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Abstract

The main purpose of this Note is to show how a ‘nonlinear Korn’s inequality on a surface’ can be established. This inequality
implies in particular the following interestinmer sesequential continuity property for a sequence of surfacesolbeta domain
in R, let 8 : @ — R3 be a smooth immersion, and &% :@ — R3, k > 1, be mappings with the following properties: They
belong to the spa(‘Hl(w); the vector fields normal to the surfa(té‘sm), k > 1, are well defined a.e. i and they also belong
to the space 1(w); the principal radii of curvature of the surfacd®’S(w) stay uniformly away from zero; and finally, the three
fundamental forms of the surfacé$(w) converge inL1(w) toward the three fundamental forms of the surf@¢e) ask — co.
Then, up to proper isometries BS, the surface$* (w) converge inH(w) toward the surfacé(w) ask — oco. To cite this
article: P.G. Ciarlet et al., C. R. Acad. Sci. Paris, Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Continuité en norme H?! de surfaces en terme des normes L! de leurs formes fondamentales. L'objectif principal
de cette Note est de montrer comment on peut établir une «inégalité de Korn non linéaire sur une surface ». Cette inégalité
implique en particulier la propriété de continuité séquentielle suivante, intéressante par elle-mémeirStitmaine dé&k?,
soit @ : @ — R3 une immersion réguliére, et sdlf :m — R3, k > 1, des applications ayant les propriétés suivantes : Elles
appartiennent a I’espacHl(a)); les champs de vecteurs normaux aux surf@&s), k > 1, sont définis presque partout
danse et appartiennent aussi a I'espale(w) ; les modules des rayons de courbure principaux des surédces sont
uniformément minorés par une constante strictement positive ; finalement, les trois formes fondamentales ded"t{w’)‘aces
convergent dan&1(w) vers les trois formes fondamentales de la surties lorsquek — oo. Alors, a des isométries propres
deR3 pres, les surface® (w) convergent dan®1(w) vers la surfacé (») lorsquek — oo. Pour citer cet article: P.G. Ciarlet
etal., C. R. Acad. Sci. Paris, Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Notationsand other preliminaries

The symbolVI", S, andQ’} respectively designate the sets of all real matrices of ordefrall real symmetric
matrices of orden, and of all real orthogonal matricésof ordern with detR = 1. The Euclidean norm of a vector
b e R" is denotedb| and|A| := supy 1 |Ab| denotes the spectral norm of a matixe M".

Let U be an open subset ®". Given any smooth enough mappigglU — R", we letV x (x) € M" denote the
gradient matrix of the mapping at x € U and we let; x (x) denote theth column of the matrixv x (x). Given
any mappingF € LY(U; S"), we let

1l sn = / |F ()| d,
U

and, given any mapping € HX(U; R"), we let

n 1/2
X2 w;meny :=i/(|X(x)|2+Z|3iX(x)|2)dX} :

U i=1

A domainU in R”" is an open and bounded subsef®f with a boundary that is Lipschitz-continuous in the
sense of Adams [1] or Ni&s [10], the selV being locally on the same side of its boundary/Ifs a domain irR",
the spac&(U; R™) consists of all vector-valued mappingse C1(U; R™) that, together with all their partial
derivatives of the first order, possess continuous extensions to the cldsifr& . The spac€l(U; R™) thus also
consists of restrictions t& of all mappings in the spac& (R”; R™) (for a proof, see, e.g., [13] or [7]).

Latin indices and exponents henceforth range in th¢ls@t 3} save when they are used for indexing sequences,
Greek indices and exponents range in thg 562}, and the summation convention is used in conjunction with these
rules.

The notationg(aqg), (a®P)y, (bg), and(g;;) respectively designate matrices i and M2 with components

Qap, a“b, bg, andg;;, the index or exponent and the index designating here the row index.
Complete proofs of the results announced in this Note are found in [3].

2. A nonlinear Korn inequality on a surface

Our main result is aonlinear Korn inequality on a surfag@heorem 2.4), the proof of which relies on several
preliminaries, a crucial one being the followingnlinear Korn inequality on an open subsefRf recently estab-
lished by Ciarlet and Mardare [6]. Its long, and sometimes technical, proof hinges in particular on a fundamental
‘geometric rigidity lemma’ due to Friesecke et al. [9] and on a general methodology reminiscent to that used in
Ciarlet and Laurent [4]. See also Reshetnyak [12] for related results.

Theorem 2.1. Let £2 be a domain ifR”. Given any mappin@® < C(£2; R") satisfyingdetvVe > 0in 2, , there
exists a constant (@) with the following propertyGiven any mappmg;) e HY(£2;R") satlsfylngdetV@ >0
a.e. ing2, there exist a vectab = b(@ ©) ¢ R" and a matrixR = R(@ @) € O’} suchthat

1/2

” (b+Ré) - Ll(Q SON

-

O| 1 g < cO)|ve've -ve've|
The next two lemmas show that some classical definitions and properties pertaining to suri&teslifold

under less stringent regularity assumptions than the usual ones (these definitions and properties are traditionally

given and established under the assumptions that the immersions dérinttémma 2.2 and in Lemma 2.3

belong to the spacé?(w; R%)). For this reason, we shall continue to use the classical terminology, e.g., normal
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vector field (foraz or a3), or first, second, and third fundamental forms (fogs) or (dug), (bap) OF (Eaﬁ), and
(cap) OF (Cap)), etC. If y = (y4) designates the generic point in a domaim R2, we letdy := 9/dy,.

Lemma 2.2. Letw be a domain irR2 and letd € C1(@; R3) be an immersion such thag := Pl Cl(w; RY),
wherea, := 9,0. Then the functions

Aup '=aq -ag, bog:=—0,a3-ag, b :=aﬁ"ba,3, Cap i= 0qa3 - dgas,

where(a®?) := (aqp) ™2, belong to the spac€®(w), andbys = bg, . Define the mappin® : @ x R — R3 by
O(y,x3):=0(y) +x3a3(y) forall (y,x3) ew x R.

Then® e C1(@ x R; R3). Furthermore,
detVe (v, x3) = Va(y){1 - 2H (y)xs+ K (»)x3} forall (v,x3) €@ x R,

where the functions

1
a = del(agp) = |a A azl?, H::E(b%er%), K :=bib3 — b2b3

belong to the spac€®(w). Finally, let
(gi)) =VO'VO.
Then the functiong;; = g;; belong to the spac€®(@ x R) and they are given by

8up (¥, x3) = aup (y) — 2x3bep () + ng,caﬁ (») and g3(y,x3) =43
forall (y,x3) e w x R.

Sketch of proof. Since the symmetric matric&s.z(y)) are positive-definite at all points€ w, the inverse ma-
trices (a*? (y)) are well defined and also positive-definite at all points @, and the functiona®? belong to the
spaceC®(@). Therefore the functions? are well-defined and they also belong to the spztte).
The symmetry,g = bg, is clear ifd € C2(w; R3) sincebyp = a3z - dag in this case. As shown in the proof of
Theorem 3 of Ciarlet and Mardare [5], this symmetry still holds under the weaker assumptions of Lemma 2.2.
Thanks to the relation&, (a3 - a3z) = 0, the classical formulas of Weingarten, viz.,

dqa3=—bJag,

still hold under the present assumptions. The expressions giving the functiovi®@dand g;; then follow from
this observation. O

Lemma 2.3. Letw be a domain ifk? and let there be given a mappifige H(w; R®) such thati; A a, # 0 a.e.
in w, wherea,, := 9,0, and such that

- aynap

as: € Hl(w; ]Rs).

" Ja1 A ag)|

Then the functions
Gop ‘=g - g, byp:=—04a3-Ap, Cop =03 dpas

are well defined a.e. im, they belong to the spade*(w), andl?aﬂ = Eﬁa. Define the mappingN) ‘0w xR — R3by
@(y, X3) = é(y) + x3az(y) foralmostall(y, x3) € w x R.

Then® € H(w x 1-8, 8[; R3) for anys > 0. Furthermore,
detVO (y, x3) = Va(y){1— 2H(y)xs+ K (y)x5} for almost all(y, x3) € w x R,
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where

1 S ey o - .
~(bY+b3), K :=bibs—b2b3, bY :=aP bag,

a = deldup) = a1 A aol?, =5

and (%) := (dup) 2. Finally, let
@;):=VO' VO ae.inwxR.
Then the functiong;; = g;; belong to the spacel(w x ]1-8, 8[) for anyé > 0 and they are given by
Zap (7, x3) = dap () — 2x3bup () +x3Cap(»)  and  i3(y, x3) = 8i
for almost all(y, x3) € w x R.
Sketch of proof. The proof is analoguous to that of Lemma 2.2. The symméIBY= l;ﬂa again follow from

Theorem 3 of [5]. Note that, although the functiehs?, K andb? are well defined a.e. im under the assumptions
of Lemma 2.3, they do not necessarily belong to the sgd¢e). O

We now state the announcednlinear Korn inequality on a surfac& he notations are the same as those in
Lemmas 2.2 and 2.3.

Theorem 2.4. Let there be given a domain in R2, an immersiord € C1(@; R3) such thataz € C1(w; R?), and
e>0.

Then there exists a constar®, £) with the following propertyGiven any mapping € H(w; R3) such that
ai1Aa»+#0a.e. inw, as € HY(w; R®), and

~ 1 - 1 .
|H|<- and K>-—— a.e.inw,
€ g2

there exist a vectab := b(6, 0, ¢) € R® and a matrixR = R(8., 0, ¢) € 03 such that
| @+ RO) =8| 1,5, + €1 Rz — asll 1)
<e®.){ | @ap — aup) | sg0rs2) + €™ Gop = bap) | G2, + £ Cap = cam) [ 1) -
Sketch of proof. Without loss of generality, we assume tha& 1. Let the mapping® : o x R — R3 and

© o x R — R3 be constructed as in Lemmas 2.2 and 2.3 from the mappings—> R3 andd : « — R3 appearing
in Theorem 2.4. Then there exists a constdfl) > 0 such that

detv® >0 in2 and devV® >0 a.e.in®,

where2 =20, ¢) :==w x |-8(0)s, 5(0)¢].

Theorem 2.1 then shows that there exists a const#ét ¢) with the following property: Given any > 0 and
given any mapping8 and0 satisfying the assumptions of Theorem 2.4, there exist a vécterb(, 8, ) € R®
and a matrixk = R(9, 8, ¢) € 02 such that

H (b + Ré) -0 HHl(.Q;]R:;) < 00(0’ 8) ” (gl] - gl]) ”1/12(9,53)

The rest of the proof consists in showing that there exists constgiisandc»(#) such that
” b+ Ré) -0 ” H(2;R3) z 61(0)‘91/2{ ” (b + Ré) -0 ” H(w;R3) + ¢l Raz — a3||H1<w;R3) }

and
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| (&ij — i) ||L1(.Q %)

< o002 |Gy — ap) |2, 0, + 672 b — )| 2 G — o[22 )

The announced inequality then follows witt8, €) := co(8, £)c1(0) tca(0). O

3. Commentary

If a mappingd:» — R3 is a smooth immersion, the associated functidhsand K simply represent the
mean andGaussian curvaturesof the surfacd (). It is well known that these functions are also glvenPﬁyz
2( L ) andK = ﬁ . whereR, are theprincipal radii of curvaturealong the surfacé () (with the usual

conventlon thatRy (y)| may take the value-co at some pomts € w).

Itis then easily seen that the assumptlpﬁ$< andk > —= in @ made in Theorem 2.4 imply thek, | > ce
in w and that, conversely,Ra| > ¢ in w implies that|H| < g andK > —8‘1—2 in w, for some ad hoc numerical
constants: andd. Hence the assumptions made on the mappnigsTheorem 2.4 have a very simple geometric
interpretation: they mean thée principal radii of curvature of all the ‘admissible’ surfacégw) must stay
uniformly away from zerd\Naturally, such principal radii of curvature are possibly understood only in a generalized
sense, viz., as the inverses of the eigenvalues of the associated (rﬁélrix

Let there be given a mappinje H(w; R3) such thata, A @, # 0 a.e. inw andaz € H(w; R3). Then a
mapping@ :w — R3is said to beproperly isometrically equivalerio the mappind if there exist a vectob € R3
and a matrixR € O such thatd = b + R4. If this is the case, thefl € H(»; R3), a1 A a2 # 0 a.e. inw,
andas € H(w; R3) (with self-explanatory notations), and the two surfages) andé(a)) share the same three
fundamental forms in the spadé (w; S?).

One application of the key inequality of Theorem 2.4 is then the following resiudegtiential continuity for
surfacesLet 0% € H(w; R3), k > 1, be mappings with the following properties: The vector fields normal to the
surface®* (w) are well defined a.e. i@ and they also belong to the spaié(w; R3), there exists a constant- 0
such that the principal radii of curvatur&} of the surface$* () satisfy|Rk| > ¢ > 0 a.e. inw for all k > 1, and
finally,

(aap) — (@up),  (Vap) —= B, (cap) —(cap)  in L1382,

where(aqg), (bap), (cap) are the three fundamental forms of a surfé¢e), whered Cl(w; R3) is an immersion

satisfyingas € C1(w; R3). Thenthere exist mappingék that are properly isometrically equivalent to the mappings
0%, k > 1, such that

0 ——60 and alék—>a3 in H(w; R3).

k— 00

Such a sequential continuity property generalizes that previously obtained by Ciarlet [2] and by Ciarlet and
Mardare [8] and Szopos [11], for the topologies of the sp&ée®), andC™ (), respectively.
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