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Abstract

Let £2 be a smooth bounded domain&d’, N > 3. We show that Hardy’s inequality inidng the distance to the boundary,
with best constant (), may still be improved by adding auttiple of the critical Sobolev nornTo citethisarticle: S. Filippas
etal., C. R. Acad. Sci. Paris, Ser. | 339 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé
Inégalités de Har dy—Sobolev précisées. Soit £2 un ouvert borné et regulier dafis¥, N > 3. On montre que l'inegalité de
Hardy, liée a la distance au bord, avec meilleure constan®,(peut étre améliorée en ajoutant un multiple de la norme de

Sobolev critiquePour citer cet article: S. Filippaset al., C. R. Acad. Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction and main results

IfK={xeRN |xy1=x2=---=x;, =0}, 1<k <N —1,andd(x) = dist(x, K) the following Hardy—Sobolev
inequality with critical exponent has been established in ([6], Corollary 3, p. 97)
k—2\2 [ u? Es
/|Vu|2dx—<T> /%d)@c( /|u|%dx> . VueCP®RNY\K). (1)
RN RN RN

Whenk = N, thenK = {0}, d(x) = |x| and (1) fails. To state the analogue inequality in this caseX (e} :=
(1—-Inr)~1, 0<r <1.We also seD := Sup,cp Ix|. Then for any bounded domaia C RY, N > 3 there holds
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([5], Theorem A)

/|Vu| dx_<N_2> /| |2 </|M|N 2X2(1</v <|2|>dx>N, Vu € C3°(2). (2)

Inequahty (2) involves the crltlcal expong but contrary to (1) it has a logarithic correction. Moreover, it is sharp
in the sense that one cannot take a smaller power of the logarithmic corr&ction

We next present recent results tlextent (1) to more general domaifis and distance functions. To simplify
the presentation from now on we consider only the case wKeted 2, and thereforel(x) = dist(x, 3£2), we
emphasize however that all the results that follow have a counterpart in the casekivisesaesmooth manifold of
codimensiork, with 1<k < N — 1.

Let 2 c RV, N > 3, be a smooth and convex domain with:= sup, . d(x) < oo. Then the following in-
equality is true ([1], Theorem 6.4)

/|Vu|2dx—%/— </| (dg)> )T, Vu € CS°(£2). (3)
2

On the other hand if? is a bounded smooth domain (no convexity iguiged) the following inequality has been
proved by Davila and Dupaigne ([3], Theorem 1)

1 2
/|vu|2dx—2/%dx+/\/ 2dx > </|u|qu> , VueCFR), (4)
2 2

for » andC positive constants depending @h and 1< ¢ < g1 := 200,

Inequality (3) requires convexity @ and misses the critical exponent by a logarithmic correction. On the other
hand no convexity is needed for (4) at the expense of adding?arorm in the left-hand side and staying below
the exponengy (< ) in the right-hand side.

In this work we |mprove both (3) and (4) by obtaining the sharp analogue afXi§.a smooth bounded domain
of RN, N > 3,d(x) = dist(x, 8£2) and let2s := {x € £2: dist(x, 8£2) < 8} be a tubular neighborhood 6§2. We
then have

Theorem 1.1. There exist positive constants A = A(£2) and C = C(£2) depending on £2 such that

N-—2
/|W| dx—}/dzdx+k/ 2dx > (/IuIN 2dx> B , YueCg(R). (5)

No convexity of§2 is needed. We note that the first Hardy-type result that dismisses convexity at the expense of
adding a lower order term, is the following inequality due to Brezis and Marcus ([2], Theorem I)

/|Vu| dx——/—dx+k/u2dx>0, Yu € C3°(£2), (6)
2
for a constank that depends OR. In casef? is convex we have

Theorem 1.2. If £2 is convex, there exists a positive constant C = C(£2) depending on £2 such that

N-2
1 2 N
/|Vu| dx——/%d >c</|u|N2N2 dx) . YueCP(R). @)
2 2 22

Inequality (7) is scale invariant and the const@nive have computed depends &nin a scale invariant way. The
following then is a natural question.
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Open problem 1: Are the constant€§’ of Theorems 1.1 and 1.2 independent2?
The results that follow strongly suggest tiiats independent of2.

Theorem 1.3. There exists a positive constant 5o = 30(£2) depending on £2 and a positive constant C = C(N)
depending only on the dimension N, such that for all 0 < § < §g

N-2

1 2 2 N
/|Vu|2dx—£—1/%dx>C</|u|N_y2 dx> . VueCP(82s). 8)
25 £2s

£2s

Notice thats2 need not be convex for Theorem 1.3. To state our next result we introduce some notation. We
denote byCy or simply byC the circular cone with vertex at the origin and having axis of symmetry the positive
xy-axis. The anglep € (0, %) is the angle between any line @ghpassing through the origin and the positive
xy-axis. Letd (x) = dist(x, aC). We then have

Theorem 1.4. There exists a constant C = C(N) depending only on the dimension N such that

N-=2
1 2 -
/|W|2dx—Z/'Z—de>c</|u|%dx> . VueCgQ). (9)
C C C

We note in particular that the constaitin (9) is independent of the opening anglef the cone fow € (0, 7).
The last theorem also raises the question of what are the minimal assumptignhs besides convexity — under
which (7) remains valid.

It will be interesting to compute the best constéanat least for special geometries.
Open problem 2: What is the best constaat for the unit ball or for half space? How does it relate to the best
Sobolev constant?

Remark 1. Theorems 1.1-1.3 have a counterpart in the case wtiésea smooth manifold of codimensi@rwith
1<k <N -—1andd(x)=dist(x, K). In all these cases the critical Sobolev norm appears in the right-hand side.
We also note that most of the results extend toltResetting for 2< p < N.

2. Sketch of proofs

We first present the key ingredients in the proof of Theorems 1.2 and 1.3. By the change of varfiaples
dY?(x)v(x) (cf. [1]) inequality (7) is equivalent to

2 1 2 N _ 2N NT_Z 00
d|V| dx—}—i (=Ad)|v|“dx > C dV=2|v| V-2 dx , YveCyi(£2), (10)
2 2 2

valid forv e C§°(£2). To prove (10) we will derive suitable inequalities near the boundary as well as away from the
boundary and then we will combine them. To this endplgbe a smooth cutoff such thef = 1 in 25 andgs =0
in chs and setv = ¢sv + (1 — ¢5)v =: v1 + v2. Near the boundary, that is, férsmall enough, and for smooth
domainsd(x) is a smooth function andd approaches the mean curvature of the boundary. As a consequence, the
middle integral in (10) is treated as a loweder term. The desired estimate thendoffollows by the Gagliardo—
Nirenberg inequality and elementary estimates. This proves Theorem 1.3, and no convexity is needed.

To prove Theorem 1.2, we need in addition to work with We note that away from the boundady d(x) <
D = sup,. d(x), and therefore (10) is easily seen to be truevgreven if the term containing Ad is absent.
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Convexity is now needed to guarantee thatd > 0. We finally note that the dependenc&bbn 2 enters through
the ratio% — a scale invariant quantity.

Proof of Theorem 1.1. Let ¢5 be a smooth cutoff such that = 1 in 25 and¢s =0 in chs We write u =
dsu~+ (1—¢s)u =: u1+uz. We then follow closely the argument of ([7], Theorem 2.2, case 3), or ([3], Theorem 1).
That s, by a straightforward calculation we have that

1 2
/|Vu|2dx—2/—dx_/|Vu1| dx——/ %dx+/|Vu2|2dx+R(u1,u2), (11)
2 2

for a suitable remainder terR. The termR is easily estimated from below by fg u?dx. The first two terms
of the right-hand side are estimated by Theorem 1.1, whereas for the gradient term we use the standard Sobole
imbedding and the result follows.O

Proof of Theorem 1.4. We will use the self similarity of the con@ We denote by(1 ) the intersection of with
the stripR¥ 1 x (1 < xy < 2) and we notice that = UnZ_2"Ca.2). It is enough to prove inequality (9) for
C1,2) when distance is takemnly from the lateral surface @1 »). By scale invariance then, the inequality is true
for all pieces 2C(1,2), n = +£1, £2, . .., with the same constant, and we can patch them together to get (9).

By practically the same argument as in the proof of Theorem 1.2, we can obtain inequality (7) for the unit
cylinder H = B; 1 x (0, 1), when distance is takemly from the lateral surfacé = E)B{V‘1 x (0,1). Itis easy
then to mapH ontoC(q 2 in a one-to-one way by an elementary transformation which is bi-Lipschitz. This will
give the inequality folC(1,2) with a constanC that has a positive limit ag tends to zero, but unfortunately we
loose control of the constaat as¢ tends to% . This is in a sense expected since we ‘perturbed’ the cylinder to get
the cone and whegh = % we are in the case of half space.

For the half space however the inequality is true (see (1) withl). We then use a similar argument, that is,
we map the half space with a bi-Lipschitz elementary transformation onto the cone faf,s&¥,, %), and this
eventually shows that the constantstays away from zero or infinity even in the case wherends to%. The
result then follows easily.

Remark 2. Detailed proofs as well as various extensions of the results we presented here, will be given in a
forthcoming publication (cf. [4]).
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