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Abstract

We review the analytic transformations allowing to construct standard Brownian bridges from a Brownian motion. Th
generalized and some of their properties are studied. The new family maps the space of continuous positive functio
family of curves which is the topic of our study. We establish a simple and explicit formula relating the distributions of t
hitting times of each of these curves by a standard Brownian motion.To cite this article: L. Alili, P. Patie, C. R. Acad. Sci.
Paris, Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur les premiers instants de croisement du mouvement brownien et d’une famille de courbes continues. Nous exami-
nons les transformations analytiques qui permettent de passer du mouvement brownien aux ponts browniens standard
généralisons et étudions certaines de leurs propriétés. L’image d’une courbe réelle et continue, par ces transformatio
famille de courbes à laquelle nous nous intéressons. Nous établissonsune relation simple et expliciteentre les distributions de
temps d’atteinte de chacun des éléments de cette famille par un mouvement brownien.Pour citer cet article : L. Alili, P. Patie,
C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let B be a standard Brownian motion andf a continuous function onR+ such thatf (0) �= 0. The determination
of the distribution ofT (f ) = inf{s � 0; Bs = f (s)}, known as the boundary crossing problem, is the topic of
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study herein. This problem originally attracted researchers because of its connections to sequential analysis,
parametric tests and iterated logarithm law, see [6] and the references therein. As a general result, we recall tha
Strassen, in [11], showed that iff is continuously differentiable then the latter is absolutely continuous with res
to the Lebesgue measure with a continuous density. From the explicit viewpoint, some elaborated fine
proved efficient each for specific elementary examples. For instance, the Bachelier–Lévy formula for the straigh
lines, Doob’s transform for the square root boundaries [1], and the direct application of Girsanov’s theorem
quadratic functions [3,10]. In the general setting, the celebrated method of images allows us to solve the pro
for a class of curves which are solutions, in the unknownx for a fixedt , of implicit equations of the type

h(x, t)
(def)=

∞∫
0

eux− u2
2 t ϑ(du) = a

wherea is some fixed positive constant andϑ is a positiveσ -finite measure. The collected class of curves wh
can be treated using this tool must satisfy some criterions such as the concavity, see [5]. Another method
worth to be mentioned, discovered by Durbin, see in [2], transforms the problem into the calculation of a con
expectation. Further reading about asymptotic studies, essays and other recent applications can be found in [7,
and the references therein. We shall show a new classification of curves consisting in associating to each cu
a family of ones. More precisely, to a fixed realβ we introduce the functional transformationS(β) defined via:
S(β) :C(R+,R) → C([0, ζ (β)),R) with S(β)(f ) = (1 + β·)f ( ·

1+β· ) whereζ (β) = −β−1 if β < 0 and equals+∞
otherwise. Note that whenβ < 0 the image byS(β) of a standard Brownian motion is a Brownian bridge of len
−β−1. Now, for a fixedf ∈ C(R+,R) we collect the family of curves{S(β)(f )(t), β ∈ R, t < ζ (β)} and compare
the distributions of the hitting times of each element by a standard Brownian motion.

2. On the family {S(β), β ∈ R} and Brownian bridges

First, we show how the studied family of mappings shows up in the process of the construction of th
ily of Brownian bridges from a given original Brownian motionB. Let B(br) be a standard Brownian bridg
of lengthT > 0 and recall that the latter might be defined through its unique decomposition as a semimar

gale in its own filtration that isB(br)
t = Bt − ∫ t

0
B

(br)
s

T −s
ds, t < T . This linear equation, when integrated, provid

the well-known realizationB(br)
t = (T − t)

∫ t

0
dBs

T −s
, t < T . Another decomposition, with respect to the filtrati

σ {Bs, s < T } ∨ σ {BT }, is given byB
(br)
t = Bt − tBT /T , for t � T . Next, the law ofB(br) can be constructe

as a Doobh-transform of that ofB i.e. the Wiener measure. That is withβ = −T −1, here we haveβ < 0,
ζ (β) = −β−1 = T and denoting byP(br) and P, respectively, the laws ofB(br) and B, we have, for any fixed
t < ζ (β), the absolute continuity relationship

dP
(br)
|Ft

= (1+ βt)−1/2 e
β
2

B2
t

1+βt dP|Ft
.

The above observations extend readily to the case whenβ is any real and the analogue of the Brownian brid
is the family of Gauss–Markov processes of Ornstein–Uhlenbeck type denoted by(U(β), β ∈ R) defined for
β ∈ R and any fixed 0� t < ζ (β) by U(β) = S(β)(B(β)) whereB(β) is the continuous martingale given byB

(β)
t =∫ t/(1−βt)

0
dBs

1+βs
, t < ζ (−β). Next, we observe that

〈 ·∫
0

dBs

1+ βs

〉
t

= t

1+ βt
−→
t→ζβ




1

β
, β > 0,

∞, otherwise.

Thus, if β � 0 then(B(β), t � 0) is a standard Brownian motion. Otherwise, we can extend the definitio
(B(β), t � ζ (−β)) as follows
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(β)
t =




t/(1−βt)∫
0

dBs

1+ βs
, t � β−1,

1/β∫
0

dBs

1+ βs
+ B̃t−1/β, t > β−1,

whereB̃ is another Brownian motion that is independent ofB, so thatB(β) becomes a standard Brownian moti
on R

+. For additional information on these topics we refer to [9]. We proceed by providing some elementa
algebraic and analytic properties of the studied family of mappings.

Proposition 2.1. We have the following items.

(i) For anyα,β ∈ R, we haveS(α) ◦ S(β) = S(α+β).
(ii) (S(β))β�0 is a semi-group.
(iii) For µ ∈ R we haveS(β)(f + µ·) = S(β)(f ) + µ·.
(iv) For any fixedβ ∈ R, S(β) is a linear mapping which invariant subspace is given by the space of li

functions.
(v) S(β) preserves the concave and convex properties.
(vi) Let f ∈ C(R+,R) be a concave and non-increasing function such thatf (0) > 0 and let t0 be the smalles

root of the equationf (t) = 0. ThenS(1/t0)(f ) is increasing on[0, t0).

3. Switching from a curve to a family of curves

Fix β ∈ R and letU(−β) be defined as above. IntroduceH
(−β)
f = inf{s � 0; U

(−β)
s = f (s)} and to simplify

notations setf (β) = S(β)(f ). For β > 0, observe that the support ofH
(−β)
f is [0, β−1] ∪ {+∞}. Similarly, for

β < 0 we close the curvef (β) at the lifetime−β−1. The observations of the last section allow us to relate the ti
H

(−β)

f andT (f (β)) as follows.

Lemma 3.1. We have{H(−β)
f = ζ (−β)} = {T (f (β)) = ζ (β)} and hold true the identities

H
(−β)

f

(d)= T (f (β))
/(

1+ βT (f (β))
)

and T (f (β)) (d)= H
(−β)

f

/(
1− βH

(−β)

f

)
.

Next, observe that we can define the family{S(β), β ∈ R} on the space of probability measures. For instanc
the absolute continuous case, to the probability measureµ(dt) = h(t)dt we associateS(β)(µ)(dt) = S(β)(h(t))dt .
Now, we state the main result of this note.

Theorem 3.2. We have, for any fixedt < ζ (β), the relation

P(T (f (β)) ∈ dt) = 1

(1+ βt)5/2
e− 1

2
β

1+βt
f (β)(t)2

S(β)
(
P(T (f ) ∈ dt)

)
. (1)

We gathered below the families corresponding to the most studied elementary curves. For any couple of realsa
andb, we have the correspondences.
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f f (β)

a + bt a + (b + aβ)t√
1+ 2bt

√
(1+ βt)(1+ (β + 2b)t)

(b + t)2 ((b + (1+ β)t)2)/(1+ βt)

Let us recover the well-known Bachelier–Lévy formula corresponding to the straight line(a + µt, t � 0).

By settingf = a andβ = µ/a we get thatf (β)(t) = a + µt . With P(T (a) ∈ dt) = |a|√
2πt3

e− a2
2t dt an immediate

application of Theorem 3.2 provides then thatP(T (a+µ·) ∈ dt) = |a|√
2πt3

e−µa− µ2

2 t− a2
2t dt . Next, we look at the

distribution ofT (λ1,λ2)
a = inf{s > 0; Bs = a

√
(1+ λ1s)(1+ λ2s)}, wherea andλ1 < λ2 are some fixed reals. A

a first stage, consider the caseλ2 = 0 and setλ1 = λ andT
(λ,0)
a = T

(λ)
a . With Xt = e−λt/2

∫ t

0 eλs/2dBs for t � 0

andηa = inf{s � 0; Xs = a}, we haveT (λ)
a

(d)= λ−1(eληa − 1), see [1], which is to combine with the distribution
ηa found in [4]. Next, observe that it is enough to consider only the case wherea is positive since the other cas
can be recovered thanks to the symmetry ofB. We conclude by using the easily proved formulaP(T

(λ)
a ∈ dt) =

1
1+λt

P(ηa ∈ d·)|·= 1
λ

log(1+λt) dt , t � ζ (λ). If λ1 < λ2 then, on[0, ζ (λ1)] which is the support ofT (λ1,λ2)
a if λ1 is

positive and its finite support otherwise, we haveS(λ1)(
√

1+ (λ2 − λ1)·) = √
(1+ λ2·)(1+ λ1·) and conclude by

making use of Theorem 3.2.
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