square integrable, adapted processes. The triple (¢, T, g) is called the
parameters of the BSDE (1).
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Such equations, in nonlinear case, were firstly introduced by [11], who established an existence and uniqueness result
of a solution of the BSDE (1) under the Lipschitz assumption of the generator g. Since then, many efforts have been done
in relaxing the Lipschitz hypothesis on g; see, for instance [10,9,8,1-3], etc. In particular, under the conditions that g
is continuous, monotonic and has a general growth in y, g is Lipschitz continuous in z, and (g(t, 0, 0))tc[o,7] i square
integrable, [12] proved the existence and uniqueness of the solution to the BSDE (1). Furthermore, [4] proved the existence
of the solution to the BSDE (1) if the above Lipschitz continuity condition is replaced with the continuity and linear growth
condition. Recently, under the conditions that g does not depend on y, g is uniformly continuous in z, and (g(t, 0))¢e[o,1]
is a bounded process, [7] obtained a uniqueness result on the solution of the BSDE (1).

Enlightened by these results, this Note proves that if g is continuous, monotonic and has a general growth in y, g is
uniformly continuous in z, and the process (g(t, 0, 0))¢c[o,7] is square integrable, then for each square integrable terminal
condition &, the BSDE (1) has a unique solution, which generalizes the corresponding (one-dimensional) results in [11,12,7].
It is worth mentioning that we use a different method from that used in [7], and our result does not need the condition
that (g(t, 0, 0))¢e[o, 77 is @ bounded process.

2. Main result

Let (£2, F, P) be a probability space carrying a standard d-dimensional Brownian motion (B¢)¢>o. Fix a terminal time
T >0, let (F¢)¢>0 be the natural o-algebra generated by (B;);>o and assume Fr = F. For every positive integer n, we use
|-| to denote norm of Euclidean space R™. For t € [0, T], let L2(2, F;, P) denote the set of all F;-measurable random variable
& such that E|£|? < 4o0. Let LEE(O, T; R™) denote the set of F;-progressively measurable, R"-valued process {X;,t € [0, T]}
such that

T 1/2
X2 2 (E/ |Xt|2dt) < 4o0.
0

Now, let & € L2(82, Fr, P) be a terminal condition, g be the F;-progressively measurable generator of the BSDE (1).
A solution of the BSDE (1) is a pair of processes (y.,z.) in L2}-(0, T:R!'*%) which satisfies BSDE (1) and y. is a continuous
process. In this Note, we further assume that g satisfies some of the following assumptions:

(H1) The process (g(t,0,0))cefo0.1] € L3(0, T; RY).
(H2) dP x dt —a.s., (y,2) — f(w,t,y,2z) is continuous.
(H3) g is monotonic in Yy, i.e., there exists a constant p > 0, such that, dP x dt —a.s.,

Vy1,¥2.2, (8@, t,y1,2) — g(w,t,¥2,2))(y1 — y2) < july1 — y2I*.
(H4) g has a general growth with respect to y, i.e.,, dP x dt —a.s.,

vy, |gw.t,y,0)|<|gw,t,0,0)|+¢(yl),

where ¢ : R; — Ry is an increasing continuous function.
(H5) g is uniformly continuous in z and uniform with respect to (w,t, y), i.e., there exists a continuous, nondecreasing
function ¢ (-) from R, to itself with at most linear growth and ¢ (0) =0 such that dP x dt —a.s.,

Vy.z1.22, |g(@.t,y.21) — g(.t,y.22)| < (|21 — 22).

Here and henceforth we denote the constant of linear growth for ¢ by A, i.e,, 0 < ¢(x) < A(x+ 1) for all x e R} (see
[5] for details).

(H5') g is Lipschitz continuous in z and uniform with respect to (w,t, y), i.e., there exists a constant C > 0 such that
dP x dt —a.s.,

Vy.z1.22. |g(w.t,y.21) — g(w.t.y.22)| < Clz1 — 23]

Remark 1. Under the conditions of (H1)-(H4) and (H5’), [12] established the existence and uniqueness of the solution to the
BSDE with the generator g. This Note aims at establishing the existence and uniqueness under the conditions of (H1)-(H5).
Obviously, (H5") can imply (H5).

In the following, we will put forward and prove our main result that if g is continuous, monotonic and has a general
growth in y, g is uniformly continuous in z, and the process (g(t, 0, 0))¢c[o,1] i square integrable, then the BSDE with the
generator g has a unique solution, which generalizes the corresponding (one-dimensional) results in [11,12,7]. Rigorously,
we have:
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Theorem 1. Assume that g satisfies (H1)-(H5). Then for each & € L?($2, Fr, P), the BSDE with parameters (¢, T, g) has a unique
solution (y., z.).

Proof. Existence: Since g satisfies (H4) and (H5), then dP x dt — a.s., for each (y, z) € R'*¢ we have

’g(wﬂ t, .Yaz)| < |g(wst5ysz) _g(wst5y30)| + !g(wv £, ya0)|
<o(12l) +|g.t.0,0)[ + (1))
<|g(@,t,0,0)| + A+ p(lyl) + Alz.

Thus the existence of the solution to the BSDE with parameters (¢, T, g) follows from Theorem 4.1 in [4].
Umqueness Assume that (y.,z.) and (y’,Z) be two solutions to the BSDE with parameters (¢, T, g) in L2 70, T; RI*d),
Let y.=y. —y', z. =z — Z then we have

T T

9r=f[g(s,ys,zs)—g(s, yé,z;)]dS—/?.s-st, tel[0,T].
t t

Using the Tanaka-Meyer formula (see [6]), one gets that for each t € [0, T],

T
Ys .
|9¢l = /| N 15,20[8(5. ¥s.25) — &(s, y&. 25) | ds — (L§ — L7) / 5] Liwos - dBs
t
T
/M}’s |+ 15,200 (12s]) | ds + (VT — Vo) — /| N 15,202 - dBs, (2)
t

where L0 is the local time of j; at 0 and

t

A

V= —f[(ﬂ|5’s| + 15/5#0¢(|25|)) - —éS' 15,5;&0(g(5, Vs, Zs) — g(s, Ve Z;)):| ds — L?.
N
0

Thanks to (H3) and (H5), we know that
Is[g(s. ys.z5) — &(s. v, 25) ] = Vs[&(s, ¥s. zs) — &(s. V5. z5) | + Vs[&(s. V5. 25) — &(s. ¥5. 25) ]
< ulPsl® + 135l (12s)).

This inequality combining that L? is a continuous increasing process yields that (V)teo,1] is a continuous decreasing process
with V= 0. Moreover, from (2) one also knows that

T T
Vr=Jjo— / plysl + 15, 7&0‘15 |Zs / g ¢025~st,
0 0
then recalling that ¢ (-) increases at most linearly, from Hélder inequality one has
T T
E_sup IVif? =EIVr? <40l +8TE [ [1203:7 + (Al2 + 4)’]ds + 25[ 22 ds < +oo. 3)
- 0

In the following, for each n > 1, from [11], one knows that the following BSDE has a unique solution (Y",Z") €
(0 T: R1+d)

T
Y[’:/[/LY?—Hn—i—ZA)]Z?]-i-qb( ey
t

T
)]ds—/Z?-st, tel0,Tl. (4)
t

Recalling that ¢ () is a nondecreasing function from R, to itself with at most linear growth, one can prove that for each
neN,

2A
¢(X)<(n+2A)x+¢<n+2A> (5)
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holds true for each x € R;. In fact, if 0 < x < %, the conclusion is obvious considering ¢(-) is nondecreasing. And, if
24— x<1,we have (M+2A)x>2A=A+A>Ax+A> ¢ (x). Finally, in the case of x > 1, we also have (n + 2A)x >

n+2A
2Ax = Ax+ Ax > Ax+ A > ¢(x). Therefore, for each n > 1, from (5) we have

g'(s) i= pulPsl + 15,200 (1251) < a1Fs] + 15,20(n +2A) 25| + ¢<

n+ 2A>
Js .
o1 1yss0%s

+¢<L) (6)
WA n+2A)

Obviously, g'(-) € sz(O, T:R!). Thus, considering inequalities (3) and (6), and the fact that (0 — Vi)telo, 7] is a continuous
increasing process, by using Comparison Theorem 1.3 in [13] to compare the solution of the BSDE (2) with the one of the
BSDE (4), we know that for each n>1 and t € [0, T], |y¢| < Y/, dP —a.s.

On the other hand, one may verify directly that for each t € [0, T],

1 _ 2A
1= o

n+2A
Thus since ¢ (-) is a continuous function and ¢(0) =0, we have |J;| <limy— o Y =0, dP —a.s.
Hence, for each t € [0, T] we have, y; = y;, dP —a.s. That is to say, the solution to the BSDE with parameters (¢, T, g) is
unique. The proof of Theorem 1 is complete. O

= u(|¥sl) + (n+24)

) and Z!'=0.

Remark 2. From the proof of Theorem 1, one can see that we need only the monotonicity condition in y (see (H3)) and
uniform continuity condition in z (see (H5)) to ensure the uniqueness of the solution of the BSDE:

From Theorem 1 one can easily obtain the following Corollaries which can be regarded as the extensions of the corre-
sponding (one-dimensional) results in [7,11].

Corollary 1. Assume that g satisfies (H1) and (H5). Moreover, let g be independent of y. Then for each & € L?(2, Fr, P), the BSDE
with parameters (&, T, g) has a unique solution.

Corollary 2. Assume that g satisfies (H1) and (H5). Moreover, let g be Lipschitz continuous in y. Then for each & € L>($2, Fr, P), the
BSDE with parameters (&£, T, g) has a unique solution.
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