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Abstract

We prove that forg � 1 the extended mapping class group is generated by three orientation reversing involutions.To cite this
article: M. Stukow, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Le groupe modulaire étendu est engendré par 3 symétries. Nous prouvons que pour chaqueg � 1 le groupe modulaire
étendu est éngendré par trois involutions qui inversent l’orientation.Pour citer cet article : M. Stukow, C. R. Acad. Sci. Paris,
Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let Sg be a closed orientable surface of genusg. Denote byM±
g the extended mapping class group, i.e., the

group of isotopy classes of homeomorphisms ofSg . By Mg we denote themapping class group, i.e., the subgroup
of M±

g consisting of orientation preserving maps. We will make no distinction between a map and its isotop
so in particular by the order of a homeomorphismh :Sg → Sg we mean the order of its class inM±

g .
By Ci, Ui, Zi we denote the right Dehn twists along the curvesci , ui, zi indicated in Fig. 1. It is known tha

this set of generators ofMg is not minimal, and a great deal of attention has been paid to the problem of fi
a minimal (or at least small) set of generators or a set of generators with some additional property. For d
approaches to this problem see [3,5,7,8,10,11] and references there. The main purpose of this Note is
that forg � 1 the extended mapping class groupM±

g is generated by three symmetries, i.e. orientation rever

involutions. This generalises a well known fact forM±
1

∼= GL(2,Z).
As was observed in [4], the fact thatM±

g is generated by symmetries is rather simple. Namely, suppose

Sg is embedded inR3 as shown in Fig. 1. Define thesandwich symmetry τ :Sg → Sg as a reflection across th
yz-plane. Now ifu is any of the curves indicated in Fig. 1, then the twistU along this curve satisfies the relatio
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τUτ = U−1, i.e. the elementτU is a symmetry. This proves that each of generating twists is a product o
symmetries. Note that for the composition of mappings we use the following convention:fg means thatg is
applied first.

2. Preliminaries

Suppose thatSg , for g � 2, is embedded inR3 as shown in Fig. 1. Letρ :Sg → Sg be ahyperelliptic involution,
i.e., the half turn abouty-axis.

The hyperelliptic mapping class group Mh
g is defined to be the centraliser ofρ in Mg . By [2] the quotient

Mh
g/〈ρ〉 is isomorphic to the mapping class groupM0,2g+2 of a sphereS0,2g+2 with 2g + 2 marked points

P1, . . . ,P2g+2. This set of marked points corresponds (under the canonical projection) to fixed points ofρ (Fig. 1).
In a similar way, we define theextended hyperelliptic mapping class group Mh±

g which projects onto the extende

mapping class groupM±
0,2g+2 of S0,2g+2. Denote this projection byπ :Mh±

g → M±
0,2g+2. In caseg = 2 it is

known thatM2 =Mh
2 andM±

2 =Mh±
2 .

Denote byσ1, σ2, . . . , σ2g+1 the images underπ of twist generatorsC1,U1,Z1,U2,Z2, . . . ,Ug,Zg respec-
tively. These generators ofM0,2g+2 are closely related to Artin braids, cf. [2].

Let M̃ :S0,2g+2 → S0,2g+2 be a rotation of order 2g + 1 with a fixed pointP1 such that:M̃(Pi) = Pi+1, for
i = 2, . . . ,2g + 1 andM̃(P2g+2) = P2 (Fig. 2). In terms of the generatorsσ1, . . . , σ2g+1 we have:

M̃ = σ2σ3 · · ·σ2g+1. (1)

If M ′ ∈ Mg is the lifting of M̃ of order 2g + 1, thenM = ρM ′ is the lifting of M̃ for which M2g+1 = ρ. In
particularM has order 4g + 2. Using the technique described in [10] it is easy to writeM as a product of twists
M = U1Z1U2Z2 · · ·UgZg.

Since every finite subgroup ofMg can be realised as the group of automorphisms of a Riemann surfac
M has maximal order among torsion elements ofMg [12]. Geometric properties ofM played a crucial role in the
problem of finding particular sets of generators forMg andM±

g , cf. [3,7,8,11].
Following [1], let t1, s1, . . . , tg, sg be generators of the fundamental groupπ1(Sg) as in Fig. 3. In terms of thes

generators,π1(Sg) has the single defining relation:R = s
tg
g s

tg−1
g−1 · · · st1

1 s−1
1 s−1

2 · · · s−1
g , where byab we denote the

conjugationbab−1.
It is well known [9] that the mapping class groupM±

g is isomorphic to the group Out(π1(Sg)) of outer
automorphisms ofπ1(Sg). In terms of this isomorphism, elements ofMg correspond to the elements
Out(π1(Sg)) which map the relationR to its conjugate, and elements ofM±

g \ Mg to those elements o

Out(π1(Sg)) which mapR to a conjugate ofR−1.

Fig. 1. SurfaceSg embedded inR3. Fig. 2. RotationM̃ .
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Using representations of twist generators as automorphisms ofπ1(Sg) [1] we could derive the following
representation for the rotationM:

M : ti 
→ s
ti
i · · · st1

1 t1 for i = 1, . . . , g,

si 
→ t−1
1 s

−t1
1 · · · s−ti

i ti+1t
−1
i s

ti
i · · · st1

1 t1 for i = 1, . . . , g − 1,

sg 
→ t−1
1 s

−t1
1 · · · s−tg

g t−1
g s

tg
g · · · st1

1 t1.

As in the case of maps and their isotopy classes, we abuse terminology by identifying an element of Out(π1(Sg))

with its representative in Aut(π1(Sg)).

3. M±
g is generated by 3 symmetries

If we represent the action of the rotatioñM as the orthogonal action on the unit sphere, it becomes obv
thatM̃ can be written as a product of two symmetries. To be more precise, ifε̃1 is the symmetry across the pla
passing throughP1,Pg and the center of the sphere (Fig. 2), thenM̃ = ε̃1ε̃2, whereε̃2 is another symmetry.

Tedious but straightforward computations show that one of the liftingsε1 ∈ M±
g of ε̃1 has the following

representation as an automorphism ofπ1(Sg):

ε1 : ti 
→ t−1
g−1s

−1
1 · · · s−1

g−1−i , si 
→ t−1
g−1−i tg−i for i = 1, . . . , g − 2,

tg−1 
→ t−1
g−1, sg−1 
→ sg · · · s1t1, tg 
→ t−1

g−1tg, sg 
→ s−1
g .

To obtain the above representation we proceed as follows: take a generatoru of π1(Sg), find the imageũ of u

under projectionSg → S0,2g+2, find ε̃1(ũ), lift back ε̃1(ũ) to Sg and finally express the obtained loop as a prod
of generatorst1, s1, . . . , tg, sg of π1(Sg).

We would like to point out that although the above procedure is a bit subtle, it is quite simple to verify th
obtained formulas are correct. In fact, it is enough to check thatε2

1 = 1 andε1(R) is conjugate toR−1. Moreover,
the representation ofε2 = ε1M is given by the following formulas:

ε2 : ti 
→ (
t−1
g−1s

−1
1 · · · s−1

g−1−i t
−1
g−1−i

)(
s
−tg−i

g−i · · · s−tg−1
g−1

)
tg−1sg−1 for i = 1, . . . , g − 2,

tg−1 
→ t−1
g−1s

tg
g tg−1sg−1, tg 
→ sg−1,

si 
→ s−1
g−1t

−1
g−1

(
s
tg−1
g−1 · · · stg−i

g−i

)(
s
tg−1−i

g−1−i

)(
s
−tg−i

g−i · · · s−tg−1
g−1

)
tg−1sg−1 for i = 1, . . . , g − 2,

sg−1 
→ (
s−1
g−1t

−1
g−1s

−tg
g

)
tg

(
s
tg
g tg−1sg−1

)
, sg 
→ s−1

g−1t
−1
g tg−1sg−1.

It is straightforward to verify thatε2
2 is an identity in Out(π1(Sg)).

Theorem 3.1. For each g � 1, the extended mapping class group M±
g is generated by three symmetries.
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Proof. As observed in the introduction, the result is well known forg = 1, but for the sake of completeness let
prove this in more geometric way. SinceM1 = 〈U1,C1〉 (Fig. 1) andτU1τ = U−1

1 , τC1τ = C−1
1 , the groupM±

1
is generated by the symmetriesτ, τU1, τC1.

Now suppose thatg � 2. Let ε1 andε2 = ε1M be the symmetries defined above. Sinceε1(tg−1) = t−1
g−1 we

haveε1Cg−1ε1 = C−1
g−1, i.e.,ε3 = ε1Cg−1 is a symmetry. In particular〈ε1, ε2, ε3〉 ⊃ 〈ε1ε2, ε1ε3〉 = 〈M,Cg−1〉. But

by [7] the latter group is equal toMg . Since〈ε1, ε2, ε3〉 contains orientation reversing element, this proves
〈ε1, ε2, ε3〉 =M±

g . ✷
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