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Abstract

We consider the Schrodinger equation associated to long range perturbations of the flat Euclidean metric (in particular, potentials
growing subquadratically at infinity are allowed). We construct a modified quantum free evolution Gg(s) acting on Sjostrand’s
spaces, and we characterize the analytic wave front set of the solution e itH uq of the Schrodinger equation, in terms of the
semiclassical exponential decay of G()(—th*1 )Tuq, where T stands for the Bargmann-transform. The result is valid for ¢ < 0 near
the forward non-trapping points, and for ¢ > 0 near the backward non-trapping points. 7o cite this article: A. Martinez et al., C. R.
Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Singularités analytiques pour des équations de Schriodinger a longue portée. On considére 1’équation de Schrddinger asso-
ciée a des perturbations a longue portée de la métrique euclidienne plate (en particulier, on autorise des potentiels qui croissent de
maniere sub-quadratique a I’infini). On construit une évolution quantique modifiée G(s) agissant sur des espaces de Sjostrand, et
on caractérise le front d’onde analytique de la solution e itH uq de I’équation de Schrodinger en termes de décroissance exponen-
tielle semiclassique de Go(—th_l)Tuo, ou T désigne la tranformation de Bargmann. Le résultat est valable pour ¢ < 0 pres des
points non captifs dans 1’avenir, et pour ¢ > 0 pres des points non captifs dans le passé. Pour citer cet article : A. Martinez et al.,
C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Notations and main result

We are concerned with the analytic wave front set of the solution u = e~y of the Schrodinger equation,
s0u .
15 = Hu;

Ujr=0 = Uo,

(Sch): {
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with ug € L?(R"), and H of the form,

1 & l &
H=3 > Dja,-,k(x)Dk+§Z(aj(x)Dj + Dja;(x)) + ao(x)
jk=1 j=1

where D; = —inj, and the coefficients ay (x) satisfy to the following assumptions. For v > 0 we denote

r,= {z eC"||Imz| < v(Rez)}.

Assumption A. For each «, ay(x) € C*°(R") is real-valued and can be extended to a holomorphic function on I3,
with some v > 0. Moreover, for x € R", the matrix (a; x(x))1<j,k<n iS symmetric and positive definite, and there
exists o € (0, 1] such that,

|laj () =8 k| <Co(x)™, jk=1,....n,

|aj(x)} < Colx)'™, j=1,...,n,

|ao(x)] < Co(x)*~°,

for x € I, and with some constant C¢ > 0.

In particular, H is essentially selfadjoint on C3°(R"), and we use the same letter H for its unique selfadjoint
extension on L?(R").

We denote by p(x, &) := % Z;ﬂkﬁ aj k(x)& ;& the principal symbol of H, and by Hy := —%A the free Laplace
operator. For any (x, &) € R2" we also denote by (y(t;x,&),n(t; x,&)) =expt Hp(x, &) the Hamilton flow associated
with p, and we say that a point (xg, &) € T*R"\0 is forward non-trapping when |y (¢, xo, §0)| — 00 as t — +00. In
that case, there exists &4 (xg, &9) € R", such that,

&4 (x0, 0) — 1(1, x0,£0)| = 0 as t — +oc.

We also introduce the Bargmann-FBI transform T defined by,

Tu(z, h) = / e—(z—Y)z/Zhu(y) dy

(where z € C" and h > 0 is a small extra-parameter), and we recall from [12] that a point (x, &) € T*R"\0 is not in

W F,(u) if and only if there exists some § > 0 such that Tu = O(ePo@)=0)/hy uniformly for z close enough to x —i&

and & > 0 small enough, where ®¢(z) := (Imz)?/2 (see also [2]). In this case, we will write: Tu ~ 0 in Hep, x—it.
Finally, we set,

l n n
qUr. &)= D ajk(0EE+h Y aj(0E +hao(),

jok=1 j=I

and we denote by (x (¢, x, &; h), é‘(t, x,&;h)) :==exptH,(x, &) its Hamilton flow.
Our main result is:

Theorem 1.1. Suppose Assumption A. Then, for any &g > 0, there exists an h-dependent analytic function Wy, =
Wi (s, &) on [0, +00) x {|€]| > 80} solution of,

owy,
W=‘](35Wh,§;h), (D

and such that, if one sets VNV;, = Wp— Wy,
and for all T > 0, the quantity

X(T/h, x0,80) — 9 Wi (T/ b, &(T/ h, x0, &); h) )

admits a limit x4 (xg, &) independent of T as h — 0. Moreover, for any t <0 and any ug € LZ(R”), one has the
equivalence,

_o» then, for any forward non-trapping point (xo, &0) with |§4(xo, £0)| > do,
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_i W (—th—] .
(x0,&0) ¢ WF,(e 7 "Hug) = WDy 0 in Hey 2, (.60

where z (xo, &) := x4 (xo0, §0) — i&+ (x0, &0)-

Remark 1.2. Since W F, (1) is conical with respect to & and & (xo, L&) = LE4(xp, &o) for all A > O, the condition
|€+(x0, £E0)| > d0 is not restrictive.

Remark 1.3. The operator eiWi(=th™L kDo) /h appearing in the statement is not defined by the Spectral Theorem, but

rather as a Fourier integral operator acting on Sjostrand’s spaces.

Remark 1.4. Actually, Eq. (1) needs not be satisfied by Wp,, and the result remains valid with any W such that (2)
admits a limit, and % — q(3 W, &5 h) = O((s)~179) uniformly for s = O(h '), h — 0.

iW(—th=Y.hD,)/h ;

Remark 1.5. In the short-range case o > 1, one can actually take W (s, &) = s§2/2, so that e just

D2 . H —1 . . . H .
becomes e ¥P:/2 and the function el (—1h" 1D/ hTy 0 coincides with T(e~#044). Thus, in that case, one recovers
the result of [4].

Remark 1.6. Of course, there is a similar result for (xg, &) backward non-trapping and ¢ > 0.

Remark 1.7. Our result is an extension to the analytic category of those of [8], and, as for [3,4], it has been mainly
motivated by a whole series of results, both in the C* and in the analytic categories, obtained during these very last
few years [1,6-11,13]. A much longer list of references on this problem, with results going back to the 80’s, can be
found in [3], and the details of the proof can be found in [5].

2. Sketch of proof

2.1. Preliminaries

Replacing ug by e# u( and changing  to —¢, we can reformulate the result as follows: For any ¢ > 0, one has the

equivalence,

(X0, &0) & WFa(ug) <= eiW(zlrl,th)/hT(e—itHuo) ~0 in Hoy 2, (xo.60)-
Changing the time scale, we set ¥(s) := Te """y, and, by a standard result of Sjostrand’s theory (see [12] Proposi-
tion 7.4 and [4] Section 4), we see that v(s) is solution of,

ov ~
iha—: ~ Qi(s) in HYX, 3)
where Q is an analytic pseudodifferential operator in the sense of [12], with symbol g verifying,
(2, ih) = q@+i8 e +O0(h(z) ™77 + h*(2) 77 +h(2)'77)

uniformly as |Rez| — 0o, h — 04, |Imz| + |¢| = O(1).
2.2. The modified free evolution

At first, we choose R > 1 sufficiently large in order to make the map,

Js:& > &(s, RE/IEL & h)

a global diffeomorphism from {|&| > §} to its image, with § > 0 such that J;(|&| > &) D {|€| > So}. Then, we define
the function W}, by the formula,

N

Wi (s, &) :=R|§|+fq(f(s,R5/|5|,J;1<s>),s;h)ds’,

0
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and, by standard Hamilton—-Jacobi theory, we see that W, solves (1), and that one has dg W), (s, §) = X (s, RE/|&],
Js_l (8)). Using arguments taken from [8], we also see that the quantity (2) admits a limit x4 (xo, &) independent of T
ash — 04. B

Finally, the Fourier integral operator !V (:#P2)/% i defined by

1

Wi Dy oy 00
Vs

/ el @/ h+iWi /by (4 4y iy, N
y(8,2)

where y (s, z) is a convenient contour of C? (it is a good contour in the sense of [12], with some uniformity as
s — +00).

2.3. Completion of the proof

Conjugating the equation with elWr(-#D)/h "we obtain the new equation,

ihosw(s) = L(s)w(s)

iW,(s,hD;)/h

where w(s) :=¢€ v(s), and the symbol of the analytic pseudodifferential operator L(s) verifies,

0502, 8 h) = (2 +i¢ + 8 Wi(s. 0. ¢3 h) — B Wi (s, £) + O(h{s) '),

locally uniformly in (z, ¢), and uniformly for s € [0, T/h] with T > 0O fixed. In particular, using (1), we see that
L=0s)"17%), and £ =Lo(z + i, ¢; h) + O(h(s)~177), where the Hamilton flow R, of £ is given by,

Ro(x, & h) = (%(s,x, E:h) — 0 W (s, E(s, x, & 1)), E (x, x, &; h)).

Therefore, we are reduced to a short range situation, where the arguments of [4] can be performed and permit to
conclude.
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