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Abstract

We review the analytic transformations allowing to construct standard Brownian bridges from a Brownian motion. These are
generalized and some of their properties are studied. The new family maps the space of continuous positive functions into a
family of curves which is the topic of our study. We establish a simple and explicit formula relating the distributions of the first
hitting times of each of these curves by a standard Brownian molmuite this article: L. Alili, P. Patie, C. R. Acad. Sci.

Paris, Ser. | 340 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Sur les premiersinstants de croisement du mouvement brownien et d’une famille de cour bes continues. Nous exami-
nons les transformations analytiques qui permettent de passer du mouvement brownien aux ponts browniens standards. Nous |
généralisons et étudions certaines de leurs propriétés. L'image d’'une courbe réelle et continue, par ces transformations, est ur
famille de courbes a laquelle nous nous intéressons. Nous établissenslation simple et explicitentre les distributions des
temps d’atteinte de chacun des éléments de cette famille par un mouvement br&ouieriter cet article: L. Alili, P. Patie,

C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let B be a standard Brownian motion agfich continuous function oR™* such thatf (0) # 0. The determination
of the distribution of7 /) = inf{s > 0; B, = f(s)}, known as the boundary crossing problem, is the topic of our
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study herein. This problem originally attracted resbars because of its connections to sequential analysis, non-
parametric tests and iterated logarithm law, see [6] aedeferences therein. As a geal result, we recall that
Strassen, in [11], showed thatfifis continuously differentiable then the latter is absolutely continuous with respect

to the Lebesgue measure with a continuous density. From the explicit viewpoint, some elaborated fine methods
proved efficient each for specific elentary examples. For instance, the Batibr—Lévy formula for the straight

lines, Doob’s transform for the square root boundaries [1], and the direct application of Girsanov's theorem for the
quadratic functions [3,10]. In the ger setting, the celebrated method of images allows us to solve the problem
for a class of curves which are solutions, in the unknawar a fixedt, of implicit equations of the type

x, 1) (% / 5519 (du) = a

wherea is some flxed positive constant afds a positives -finite measure. The collected class of curves which

can be treated using this tool must satisfy some criterions such as the concavity, see [5]. Another method which is
worth to be mentioned, discovered by Durbin, see in [2], transforms the problem into the calculation of a conditional
expectation. Further reading abouyamptotic studies, essays and othecent applications can be found in [7,8]

and the references therein. We shall show a new cleasdn of curves consisting in associating to each curve

a family of ones. More precisely, to a fixed rgawe introduce the functional transformatisi®) defined via:

§B @R, R) — C([0, ), R) with SP (f) =1+ B) f(175) where¢#) = —p~Lif B <0 and equals-oo
otherwise. Note that whef < 0 the image bys®) of a standard Brownian motion is a Brownian bridge of length
—pB~L. Now, for a fixedf € C(RT, R) we collect the family of curve§S® (f)(1), B € R, t < ¢#} and compare

the distributions of the hitting times of each element by a standard Brownian motion.

2. On thefamily {S®, B € R} and Brownian bridges

First, we show how the studied family of mappings shows up in the process of the construction of the fam-
ily of Brownian bridges from a given original Brownian motiadh Let B®" be a standard Brownian bridge
of lengthT > 0 and recall that the latter might be definedotlgh its unique decomposition as a semimartin-

(br
gale in its own filtration that |sB(br) B — [y %

ds t < T. This linear equation, when integrated, provides
the well-known reahzatlorB(br) —1) fé 7‘53;, t < T. Another decomposition, with respect to the filtration

o{Bs, s < T}V o{Br}, is given byB(br) B, —tBy /T, for t < T. Next, the law ofB®" can be constructed
as a Doobh-transform of that ofB i.e. the Wiener measure. That is with= —T~1, here we haves < 0,

¢ = —g~1 =T and denoting byP®” and P, respectively, the laws oB®" and B, we have, for any fixed
t < ¢® | the absolute continuity relationship

ap®) — ~1/2 éii

7 =@+ B0 e2 T dP| 7.

The above observations extend readily to the case vghismany real and the analogue of the Brownian bridges
is the family of Gauss—Markov processes of Ornstein—-Uhlenbeck type denotdd®y S < R) defined for

B R and any fixed & 1 < ¢® by U® = 5B (B®) whereB® is the continuous martingale given B" =

a/a=pn dBﬁ‘ t < =P Next, we observe that

</ dBS > : l’ IB>07
= e '3
1+B8s), 1+ Btisep

oo, otherwise

Thus, if 8 <0 then(B®, ¢ > 0) is a standard Brownian motion. Otherwise, we can extend the definition of
(B®, t<;( )y as follows
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t/(1-B1)

&7 t< gL,
1+ Bs
BB _ 0
! 1/p
dBq ~ 1
/1+’3S+Bt—1//3, > B,
0

whereB is another Brownian motion that is independenBofso thatB®) becomes a standard Brownian motion
on RT. For additional information on these topics we refie [9]. We proceed by providing some elementary
algebraic and analytic properties of the studied family of mappings.

Proposition 2.1. We have the following items.

(i) Foranya, B € R, we haves® o ) = s@+h)

(i) (S¥))g>0 is a semi-group.

(i) For ue R we haveS® (f + u-) =SB (f) + p-.

(iv) For any fixedg € R, S® is a linear mapping which invariant subspace is given by the space of linear
functions.

(v) S® preserves the concave and convex properties.

(vi) Let f e C(RT,R) be a concave and non-increasing function such tiéd) > 0 and letzy be the smallest
root of the equatiory (r) = 0. Thens/%)( f) is increasing or{0, o).

3. Switching from a curveto a family of curves

Fix g € R and letU ") be defined as above. Introduﬂa}_ﬂ) —inf(s > 0, UT? = £(s)} and to simplify

notations setf # = S® (f). For 8 > 0, observe that the support @f}_ﬁ) is [0, 711 U {+o0}. Similarly, for
B < 0 we close the curvg® at the lifetime—pg 1. The observations of the last section allow us to relate the times
H}_ﬂ) andT ") as follows.

Lemma3.1. We have H{” =t P} = (1" = ¢} and hold true the identities
(—/3) (d) B) B) B) (d) (—/3) (—/3)
H V210D /(14 p1Y) and TV ZHY [(1-pH?).

Next, observe that we can define the fanfi§y®), g € R} on the space of probability measures. For instance in
the absolute continuous case, to the probability megs(e = i(r) dr we associats® () (dr) = SP (h (1)) dr.
Now, we state the main result of this note.

Theorem 3.2. We have, for any fixed< ¢ #), the relation

1 _1_B_ B ()2
PTC edt)y = —— e 2w/ VO 5B (pT (D) < dr)). 1
( €U = T g (P(T') e dn) (1)

We gathered below the families corresponding to thetrstnglied elementary cueg. For any couple of reals
andb, we have the correspondences.
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f f(ﬁ)

a-+ bt a+ (b+ap)t

V1t 2br VA+ BT+ (B+2b)1)
(b+1)? ((b+ (14 B)N?)/(A+ Br)

Let us recover the well-known Bachelier-Lévy formula corresponding to the straightdineus, ¢ > 0).

a2
By setting f = a andp = u/a we get thatf ® (1) = a 4+ ur. With P(T@ e dr) = J% e~z dr an immediate

2 a2
application of Theorem 3.2 provides then tHaT @+ e dr) = % e Ha='71=% dr. Next, we look at the
T

distribution ofTa(“’AZ) =inf{s > 0; By =a+/(1+ x1s)(1+ A2s)}, wherea andi1 < Ao are some fixed reals. At

a first stage, consider the case= 0 and setv; = » andT*'? = 7. With X, = e /2 Jo€/2dBy fort >0

andn, =inf{s > 0; X, =a}, we haveTa(” @ A~ 1(e* — 1), see [1], which is to combine with the distribution of
n, found in [4]. Next, observe that it is enough to consider only the case whisreositive since the other case
can be recovered thanks to the symmetrnBofWe conclude by using the easily proved formHKJa(” ed) =
TlmlP’(na € d-)|_:%|og(1+mdt, t <M. If a1 < Ao then, on[0, ¢ V] which is the support of *+*2 if 1 is
positive and its finite support otherwise, we ha&l (/I + (A2 — A1)-) = /(1 + A2-)(1 + A1-) and conclude by
making use of Theorem 3.2.
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