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Abstract

We prove that the coefficients of the so-called conjugation equation for conjugation spaces in the sense of Hausmann—Holm-
Puppe are completely determined by Steenrod squares. This generalises a result of V.A. Krasnov for certain complex algebrai
varieties. It also leads to a generalisation of a formula given by Borel and Haefliger, thereby largely answering an old question of
theirs in the affirmativeTo cite thisarticle: M. Franz, V. Puppe, C. R. Acad. Sci. Paris, Ser. | 342 (2006).
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Résumé

Carrésde Steenrod dansles espaces avec conjugaison. On démontre que les coefficients de I'équation dite « de conjugaison »,
pour les espaces avec conjugaison au sens de Hausmann—Holm-Puppe, sont complétement déterminés par les carrés de Steer
Ceci généralise un résultat de V. A. Krasnov sur certaines variétés algébriques complexes, ainsi qu’une formule de Borel-Haeflige!
donnant ainsi une réponse positive a une question de ces deux derniers &otaucier cet article: M. Franz, V. Puppe, C. R.
Acad. Sci. Paris, Ser. | 342 (2006).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Statement of theresults

Let X be a topological space with an involutionWe look atX as a space with an action of the gratip= {1, t}.
We take cohomology with coefficients Fp and consider the restriction map H*(X) — H*(X"), its equivariant
counterpartg : H5(X) — H5(X") = H*(X") ® H*(BG) and the canonical projectign: Hg,(X) — H*(X). Recall
that H*(BG) = H*(RP™) = Fo[u] with dequ) = 1.

According to Hausmann—Holm—Puppe [2X, 1) is called aconjugation space if #°%9(X) = 0 and if there exists
a sectiono : H*(X) — H(X) of p and a degree-halving isomorphism H2*(X) — H*(X") with the following
property: for everye € H2'(X), n € N, there exists elements, ..., y, € H*(X") such that the so-callembnjugation
equation holds:

rG(0(x)) =k ()u" + yru" "+ -+ Y1 + Y. 1)
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A priori, o andx are only assumed to be additive, but the conjugation equation implies that they are in fact multi-
plicative and unique. There are many examples of conjugation spaces, including flag manifolds, co-adjoint orbits o
compact Lie groups and (compact) toric manifolds, see [2].

For the conjugation spacIéP", k < oo, Hausmann—Holm—Puppe prove the formudgo (v")) = (wu + w?)",
wherev € H2(CP*) and w € HY(RP*) denote the generators [2, Example 3.7]. In other wordsg (v")) =
(wu 4+ Sat(w))". The following result generalises this to an arbitrary conjugation sgace

Theorem 1.1. For every x € H?'(X), n € N, one has
rG (o(x)) = ZSd (K(x))u”_i =: SQ(K(x)).
i=0

Corollary 1.2. For every x € H*(X), one has

r(x)= K(x)z.
We also show that the isomorphisncommutes with total Steenrod squares.

Theorem 1.3. For every x € H*(X) one has
K(Sc(x)) = Sq(/c(x)).

Note that the odd Steenrod squarescofanish sinceH*(X) is concentrated in even degrees. Hence, the above
identity is equivalent to

k(S (x)) = Sf (k (x)) forall k € N. (2)
2. Proofs
We denote the Steenrod algebra for the prime by

Lemma 2.1. For every n there exist universal elementsao, ..., a,, b € A such that for every conjugation space X and
every x € H%(X) one has

rg(a(x)) = Zai (K(x)) ¥ and K(Sq(x)) = b(K(x)).
i=0

Moreover, ag = 1 and a1 = Sq.

Proof. Sincer is bijective, one can define, for every, functionsa;,b: H*(X) — H*(X") such that the above
identities hold. We show that they are (or, more precisely, come from) Steenrod squares, using that the restrictio
maprg commutes with all Steenrod squares. We wrife) = z.

We start by proving the claim about tlag by induction oni, beginning atg(z) = z. If i > 0 is even, we apply
Scf¥, wherek < i /2 will be chosen later. By the Leray—Hirsch theorem, we can write

k
S (o) = > o) u?®D ®)
I=—n

for somex; € H2"tD(X). Write z; = «(x;). The restrictiony (o (x;)u2*~D) has leading terny;u"+%~, while,
by (1) and the Cartan formula, the leading powerdh Scﬁ"(r(; (o (x))) is at mostu"t2. Hence, the summation
in (3) is in fact only over G< [ < k.

We first compare coefficients af*t%~ in rq (S (o (x))) = S (rg (o (x))). Using Eq. (3) and the formula
[5, Lemma 2.4]

Sq (u') = (;) ut,
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we getfor 0< 7 <k

1 . 1
Zl:Z(”Zk_%—j]) Sq/(alfj(Z))‘F E aj(zlfj), (4)
j=0

j=1

in particular

_ n
0= 2% Z.

Sincel < i, this inductively shows; = b;(z) for someb; € A. Comparing coefficients af’*%~/ then gives

k k . 2k . .
> aii() = (Z”k) i)+ aii(bi(2) = ("2; ’) a@+ Y (”2; ’_+j’ ) Sq (ai—;(2)). 5)
=1 j=1

=0

Now suppose that <i/2 is such that

n n—i

(3)+(5)
For instance, this is true if2is the largest power of 2 dividing (Recall that a binomial coefficient mod 2 is the
product of the binomial coefficients taken for each pair of binary digits, cf. [5, Lemma 1.2.6].) Then Eq. (5) can be
solved forg; (z) and shows that; (z) can be expressed in terms of repeated Steenrod squares of

For oddi, a similar (but simpler) reasoning based on commutativity with respecttgigesa; (z) = Sqt (ai—1(2)),
in particularas(z) = SAt(z).

Now that alla;(z) are known, we apply $§ for any k. Using the same notation as above, we hav& Gy =
(S (o (x))) = x¢. Comparing coefficients as before gives a formula#ar) similar to Eq. (4), but where the
summation index starts af — n if [ > n. Still, the equations can be recursively solvedfoHence,

Kk(Sox)) =k (x0) + -+ k() =bo(2) + -+ bu(2) =b(z). O

In principle, the preceding proof could be used to determine the coefficients of the conjugation equation completely
(as well as those of $¢o (x)) for anyk). We will take a less tedious approach which relies on the fact that suitable
products of infinite-dimensional real projective space can “detect” Steenrod squares, cf. [5, Corollary 1.3.3].

Fact 2.2. The restricted evaluation map A<, — H*((RP*®)"), a +— a(w x --- x w) isinjectivefor any n € N.

Proof of Theorem 1.1. We want to show (o (x)) = SQ(x (x)) for all cohomology classes of all conjugation spaces.
By Lemma 2.1 and Fact 2.2, it suffices to do soXoe (CP*>)" (which is a conjugation space by [2, Proposition 4.5])
and x, the n-fold cross product of the generatorbecauseX® = (RP*°)"” and«(x) = w x --- x w in this case.
Forn = 1 the identity is true since we already knas. The general case reduces to the casel because of the
multiplicativity of the mapsc, o, rg and SQ: writingv; € H2(X) for the pull-back ofv induced by the projection
X — CP* onto thei-th factor, we get

re(o(@)=rg(c@x - xv))=rg(o@i-vy) =rg(o (@) rg(o(vy))
= SQ(/((vl)) e SQ(K(v,,)) = SQ(K(U]_ e vn)) = SQ(K (x)). O
Proof of Corollary 1.2. We have forx € H2'(X)

r(x)= r(p(o(x))) = p(rG (o(x))) = p(Sd7 (/c(x))) = Ic(x)z. O

Proof of Theorem 1.3. As in the proof of Theorem 1.1, it suffices to show the claimed identityfes (CP*°)" and
x =v x --- x v. Again, the general case can be reduced o1, where we find

K(qu)) = K(U + vz) =k()+ Ic(v)2 = Sq(K(v)). O
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3. Remarks

Let X be a non-singular complex projective variety defined over the reals such that its reakfoison-empty.

In what follows, all algebraic cycles iX are understood to be defined over the reals. Borel and Haefliger have
shown that ifH,(X) and H,(XT) are generated by algebraic cycles, then the restrigtiohcycles inX to their real

locus induces a degree-halving isomorphigi. (X) — H.(X") respecting intersection products [1, 85.15]. They
also show that iff*(X ") is generated by algebraic cycles and H*(X) is Poincaré dual to a linear combination

of non-singular subvarieties, then the identity in Theorem 1.3 holds, and they ask whether it holds more generall
[1, 85.17].

Krasnov has proved that for a variek as above, Theorem 1.1 holds for cohomology classes Poincaré dual to
algebraic cycles, where is the Poincaré transpose bfando the canonical section [3, Theorem 4.2]. This implies
that if H,(X) is generated by algebraic cycles, then sé/isX") [4, Theorem 0.1]. MoreovelX is a conjugation
spaces in the sense of [2].

In a topological framework van Hamel has recently shown that certain topological manifolds with involutions are
conjugation spaces [6, Theorem]. The necessary assumptions are formulated in terms of topological cycles.

The following simple example shows that in general the existence of a degree-halving multiplicative isomor-
phismk: H*(X) — H*(X") by itself does not imply thatX, ) is a conjugation space.

Example 1. Let X = 52 x S* be equipped with the componentwise involutiowhich is the identity fors? and fors*
has fixed point seft. So X® = §2 x S1. Clearly there is a degree-halving multiplicative isomorphisntf*(X) —
H*(XT). Itis easy to check there is also a multiplicative sectior *(X) — H(X). But (X, 7) is not a conjugation
space: the restriction map

ro HE (82 x $*) = H* (5% x $%) @ Falu] — H* (5% x ') ® Falu]

is given bysx @ 1+ 52 ® 1 andss ® 1+ s1 @ u3, wheres, € H"(5") denotes the generator. Hence the conjugation
equation does not hold. Of courst? x $* with the different componentwise involutiohwhich hass* c $2 and
$2 c 5% as fixed point sets (and hen&é = S x $2 X7) is a conjugation space.
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