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Abstract

We prove that fog > 1 the extended mapping class group is generated by three orientation reversing involotmiesthis
article: M. Stukow, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Le groupe modulaire éendu est engendré par 3 symétries. Nous prouvons que pour chagge> 1 le groupe modulaire
étendu est éngendré par trois involutions qui inversent I'orientalour. citer cet article: M. Stukow, C. R. Acad. Sci. Paris,
Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let S, be a closed orientable surface of geguenote by/\/ljgt the extended mapping class group, i.e., the
group of isotopy classes of homeomorphisms$afBy M, we denote thenapping class group, i.e., the subgroup
of /\/lgjE consisting of orientation preserving maps. We will make no distinction between a map and its isotopy class,
so in particular by the order of a homeomorphisns, — S, we mean the order of its cIassMgi.

By C;, U;, Z; we denote the right Dehn twists along the curvgs:;, z; indicated in Fig. 1. It is known that
this set of generators 0¥1, is not minimal, and a great deal of attention has been paid to the problem of finding
a minimal (or at least small) set of generators or a set of generators with some additional property. For different
approaches to this problem see [3,5,7,8,10,11] and references there. The main purpose of this Note is to prov
that forg > 1 the extended mapping class grcmvp;,t is generated by three symmetries, i.e. orientation reversing
involutions. This generalises a well known fact Mf =GL(2, 7).

As was observed in [4], the fact thza\lfligt is generated by symmetries is rather simple. Namely, suppose that
S, is embedded ifR3 as shown in Fig. 1. Define th@ndwich symmetry 7:S, — S, as a reflection across the
yz-plane. Now ifu is any of the curves indicated in Fig. 1, then the twisalong this curve satisfies the relation:
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tUt = U1, i.e. the elementU is a symmetry. This proves that each of generating twists is a product of two
symmetries. Note that for the composition of mappings we use the following converfigomeans thag is
applied first.

2. Preliminaries

Suppose that,, for g > 2, is embedded i3 as shown in Fig. 1. Leb: S, — S, be ahyperellipticinvolution,
i.e., the half turn aboug-axis.

The hyperelliptic mapping class group /\/lz is defined to be the centraliser pfin M. By [2] the quotient
MZ/(p) is isomorphic to the mapping class grodo 2,42 of a sphereSp 2¢42 with 2¢g + 2 marked points
Py, ..., Py42. This set of marked points corresponds (under the canonical projection) to fixed pginfsigf 1).

In a similar way, we define thextended hyperelliptic mapping class group /\/lgjE which projects onto the extended
mapping class grou;z)/lé2ng2 of So.2,+2. Denote this projection byr:/\/lgjE — M§2g+2. In caseg =2 it is
known thatM, = M5 and M3 = M4*.

Denote byos, 02, ..., 02,11 the images undex of twist generatorsCy, U1, Z1, Uz, Z>, ..., U,, Z, respec-
tively. These generators 00,242 are closely related to Artin braids, cf. [2].

Let M: 80,2g+2 —> S0,2¢+2 be a rotation of order 2+ 1 with a fixed pointP; such thatM(P) = P;41, for
i=2,...,2¢g+1 andM(P2g+2) P, (Fig. 2). In terms of the generatass, . . ., 02,41 We have:

M = 0203+ 02441. 1)
If M’ € M, is the lifting of M of order Z + 1, thenM = pM’ is the lifting of M for which M2+ = p_In
particularM has order 4 + 2. Using the technique described in [10] it is easy to whiteas a product of twists:
M =U1Z1UzZ>--- U, Z,.

Since every finite subgroup o¥1, can be realised as the group of automorphisms of a Riemann surface [6],
M has maximal order among torsion elementg\f [12]. Geometric properties off played a crucial role in the
problem of finding particular sets of generators.faf, and/\/ljgt, cf. [3,7,8,11].

Following [1], letty, s1, ..., ¢, s, be generators of the fundamental groufS,) as in Fig. 3. In terms of these

generatorsy(Sg) has the smgle defining relatio® = sg ;”' 1oesitsy st -s; %, where bya” we denote the

conjugationbab 1.

It is well known [9] that the mapping class grou}zl;t is isomorphic to the group OGt1(S,)) of outer
automorphisms ofr1(S,). In terms of this isomorphism, elements @ff, correspond to the elements of
Out(1(S,)) which map the relationk to its conjugate, and elements mﬂ;t \ M, to those elements of
Out(1(S,)) which mapR to a conjugate ok 1.

Fig. 1. Surfaces, embedded ifRS. Fig. 2. Rotationi? .
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Fig. 3. Generators of1(Sg).

Using representations of twist generators as automorphismg @) [1] we could derive the following
representation for the rotatiovf:

M:ti|—>sfi-'-silt1 fori=1,...,g,

. —t —1 ¢ 1 .
Si b by sy s ity s -eespn fori=1,.00, g -1,

-1 -1 —lg 1 lg f
Sg F> 1378 ceSg By TSg ST

As in the case of maps and their isotopy classes, we abuse terminology by identifying an elemet oot
with its representative in Agt1(Sg)).

3. My isgenerated by 3 symmetries

If we represent the action of the rotatidd as the orthogonal action on the unit sphere, it becomes obvious
that M can be written as a product of two symmetries. To be more preciggisfthe symmetry across the plane
passing througt?;, P, and the center of the sphere (Fig. 2), thién= &1, whereg; is another symmetry.

Tedious but straightforward computations show that one of the liftings Migt of &1 has the following
representation as an automorphismrfs, ):

eriti> t sy sl L sie 1Y tey fori=1,...,g-2

-1

-1
g—1 .

fg_1t> 1 o

-1
Sg—1t> Sg---S1f1, Igt> tg_ltg, SgH> 8

To obtain the above representation we proceed as follows: take a genewdtarn (S, ), find the imagei of u
under projectiors, — So 242, find £1(i7), lift back €1(i2) to S, and finally express the obtained loop as a product
of generatorsy, s1, ..., t,, sg Of w1 (S,).
We would like to point out that although the above procedure is a bit subtle, it is quite simple to verify that the
obtained formulas are correct. In fact, it is enough to checka%ail ande1(R) is conjugate tak —1. Moreover,
the representation @b = ¢1M is given by the following formulas:

-1 -1 -1 -1 )( —lg—i

. — _tg—l .
2.t > (tg_lsl R T i s, Y )tg_lsg_l fori=1,...,¢—2,

g—i %
—1 g
fg—1H> l‘g_lsg lg—18g—1, [Igh> Sg—1,
. -1 -1 fg—-1 Lo—i fg_1-j —lg—i —lg—1 .
Si > sg_ltg_l(sg_l-'-sg_i)(sg_l_i)(sg_i s, )tg_lsg_l fori=1,...,g—2,
-1 -1 g Ig -1 -1
Sg—1+> (Sg—ltg—lsg )tg(sg tg_]_sg_l), Sg > Sg—ltg fg—18g—1.

It is straightforward to verify thaat% is an identity in Outr1(S,)).

Theorem 3.1. For each g > 1, the extended mapping class group Mjg,t is generated by three symmetries.
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Proof. As observed in the introduction, the result is well knowngdae 1, but for the sake of completeness let us
prove this in more geometric way. Sindely = (U1, C1) (Fig. 1) andtUst = Uy %, tC1t = C1 Y, the groupME
is generated by the symmetriest Uy, tC1.

Now suppose thag > 2. Lete1 andeo = e1M be the symmetries defined above. Siegg,_1) = tg‘_ll we

haves1C,_161 = Cg‘_ll, i.e.,e3=¢1Cq_1is @asymmetry. In particulaes, €2, £3) D (e1€2, £163) = (M, C4_1). But
by [7] the latter group is equal td1,. Since(e1, €2, £3) contains orientation reversing element, this proves that

(e1,62,83) = Mg. O
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