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Abstract

We prove Ehrhard’s inequality for all Borel se?'sn citethisarticle: C. Borell, C. R. Acad. Sci. Paris, Ser. | 337 (2003).
0 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.
Résumé

Linégalité d’Ehrhard. Nous démontrons l'inégalité d’Ehrhard pour tous les ensembles borélRms. citer cet

article: C. Bordll, C. R. Acad. Sci. Paris, Ser. | 337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

Throughout this paper let, be the canonical Gaussian measurRfn that is
2;3_Ox
Nk
let @ (a) = y1(] — 00, al) if a e RU {£o0}, and letx €]0, 1[. Furthermore, for any, B C R",
M+ (1—1)B={rx+(1—-21)y; x€Aandye B}.
In [2] Antoine Ehrhard proves that
‘D_l(yn (AA+@1-1B))> Kq?_l(yn (A)+1- ?»)@_1(%1(3))

for all convex bodiest andB in R". Moreover Latata in [6] shows that Ehrhard’s inequality is trug i a convex
body andB an arbitrary Borel set. This special case of Ehrhard’s inequality, combined with some short but clever
arguments, implies several well-known inequalities for Gaussian measures such as the isoperimetric inequality, the
Bobkov inequality, and the Gross logarithmic Sobolev inequality. The Latata paper [7] gives an excellent account
on these implications.

The purpose of this paper is to prove Ehrhard’s inequality for all Borel sets. This solves Problem 1, p. 456, in
the Ledoux and Talagrand book [8]. We here follow the conventiondhat co = —oco0 4+ 0o = —c0.

dy,(x) = el

Theorem 1.1.The Ehrhard inequality istrue for all Borel sets A and B in R".
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Our proof of Ehrhard’s inequality is inspired by a concavity maximum principle initiated by Korevaar in his
study of elliptic and parabolic boundary value problems [5] further developed by Greco and Kawohl [3]. In contrast
to [3] and [5] the space domain in this paper is unbounded.

It follows from the Ehrhard paper [2] that Theorem 1.1 is true in all dimensions if it is true in one dimension.
Since a restriction to one dimension would not really simplify our proof below we will make no restriction on the
dimension.

Let A =V?2= %22 + %22 be Laplace operator iR". Given a positive solutiom of the heat equation
1 n

%—”; = 1 Au the first point in our proof of Ehrhard’s inequality is to introduce the inverse Gaussian transformation

U=o"1u). Asu= o),

du U
E:(p(U)E, Vu=¢U)VU

andAu = p(U)(AU — U|VU|?), wherep(a) = ®'(a) if a € R. Thus
%z:—LAU—}UWUlZ. (1)
at 2 2

Let us note that-U is a solution of (1) ifU is. Moreover ifU (0, x) = ax + b, wherea andb are real constants,
the functionU (1, x) = a(a®t + 1)~Y2x + b(a? + 1)~1/2 solves (1).

Our proof of Theorem 1.1 is based on an application of the methods in [3] and [5] to the parabolic differential
equation in (1). In this context the Feynman—Kac formula fits very well as will be seen below. We are very grateful
to Professor Stanislaw Kwapien for pointing out an alternative to the use of the Feynman—Kac formula in the proof
of Theorem 1.1 and sketch his line of reasoning at the very end of Section 2.

2. Proof of Theorem 1.1

To prove Theorem 1.1 we assume without loss of generalityAtaatd B are non-empty compact subsetdf
Lete €]0, 1[ be fixed and choose an infinitely many times differentiable funcienC*>(R") such that < F < 1,
F=1onAandF =0off A, = A+ B(0, ¢), whereB(0, ¢) is the closed Euclidean in bdR" with centre 0 and
radiuse. Let § €]0, ¢[ and definef =6 + (1 — ¢)F. Seta =8 + 1 — ¢ and observe that < 1. In particular,
feC®R, < f<a, f=ao0nA,andf =§ off A,. In a similar way, choose a functigne C*°(R") such that
< g<a,g=ao0nB,andg = off B,. Set

kK =max® (1@ 1) + (1 -1~ 1©B)), 2 (1@ 71(6) + (1 - o).
The construction shows that— 0 asé — 0. Next we choose a functiohe C*°(R") suchthak <h <o, h=«a
oniA. + (1—X)Be, andh =« off (AA, + (1 — 1) B;).. The definitions give
O Hh(ax + @ -1y)) =207 f0) + A -0PL(g(») ifx,yeR™ )
Now consider the inequality

@—1< hdyn)m@—l( fdJ/n)Jr(l—?»)@_l( gdyn). @)
/ / /

By first lettings — 0 and there — 0 in (3) we obtain the Ehrhard inequality fdarand B. The inequality (3)
will follow from a slightly more general inequality. Let for every= 0 andx € R",

ug(t, x) =/q(x + V1) dya(2), g=f. g h.
Rl‘l
Clearly, (3) follows if

O (un(t, rx + A= 2)y)) =20 us(t, %)) + (L — 1D H(ug(t, y)) (4)
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for all + > 0 andx, y € R". The special case= 0 reduces to (2) and the special case 1 andx =y =0 is
the same as (3). To prove (4) lgtbe any off, g, or i and define the inverse Gaussian transformatiom,oby
U, = cb—l(u,,). Note that sup.q crn |Uq| < 00. Moreover, ifig, ..., i, € Nitis readily seen that

giattin

sup < 00. (5)

>0, xeR"

We now introduce the functio@(z, x, y) = U (t, Ax + (L= A)y) — AU(t,x) — (L= 1)U, (¢, y) forallt >0
andx, y € R". The inequalityC(z, x, y) > 0 is equivalent to (4). To simplify notation, from now on ket (¢, x),
n={(t,y),and¢c = (t, Ax + (1 — 1)y) so that

Axit...9xin Yq

V.C = 1{(VUW(s) — (VU )}, (6)
VyC =1 -0{(VU(s) — (VU ()}, )
ALC=22(AUW(S) — MAUS)E),  AC=1—=0%(AU(S) — (L= 1) (AU ()
and
92C
D 5o =AU
- x; 0y;
1<isn

Thus introducing the differential operator

92 1
5_—{A +21<Z; axlayiJrAy}’ ec =§{(AUh)(5) MAUp)(E) — (A=) (AU}

Now using (1)

BU},
EC=—=()+3 Uh<g)|(VUh>(;>| 29 (é)——Uf@)l(VUf)(s)l

-(1- A)—g(m U(n)I(VU )(n)l
or
aC
5C=¥+l1/(t,x,y)
with
w(t, x, y)——Uh<g)|(VUh>(g>| ——Uf<s)|(VUf>(s>| 5 U(n)l(VUg>(n)|
Here
10 aU, U,
(VUp© = |VU P+ Y { ! L H L }
1<ign
and

=(n) —

U Ay, oy Y,
|(VUg)(77)|2=|(VUh)(5)|2+Z{a : H . h }

1<ign b O
From these equations and (6) and (7) it follows that, x, y) = %l(VUh)(g)lzc —b(t,x,y) - Vi yC for an
appropriate continuous functidnz, x, y), which, depending on (5), for fixeds Lipschitz continuous in the space
variables with a Lipschitz constant uniformly bounded.iiMoreover,

1
EC+b(t.x,y) Vig.pyC=— + §|(VU;1)(§)|2C. (8)

o
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In what follows we interpretV,, Vy) as an 2 by 1 matrice with the transpose matri¢€,, v,)* and have
&= %(Vx, Vy)*oo*(Vy, Vy) for an appropriatei2by 2n matriceo. Let T €10, oo[ be fixed and denote biX, )
the solution of the stochastic differential equation

d(X@®),Y(@®)=b(T —1,X(0),Y(®))dt +odW (), 0<:<T,

with the initial value(X (0), Y (0)) = (x, y), whereW is a normalized Wiener processR?’. The Feynman—Kac
theorem ([4], p. 366) yields

C(T.x.y) = E[C(0. X(T). ¥ (T)) & 3 Jo I(VUDT=02X 0=y @) e

and, sinceC (0, X(T), Y(T)) > 0, we getC(T, x, y) > 0. This completes the proof of Theorem 1.1.

The Feynman—Kac formula can be avoided in the proof of Theorem 1.1. To explain this, ag@ia J8too[
be fixed. The definitions of the functionfs g, andi imply that the lower limit of the function igk, <7 C(z, x, y)
as|x| + |y| — oo is non-negative. Therefore, (f(¢, x, y) < 0 at some pointz, x, y) € [0, T] x R" x R" there
exists a strictly positive numbersuch that the functionr + C(z, x, y) possesses a strictly negative minimum in
[0,T] x R" x R™ at a certain poinP = (g, xo, yo) With 7o > 0. Now

aC
C(P)<0. —(P)< ¢, ViyC(P)=0. and £C(P)>0

which contradict (8). Thug(z, x, y) > 0.

3. The Ehrhard inequality in infinite dimension

Let £ be a real, locally convex Hausdorff vector space and denot# () the Borel o-algebra inE.
A Borel probability measurer on E is a Gaussian Radon measure if each bounded linear functional on
has a Gaussian distribution relative foand if y, = y on B(E), where for anyA C E, y.(A) = sufy (K);
K compact subset of}.

Theorem 3.1.If y isa Gaussian Radon measureon E,
oy (AA+ @ =2)B)) =20 Hy () + A -0y (B))
forall A, B € B(E).

Theorem 3.1 follows from Theorem 1.1 using the same line of reasoning as in the author’s paper [1].
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