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Abstract

In this Note, we consider the problem of estimating the regression function for a fixed design model, when we on
access to quantized and correlated data. In order for the constructed estimate to be consistent, we assume that repea
tions are available. We give the asymptotic performance in terms of the mean squared error for the regression function
constructed from quantized observations, and we generate the optimal bandwidth.To cite this article: K. Benhenni, M. Rachdi,
C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Estimation de la courbe de croissance pour des observations quantifiées et des erreurs corrélées.Dans cette Note, nou
considérons le problème d’estimation de la courbe de croissance pour des données quantifiées et corrélées. Afin qu
teur construit soit consistant, nous supposons disposer d’observations répetées. Nous donnons le comportement as
de l’estimateur construit à partir de données quantifiées et nous déduisons la largeur de fenêtre optimale.Pour citer cet ar-
ticle : K. Benhenni, M. Rachdi, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Quantization of measurement is well-recognized as a source of measurement error by engineers and me
in the areas of communication, information theory and signal processing. However, it is typically ignored b
statisticians as they develop methods of statistical inference, whose inputs in any real application are po
subject to quantization effects. Most standard statistical methods treat numerical data as if they were ex
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observations. The most common form of quantization is rounding-off, which occurs in all digital systems. A g
quantizer approximates an observed value by the nearest among a finite number of representative values

It is thus important to see how the estimation in statistical problems can be affected when one has a
quantized data instead of the true data.

A survey of the theory and technics of the quantization is given in Gray and Neuhoff [4] and some appli
to statistics can be found in Lee and Vardeman [7–9]. Cambanis and Gerr [2] derived the best asymptotic
quantizers by using the percentiles of a probability density that minimizes the asymptotic mean squar
among a class of positive density functions. Benhenni and Cambanis [1] considered the approximation of a
integral from quantized observations when the process to integrate has a covariance that behaves like
covariance along the diagonal.

The growth curve model is useful especially for growths of animals and plants and is applied extensively
statistics, medical research and epidemiology, and considered by many authors such as Von Rosen [12].
and Bailer [11] studied the estimation of the area under the growth curve, known as the concentration-tim
in pharmacokinetic research, based on the drug’s concentration at different sites, repeated measures,
organism. The non-parametric regression model with correlated errors was considered by many authors
Lin and Carroll [10] among others. These authors considered different modifications of kernel constructio
non-parametric regression estimator to improve the efficiency over the standard kernel estimator when c
observations are introduced.

In this Note, we consider the statistical problem of estimating the average growth curve for a fixed design
We considerm experimental units, each of them havingn measurements of the response:

Yj (xi) = f (xi) + εj (xi) wherej = 1, . . . ,m andi = 1, . . . , n

wheref is the unknown average growth curve and(εj ) is the error process.
The sampling points{xi, i = 1, . . . , n} are usually taken equally spaced in time, series data, but other ty

sampling designs can also be considered such as deterministic regular (non-uniform) designs and random
Although repeated measurements can naturally arise in practical situations, they can make the estimato
curvef asymptotically consistent, as was pointed out by Hart and Wehrly [6] and the comments of Härdle

We estimate consistentlyf from the noisy observations{Q(Yj (xi)): i = 1, . . . , n andj = 1, . . . ,m}, when the
errors are correlated, whereQ is the quantization function and thexi ’s are known constants such that 0� x1 <

x2 < · · · < xn � 1.
The error processes{εj , j = 1, . . . ,m} are assumed to be centered, Gaussian, uncorrelated and weakly s

ary with the same autocovariance function: cov(εj (x), εl(y)) = ρ(x − y) if j = l and 0 ifj �= l.
Furthermore, the autocovariance functionρ verifies a Hölder condition of orderα > 0. Thenρ can be expande

around 0 as follows:

ρ(t) =



ρ(0) − λ|t |α + o
(|t |α)

for 0< α < 2,

ρ(0) + |t |2
2

ρ′′(0) + o(t2) for α � 2
(1)

for someλ > 0 andρ′′(0) �= 0.
In this work, we give the asymptotic performance in terms of the mean squared error for the average

curve estimator constructed from quantized observations, and we generate the asymptotically optimal ba
which depends on the regularity of the process through the parametersα andλ, the number of replicationsm, and
the number of levels of quantizationN .

2. Estimation of the average growth curve from the quantized observations with correlated errors

The quantization system is determined by the levels of quantizationz1 < z2 < · · · < zN and by the bounds o
the intervalsy < y < · · · < y . The levels of quantization are the percentiles of a continuous positive proba
1 2 N
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density functionpQ given by
∫ zk

zk−1
pQ(t)dt = 1/N for k = 2, . . . ,N and the intervals of quantization are defin

by yk = (zk−1 + zk)/2 for k = 2, . . . ,N .
Then, the quantization function is defined by:Q(y) = zk whenyk < y < yk+1 where−∞ = y1 < z1 < y2 <

z2 < · · · < yN < zN < yN+1 = +∞ (see, Gray and Neuhoff [4]).
We consider the estimator off constructed from the noisy observations{Q(Yj (xi)): i = 1, . . . , n andj =

1, . . . ,m}:

f̂Q,h(x) = 1

n

n∑
i=1

Wh,i(x)�Z(xi) with �Z(x) = 1

m

m∑
j=1

Q
(
Yj (x)

)

where the weights are such that:Wh,i(x) = n
∫ mi

mi−1
Kh(x − u)du and the midpoints{mi, i = 0, . . . , n} are defined

by m0 = 0, mi = (xi + xi+1)/2, for i = 1, . . . , n − 1 andmn = 1 with Kh(x) = 1/hK(x/h). The kernelK is an
even, Lipschitz function, with support[−1,1] and

∫ 1
−1 K(v)dv = 1, andh = h(n,m) is the bandwidth, such tha

h � 0 and limn,m→+∞ h = 0.
We assume that the error process(εj ) is centered, Gaussian and weakly stationary with covarianceρ satisfying

hypothesis (1). It can be shown that, the quantized processQ(Y(x)) has an autocovariance functionρQ that can be
expanded around 0 as follows:

ρQ(t) =
{

ρQ(0) − λN |t |α/2 + o
(|t |α/2

)
for 0< α < 2,

ρQ(0) − βN |t | + o
(|t |) for α � 2

whereλN = ( α
√

λ

2
√

πρ(0)
)BN andβN = (− ρ′′(0)

2πρ(0)
)1/2BN , with BN = 1√

2π

∑N
k=2(zk − zk−1)

2 exp(−y2
k /2).

The optimal levels of quantizationz∗
k , k = 1, . . . ,N , correspond to the percentiles of the asymptotically opti

Gaussian densityp∗
Q with mean 0 and variance 3.

The following theorem and its corollary give the asymptotic behavior off̂Q,h and the optimal choice of th
bandwidthh when the observations are quantized according top∗

Q.

Theorem 2.1.We assume that the covariance functionρ of the error process satisfies hypothesis(1) and f is a
twice differentiable continuous function on[0,1] with f ′′(x) �= 0. Then, asn, m andN → +∞:

E
(
f̂Q,h(x) − f (x)

)2 = 1

m

(
ρQ(0) − hγ/2

N
b(γ )CK

(
γ

2

))
+ h4

4
d2
K

(
f ′′(x)

)2

+ O

(
1

Nmnγ/2
+ h2

N
+ 1

nN
+ 1

N2

)
+ o

(
h4 + hγ/2

Nm

)

where b(γ ) = 3α(λ/4ρ(0))1/2 for 0 < α < 2 and b(γ ) = 3(−ρ′′(0)/2ρ(0))1/2 for α � 2, and wheredK =∫ 1
−1 u2K(u)du andCK(γ ) = ∫ 1

−1

∫ 1
−1 |u − v|γ K(u)K(v)dudv.

Corollary 2.2. Under the hypotheses of Theorem2.1, the mean squared error is asymptotically minimum for
following choice of the bandwidth:

h∗
Q =




(
3α2√λ/ρ(0)CK(α/2)

4d2
K(f ′′(x))2

)2/(8−α)

(mN)−2/(8−α) if 0< α < 2,

(
3
√−ρ′′(0)/ρ(0)CK(1)

d2
K(f ′′(x))2

)1/3

(mN)−1/3 if α � 2.
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Remark 1.

(i) The no quantized estimator (see Gasser and Müller [3])f̂h is obtained by takingQ(Y) = Y in the expression
of f̂Q,h. We showed that the corresponding mean squared error has the following asymptotic form:

E
(
f̂h(x) − f (x)

)2 = 1

m

(
ρ(0) − a(γ )hαγCK(γ )

) + h4

4

(
f ′′(x)

)2
d2
K + O

(
1

nγ m
+ h2

n

)
+ o

(
h4 + hγ

m

)

with γ = min(α,2) anda(γ ) = λ for 0 < α < 2 anda(γ ) = −ρ′′(0)/2 for α � 2. Moreover, ifm/n = O(1),
then

h∗ =




(
λαCK(α)

d2
K(f ′′(x))2

)1/(4−α)

m−1/(4−α) for 0< α < 2,

( −2ρ′′(0)

dK(f ′′(x))2

)1/2

m−1/2 for α � 2.

(ii) We studied and compared through an Uhlenbek–Ornstein error process the performance betweenf̂Q,h and
f̂h for different growth curves. We noticed that, the estimatorf̂h outperforms the quantized estimatorf̂Q,h,
especially when the number of levels of quantization is small. However, the two estimators have ab
same performance in estimating the curvef whenN is large.

Notice that, results on simulations and proofs of theorems can be requested from the authors.
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