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Abstract

We investigate the behavior of the zero counting function of certain natural Dirichlet series with functional equation in the
immediate vicinity of the critical lingRe(s) = %}. To citethisarticle: D.A. Hglhal, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur la distribution horizontale des zéros de combinaisons linéaires des produits eulériens. Nous étudions certaines
séries de Dirichlet naturelles qui satisfont une équation fonctionelle ainsi qu’une fonction dénombrant leurs zéros dans certains
domaines rectangulaires piees de la droite critiqugRe(s) = %}. Pour citer cet article: D.A. Hglhal, C. R. Acad. Sci. Paris,

Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

This is the first of several Notes having to do with the asymptotic distribution of zeros of linear combinations
of Euler products over certain types actangular regions situated justgtitly to the right of the critical line
{Re(s) = %}. The results we obtain are an extension of those in [4] and build in an essential way on the ideas of [5]
and [6].

To get started, we need some notation. et 2 and{L1,...,L;} be any collection of Euler products of
degreed satisfying the five basic hypotheses posited in 81 of [5]. Briefly put, the ambient situation will thus be one
wherein:

(A) on {Re(s) > 1}, one has lod. ; (s) = D" c;(n)(A(n)/logn)n—* for appropriately chosefe; (n)| < d;

(B) eachL; is analytically continuable to all of apart from a finite number of pes situated along the line
{Re(s) =1};
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(C) eachL ; satisfies a standard functional equation

expia) G(s)L(s) = explia)G (L — 5)L(1 — 5)

for suitably chose € R and gamma factot (s) = Q° ]—[f’=1 '(xs + w,) (both choices being allowed to depend
onj);
(D) the logarithms of the. ; are “formally orthogonal” in the sense that one has

-1
Zp—zacj(p)m =R;djx Iog[min(logt, <a — %) )} + 0,

p<t

with certain positive constants;, uniformly fors > 2 and% <o <1

(E) the nontrivial zeros ofL ;(s) either satisfy GRH for allj, or else a Selberg-type density condition
Nj(.T.T + H) = O[H(H/VT)?%/2=)logT] wheneverr® < H < T and 3 < o < 1 (the same values of
% < w < 1 andg > 0 being utilized herein for alf).

This set-up is then completed by choosing any numbers 3,8 < 1 and 1< «,c2 < oo, and writing
Yolo, 1) = Zpgz p~%° asin[5, §1]. If GRH holdsy is taken to be any number i, 1].

When the giverL ; all have thesamegamma factoG(s), the linear combination

J
F(s)=Y_bjexplia;)L;(s) 1)

j=1

manifestly satisfie& (s) F(s) = G(1 —5)F(1—5) for any choice of(b1, ..., by) € S’ (the unit sphere ifR’).
Standard techniques show that the total number of zer65 ofF (s) inside{0 < Im(s) < T} is (A/m)T logT +
O(T), whereA = Zf’zl A.. At the same time, by virtue of the functional equation, the function GF clearly takes
real values alongRe(s) = 3}.

It was proved in [2] that, under GRH plus a modest spacing hypothesis on the zefos ahy linear
combination (1) must necessarily haagymptotically allof its zeros along the critical line & — oo. (Similarly
for T < 0.) In light of this fact, it is only natural to try to develop bounds for the “horizontal counting function”
Np(o,T,T + H) aso approache% from the right!

In the case/ = 2, use of ideas akin to those in [5] and [6, pp. 55 (top), 60 (4.6)] together with the trivial
observation that max, v) = %u + %v + %|u — v| make it possible to determine the precise order-of-magnitude of
Np(o, T, T +nT) for generic(by, bo) € ST ando lying in the range

1 (loglogT) co< }—l— 1 ' @)
2 logT 2 (logT)’
Cf. [4, Theorem A]. (Herg is any positive constant.)

The methods of [4] are readily adapted to applWe(o, T, T + H) in the more general setting of T < H <

c2T (w being as in item (E) if GRH is not assumed). One obtains

H 1
o —1/2 /loglogT
as the correct order-of-magnitude.

In this Note, our primary objective will be to announaeextension of this last estimate to a setting in which
the variable/ is unrestricted.

1 For anyfixedo > 1/2, one expects thaVy (o, T, T + H) = O(T), at least under GRH. See [7, §89.51, 9.623] and [8, §87.9, 13.2]. Cf.
also [2, p. 861 middle].



D.A. Hejhal / C. R. Acad. Sci. Paris, Ser. | 338 (2004) 755-758 757

2. Admissible probability measures

Let S=S/"tand H(X,Y)=|(X,Y)|"}, where(X, Y) is the standard inner product &Y. A probability
measures on S will be said to beadmissiblevhen the integrafs logH (X, Y)du(X)=0() for everyY € S. It
is not hard to check that:

(a) forJ =2, u is admissibles the logarithmic potential ofc is bounded;

(b) for general/, i is admissible anytime the Rieszpotential [¢ | X — Y ||~ du(X) is bounded for some
strictly bigger than/ — 2.

The proof of (b) uses integration by parts and a covering argument based on solid an§tez.ims a
consequence of (b), there exist numerous admisgitdepported on any compact subgebf S having Hausdorff
dimension> J — 2. Cf. [3, Chapters 2—4]. (Haar measure$is, of course, trivially admissible.)

3. Statement of results

Theorem 3.1. Given Euler product§Li,...,L;} as in Sectionl having thesamegamma factorG(s). If
J > 3, assume thaik > 2. Let 0 < ¢ < 1 and ¢ be any proballity measure onS’~1 admissible in the
sense of Sectio@ above. Keepr € [%, % + (logT) %1, H € [e1T®, coT1, and T bigger than some suitable
To(L1,...,Lyj,c1,c2,8,k,w,¢,1). There will then exist positive constan€y and C2 depending solely on
{L1,...,Lyj,c1,c2,8,k,w,¢,t} (note thee) such that, subject t(R),

H 1 H 1
C <Np(o, T, T+H)XC
o 1/2 /loglogT rlo ) 2o — 1/2 /loglogT

holds for everyb;) € $7-1 exceptpossibly those in an exceptional séthaving:-measure< ¢. (The set\" may
vary witho, T, H.)

To a large extent, once matters are known.fog 2 (cf. [4] and the paradigm outlined there), Theorem 3.1 is
pretty much a simple corollary of [5] and the following estimate interesting in its own right.

To facilitate the latter’s statement, we first introduce independent Gauséigns., W; having mean 0 and
standard deviatiory®; /27 . We then write®y (x1, ..., x;) = ]_[#k v(xx — x;), wherev(x) = %[1 + sgnx)] and
sgn(0) = 0. For points ofR’ with distinct coordinatesp; has an obvioug0, 1}-interpretation, which leads at once
to the identity

J
max(xy, ...,XJ)=ZXk<Pk(X1, ceXJ). Q)
=1

Theorem 3.2. Given any Euler productks, ..., Ly asin the first part of Sectiok; i.e., with no particular relation
among their gamma factors. Keepe [%, % + (logT)~%], H € [e1T®, ¢oT1, and T bigger than some suitable
To(L1,...,Lyj,c1,c2,6,k,w). Let

vo=vo(0,T), Lj=Lj(o+ir), A=(12/k/w)yg(l0ogo),

T+H T+H
M(o) = / max(log|Lal,...,log|L;)dr, Ii(o) = / @y (log|L1l, ..., log|L,I)dr.
T T

We then have
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M(o) = HE(max Wi, ..., Wp))y/mo+ AJ% + O(H /o) + O(H 5 “ (log vo)?)

Ii(0) = HE(®x(W1, ..., W))) + OCH /y0) + O(H g “ (log ¥0)?),
whereA is some constant depending solely{én, ..., L} and

@b)=0.3).5-3.3. cd=G. &5 fori=3
(@,b)=(0,3),k-3%0, (d=(32,050 forJ=2

In each instance, the second alternative holds V\ﬂﬂé}ﬂ% + (A/logT) and the respective implied constants will
typically depend ofic1, ¢2, 8, k, w} in addition to{L1, ..., L;}.

Though sufficient for Theorem 3.1, Theorem 3.2 is amenable to improvements of various types. The most
important perhaps is that the terni®/v0) in M (o) can be upgraded to an asymptotic development in powers of

1//m o in the spirit of [5].

4. Concerning the proof of Theorem 3.2

The I (o) portion of the result is basically obtained by applying [5, Theorem 2.1]. When2, one uses a
variant specifically adapted to ldg — logL» (cf. [4, EQ. (4.14)]). In the gegral case, one proceeds with the aid
of a cruder “over/under” grid-type argumentiy .

For theM (o) portion, one uses (3) and artensiorof the ideas in [5, §3]. One introduces; (o, t) as before
and attacks matters first with Bg; in place of logL ;|. Band-limited approximations to(x) are constructed
using a “kernel"%so(v) + 2—1”Q(v/ Q), whereindp(v) is the Dirac delta and@ is an appropriately chosen even
function in C1(R) having supporf—1,1]. Cf. [1], [9, Eq. (2.31)], and [4, Eq. (4.7)]. “Morphingp—" into
exp2rif,) again plays a decisive role in the subsequent estimates. The terms arising therein due;to the
multipliers in (3) are best handldyy differentiation prototypically,

1 2J 197 1 2J
I(vl,...,vzj):/exp i vk (6) d9=>f—=/al(9)exp i > veor(0) | do.
5 k=1 Hdvy 5 k=1

Complexification of they, greatly facilitates both the estimates and asymptotics. Those error terms “originating

in” the finite bandwidth or morphing process itself are most easily addressed usirﬁytheunterpart of [5,
Theorem 2.1]. One concludes by exploiting [5, Eg. (6)] to get back to;thax|L ;|).
Full details of this proof will be published elsewhere.
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