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Abstract

We show that Abelian Cayley graphs contain many closed walks of even length. This implies that given k > 3, for each € > 0,
there exists C = C(e, k) > 0 such that for each Abelian group G and each symmetric subset S of G with 1 ¢ S, the number of
eigenvalues A; of the Cayley graph X = X (G, S) such that A; > k — € is at least C - |G|. This can be regarded as an analogue for
Abelian Cayley graphs of a theorem of Serre for regular graphs. To cite this article: S.M. Cioabd, C. R. Acad. Sci. Paris, Ser. 1
342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Chaines fermés et valeurs propres des graphes abélien de Cayley. Soit k > 3, pour chaque € > 0, il existe une constante
positive C = C(e, k) > 0 telle que pour chaque groupe abélien G et pour chaque sous-ensemble symétrique S C G ne contenant
pas 1, le nombre de valeurs propres A; de graphe de Cayley X = X (G, S) qui satisfont A; > k — € est au moins C - |G|. Pour citer
cet article : S.M. Cioabd, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let X be a k-regular, connected graph on n vertices. Denote by 7, (1) the number of closed walks of length r starting
ata vertex u of X andlet @, (X) = ZueX tr(u).Letk = A1 > Xy > --- > A, be the eigenvalues of the adjacency matrix
of X. The graph X is called Ramanujan if |A;| < 24/k — 1 for each A; # £k. One of the hardest problems in graph
theory is constructing infinite families of k-regular Ramanujan graphs for k£ > 3 fixed. The only constructions known
(see [4,7]) are for k — 1 a power of a prime and are obtained from Cayley graphs of certain matrix groups.

J.-P. Serre [4] proved the following result regarding the largest eigenvalues of regular graphs. For a simple proof
and related results, see [2,3,8].

Theorem 1.1 (Serre). For each € > 0 and k, there exists a positive constant ¢ = c(€, k) such that for any k-regular
graph X, the number of eigenvalues A; of X with A; > (2 — €)a/k — 1 is at least c| X |.
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In this Note, we prove that Abelian Cayley graphs have a large number of closed walks of even length. We use this
fact to give a simple proof of the following Serre-type theorem for Abelian Cayley graphs.

Theorem 1.2. For each € > 0 and k, there exists a positive constant C = C (€, k) such that for any Abelian group G
and for any symmetric set S of elements of G with |S| =k and 1 ¢ S, the number of the eigenvalues X; of the Cayley
graph X = X (G, S) such that \; > k — € is at least C - |G]|.

Cayley graphs are defined as follows. Let G be a finite multiplicative group, with identity 1 and suppose S is a
subset of G such that 1 ¢ S and s € S implies s~ € S. The Cayley graph X = X (G, S) is the graph with vertex set
G and with x, y € G adjacent if xy~! € S. Notice that adjacency is well-defined since S is symmetric. Also, G is
regular with valency k = | S| and it contains no loops since 1 ¢ S. It is easy to see that X is connected if and only if S
generates G. If G is an Abelian group and S is a symmetric subset of k elements of G, then the eigenvalues of X (G, S)
are Ay, =) ¢ x(s) where x ranges over all the characters of G (see Li [9]). This fact was used by Friedman, Murty
and Tillich [6] who proved that the second largest eigenvalue of a k-regular Abelian Cayley graph with n vertices is
at least k — O(kn—4/k).

There are Abelian Cayley graphs that are Ramanujan (see Li [9]). The proof that these graphs are Ramanujan
is often based on number theoretic estimates of character sums. For each choice of a degree of regularity, all these
constructions produce only a finite number of Ramanujan graphs. Theorem 1.2 shows that it is impossible to construct
an infinite family of constant degree Abelian Cayley graphs that are Ramanujan. This also follows from [1] and [6].

2. Closed walks in Abelian Cayley graphs

Let G be a finite Abelian group. There is a simple bijective correspondence between the closed walks of length r

starting at a vertex u of a Cayley graph X (G, S) and the r-tuples (aj, ..., a,) € S” with [[;_, a; = 1. To each closed
walk u = ug, uy, ..., ur—1,u, =u, we associate the r-tuple
(uoul_l,uluz_l, e Up 2l ur_lur_l) cs".
Suppose that
S= {xl,xz,...,xs,xfl,xgl, ...,x;l,yl,...,yl}, (1)

where each x; has order greater than 2 for 1 <i < s and each y; has order 2 for 1 < j < ¢. The degree of the Cayley
graph of G with respect to S is k = 2s 4 ¢. Let W, (X) be the number of 2r-tuples from S in which the number of
appearances of x; is the same as the number of appearances of x;” !for all 1 <i <s and the number of appearances
of y; is even for all 1 < j < t. More precisely, W»,(X) counts 2r-tuples from S%" in which p positions are occupied
by x;’s, p positions are occupied by x;” s and the remaining 2r — 2p positions are occupied by y;’s (each of them
appearing an even number of times), where 0 < p < r. These choices imply that the product of the 2r elements in this
type of 2r-tuple is 1.

Thus, 5, (1) = W, (X) for each u € V(X). This implies
o (X)= > () >nWar(X), )
ueV(X)

foreachr > 1.
We evaluate Wy, (X) by choosing first the 2p positions for the x;’s and their inverses. This can be done in (22;)

ways. Then we choose p positions for the x;’s. This is done in (2; ) ways and the rest are left for x;” s, Since this
happens for all 0 < p < r, we get the following expression for W, (X)

Lemma 2.1. For each r > 1, we have

oo S (2 (2P P\ 2r—2p
Zr( )_Z(Zp)<p> Z <l’1,...,iy> Z zp(zjlv"'vzjt).

p=0 i1 i=p 2t A2y =2r—



S.M. Cioabd / C. R. Acad. Sci. Paris, Ser. I 342 (2006) 635-638 637

We now obtain lower bounds for
2
2r —2
c(p,s)= Z ( P ) and d(r—p,t)= Z ( .r p,).
) ¢ \if,...,Is . ~ 2155 2]
i1+ +is=p 2j1++2)=2r=2p

Obtaining a closed formula for any of these two sums seems to be an interesting and difficult combinatorial problem
in itself. We use the Cauchy—Schwarz inequality to obtain a lower bound on c(m, [).

2 m A2
C(ma l) = Z <il m il) 2 (le++”:m (ll ,,,,, ll)) _ 12m -

i1+-+ij=m (m+l_l) (m+l_l)

-1 -1

Our lower bound for d(m, [) follows from the following result of Fixman [5].

1
!
dm,l)=2""%" < ,)(1 —2j)2m > 2l
—\j
Jj=0

Hence, we have

2m 2m

These two inequalities and Lemma 2.1 easily imply the next result. Recall that k = 2s + 7.

c(m,l) >

Lemma 2.2. For eachr > 1, we have

k2r

Wo (X) > et
2kQ2r 4+ 1)( kil )
Proof. Using Lemma 2.1, inequalities (3) and (2; ) > %, we get
r r
2r\ (2p 2r\ 2°° 2P 12r=2p
W2r(X):Z< >< )C(P,S)d(”—l?yl)>z< ) TN o
o \2P/\ P S\2p)2p 1 (Tt 2
r 2p 2r—2 r
2 2s)°Pt P 1 2
= Z( r> 2 str—1 = krr—1 Z( r)(ZS)ZpterP
o \2P) @r+ D)2 @r ()2 T \2p
1 Qs+ 4+ @2s — ) k2 o
= . > .
@r+ D52k 2 2k@r + (5T

3. The proof of Theorem 1.2
We now present the proof of Theorem 1.2.

Proof. Let € > 0. Consider an Abelian group G and S a subset of G of size k. Denote by n the order of G and by m
the number of eigenvalues A; of X = X (G, S) such that A; > k — €. Then there are exactly n — m eigenvalues of X
that are less than k — €. It follows that

n
ukl + A =)k + 1% < (1 —m)@k — ) +m(2k), @)
i=1
foreach! > 1.
Using Lemma 2.2 and (2), we obtain the following
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21 1
20\ . 21 ;
wkl +A4)" =" ( l. )k, Du-i(X) > (2j>k2f D212 (X)
i=0 j=0

k2]—2j (2]()21
- Z ( ]) ' R

2~ )+ DTN T 2k r+ (Y
foreach ! > 1. Combining this inequality with (4), it follows that
2k)* — 2k — €)%

&)

1
m 2 nth
n (2k)2 — (2k — )2 ’
foreach !/ > 1. Now

1
lim k)2 =2k > 2k — e = 11m Y202k — )2,

% 2k+1(21 + D1

This implies that there exists /o = [(€, k) such that

2 — 2k — ) > 2k — )%,

26120+ (T
for each [ > [j. Letting

(2k — €)o 0
>
(2k)2o — (2k — €)2lo

C(e, k)=

it follows that
m
— > C(e, k).
n

This proves the theorem. 0O
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