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Partial Differential Equations
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Abstract

Let Ω be a smooth bounded domain inR
N , N � 3. We show that Hardy’s inequality involving the distance to the boundar

with best constant (1/4), may still be improved by adding a multiple of the critical Sobolev norm.To cite this article: S. Filippas
et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Inégalités de Hardy–Sobolev précisées. Soit Ω un ouvert borné et regulier dansR
N , N � 3. On montre que l’inegalité d

Hardy, liée à la distance au bord, avec meilleure constante (1/4), peut être améliorée en ajoutant un multiple de la norm
Sobolev critique.Pour citer cet article : S. Filippas et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction and main results

If K = {x ∈ R
N | x1 = x2 = · · · = xk = 0}, 1� k � N − 1, andd(x) = dist(x,K) the following Hardy–Sobolev

inequality with critical exponent has been established in ([6], Corollary 3, p. 97)
∫
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|∇u|2 dx −
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k − 2

2

)2 ∫
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d2
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( ∫
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|u| 2N
N−2 dx

)N−2
N

, ∀u ∈ C∞
0 (RN \ K). (1)

Whenk = N , thenK = {0}, d(x) = |x| and (1) fails. To state the analogue inequality in this case, letX(r) :=
(1 − ln r)−1, 0< r � 1. We also setD := supx∈Ω |x|. Then for any bounded domainΩ ⊂ R

N , N � 3 there holds

E-mail addresses: filippas@tem.uoc.gr (S. Filippas), vlmaz@mai.liu.se (V.G. Maz’ya), tertikas@math.uoc.gr (A. Tertikas).
1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2004.07.023



484 S. Filippas et al. / C. R. Acad. Sci. Paris, Ser. I 339 (2004) 483–486

p

y

f

n

other
w

in

ense of

e

([5], Theorem A)∫
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, ∀u ∈ C∞
0 (Ω). (2)

Inequality (2) involves the critical exponent, but contrary to (1) it has a logarithmic correction. Moreover, it is shar
in the sense that one cannot take a smaller power of the logarithmic correctionX.

We next present recent results thatextent (1) to more general domainsΩ and distance functions. To simplif
the presentation from now on we consider only the case whereK = ∂Ω , and therefored(x) = dist(x, ∂Ω), we
emphasize however that all the results that follow have a counterpart in the case whereK is a smooth manifold o
codimensionk, with 1� k � N − 1.

Let Ω ⊂ R
N , N � 3, be a smooth and convex domain withD := supx∈Ω d(x) < ∞. Then the following in-

equality is true ([1], Theorem 6.4)∫
Ω

|∇u|2 dx − 1

4

∫
Ω

u2

d2 dx � C

( ∫
Ω

|u| 2N
N−2 X

2N
N−2

(
d(x)

D

)
dx

)N−2
N

, ∀u ∈ C∞
0 (Ω). (3)

On the other hand ifΩ is a bounded smooth domain (no convexity is required) the following inequality has bee
proved by Dávila and Dupaigne ([3], Theorem 1)∫
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, ∀u ∈ C∞
0 (Ω), (4)

for λ andC positive constants depending onΩ , and 1� q < q1 := 2(N+1)
N−1 .

Inequality (3) requires convexity ofΩ and misses the critical exponent by a logarithmic correction. On the
hand no convexity is needed for (4) at the expense of adding anL2 norm in the left-hand side and staying belo
the exponentq1 (< 2N

N−2) in the right-hand side.
In this work we improve both (3) and (4) by obtaining the sharp analogue of (1).Ω is a smooth bounded doma

of R
N , N � 3, d(x) = dist(x, ∂Ω) and letΩδ := {x ∈ Ω : dist(x, ∂Ω) � δ} be a tubular neighborhood of∂Ω . We

then have

Theorem 1.1. There exist positive constants λ = λ(Ω) and C = C(Ω) depending on Ω such that
∫
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, ∀u ∈ C∞
0 (Ω). (5)

No convexity ofΩ is needed. We note that the first Hardy-type result that dismisses convexity at the exp
adding a lower order term, is the following inequality due to Brezis and Marcus ([2], Theorem I)∫
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0 (Ω), (6)

for a constantλ that depends onΩ . In caseΩ is convex we have

Theorem 1.2. If Ω is convex, there exists a positive constant C = C(Ω) depending on Ω such that
∫
Ω

|∇u|2 dx − 1

4
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( ∫
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|u| 2N
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N

, ∀u ∈ C∞
0 (Ω). (7)

Inequality (7) is scale invariant and the constantC we have computed depends onΩ in a scale invariant way. Th
following then is a natural question.
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Open problem 1: Are the constantsC of Theorems 1.1 and 1.2 independent ofΩ?
The results that follow strongly suggest thatC is independent ofΩ .

Theorem 1.3. There exists a positive constant δ0 = δ0(Ω) depending on Ω and a positive constant C = C(N)

depending only on the dimension N , such that for all 0 < δ � δ0

∫
Ωδ

|∇u|2 dx − 1

4

∫
Ωδ

u2

d2 dx � C

( ∫
Ωδ

|u| 2N
N−2 dx

)N−2
N

, ∀u ∈ C∞
0 (Ωδ). (8)

Notice thatΩ need not be convex for Theorem 1.3. To state our next result we introduce some notati
denote byCφ or simply byC the circular cone with vertex at the origin and having axis of symmetry the pos
xN -axis. The angleφ ∈ (0, π

2 ) is the angle between any line onC passing through the origin and the posit
xN -axis. Letd(x) = dist(x, ∂C). We then have

Theorem 1.4. There exists a constant C = C(N) depending only on the dimension N such that

∫
C

|∇u|2 dx − 1

4

∫
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|u|2
d2 dx � C

( ∫
C

|u| 2N
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)N−2
N

, ∀u ∈ C∞
0 (C). (9)

We note in particular that the constantC in (9) is independent of the opening angleφ of the cone forφ ∈ (0, π
2 ).

The last theorem also raises the question of what are the minimal assumptions onΩ – besides convexity – unde
which (7) remains valid.

It will be interesting to compute the best constantC at least for special geometries.
Open problem 2: What is the best constantC for the unit ball or for half space? How does it relate to the b
Sobolev constant?

Remark 1. Theorems 1.1–1.3 have a counterpart in the case whereK is a smooth manifold of codimensionk with
1 < k � N − 1 andd(x) = dist(x,K). In all these cases the critical Sobolev norm appears in the right-hand
We also note that most of the results extend to theLp setting for 2� p < N .

2. Sketch of proofs

We first present the key ingredients in the proof of Theorems 1.2 and 1.3. By the change of variablesu(x) =
d1/2(x)v(x) (cf. [1]) inequality (7) is equivalent to

∫
Ω

d|∇v|2 dx + 1

2

∫
Ω

(−�d)|v|2 dx � C

( ∫
Ω

d
N

N−2 |v| 2N
N−2 dx

)N−2
N

, ∀v ∈ C∞
0 (Ω), (10)

valid for v ∈ C∞
0 (Ω). To prove (10) we will derive suitable inequalities near the boundary as well as away fro

boundary and then we will combine them. To this end letφδ be a smooth cutoff such thatφδ = 1 in Ωδ andφδ = 0
in ΩC

2δ and setv = φδv + (1 − φδ)v =: v1 + v2. Near the boundary, that is, forδ small enough, and for smoo
domains,d(x) is a smooth function and�d approaches the mean curvature of the boundary. As a consequen
middle integral in (10) is treated as a lowerorder term. The desired estimate then forv1 follows by the Gagliardo–
Nirenberg inequality and elementary estimates. This proves Theorem 1.3, and no convexity is needed.

To prove Theorem 1.2, we need in addition to work withv2. We note that away from the boundary,δ � d(x) �
D = supx∈Ω d(x), and therefore (10) is easily seen to be true forv2, even if the term containing−�d is absent.
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Convexity is now needed to guarantee that−�d � 0. We finally note that the dependence ofC onΩ enters through
the ratio δ

D
– a scale invariant quantity.

Proof of Theorem 1.1. Let φδ be a smooth cutoff such thatφδ = 1 in Ωδ andφδ = 0 in ΩC
2δ. We write u =

φδu+ (1−φδ)u =: u1+u2. We then follow closely the argument of ([7], Theorem 2.2, case 3), or ([3], Theore
That is, by a straightforward calculation we have that∫

Ω

|∇u|2 dx − 1

4

∫
Ω

u2

d2
dx =

∫
Ω

|∇u1|2 dx − 1

4

∫
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u2
1

d2
dx +

∫
Ω

|∇u2|2 dx + R(u1, u2), (11)

for a suitable remainder termR. The termR is easily estimated from below by−λ
∫
Ω

u2 dx. The first two terms
of the right-hand side are estimated by Theorem 1.1, whereas for the gradient term we use the standard
imbedding and the result follows.�
Proof of Theorem 1.4. We will use the self similarity of the coneC. We denote byC(1,2) the intersection ofC with
the stripR

N−1 × (1 < xN < 2) and we notice thatC = ⋃∞
n=−∞ 2nC(1,2). It is enough to prove inequality (9) fo

C(1,2) when distance is takenonly from the lateral surface ofC(1,2). By scale invariance then, the inequality is tr
for all pieces 2nC(1,2), n = ±1,±2, . . . , with the same constant, and we can patch them together to get (9).

By practically the same argument as in the proof of Theorem 1.2, we can obtain inequality (7) for th
cylinderH = BN−1

1 × (0,1), when distance is takenonly from the lateral surfaceL = ∂BN−1
1 × (0,1). It is easy

then to mapH ontoC(1,2) in a one-to-one way by an elementary transformation which is bi-Lipschitz. This
give the inequality forC(1,2) with a constantC that has a positive limit asφ tends to zero, but unfortunately w
loose control of the constantC asφ tends toπ

2 . This is in a sense expected since we ‘perturbed’ the cylinder to
the cone and whenφ = π

2 we are in the case of half space.
For the half space however the inequality is true (see (1) withk = 1). We then use a similar argument, that

we map the half space with a bi-Lipschitz elementary transformation onto the cone for, say,φ ∈ (π
4 , π

2 ), and this
eventually shows that the constantC stays away from zero or infinity even in the case whereφ tends toπ

2 . The
result then follows easily.

Remark 2. Detailed proofs as well as various extensions of the results we presented here, will be giv
forthcoming publication (cf. [4]).
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