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ABSTRACT. – Let K be a local field, X the Drinfel’d symmetric space of dimension d over K and X

the natural formal OK -scheme underlying X; thus G = GLd+1(K) acts on X and X. Given a K-rational
G-representation M we construct a G-equivariant subsheaf M0

O
K̇

of OK -lattices in the constant sheaf M
on X. We study the cohomology of sheaves of logarithmic differential forms on X (or X) with coefficients
in M0

O
K̇

. In the second part we give general criteria for two conjectures of P. Schneider on p-adic Hodge
decompositions of the cohomology of p-adic local systems on projective varieties uniformized by X .
Applying the results of the first part we prove the conjectures in certain cases.
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RÉSUMÉ. – Soient K un corps local, X l’espace symétrique de Drinfel’d de dimension d sur K
et X le OK -schéma formel canonique sous-jacent à X ; le groupe G = GLd+1(K) agit sur X et X.
Soit M une représentation K-rationnelle. Dans le faisceau constant M sur X, on construit un sous-
faisceau G-équivariant M0

O
K̇

des OK -réseaux. On s’intéresse à la cohomologie des faisceaux des formes

différentielles logarithmiques à coefficients dans M0
O

K̇
. Dans la deuxième partie, on donne des critères

généraux pour deux conjectures de P. Schneider sur des décompositions de Hodge p-adiques de la
cohomologie des systèmes locaux p-adiques sur des variétés projectives uniformisées par X . En appliquant
les résultats de la première partie, on démontre ces conjectures dans certains cas.

© 2007 Elsevier Masson SAS

0. Introduction

Let p be prime number and d ∈ N, let K/Qp be a finite extension. In connection with the search
for a Langlands type correspondence between suitable p-adically continuous representations
of the group GLd+1(K) on p-adic vector spaces on the one hand, and suitable p-adic Galois
representations on the other hand, the p-adic cohomology (de Rham, crystalline, coherent, p-adic
étale) of Drinfel’d’s symmetric space X over K and its projective quotients XΓ = Γ\X , with
coefficients in rational representations M of GLd+1(K), has recently found increasing interest.
We mention the first spectacular results due to Breuil [2] who uses the cohomology of X and
XΓ with coefficients in M = Symk(Q2

p) (some k ∈ N) to establish a partial correspondence
in case d = 1, K = Qp, and the work of Schneider and Teitelbaum [17] where (for any d
and K) the GLd+1(K)-representation on the space Ω•

X(X) of top differential forms on X is
determined. Substantial as these works are, they call for generalizations. On the one hand one
hopes to generalize the constructions from [2] to cases where d > 1. Since a decisive ingredient
in [2] is the work with p-adic integral structures in equivariant sheaf complexes on X , the
investigation of such integral structures should be a starting point. On the other hand one hopes
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to generalize the analysis of [17] to more general equivariant vector bundles on X (instead of the
line bundle Ωd

X ), e.g. to the vector bundles Ωi
X , or even M ⊗Ωi

X , for any i; this would be done
best by finding and analysing equivariant subsheaves in M ⊗ Ωi

X , e.g. those of exact, closed or
logarithmic differential forms. All this motivates the main objective of the first part of this paper,
the study of equivariant integral structures in the vector bundles M ⊗Ωi

X and in their subsheaves
of logarithmic differential forms. The central question concerning the de Rham cohomology with
coefficients in M of a projective quotient XΓ of X is that for the position of its Hodge filtration
(e.g. due to p-adic Hodge theory its knowledge in case d = 1 is another crucial point in [2]); the
second part of this paper is devoted to this question.

We discuss the content in more detail. Let now more generally K be a non-Archimedean local
field with ring of integers OK , uniformizer π ∈ OK and residue field k. Let M be a rational
representation of G = GLd+1(K), i.e. a finite-dimensional K-vector space M together with a
morphism of K-group varieties GLd+1 → GL(M). It is well known that for any compact open
subgroup H of G there exists an H-stable free OK -module lattice in M ; we fix one such choice
M0 for H = GLd+1(OK). We choose a totally ramified extension K̇ of K of degree d + 1
and twist the action of G on M ⊗K K̇ unramified by a suitable K̇-valued character of G. We
show that the choice of M0 determines for any other maximal open compact subgroup H ⊂ G
a distinguished H-stable OK̇ -lattice in M ⊗K K̇ and the collection of these lattices can be
assembled into a G-equivariant coefficient system on the Bruhat–Tits building BT of PGLd+1.
In fact this is only a reinterpretation of our Proposition 3.1. We do not mention BT at all, we
rather work with the G-equivariant semistable formal OK -scheme X underlying Drinfel’d’s
symmetric space X over K of dimension d + 1, as constructed in [14]. It is well known that the
intersections of the irreducible components of X⊗k are in natural bijection with the simplices of
BT . Thus what we do is to construct from M0 a constructible G-equivariant subsheaf M0

OK̇
of

the constant sheaf with value M ⊗K K̇ on X such that M0
OK̇

(U) for quasicompact open U ⊂ X

is an OK̇ -lattice in M ⊗K K̇ .
We then consider the coherent OX ⊗OK

OK̇ -module sheaf M0
OK̇

⊗OK
OX and compute

explicitly its reduction (M0
OK̇

⊗OK
OX) ⊗OK̇

k. See Theorem 3.3 for our result. Similarly,

let Ω•
X be the logarithmic de Rham complex of X and let Logs(M0

OK̇
) be the π-adic completion

of the subsheaf of M0
OK̇

⊗OK
Ωs

X consisting of logarithmic differential s-forms; we compute

explicitly Logs(M0
OK̇

)⊗OK̇
k. See Theorem 4.4 for our result.

As an application, assume now that M |SLd+1(K) is the trivial representation K , the standard
representation M = Kd+1 or its dual (Kd+1)∗. We show (Proposition 4.5)

Hj
(
X,Logs

(
M0

OK̇

))∼= Hj
(
X,M0

OK̇
⊗OK

Ωs
X

)
(1)

for any j and any s. Using the above computations the proof of (1) is reduced to the statement
that for any irreducible component Y of X ⊗ k—such a Y is the successive blowing up of Pd

k

in all k-linear subspaces—with logarithmic de Rham complex Ω•
Y we have Hj(Y,Ωs

Y ) = 0 if
j �= 0, and H0(Y,Ωs

Y ) consists of global logarithmic differential s-forms on Y .
In the second part of this paper (Sections 5 and 6) we develop general criteria for conjectures

of Schneider raised in [16]. Let Γ⊂ SLd+1(K) be a cocompact discrete (torsion-free) subgroup;
thus the quotient XΓ = Γ\X of X is a projective K-scheme [14]. Let M be a K[Γ]-module with
dimK(M) < ∞. Using the Γ-action (induced from the Γ-action on M ) on the constant local
system on X generated by M we get a local system MΓ on XΓ. The Hodge spectral sequence

Er,s
1 = Hs

(
XΓ,MΓ ⊗K Ωr

X

)
⇒Hr+s

(
XΓ,MΓ ⊗K Ω•

X

)
(2)
Γ Γ
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gives rise to the Hodge filtration

Hd = Hd
(
XΓ,MΓ ⊗K Ω•

XΓ

)
= F 0

H ⊃ F 1
H ⊃ · · · ⊃ F d+1

H = 0.

If char(K) = 0 Schneider [16] conjectures that a splitting of F •
H is given by the covering

filtration F •
Γ of Hd arising from the expression of Hd through the Γ-group cohomology of

M ⊗K H∗
dR(X). Concretely, he expects Hd = F i+1

H ⊕ F d−i
Γ for 0 � i � d− 1.

If M underlies a K-rational representation of G (and char(K) = 0), Schneider defines
another sheaf complex, quasiisomorphic with MΓ ⊗K Ω•

XΓ
, hence again a corresponding

Hodge filtration F •
red on Hd. He then conjectures F •

red = F •
H , thus in particular he conjectures

Hd = F i+1
red ⊕ F d−i

Γ . The particular interest in this last decomposition is that combined with yet
another conjecture from [16]—the degeneration of the ‘reduced’ Hodge spectral sequence—it
would allow the computation of Γ-group cohomology spaces H∗(Γ,D) for certain ‘holomorphic
discrete series representations’ D of G.

For the trivial representation M = K the conjectures were proven first by Iovita and Spiess
[10], later proofs were given by Alon and de Shalit ([1], using harmonic analysis) and the
author ([6], using p-adic Hodge theory). The main tool in the approach of Iovita and Spiess
is a certain subcomplex of Ω•

X(X) consisting of bounded logarithmic differential forms on X .
For more general M this complex does not seem to generalize well, essentially because there is
no integral structure in the complex M ⊗K Ω•

X(X) of global forms. This led us to consider
a K-vector space subsheaf complex L•(M) of M ⊗K Ω•

X on X which should replace the
global logarithmic differential forms. We show that the filtration F •

Γ can be redefined in terms of
L•(M) and obtain criteria for the above splitting conjectures and the degeneration of (2) which
avoid Γ-group cohomology of global objects. A certain variant of L•(M), the K-vector space
sheaf complex L•

D(M), leads to a similar criterion for the splitting Hd = F i+1
red ⊕ F d−i

Γ and
the degeneration of the ‘reduced’ Hodge spectral sequence. The general hope is that, working
as indicated with integral (or bounded) structures inside L•(M) or L•

D(M), we can reduce to
problems in characteristic p and work locally on the reduction of the natural formal scheme
underlying X . This approach worked out in [7] in dimension d = 1 where we used integral
structures inside L•

D(M) to prove H1 = F 1
red ⊕ F 1

Γ and the degeneration conjecture. Here, as
suggested above, we use integral structures inside L•(M) provided by the first part of this paper
to prove (for arbitrary dimension d):

THEOREM (see Corollary 5.1, Theorem 6.4 and the remarks given there). – Suppose that
M |SLd+1(K) = K , M |SLd+1(K) = Kd+1 or M |SLd+1(K) = (Kd+1)∗.

(a) For arbitrary char(K) the Hodge spectral sequence (2) degenerates in E1. The Hodge
filtration F •

H has a canonical splitting defined through logarithmic differential forms.
(b) If char(K) = 0 we have F •

H = F •
red and the splitting in (a) is given by the filtration F •

Γ :

Hd
(
XΓ,MΓ ⊗K Ω•

XΓ

)
= F i+1

H ⊕ F d−i
Γ (0 � i � d− 1).

It seems that even for M = K the degeneration in (a) in case char(K) > 0 was unknown
before.

Notations. – We fix d ∈ N and enumerate the rows and columns of GLd+1-elements by
0, . . . , d. We denote by U the subgroup of GLd+1 consisting of unipotent upper triangular
matrices,

U =
{
(aij)0�i,j�d ∈GLd+1 | aii = 1 for all i, aij = 0 if i > j

}
.
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For r ∈ R define �r
, �r� ∈ Z by requiring �r
 � r < �r
 + 1 and �r� − 1 < r � �r�. For a
divisor D on an integral scheme X we denote by LX(D) the associated line bundle on X ; we
will always consider it as a subsheaf of the constant sheaf with value the function field of X .

K denotes a non-Archimedean local field, OK its ring of integers, π ∈ OK a fixed prime
element and k the residue field with q elements, q ∈ pN. Let ω :K×

a → Q be the extension of
the discrete valuation ω : K× → Z normalized by ω(π) = 1. We fix a totally ramified extension
K̇ = K(π̇) of K with ring of integers OK̇ such that π̇ ∈OK̇ satisfies π̇d+1 = π.

We write G = GLd+1(K). Let T be the torus of diagonal matrices in G and let X∗(T ), resp.
X∗(T ), denote the group of algebraic cocharacters, resp. characters, of T . For 0 � i � d define
the obvious cocharacter ei :Gm → GLd+1, i.e. the one which sends t to the diagonal matrix
(ei(t))ij with ei(t)ii = t, ei(t)jj = 1 for i �= j and ei(t)j1j2 = 0 for j1 �= j2. The ei form a
R-basis of X∗(T )⊗R. The pairing X∗(T )×X∗(T ) → Z which sends (x,μ) to the integer μ(x)
such that μ(x(y)) = yμ(x) for any y ∈ Gm extends to a duality between the R-vector spaces
X∗(T )⊗R and X∗(T )⊗R. Let ε0, . . . , εd ∈X∗(T ) denote the basis dual to e0, . . . , ed. Let

Φ = {εi − εj ; 0 � i, j � d and i �= j} ⊂ X∗(T ).

1. Differential forms on rational varieties in characteristic p > 0

The action of GLd+1(k) = GL(kd+1) on (kd+1)∗ = Homk(kd+1, k) defines an action of
GLd+1(k) on the affine k-scheme associated with (kd+1)∗, and this action passes to an action of
GLd+1(k) on the projective space

Y0 = P
((

kd+1
)∗)∼= Pd

k.

For 0 � j � d− 1 let Vj
0 be the set of all k-rational linear subvarieties Z of Y0 with dim(Z) = j,

and let V0 =
⋃d−1

j=0 V
j
0 . The sequence of projective k-varieties

Y = Yd−1 → Yd−2 → · · · → Y0

is defined inductively by letting Yj+1 → Yj be the blowing up of Yj in the strict transforms
(in Yj ) of all Z ∈ Vj

0 . The set

V = the set of all strict transforms in Y of elements of V0

is a set of divisors on Y . The action of GLd+1(k) on Y0 naturally lifts to an action of GLd+1(k)
on Y . Let Ξ0, . . . ,Ξd be the standard projective coordinate functions on Y0 and hence on Y
corresponding to the canonical basis of (kd+1)∗; hence Y0 = Proj(k[Ξi; 0 � i � d]). Denote
by Ω•

Y the de Rham complex on Y with logarithmic poles along the normal crossings divisor∑
V ∈V V on Y . For i, j ∈ {0, . . . , d} and g ∈GLd+1(k) we call

gdlog
(

Ξi

Ξj

)
a logarithmic differential 1-form on Y . We call an exterior product of logarithmic differential
1-forms on Y a logarithmic differential form on Y .

PROPOSITION 1.1. – For each 0 � s � d we have Ht(Y,Ωs
Y ) = 0 for all t > 0. The k-vector

space H0(Y,Ωs
Y ) is the one generated by all logarithmic differential forms.
4e SÉRIE – TOME 40 – 2007 – N◦ 3
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Proof. – In [5] we derive this from a general vanishing theorem for higher cohomology of
a certain class of line bundles on Y . Note that a corresponding statement over a field F of
characteristic zero is shown in [10] Section 3: the de Rham cohomology of the complement of a
finite set of F -rational hyperplanes in Pd

F is generated by (global) logarithmic differential forms.
And the analogous statement for the Monsky–Washnitzer cohomology of Y 0 = Y −

⋃
V ∈V V

was shown in [3]. �
Remark. – In [5] we give a k-basis for H0(Y,Ωs

Y ) consisting of logarithmic differential forms
as follows. For a subset τ ⊂ {1, . . . , d} let

U(k)(τ) =
{
(aij)0�i,j�d ∈ U(k) | aij = 0 if j /∈ {i} ∪ τ

}
.

For 0 � s � d denote by Ps the set of subsets of {1, . . . , d} consisting of s elements. The
following set is a k-basis of H0(Y,Ωs

Y ):{
A.

∧
t∈τ

dlog
(

Ξt

Ξ0

) ∣∣∣ τ ∈ Ps, A ∈ U(k)(τ)
}

.

Let D be a divisor on Y of the type

D =
∑
V ∈V

bV V

with certain bV ∈ Z. We view LY (D) as a subsheaf of the constant sheaf k(Y ) with value the
function field k(Y ) of Y ; hence we view Ω•

Y ⊗OY
LY (D) as a subsheaf of the constant sheaf

with value the de Rham complex of k(Y )/k. The differential on the latter provides us with a
differential on Ω•

Y ⊗OY
LY (D).

Consider the open and GLd+1(k)-stable subscheme

Y 0 = Y −
⋃

V ∈V
V

of Y ; let us write

ι :Y 0 → Y

for the embedding and Ω•
Y 0 = Ω•

Y |Y 0 .
For 0 � s � d let Ls

Y be the k-vector subspace of Ωs
Y (Y 0) generated by all s-forms η of the

type

η = ym1
1 · · ·yms

s dlog(y1)∧ · · · ∧ dlog(ys)(3)

with mj ∈ Z and y1, . . . , yd ∈ O×
Y (Y 0) such that yj = θj/θ0 for a suitable (adapted to η)

isomorphism of k-varieties Y0
∼= Proj(k[θj ]0�j�d). From Proposition 1.1 it follows that

H0(Y,Ωs
Y ) is the k-vector subspace of Ls

Y generated by all s-forms η of type (3) with mj = 0
for all 1 � j � s.

Let Ls
Y , resp. L

s,0
Y , be the constant sheaf on Y with value Ls

Y , resp. with value H0(Y,Ωs
Y ).

For a divisor D as above we define

Ls(D) = Ls
Y ∩LY (D)⊗Ωs

Y ,

Ls,0(D) = L
s,0
Y ∩LY (D)⊗Ωs

Y ,

the intersections taking place inside the push forward ι∗Ωs
Y 0 .
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THEOREM 1.2. – (a) Suppose bV ∈ {−1,0} for all V . Then the inclusions Ls,0(D) ↪→
Ls(D) ↪→LY (D)⊗Ωs

Y induce for all j isomorphisms

Hj
(
Y,Ls,0(D)

)∼= Hj
(
Y,Ls(D)

)∼= Hj
(
Y,LY (D)⊗Ωs

Y

)
.

(b) Let S be a non-empty subset of V such that E =
⋂

V ∈S V is non-empty. Define the subsheaf
Ls

E(0) of Ωs
Y ⊗OY

OE as the image of the composite Ls(0) → Ωs
Y → Ωs

Y ⊗OY
OE . Then the

inclusion induces for all j an isomorphism

Hj
(
Y,Ls

E(0)
)∼= Hj

(
Y,Ωs

Y ⊗OY
OE

)
.

Proof. – (a) First we consider the case D = 0, i.e. bV = 0 for all V . The sheaf Ls,0(0) is
constant with value H0(Y,Ωs

Y ), hence we get Hj(Y,Ls,0(0)) = Hj(Y,Ωs
Y ) for all j from

Proposition 1.1. In order to also compare with Hj(Y,Ls(0)) choose a sequence (ηn)n�1 of
elements of Ls

Y of the form (3) such that {ηn; n � 1} is a k-basis of Ls
Y /H0(Y,Ωs

Y ). For
n � 0 let L

s,n
Y be the constant subsheaf of Ls

Y on Y generated over k by H0(Y,Ωs
Y ) and

{ηi; n � i � 1}. Letting

Ls,n(0) = L
s,n
Y ∩Ωs

Y

we have

Ls(0) =
⋃
n�0

Ls,n(0)

and since Y is quasicompact (so that taking cohomology commutes with direct limits) it suffices
to show

Hj
(
Y,Ls,n(0)

)
=

{
H0(Y,Ωs

Y ): j = 0,

0: j > 0

for all n � 0. For n = 0 we already did this, for n > 0 it suffices, by induction, to show

Hj

(
Y,

Ls,n(0)
Ls,n−1(0)

)
= 0

for all j. Let W ⊂ Y be the maximal open subscheme on which the class of ηn as a section
of Ls,n(0)/Ls,n−1(0) is defined. Thus if ξ :W → Y denotes the open embedding and kY the
constant sheaf on Y with value k then sending 1 ∈ k to ηn defines an isomorphism

ξ!ξ
−1kY

∼= Ls,n(0)
Ls,n−1(0)

.

If we had W = Y then the induction hypothesis H1(Y,Ls,n−1(0)) = 0 and the long exact
cohomology sequence associated with

0 → Ls,n−1(0)→ Ls,n(0)→ Ls,n(0)
Ls,n−1(0)

→ 0

would imply that there existed a1, . . . , an−1 ∈ k such that ηn +
∑n−1

i=1 aiηi is a global section of
Ls,n(0), in particular of Ωs

Y . But this would contradict the fact that {ηn; n � 1} is a k-basis of
4e SÉRIE – TOME 40 – 2007 – N◦ 3
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Ls
Y /H0(Y,Ωs

Y ). Hence W �= Y . On the other hand we may write ηn = ym1
1 · · ·yms

s dlog(y1) ∧
· · · ∧ dlog(ys) with yj = θj/θ0 as in (3) and it is clear that C = Y − W is the pull back under
Y → Y0 of a union of some hyperplanes V(θi) ⊂ Y0. In particular C is connected. Denote by
γ :C → Y the closed embedding. The long exact cohomology sequence associated with

0 → ξ!ξ
−1kY → kY → γ∗γ

−1kY → 0

shows Hj(Y, ξ!ξ
−1kY ) = 0 for all j because C is non-empty and connected. The induction and

thus the discussion of the case D = 0 is finished.
To treat arbitrary D with bV ∈ {−1,0} for all V we induct on dim(Y ) and on r(D) =∑
V ∈V |bV |. We will only show Hj(Y,Ls(D)) = Hj(Y,LY (D)⊗OY

Ωs
Y ) (which is the relevant

statement for the subsequent sections), the proof of Hj(Y,Ls,0(D)) = Hj(Y,LY (D)⊗OY
Ωs

Y )
is literally the same (replace each occurrence of Ls(D) with Ls,0(D)).

Assume bV = −1 for some V . Let D′ = D + V . We want to compare the exact sequences

0 → Ls(D) → Ls(D′) → Ls
V (D′)→ 0

(the sheaf Ls
V (D′) being defined such that this is an exact sequence) and

0 →LY (D)⊗Ωs
Y →LY (D′)⊗Ωs

Y →LY (D′)⊗Ωs
Y ⊗OV → 0.

Since r(D′) < r(D) the induction hypothesis says that the map between the respective second
terms induces isomorphisms in cohomology. It will be enough to prove the same for the
respective third terms. From [11] (see also [5]) it follows that V decomposes as

V = Y 1 × Y 2

such that both Y t are successive blowing ups of projective spaces of dimensions smaller than d
in all k-rational linear subvarieties, just as Y is the successive blowing up of projective space of
dimension d in all k-rational linear subvarieties. Denote by Vt the corresponding set of divisors
on Y t (like the set V of divisors on Y ) and let Ω•

Y t denote the logarithmic de Rham complex on
Y t with logarithmic poles along Vt. Let Ω•

V denote the logarithmic de Rham complex on V with
logarithmic poles along all divisors which are pullbacks of elements of V1 or V2. Then

Ω•
V = Ω•

Y 1 ⊗k Ω•
Y 2 .

Let DV be the divisor on V induced by D. More precisely, DV =
∑

bW (W ∩ V ), the sum
ranging over all W ∈ V which intersect V transversally. It also follows from [11] (and [5]) that
DV is of the form DV

Y 1 + DV
Y 2 where DV

Y t for t = 1,2 is the pullback to V , via the projection
V → Y t, of a divisor DY t on Y t which is the sum, with multiplicities in {0,−1}, of elements
of Vt. The above then generalizes as

LV (DV )⊗Ω•
V =

(
LY 1(DY 1)⊗Ω•

Y 1

)
⊗k (LY 2(DY 2)⊗Ω•

Y 2).(4)

Choose an isomorphism Y0
∼= Proj(k[θj ]0�j�d) and elements 0 � j1 �= j2 � d such that

y = θj1/θj2 ∈OY (U) is an equation for V ∩U in a suitable open subset U of Y with V ∩U �= ∅.
We have an exact sequence

0 →LV (DV )⊗Ωs−1
V

∧dlog(y)−→ LY (D′)⊗Ωs
Y ⊗OV →LV (DV )⊗Ωs

V → 0(5)
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where by (4) the extreme terms (take s′ = s and s′ = s− 1) decompose as

LV (DV )⊗Ωs′

V
∼=

⊕
s1+s2=s′

(
LY 1(DY 1)⊗Ωs1

Y 1

)
⊗k

(
LY 2(DY 2)⊗Ωs2

Y 2

)
.(6)

On the other hand, define for t = 1,2 the sheaves L•(DY t) on Y t just as we defined the sheaves
L•(.) on Y (and use the same name for their push forward to Y ). Then using the decomposition
(6) we may view the sheaf ⊕

s1+s2=s′

Ls1(DY 1)⊗k Ls2(DY 2)

as a subsheaf of LV (DV ) ⊗ Ωs′

V and a local consideration shows that (5) restricts to an exact
sequence

0→
⊕

s1+s2=s−1

Ls1(DY 1)⊗k Ls2(DY 2)
∧dlog(y)−→ Ls

V (D′)(7)

→
⊕

s1+s2=s

Ls1(DY 1)⊗k Ls2(DY 2)→0.

Comparing the long exact cohomology sequences associated with (5) and (8) we conclude that
to show that

Hj
(
Y,Ls

V (D′)
)
→ Hj

(
Y,LY (D′)⊗Ωs

Y ⊗OV

)
is an isomorphism for any j, it suffices to show that

Hj

(
Y,

⊕
s1+s2=s′

Ls1(DY 1)⊗k Ls2(DY 2)
)

→ Hj

(
Y,

⊕
s1+s2=s′

(
LY 1(DY 1)⊗Ωs1

Y 1

)
⊗k

(
LY 2(DY 2)⊗Ωs2

Y 2

))
is an isomorphism, for s′ = s and s′ = s − 1. By the Künneth formula this reduces to showing
that

Hj
(
Y t,Ls′′

(DY t)
)
→ Hj

(
Y t,

(
LY t(DY t)⊗Ωs′′

Y t

))
is an isomorphism, for any s′′ and t ∈ {1,2}. But this follows from our induction hypothesis
since the dimension of Y t is smaller than that of Y .

(b) We have an exact sequence

0→LY

(
−
∑
V ∈S

V

)
→

⊕
T⊂S

|T |=|S|−1

LY

(
−
∑
V ∈T

V

)
→ · · · →

⊕
V ∈S

LY (−V )

→OY →OE → 0

which yields a similar exact sequence by tensoring with Ωs
Y . A local consideration shows that

the latter exact sequence restricts to an exact sequence

0→Ls

(
−
∑
V ∈S

V

)
→

⊕
T⊂S

|T |=|S|−1

Ls

(
−
∑
V ∈T

V

)
→ · · · →

⊕
V ∈S

Ls(−V )

→Ls(0) → Ls
E(0) → 0.
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It follows that it is enough to show that for all subsets T ⊂ S and any j the map

Hj

(
Y,Ls

(
−
∑
V ∈T

V

))
→ Hj

(
Y,LY

(
−
∑
V ∈T

V

)
⊗OY

Ωs
Y

)

is an isomorphism. But this follows from part (a). �
Remark (not needed in the sequel). – If −1 � bV � p − 1 for all V then the inclusion

L•,0(D) ↪→LY (D)⊗Ω•
Y induces isomorphisms

Hj
(
Y,L•,0(D)

)∼= Hj
(
Y,LY (D)⊗Ω•

Y

)
.

To see this let D′ =
∑

V ∈V b′V V with b′V = min{0, bV }. Then Theorem 1.2 applies to D′. Now
note that on the one hand L•,0(D′) = L•,0(D) (logarithmic differential forms have pole orders
at most one) and on the other hand LY (D′)⊗Ω•

Y →LY (D)⊗Ω•
Y is a quasiisomorphism (use

that any bV > 0 is invertible in k).

2. Reduction of rational G-representations

Let T = T/K×. For μ =
∑d

j=0 ajεj ∈X∗(T ) let

μ =

(
1

d + 1

d∑
j=0

aj

)(
d∑

j=0

εj

)
− μ,(8)

an element of the subspace X∗(T )⊗ 1
d+1 .Z of X∗(T )⊗ 1

d+1 .Z. If for 0 � j � d we let

aj(μ) =
(
∑

i �=j ai)− daj

d + 1
(9)

then

μ =
d∑

j=0

aj(μ)εj .

Let M be an irreducible K-rational representation of G. For a weight μ ∈ X∗(T ) let Mμ be
the maximal subspace of M on which T acts through μ.

LEMMA 2.1. – The number

|M |=
d∑

i=0

ai

for μ =
∑d

i=0 aiεi ∈X∗(T ) such that Mμ �= 0 is independent of the choice of such a μ; for such
μ we have μ ∈ X∗(T ) if and only if |M | ∈ (d + 1).Z, if and only if there is a h ∈ Z such that the
center of G acts trivially on M ⊗K deth.

Proof. – This is clear since all μ with Mμ �= 0 differ by linear combinations of elements of Φ
(see [12] II.2.2). �

We fix a GLd+1/OK -invariant OK -lattice M0 in M (see [12] I.10.4).
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LEMMA 2.2. – We have M0 =
⊕

μ∈X∗(T ) M0
μ with M0

μ = M0 ∩Mμ.

Proof. – We reproduce a proof from notes of Schneider and Teitelbaum. Fix μ ∈ X∗(T ).
It suffices to construct an element Πμ in the algebra of distributions Dist(GLd+1/Z) (i.e.
defined over Z) which on M acts as a projector onto Mμ. For 0 � i � d let Hi = (dei)(1) ∈
Lie(GLd+1/Z); then dμ′(Hi) ∈ Z (inside Lie(Gm/Z)) for any μ′ ∈ X∗(T ). According to
[8] Lemma 27.1 we therefore find a polynomial Π ∈ Q[X0, . . . ,Xd] such that Π(Zd+1) ⊂ Z,
Π(dμ(H0), . . . , dμ(Hd)) = 1 and Π(dμ′(H0), . . . , dμ′(Hd)) = 0 for any μ′ ∈ X∗(T ) such that
μ′ �= μ and Mμ′ �= 0. Moreover [8] Lemma 26.1 says that Π is a Z-linear combination of
polynomials of the form(

X0

b0

)
· · ·

(
Xd

bd

)
with integers b0, . . . , bd � 0.

Thus [12] II.1.12 implies that

Πμ = Π(H0, . . . ,Hd)

lies in Dist(GLd+1/Z). By construction it acts on M as a projector onto Mμ. �
We return to the setting from Section 1. For ∅ �= σ � {0, . . . , d} denote by V 0

σ the common
zero set in Y0 of all Ξj with j ∈ σ, and let Vσ ∈ V be its strict transform under Y → Y0. Denote
by Y ′ the open subscheme of Y obtained by deleting all divisors V ∈ V which are not of the
particular form V = Vσ for some ∅ �= σ � {0, . . . , d}. Then Y 0 ⊂ Y ′ ⊂ Y and U(k) acts on Y
and on Y 0 and moreover U(k).Y ′ = Y (the U(k)-translates of Y ′ cover Y ). For each V ∈ V
there is a unique ∅ �= σ � {0, . . . , d} such that there exists a g ∈ U(k) with gVσ = V , see [5].

Let M̃ = M0/π.M0. The decomposition from Lemma 2.2 induces a corresponding decom-
position

M̃ =
⊕

μ∈X∗(T )

M̃μ.

Denote again by M̃ the constant sheaf on Y with value M̃ . We define a subsheaf M̃[OY ′ ] of
M̃ ⊗k ι∗OY 0 |Y ′ on Y ′ by

M̃[OY ′ ] =
⊕

μ∈X∗(T )

M̃μ ⊗k LY ′

( ∑
∅�=σ�{0,...,d}

−
⌈∑

j∈σ

aj(μ)
⌉
(Vσ ∩ Y ′)

)
.(10)

LEMMA 2.3. – M̃[OY ′ ] extends uniquely to a GLd+1(k)-stable subsheaf M̃[OY ] of M̃ ⊗k

ι∗OY 0 .

Proof. – This can be checked directly, an easier variant of the proof of Theorem 3.3 below.
However, it is even a consequence of Theorem 3.3: explicitly,

M̃[OY ] =
(M0

OK̇
⊗OK

OX)⊗O
Ẋ
OY

OY -torsion

in the notations used there. �
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DEFINITION. – We say that the weights of M are small if for any μ ∈ X∗(T ) with Mμ �= 0
and for any ∅ �= σ � {0, . . . , d} we have

0 �
⌈∑

j∈σ

aj(μ)
⌉

� 1.(11)

LEMMA 2.4. – The weights of M are small if and only if, when regarded as a representation
of SLd+1(K), it is one of the following: the trivial representation, the standard representation
Kd+1, or the dual (Kd+1)∗ of the standard representation of SLd+1(K).

Proof. – One easily checks that μ =
∑d

i=0 aiεi ∈ X∗(T ) satisfies inequality (11) for all σ if
and only if all coefficients ai are the same (case (i)) or if there is precisely one 0 � i � d with
ai = aj +1 for all j �= i (case (ii)) or with ai = aj−1 for all j �= i (case (iii)). If M |SLd+1(K) = K

the only weight occurring is as in case (i), if M |SLd+1(K) = Kd+1 the weights occurring are as
in case (ii), if M |SLd+1(K) = (Kd+1)∗ the weights occurring are as in case (iii). �

For 0 � s � d consider the following sheaf M̃[Ls
Y ] on Y :

M̃[Ls
Y ] = M̃ ⊗k Ls

Y ∩ M̃[OY ]⊗OY
Ωs

Y ,

the intersection taking place inside ι∗(M̃ ⊗k Ωs
Y |Y 0).

THEOREM 2.5. – If the weights of M are small then the inclusion M̃[Ls
Y ] →M̃[OY ] ⊗OY

Ωs
Y of sheaves on Y induces isomorphisms

H∗(Y,M̃[Ls
Y ]
)∼= H∗(Y,M̃[OY ]⊗OY

Ωs
Y

)
.

Proof. – Consider the following ordering on X∗(T ): define

d∑
i=0

aiεi >

d∑
i=0

a′
iεi(12)

if and only if there exists a 0 � i0 � d such that ai = a′
i for all i < i0, and ai0 > a′

i0
. By [12]

II.1.19 the filtration (FμM)μ∈X∗(T ) of M defined by

FμM =
∑

μ′∈X∗(T )
μ′�μM

μ′

(13)

is stable for the action of U(K). Hence the filtration (FμM0)μ∈X∗(T ) of M0 defined by

FμM0 =
∑

μ′∈X∗(T )
μ′�μ

M0
μ′ = FμM ∩M0

is stable for the action of U(OK), and the induced filtrations (FμM̃[OY ])μ∈X∗(T ) of M̃[OY ]
and (FμM̃[Ls

Y ])μ∈X∗(T ) of M̃[Ls
Y ] are U(k)-stable. We denote by

Grμ(.) =
Fμ(.)∑
′ Fμ′(.)
μ >μ
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the respective graded pieces. To prove Theorem 2.5 it is enough to show that for all μ ∈ X∗(T )
the maps

H∗(Y,GrμM̃[Ls
Y ]
)
→ H∗(Y,GrμM̃[OY ]⊗OY

Ωs
Y

)
are isomorphisms. By definition (10), the restriction of M̃[OY ] to Y ′ comes with a canonical
splitting of the filtration (FμM̃[OY ])μ∈X∗(T ), and this splitting shows

GrμM̃[OY ]⊗OY
Ωs

Y |Y ′ ∼= M̃μ ⊗k LY ′

( ∑
∅�=σ�{0,...,d}

−
⌈∑

j∈σ

aj(μ)
⌉
(Vσ ∩ Y ′)

)
⊗OY

Ωs
Y |Y ′ .

Moreover, the subsheaf GrμM̃[Ls
Y ]|Y ′ of GrμM̃[OY ]⊗OY

Ωs
Y |Y ′ can be identified with

M̃μ ⊗k Ls

( ∑
∅�=σ�{0,...,d}

−
⌈∑

j∈σ

aj(μ)
⌉
Vσ

)∣∣∣∣
Y ′

.

Thus, by U(k)-equivariance and since U(k)Y ′ = Y , the inclusion GrμM̃[Ls
Y ] →

GrμM̃[OY ] ⊗OY
Ωs

Y is of the form considered in Theorem 1.2, tensored with (the constant
sheaf generated by) M̃μ. Hence we may conclude by Theorem 1.2. �

3. Sheaves of integral structures in K[G]-modules

The action of G = GLd+1(K) = GL(Kd+1) on (Kd+1)∗ = HomK(Kd+1,K) defines an
action of G on the affine K-scheme associated with (Kd+1)∗, and this action passes to an action
of G on the projective space P((Kd+1)∗). Drinfel’d’s symmetric space X is the K-rigid space

X = P
((

Kd+1
)∗)− (the union of all K-rational hyperplanes).

Clearly X is stable for the action of G. Let X be the strictly semistable formal OK -scheme
with generic fibre X introduced in [14]. Instead of recalling its formal definition here we recall
its basic properties relevant for us. X is covered by Zariski open subschemes which admit open
immersions into the π-adic formal completion of Spec(OK [X0, . . . ,Xd]/(X0 . . .Xd−π)). Each
irreducible component of the reduction X ⊗ k of X is isomorphic to the k-scheme Y studied in
the previous sections. The set of all irreducible components of X⊗ k is in natural bijection with
the set of vertices of the Bruhat–Tits building of PGLd+1/K . More generally, if for j � 0 we
let F j denote the set of non-empty intersections of (j + 1)-many pairwise distinct irreducible
components of X⊗k, then F j is in natural bijection with the set of j-simplices of the Bruhat–Tits
building of PGLd+1/K . This bijection is G-equivariant for the natural extension of the action
of G on X to an action of G on X. We denote by Y the central irreducible component of X⊗ k,
i.e. the irreducible component of X ⊗ k which is characterized by the fact that the subgroup
K×.GLd+1(OK) of G is the stabilizer of Y (for the action of G on the set F 0 of irreducible
components of X⊗ k). We identify this k-scheme Y (with its GLd+1(OK )-action) with the one
from the previous sections. We define the subset

F 0
A = T.Y

of F 0, the orbit of Y ∈ F 0 for the action of T on F 0. (This set corresponds to the set of vertices in
the standard apartment of the Bruhat–Tits building of PGLd+1/K .) For Z ∈ F 0

A and μ ∈X∗(T )
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we let μ ∈ X∗(T )⊗ 1
d+1Z as before and define μ(Z) ∈ 1

d+1 .Z as

μ(Z) = −ω
(
μ(t)

)
with t ∈ T such that t.Y = Z.

For Z ∈ F 0 let UZ be the maximal open formal subscheme of X such that UZ ⊗OK
k is contained

in Z . For example, the indicated identification of the central irreducible component Y of X⊗ k
with the k-scheme Y from the previous sections restricts to an identification of open subschemes
UY ⊗OK

k = Y 0 (with Y 0 ⊂ Y as defined in the previous sections). Also note that the union⋃
Z∈F 0 UZ is disjoint in X and that the closed points of

⋃
Z∈F 0 UZ ⊗ k are exactly the non-

singular closed points of the k-scheme X⊗ k.
Let again M be an irreducible K-rational representation of GLd+1 and fix a GLd+1/OK -

invariant OK -lattice M0 in M . Define the character

χ :G → K̇×, g �→ π̇−ω(det(g))

and let G act on M ⊗K K̇ by multiplying with χ|M | the (scalar extension K → K̇ of the) already
given action of G on M . The point of this twisting is that the OK̇ -submodule M0 ⊗OK

OK̇ of
M ⊗K K̇ is now stable not just for GLd+1(OK) but even for the full stabilizer K×.GLd+1(OK)
of Y in X. Of course, if |M | ∈ (d + 1).Z then we could replace the above twisting by a twisting
with a suitable power of the determinant character of G, and the base extension K → K̇ here
and in the whole construction below could be avoided.

Let M K̇ be the constant sheaf on X with value M ⊗K K̇ . The above action of G on M ⊗K K̇
makes M K̇ into a G-equivariant sheaf on X. Define M0

μ as in Lemma 2.2. For μ ∈ X∗(T ) let
M0

μ,OK̇
be the constant subsheaf of M K̇ with value M0

μ ⊗OK
OK̇ . For Z ∈ F 0

A let

M0
OK̇

|UZ
=

⊕
μ∈X∗(T )

π̇(d+1)μ(Z)M0
μ,OK̇

|UZ
.(14)

PROPOSITION 3.1. – Formula (14) (for all Z ∈ F 0
A) defines a subsheaf

M0
OK̇

|⋃
Z∈F0

A

UZ
⊂M K̇ |⋃

Z∈F0
A

UZ
.

It extends to a G-stable subsheaf M0
OK̇

of M K̇ in finitely generated OK̇ -modules such that

M0
OK̇

⊗OK̇
K̇ = M K̇ .

Proof. – (Here we benefited from notes of Schneider and Teitelbaum.) We need some more
notations. For 0 � i, j � d and i �= j consider the morphism of algebraic groups over Z

α̃ij :Ga → GLd+1, u �→ Id+1 + u.eij ,(15)

where Id+1 + u.eij is the matrix (urs) with urr = 1 (all r), with uij = u and with urs = 0 for
all other pairs (r, s). For the root α = εi − εj ∈ Φ and r ∈ R let

Uα,r = α̃ij

({
u ∈K; ω(u) � r

})
⊂ G.

For x ∈X∗(T )⊗R let

Ux = the subgroup of G generated by all Uα,−α(x) for α ∈ Φ.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



364 E. GROSSE-KLÖNNE
Let W be the subgroup of permutation matrices in G and let N = T � W be the normalizer of
T in G.

Let now g ∈ G and Z ∈ F 0
A such that also g.Z ∈ F 0

A. We claim that g :M K̇ |UZ
∼= M K̇ |Ug.Z

restricts to an isomorphism

g :M0
OK̇

∣∣
UZ

∼=M0
OK̇

∣∣
Ug.Z

.

We may identify X∗(T ) ⊗ R with the standard apartment in the Bruhat–Tits building of
PGLd+1/K . Let x ∈ X∗(T ) ⊗ R denote the vertex corresponding to Z ∈ F 0

A. (In the above
mentioned correspondence between F 0

A and vertices in the standard apartment.) By the Bruhat
decomposition, there exist hx ∈ Ux, hgx ∈ Ugx and n ∈ N such that g = hgxnhx. Therefore we
may split up our task into the following cases (i)–(iii):

(i) g ∈ T ,
(ii) g ∈W ,

(iii) x = gx and g ∈ Ux for some x ∈X∗(T )⊗R.
(i) Suppose g ∈ T . We claim that in this case g even respects weight spaces: we prove that g

induces for any μ ∈ X∗(T ) with Mμ �= 0 an isomorphism

g : π̇(d+1)μ(Z)M0
μ ⊗OK

OK̇
∼= π̇(d+1)μ(g.Z)M0

μ ⊗OK
OK̇ .

Indeed, g induces an isomorphism

g :M0
μ
∼= πω(μ(g))M0

μ.

Thus, according to our conventions regarding the action of G on M ⊗K K̇ , it induces an
isomorphism

g :M0
μ ⊗OK

OK̇
∼= π̇(d+1)ω(μ(g))−|M |ω(det(g))M0

μ ⊗OK
OK̇ .

But

(d + 1)ω
(
μ(g)

)
− |M |ω

(
det(g)

)
= (d + 1)

(
−ω

(
μ(g)

))
= (d + 1)

(
μ(g.Z)− μ(Z)

)
and the claim follows.

(ii) Now g ∈ W . The isomorphisms g :Mμ
∼= Mg.μ restrict to isomorphisms g :M0

μ
∼= M0

gμ

since M0 ⊂ M is stable under GLd+1(OK). On the other hand μ(Z) = (g.μ)(g.Z) and hence
μ(Z) = (g.μ)(g.Z) for μ ∈X∗(T ). It follows that g induces isomorphisms

π̇(d+1)μ(Z)M0
μ ⊗OK

OK̇
∼= π̇(d+1)(g.μ)(g.Z)M0

g.μ ⊗OK
OK̇

for any μ ∈X∗(T ) and we are done for such g.
(iii) Now consider the case x = g.x and g ∈ Ux for some x ∈ X∗(T )⊗R. Then also Z = g.Z

and μ(x) = μ(Z). We may assume g ∈ Uα,−α(x) for some α = εi − εj ∈Φ. Thus g = α̃ij(u) for
some u ∈ K with ω(u) � −α(x). It suffices to show that the automorphism g of M induces an
automorphism

g :
⊕

μ∈X∗(T )

π̇(d+1)μ(x)M0
μ
∼=

⊕
μ∈X∗(T )

π̇(d+1)μ(x)M0
μ.
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Now ω(u) � −α(x) implies μ + nα(x) � μ(x) + nω(u) for all μ ∈ X∗(T ), all n ∈ N0.
Therefore it is enough to prove

α̃ij(u)(m) ⊂
∑
n�0

un.M0
μ+n(εi−εj)

(
m ∈M0

μ

)
.(16)

To see this define Xα = (dα̃ij)(1) ∈ Lie(GLd+1/Z) for α = εi − εj and then

Xα,n =
Xn

α

n!
∈ Dist(GLd+1/Z) for n � 0

(compare [12] II.1.11 and 1.12). By [12] II.1.19 we have

Xα,nMμ ⊂ Mμ+nα and α̃ij(u)(m) =
∑
n�0

unXα,n(m).

Since Xα,n is defined over Z we in turn have Xα,nM0
μ ⊂ M0

μ+nα and formula (16) follows.
The above claim is established. It follows that on the dense open formal subscheme

⋃
Z∈F 0 UZ

of X (the union is disjoint) there is a unique G-stable subsheaf

M0
OK̇

∣∣⋃
Z∈F0 UZ

⊂ M K̇ |⋃
Z∈F0 UZ

whose restriction to UZ for Z ∈ F 0
A is M0

OK̇
|UZ

as defined by (14). We define M0
OK̇

on all of

X as the maximal OK̇ -module subsheaf of M K̇ restricting to M0
OK̇

|⋃
Z∈F0 UZ

. �
We now wish to compute the reduction modulo π̇ of M0

OK̇
⊗OK

OX in terms of our sheaves

M̃[OY ] living on the central irreducible component Y .
For open formal subschemes U of X we write O

U̇
= OU ⊗OK

OK̇ . Recall that in Section 2
we defined the open subscheme Y ′ of Y with U(k)Y ′ = Y , defined the T (k)-equivariant sheaf
M̃[OY ′ ] on Y ′ with a T (k)-equivariant X∗(T )-indexed grading and extended it to a GLd+1(k)-
equivariant sheaf M̃[OY ] with a U(k)-equivariant X∗(T )-indexed filtration on Y . We now
perform a similar construction in our present global setting. Here the role of Y ′ is played by
Y: by definition, Y is the open formal subscheme of X such that for the open subscheme Y⊗ k
of X⊗ k we have

X⊗ k −Y⊗ k =
⋃

Z∈F 0−F 0
A

Z.

We have U(K).Y = X. Moreover observe Y ′ = Y∩ Y .
For Z ∈ F 0

A let JZ ⊂ OY be the ideal defining the closed subscheme Z ∩ Y inside Y.
Note that JZ is invertible inside OY ⊗OK

K: indeed, small open formal subschemes of Y

admit open embeddings into the π-adic completion of Spec(OK [X0, . . . ,Xd]/(X0 . . .Xd −π)),
and for an appropriate numbering of X0, . . . ,Xd the element X0 is a generator of JZ ; in
K[X0, . . . ,Xd]/(X0 . . .Xd − π) its inverse is π−1X1 . . .Xd. Thus we may speak of negative
integral powers of JZ as OY-submodules of OY ⊗OK

K . Also note that on small open formal
subschemes of Y we have JZ = OY for almost all Z , therefore the following infinite products
of OY-submodules in OY ⊗OK

K̇ make sense. For any μ ∈X∗(T ) we define the sheaf

(O
Ẏ

)μ =
d∑

s=0

π̇s
∏

Z∈F 0

J 	μ(Z)− s
d+1 


Z ,(17)
A
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on Y, the O
Ẏ

-submodule of OY ⊗OK
K̇ generated by the submodules π̇s

∏
Z∈F 0

A
J 	μ(Z)− s

d+1 

Z

for s = 0, . . . , d. Let (O
Ẋ
)μ be the unique U(K)-equivariant O

Ẋ
-module subsheaf of OX⊗OK

K̇
(with its U(K)-action induced by that of G on X) whose restriction to Y is (O

Ẏ
)μ. To describe

the reduction of (O
Ẋ
)μ we need to parametrize the set V in terms of the action of U(k) on it. For

σ � {0, . . . , d} let

Uσ =
{
(aij)0�i,j�d ∈ U | aij = 0 if i �= j and

[
j /∈ σ or {i, j} ⊂ σ

]}
.

Let

N =
{
(σ,u) | ∅ �= σ � {0, . . . , d}, u ∈ Uσ(k)

}
.

We have a bijection (see [5])

N ∼= V, (σ,u) �→ u.Vσ

and the set of orbits of U(k) acting on the set V is in bijection with the set of all σ with
∅ �= σ � {0, . . . , d}.

We will need the sheaves (O
Ẋ
)μ only for those μ with Mμ �= 0. For such μ consider the

partition of F 0
A, indexed by the t ∈ {0,1, . . . , d}, into the subsets

F 0
A(t) =

{
Z ∈ F 0

A

∣∣∣ μ(Z)− t

d + 1
∈ Z

}
.

It provides the partition of F 0 into the subsets

F 0(t) = U(K).F 0
A(t).

Since M is irreducible, all μ with Mμ �= 0 differ by linear combinations of elements of Φ (see
[12] II.2.2). For each such μ, if we write μ =

∑d
j=0 aj(μ)εj (cf. formula (9)), we have

aj(μ)− |M |
d + 1

∈ Z(18)

for all 0 � j � d. It follows that F 0
A(t) and hence F 0(t) does not depend on μ and moreover that

F 0(t) is non-empty if and only if t ≡ n|M | modulo (d + 1) for some n ∈ Z, or in other words:
we have defined a partition of F 0 indexed by the multiples of (the class of) |M | in Z/(d + 1).
This partition is stable for the action of SLd+1(K) on F 0 (this again follows from Eq. (18))
while the action of the full group G on F 0 can be used to cycle through the parts of this partition.
Endow

X(t) =
⋃

Z∈F 0(t)

Z

with its structure of reduced closed subscheme of X⊗ k.

LEMMA 3.2. – We have natural isomorphisms

(O
Ẋ
)μ ⊗OK̇

k ∼=
⊕

t∈{0,...,d}

(O
Ẋ
)μ ⊗O

Ẋ
O

X(t)

O
X(t)

-torsion
,(19)
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LY

( ∑
∅�=σ�{0,...,d}

−
⌈∑

j∈σ

aj(μ)
⌉ ∑

u∈Uσ(k)

u.Vσ

)
∼=

(O
Ẋ
)μ ⊗O

Ẋ
OY

OY -torsion
.(20)

Proof. – Let Y(t) denote the maximal open formal subscheme of Y such that the open
subscheme Y(t)⊗ k of Y⊗ k is contained in

⋃
Z∈F 0

A
(t)(Z ∩Y). Let

Y(t) =
⋃

Z∈F 0(t)

(Z ∩Y)

with its reduced structure, or equivalently: Y(t) is the schematic closure of Y(t)⊗ k in Y⊗ k.
By formula (17) the restriction of (O

Ẏ
)μ to Y(t) is the line bundle

π̇t
∏

Z∈F 0
A

J 	μ(Z)− t
d+1 


Z

∣∣
Y(t)

= π̇t
∏

Z∈F 0
A

(t)

J μ(Z)− t
d+1

Z

∣∣
Y(t)

on Y(t) (all JZ |Y(t) for Z ∈ F 0
A −F 0

A(t) are trivial). We obtain: the reduction (O
Ẏ

)μ ⊗OK̇
k of

(O
Ẏ

)μ decomposes into a direct sum, indexed by the set {0, . . . , d}, whose direct summand for
t ∈ {0, . . . , d} is the image of the map

π̇t
∏

Z∈F 0
A

J 	μ(Z)− t
d+1 


Z → (O
Ẏ

)μ → (O
Ẏ

)μ ⊗O
Ẏ
O

Y(t)
.

This is a line bundle on Y(t) that maps isomorphically to the quotient of (O
Ẏ

)μ ⊗O
Ẏ
O

Y(t)

divided by its O
Y(t)

-torsion. Thus

(O
Ẏ

)μ ⊗OK̇
k ∼=

⊕
t∈{0,...,d}

(O
Ẏ

)μ ⊗O
Ẏ
O

Y(t)

O
Y(t)

-torsion
(21)

and the direct summand for t ∈ {0, . . . , d} is an invertible O
Y(t)

-module. Hence formula (19) by

U(K)-equivariance. We also see

(O
Ẋ
)μ ⊗O

Ẋ
O

X(0)

O
X(0)-torsion

⊗O
X(0)

OY =
(O

Ẋ
)μ ⊗O

Ẋ
OY

OY -torsion

and that this is the unique U(k)-equivariant subsheaf of the constant sheaf k(Y ) on Y whose
restriction to Y ′ = Y ∩Y is

(O
Ẏ

)μ ⊗O
Ẏ
OY ′

OY ′-torsion

(for the uniqueness note that U(k).Y ′ = Y ). If we define the divisor D on Y ′ by requiring

(O
Ẏ

)μ ⊗O
Ẏ
OY ′

′
= LY ′(D)
OY -torsion
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(as subsheaves of the constant sheaf k(Y ) on Y ′), then by U(k)-equivariance of its both sides
and U(k).Y ′ = Y , to prove formula (20) we only need to prove the identity of divisors

D =
∑

∅�=σ�{0,...,d}
−
⌈∑

j∈σ

aj(μ)
⌉
Vσ|Y ′

on Y ′. To see this, note that for ∅ �= σ � {0, . . . , d} we have Vσ = Zσ ∩ Y on Y ∈ F 0
A; here

we write Zσ = tσY ∈ F 0
A with tσ ∈ T ⊂ G defined as tσ = diag(tσ,0, . . . , tσ,d) with tσ,j = 1

if j /∈ σ and tσ,j = π if j ∈ σ. Now we only need to see that for ∅ �= σ � {0, . . . , d} the prime
divisor Vσ = Zσ ∩ Y occurs in D with multiplicity

−
⌈
μ(Zσ)

⌉
= −

⌈∑
j∈σ

aj(μ)
⌉
.

But our discussion shows that
(O

Ẏ
)μ⊗O

Ẏ
OY ′

OY ′-torsion can be identified with the image of the map

∏
∅�=σ�{0,...,d}

J 	μ(Zσ)

Zσ

→ (O
Ẏ

)μ → (O
Ẏ

)μ ⊗O
Ẏ
OY ′

and we can read off the correct multiplicity. �
THEOREM 3.3. – Let ιY :Y → X denote the closed embedding. We have natural isomor-

phisms

(M0
OK̇

⊗OK
OX)⊗OK̇

k ∼=
⊕

t∈{0,...,d}

(M0
OK̇

⊗OK
OX)⊗O

Ẋ
O

X(t)

O
X(t)

-torsion
,(22)

(M0
OK̇

⊗OK
OX)⊗O

Ẋ
OY

OY -torsion
∼= ιY,∗(M̃[OY ]).

Proof. – To prove Theorem 3.3 it suffices by U(K)-equivariance (resp. by U(OK)-equi-
variance for the isomorphism (22)) to prove the statements on the sheaves restricted to Y (resp.
to Y ′ for the isomorphism (22)). There, by construction, M0

OK̇
⊗OK

OX decomposes into a
direct sum indexed by the weights μ of M . A small computation in local coordinates shows that
formula (14) implies that the summand for μ is of the form M0

μ ⊗OK
(O

Ẋ
)μ so that Lemma 3.2

proves the first isomorphism. The isomorphism (22) now follows from formula (10) (in view of
Lemma 3.2). �

Remark. – If |M | ∈ (d + 1).Z, or equivalently if μ ∈ X∗(T ) for all μ with Mμ �= 0, then
F 0 = F 0(0) and (O

Ẋ
)μ is a line bundle on X for each such μ, and M0

OK̇
⊗OK

OX is a locally
free OX-module sheaf on X.

4. Coherent cohomology via logarithmic differential forms

Let S be a strictly semistable formal OK -scheme. Endow S and Spf(OK) with the log
structure defined by the respective special fibre and let Ω•

S denote the logarithmic de Rham
complex for the log smooth morphism of formal log schemes S → Spf(OK). Let Ω•

S denote
the push forward to S of the de Rham complex on S = S ⊗OK

K (a K-rigid space). Let T
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be an irreducible component of the special fibre S ⊗ k of S, let T 0 denote the maximal open
subscheme of S⊗ k which is contained in T . Then T − T 0 is a normal crossings divisor on the
smooth k-scheme T . Let Ω•

T denote the de Rham complex on T with logarithmic poles along
T − T 0.

LEMMA 4.1. – There are canonical isomorphisms of sheaf complexes

Ω•
S
∼= Ω•

S ⊗OK
K, Ω•

T
∼= Ω•

S ⊗OS
OT .

Proof. – The first isomorphism is clear. To prove the second one let T ′ (resp. Spec(k)′) denote
the log scheme whose underlying scheme is T (resp. Spec(k)) and whose log structure is the pull
back of that of S (resp. that of Spf(OK)). In other words, T ′ → S and Spec(k)′ → Spf(OK)
are exact closed immersions of log schemes. Then T ′ is a log scheme over the base Spec(k)′ (in
general not log smooth). Let Ω1

T ′ be the logarithmic differential module of T ′ → Spec(k)′. We
have a morphism of log schemes T ′ → T . By functoriality we get natural morphisms of sheaves

Ω1
T → Ω1

T ′ ←Ω1
S ⊗OS

OT .

We claim that both are isomorphisms. To see this we may assume that S is the formal
π-adic completion of Spec(OK [X0, . . . ,Xd]/(X0 · · ·Xs − π)) for some 0 � s � d and that the
kernel of OS → OT is generated by X0. Then these sheaves are canonically identified with
the free OT -module with basis {dlog(X1), . . . ,dlog(Xs),d(Xs+1), . . . ,d(Xd)}. The lemma
follows. �

LEMMA 4.2. – Let A be a discrete valuation ring with uniformizer λ ∈A, residue field k and
fraction field F . Let M be a λ-torsion free A-module.

(a) The A-module

M ′ = lim←−
n

M/λnM

is λ-torsion free. For each r � 1 the map M/λrM → M ′/λrM ′ induced by the natural
map M →M ′ is bijective; in particular we have

M ′ = lim←−
n

M ′/λnM ′.

(b) Let Ñ be a subvector space of M ⊗A F and let N = M ∩Ñ (intersection inside M ⊗A F ).
The map N ⊗A k → M ⊗A k induced by the natural map N → M is injective.

Proof. – (a) Suppose we are given (mn)n ∈ M ′ and s � 1 such that λs(mn)n = 0 in M ′. Let
n � 1 and choose x ∈ M such that x = mn+s ∈ M/λn+sM (where x denotes the image of
x in M/λn+sM ). Then λsmn+s = 0 in M/λn+sM implies λsx ∈ λn+sM , hence x ∈ λnM
since M is λ-torsion free, hence mn = 0 in M/λnM and we see that M ′ is λ-torsion free.
Next let r � 1 and suppose we are given (mn)n ∈ M ′. Let m ∈ M be an arbitrary lift of
mr ∈ M/λrM . We find an element (bn)n ∈ M ′ such that λrbn = m − mn ∈ M/λnM for
all n (here m denotes the class of m). Indeed, we know m − mn+r ∈ λrM/λn+rM . Choose
b′n ∈M with λrb′n = m−mn+r ∈ M/λn+rM and let bn be the image of b′n in M/λnM . Then
(bn)n ∈ M ′ because (mn)n ∈ M ′ implies λr(b′n+r − b′n) ∈ λn+rM , hence b′n+r − b′n ∈ λnM
since M is λ-torsion free. Now λr((bn)n) = (m−mn)n in M ′, thus m ∈ M and (mn)n ∈ M ′

map to the same element in M ′/λrM ′. We have shown that M/λrM →M ′/λrM ′ is surjective;
the injectivity is clear.
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(b) This is very easy. �
In the sequel, for sheaves G on X we write G also for the push forward sheaf on X under

the specialization map sp :X → X; we use tacitly and repeatedly Kiehl’s result [13] that if G is
coherent on X we have Rtsp∗G = 0 for all t > 0.

Denote by Ω•
X the logarithmic de Rham complex of the log smooth morphism of formal log

schemes X → Spf(OK), where we give the source and the target the respective log structures
defined by the special fibres. Note that by Lemma 4.1 we have canonical identifications

Ω•
X ⊗OK

K = Ω•
X , Ω•

X ⊗OX
OY = Ω•

Y .

Recall that we view X as a subspace of Pd
K . For 0 � s � d let Logs be the K-vector subspace

of Ωs
X(X) generated by logarithmic differential s-forms on Pd

K with logarithmic poles along
K-rational hyperplanes. In other words, Logs is generated by s-forms η of the type

η = dlog(y1)∧ · · · ∧ dlog(ys)(23)

for which there exists a suitable (adapted to η) choice of projective coordinate system θ0, . . . , θd

on Pd
K (i.e. a suitable (adapted to η) isomorphism of K-varieties Pd

K
∼= Proj(K[θ0, . . . , θd]))

such that yj = θj/θ0 ∈O×
X(X) for all 1 � j � s. Clearly Logs is a G-stable subspace of Ωs

X(X).
Let M0

OK̇
be the G-equivariant integral structure in the constant sheaf M K̇ defined in

Section 3. For an open quasi-compact subscheme U of X⊗ k we have M ⊗K K̇ ⊗K Ωs
X(U) =

(M0
OK̇

⊗OK
Ωs

X)(U) ⊗ K , hence for such U we may view M ⊗K K̇ ⊗K Ωs
X(X) and

consequently also M⊗K K̇⊗K Logs as being contained in (M0
OK̇

⊗OK
Ωs

X)(U)⊗K . Therefore
we may define

Logs
alg

(
M0

OK̇

)
(U) = M ⊗K K̇ ⊗K Logs ∩

(
M0

OK̇
⊗OK

Ωs
X

)
(U),

the intersection taking place inside (M0
OK̇

⊗OK
Ωs

X)(U)⊗K . Since the restriction maps of the

sheaf M0
OK̇

⊗OK
Ωs

X are injective we have thus defined a G-stable subsheaf Logs
alg(M0

OK̇
) of

M0
OK̇

⊗OK
Ωs

X. For open U ⊂X⊗ k we further let

Logs
(
M0

OK̇

)
(U) = lim

←
n

Logs
alg(M0

OK̇
)(U)

π̇nLogs
alg(M0

OK̇
)(U)

.

This defines a sheaf Logs(M0
OK̇

) with G-action which by Lemma 4.2 is π̇-adically complete

and π̇-torsion free. Since also M0
OK̇

⊗OK
Ωs

X is π̇-adically complete and π̇-torsion free we have
a G-equivariant map

Logs
(
M0

OK̇

)
→M0

OK̇
⊗OK

Ωs
X.(24)

Recall that we view the k-scheme Y from Section 1 as (the central) irreducible component of
X⊗ k; in this way the open subscheme Y 0 ⊂ Y is also open in X⊗ k.

LEMMA 4.3. – Logs(M0
OK̇

) ⊗ k is a G-equivariant subsheaf of (M0
OK̇

⊗OK
Ωs

X) ⊗OK̇
k

which on Y 0 restricts to M̃ ⊗Ls
Y |Y 0 .

Proof. – From Lemma 4.2(b) we know that the inclusion Logs
alg(M0

OK̇
) →M0

OK̇
⊗OK

Ωs
X

induces an injective map of sheaves

Logs
alg

(
M0

O
)
⊗O ˙ k →

(
M0

O ⊗OK
Ωs

X

)
⊗O ˙ k.(25)
K̇ K K̇ K
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From Lemma 4.2(a) we know that the map

Logs
alg

(
M0

OK̇

)
⊗OK̇

k →Logs
(
M0

OK̇

)
⊗OK̇

k

is an epimorphism of sheaves. Together we conclude that the natural map

Logs(M0
OK̇

)⊗OK̇
k →

(
M0

OK̇
⊗OK

Ωs
X

)
⊗OK̇

k

is injective and that its image is the same as that of (25). We now prove our statement concerning
the restriction to Y 0 of this image sheaf. Since M0

OK̇
|Y 0 is the constant sheaf generated by the

free OK̇ -module M0 ⊗OK
OK̇ with reduction M̃ = M0/π.M0, it is clear that we may assume

M = K , the trivial representation. What we must show then is(
Logs ∩ Γ

(
Y 0,Ωs

X

))
⊗ k = Ls

Y

for all s � 0. For s = 0 both sides are identified with k, and the case s > 1 is reduced to the case
s = 1 by taking exterior products. Thus we assume s = 1. The containment of the left-hand side
in the right-hand side is clear. Let now zndlog(z) be a typical generator of L1

Y as in equation
(3); we need to show that it lies in (Log1 ∩ Γ(Y 0,Ω1

X)) ⊗ k (here z = y1 for y1, . . . , yd as in
Eq. (3)). The case n = 0 is clear, and the case n < 0 is reduced to the case n > 0 observing
dlog(z) = −dlog(z−1)), thus we assume n > 0. We lift the system y1, . . . , yd on Y to a system
y1, . . . , yd on X as in Eq. (23), and we also write z = y1 for the lifted y1. Choose pairwise
distinct a0, . . . , an ∈OK . Since the matrix (aj

i )0�i,j�n is invertible over K (Vandermonde) we
may find x0, . . . , xn ∈ OK such that, if we set cj =

∑n
i=0 xia

j
i , then cj = 0 for 0 � j < n

and cn �= 0 (possibly a very small cn since (aj
i )0�i,j�n may not be invertible over OK ). Write

cj =
∑n

i=0 xia
j
i for any j � 0. For m ∈ N we have

n∑
i=0

xi

1− aiπmz
=

∞∑
j=0

cjπ
mjzj .

Now fix m ∈ N such that |πmcj | < |cn| for all j > n with |cj | > |cn|. Then |cjπ
mj | < |cnπmn|

for all j > n. Hence

(
cnπmn

)−1
n∑

i=0

xidlog
(
1− aiπ

mz
)
∈ Log1 ∩ Γ

(
Y 0,Ω1

X

)
lifts the form zndlog(z) ∈ L1

Y . �
For j, t ∈ {0, . . . , d} let

F j(t) =
{
Z ∈ F j | Z = Z0 ∩ · · · ∩Zj with Zi ∈ F 0(t) for all 0 � i � j

}
.

Note that F j(t) is stable under SLd+1(K) (because F 0(t) is stable under SLd+1(K)). For any
t ∈ {0, . . . , d} with F 0(t) �= ∅ (i.e. with t≡ n|M | modulo (d + 1) for some n ∈ Z), the minimal
number j with F j(t) = ∅ is the quotient of d + 1 divided by the order of (the class of) |M | in
Z/(d + 1) (we set F d+1(t) = ∅).

THEOREM 4.4. – There is a canonical assignment which to j, t, s ∈ {0, . . . , d} and Z ∈ F j(t)
assigns a sheaf Ls(M̃)Z on X ⊗ k with the following properties. Ls(M̃)Z is supported on Z .
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For Z = Y ∈ F 0(0) we have Ls(M̃)Y = ιY,∗M̃[Ls
Y ] (as defined earlier). There is a SLd+1(K)-

stable direct sum decomposition

Logs
(
M0

OK̇

)
⊗ k ∼=

⊕
t∈{0,...,d}

(
Logs

(
M0

OK̇

)
⊗ k

)
(t)

and for each t ∈ {0, . . . , d} a SLd+1(K)-equivariant long exact sequence

0 →
(
Logs

(
M0

OK̇

)
⊗ k

)
(t)→

⊕
Z∈F 0(t)

Ls
(
M̃

)
Z
→

⊕
Z∈F 1(t)

Ls
(
M̃

)
Z
→ · · · .(26)

Proof. – The direct sum decomposition of (M0
OK̇

⊗OK
OX)⊗OK̇

k from Theorem 3.3 yields
the analogous decomposition

(
M0

OK̇
⊗OK

Ωs
X

)
⊗OK̇

k ∼=
⊕

t∈{0,...,d}

(M0
OK̇

⊗OK
Ωs

X)⊗O
Ẋ
O

X(t)

O
X(t)

-torsion

where the summand for t ∈ {0, . . . , d} is locally free on X(t). We have

(M0
OK̇

⊗OK
Ωs

X)⊗O
Ẋ
O

X(0)

O
X(0)

-torsion
⊗O

X(0)
OY = ιY,∗

(
M̃[OY ]⊗OY

Ωs
Y

)
.

Now ιY,∗M̃[Ls
Y ] ⊂ ιY,∗(M̃[OY ] ⊗OY

Ωs
Y ) by the definition of M̃[Ls

Y ]. We let Ls(M̃)Y =
ιY,∗M̃[Ls

Y ] and then we move this definition around by means of the action of G to obtain for
each Z ∈ F 0(t) (any t) a subsheaf

Ls
(
M̃

)
Z
⊂

(M0
OK̇

⊗OK
Ωs

X)⊗O
Ẋ
O

X(t)

O
X(t)

-torsion
⊗O

X(t)
OZ .

We have Ls(M̃)Z |Z∩Z′ = Ls
(
M̃

)
Z′ |Z∩Z′ for all Z,Z ′ ∈ F 0(t) (because of G-equivariance:

there are g ∈ G which interchange Z and Z ′). This means that also for j > 0 we obtain
subsheaves

Ls
(
M̃

)
Z
⊂

(M0
OK̇

⊗OK
Ωs

X)⊗O
Ẋ
O

X(t)

O
X(t)

-torsion
⊗O

X(t)
OZ

for each Z ∈ F j(t) and SLd+1(K)-stable subsheaves

F(t)⊂
(M0

OK̇
⊗OK

Ωs
X)⊗O

Ẋ
O

X(t)

O
X(t)

-torsion

such that there are long exact sequences

0 →F(t)→
⊕

Z∈F 0(t)

Ls
(
M̃

)
Z
→

⊕
Z∈F 1(t)

Ls
(
M̃

)
Z
→ · · · .

The restriction of Ls(M̃)Y = ιY,∗M̃[Ls
Y ] and hence of F(0) to the open subscheme Y 0 is

just M̃ ⊗ Ls
Y |Y 0 . In view of Lemma 4.3 and G-equivariance we conclude that the subsheaves
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Logs(M0
OK̇

) ⊗ k and
⊕

t∈{0,...,d}F(t) of (M0
OK̇

⊗OK
Ωs

X) ⊗OK̇
k coincide when restricted

to Y 0 and to each G-translate of Y 0 in X ⊗ k. By their construction both these subsheaves are
maximal inside (M0

OK̇
⊗OK

Ωs
X) ⊗OK̇

k with this given restriction to Y 0 and its G-translates,
hence they coincide. �

PROPOSITION 4.5. – If the weights of M are small then the map (24) induces for any i an
isomorphism

Hi
(
X,Logs

(
M0

OK̇

))∼= Hi
(
X,M0

OK̇
⊗OK

Ωs
X

)
.

Proof. – For the sheaves F = Logs(M0
OK̇

) and F = M0
OK̇

⊗OK
Ωs

X we have the spectral
sequences

Epq
2 = Rp lim←−

m

(
Hq(X,Fm)

)
⇒ Hp+q

(
X, lim←−

m

Fm

)
= Hp+q(X,F)

where (.)m denotes reduction modulo π̇m. The map (24) induces a map between these spectral
sequences and we see that it is enough to show

Hi
(
X,
(
Logs

(
M0

OK̇

))
m

)∼= Hi
(
X,
(
M0

OK̇
⊗OK

Ωs
X

)
m

)
(27)

for any m � 1, any i � 0. Since F = Logs(M0
OK̇

) and F =M0
OK̇

⊗OK
Ωs

X are OK̇ -flat we get
exact sequences of sheaves

0 →Fm−1
π̇m−1

−→ Fm →F1 → 0.

Comparing the associated long exact cohomology sequences we reduce our task to proving the
isomorphism (27) in the case m = 1, i.e. to proving

H∗(X,Logs
(
M0

OK̇

)
⊗ k

)∼= H∗(X,M0
OK̇

⊗OK
Ωs

X ⊗ k
)
.

First suppose |M | /∈ (d + 1).Z. Then our hypothesis that the weights of M be small implies that
the order of (the class of) |M | in Z/(d+1) is d+1, cf. the proof of Lemma 2.4. Then comparing
Theorem 4.4 with the result from Theorem 3.3 and using G-equivariance we reduce to proving

Hi
(
Y,M̃[Ls

Y ]
)∼= Hi

(
Y,M̃[OY ]⊗OY

Ωs
Y

)
for any i. But this we did in Theorem 2.5. Now suppose |M | ∈ (d + 1).Z. Under our hypothesis
that the weights of M be small this means M |SLd+1(K) is trivial, hence M0

OK̇
is the constant

sheaf with value OK̇ . Since Ωs
X ⊗ k is locally free over OX⊗k we have an exact sequence

0 → Ωs
X ⊗ k →

⊕
Z∈F 0

Ωs
X ⊗OZ →

⊕
Z∈F 1

Ωs
X ⊗OZ → · · · .

On the other hand the exact sequence (26) becomes

0 →Logs(OK̇)⊗ k →
⊕

0

Ls(k)Z →
⊕

1

Ls(k)Z → · · ·

Z∈F Z∈F
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with each Ls(k)Z the push forward to X of a constant sheaf on Z (which we denote by Ls(k)Z ,
too). Comparing we reduce to proving

H∗(Z,Ls(k)Z

)∼= H∗(Z,Ωs
X ⊗OZ)

for any Z ∈ F j , any j. By G-equivariance we may assume Z ⊂ Y . Let ιZY :Z → Y denote
the closed embedding. The proof of Theorem 4.4 shows (ιZY )∗Ls(k)Z = Ls

Z(0) as defined in
Theorem 1.2(b). Hence we may conclude by that theorem. �

Remarks. – (1) From Proposition 4.5 it follows (take M = K) that every bounded differential
s-form on X , i.e. every element of H0(X,Ωs

X) ⊗ K , is in fact logarithmic, in particular it is
closed. Thus H0(X,Ωs

X)⊗K must be the space of bounded logarithmic differential s-forms on
X studied in [10] (if char(K) = 0).

(2) Suppose M = K , the trivial G-representation. Let Wω•
X denote the logarithmic de Rham

complex of the special fibre of X. The same proof as for 4.5 provides isomorphisms

Hj
(
X,Log•

(
M0

OK̇

))∼= Hj
(
X,Wω•

X

)
for any j, hence altogether isomorphisms

Hj
(
X,Ω•

X

)∼= Hj
(
X,Wω•

X

)
.

Similarly, for the quotients XΓ of X as in Section 5 we get by the same proof isomorphisms

Hj
(
XΓ,Ω•

XΓ

)∼= Hj
(
XΓ,Wω•

XΓ

)
.(28)

These isomorphisms (28) are those constructed by Hyodo (see [9]) by means of p-adic étale
sheaves of vanishing cycles for general projective semistable schemes with ordinary reduction.
They must not be confused with the Hyodo–Kato isomorphisms which are used to define the
filtered (φ,N)-modules which recover the p-adic étale cohomology of the generic fibre of XΓ.

5. The Hodge spectral sequence

Let Γ ⊂ SLd+1(K) be a discrete torsion-free and cocompact subgroup. It is proved in [14]
that the quotient XΓ = Γ\X is the π-adic formal completion of a projective OK -scheme. Passing
to a smaller Γ if necessary we may assume that XΓ has strictly semistable reduction, i.e. all
irreducible components of XΓ are smooth. Let XΓ = Γ\X = XΓ ⊗ K , the analytification of a
smooth projective K-scheme. Let M be a K[Γ]-module with dimK M < ∞; we write M = M
for the constant sheaf on X , resp. on X, generated by M .

For a Γ-equivariant sheaf F on X or X we write FΓ for the descended sheaf on XΓ or XΓ. For
example, the constant local system M = M on X or X gives rise to a (non-constant in general!)
descended local system MΓ on XΓ or XΓ. We are interested in the cohomology of the sheaf
complex MΓ ⊗K Ω•

XΓ
= (M ⊗K Ω•

X)Γ on XΓ or XΓ. The Hodge spectral sequence

Er,s
1 = Hs

(
XΓ,MΓ ⊗K Ωr

XΓ

)
⇒Hr+s

(
XΓ,MΓ ⊗K Ω•

XΓ

)
(29)

gives rise to the Hodge filtration

Hd
(
XΓ,MΓ ⊗K Ω•

XΓ

)
= F 0

H ⊃ F 1
H ⊃ · · · ⊃ F d+1

H = 0.
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COROLLARY 5.1. – If M is a K-rational G-representation with small weights then the
Hodge spectral sequence (29) degenerates in E1. The Hodge filtration F •

H has a canonical
splitting defined through logarithmic differential forms (at least after base extension K → K̇).

Proof. – We may extend scalars K → K̇ . We continue to use the same names for coherent
sheaves on XΓ and for their push forward to XΓ. We have an inclusion of sheaf complexes
Log•(M0

OK̇
)Γ ⊗OK̇

K̇ →MΓ ⊗K Ω•
XΓ

⊗K K̇ on XΓ with trivial differentials on the former.
Therefore it is enough to prove that for any 0 � s � d the natural maps

H∗(XΓ,Logs
(
M0

OK̇

)Γ ⊗OK̇
K̇
)
→ H∗(XΓ,MΓ ⊗K Ωs

XΓ
⊗K K̇

)
are isomorphisms. Now

MΓ ⊗K Ωs
XΓ

⊗K K̇ =
(
M0

OK̇
⊗OK

Ωs
X

)Γ ⊗OK̇
K̇.

Since XΓ is quasicompact, taking cohomology commutes with applying (.) ⊗OK̇
K̇ . Therefore

it will be enough to show

H∗(XΓ,Logs
(
M0

OK̇

)Γ)∼= H∗(XΓ,
(
M0

OK̇
⊗OK

Ωs
X

)Γ)
.

For both F = Logs(M0
OK̇

) and F = M0
OK̇

⊗OK
Ωs

X we have the spectral sequence

Ert
2 = Hr

(
Γ,Ht(X,F)

)
⇒ Hr+t

(
XΓ,FΓ

)
.

We conclude by Proposition 4.5 (alternatively we could repeat the proof of Proposition 4.5). �
Let again M be an arbitrary K[Γ]-module with dimK M < ∞. From now on we suppose

char(K) = 0. For an open subscheme U of X ⊗ k we denote by U the Zariski closure of U in
X ⊗ k, and by ]U [= ]U [X= sp−1(U) its tube in X , the preimage under the specialization map
sp :X → X ⊗ k. For i � 0 we define the sheaf Li(M) on X ⊗ k (or equivalently: on X) by
setting 1

Li(M)(U) = Ker
[
M ⊗Ωi

X

(]
U [
)
→ M ⊗Ωi+1

X

(]
U
[)]

for open U ⊂ X⊗ k. We get a sheaf complex L•(M) on X with trivial differentials. For i � 0 let
τi(M ⊗Ω•

X) be the subsheaf complex of M ⊗Ω•
X on X⊗ k whose value τi(M ⊗Ω•

X)(U) for
open U ⊂ X⊗ k is the complex

M ⊗Ω0
X

(]
U
[)

→ · · · →M ⊗Ωi−1
X

(]
U
[)

→ Li(M)(U) → 0 → · · · .

We write τi(MΓ ⊗K Ω•
XΓ

) = τi(M ⊗K Ω•
X)Γ for the descended sheaf complex on XΓ or XΓ.

For a complex C• = (C0 d→ C1 d→ C2 d→ · · ·) (of abstract groups, or sheaves) we put

t�iC
• =

(
C0 d→ · · · d→ Ci−1 d→Ker(d) d→ 0 d→ · · ·

)
.

1 Logically the notation L as used here has nothing to do with the notation L as used in the previous sections; however,
the L’s play the same role in their respective contexts.
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PROPOSITION 5.2. – We have

Ht
(
X, τi

(
M ⊗K Ω•

X

))
=

{
M ⊗K Ht

dR(X): 0 � t � i,

0: t > i.

In particular,

Hd
(
XΓ, τi

(
MΓ ⊗K Ω•

XΓ

))
= Hd

(
Γ,M ⊗K t�iΩ•

X(X)
)
.

Proof. – We first deduce the second statement from the first one. Since X is a Stein space we
have Hs(X,Ωr

X) = 0 for all r � 0, all s > 0 (see [13]), hence

Ht
dR(X) = Ht

(
X,Ω•

X

)
=

t�tΩ•
X(X)

t�t−1Ω•
X(X)

[−t]

for all t (the last term is a complex concentrated in degree 0). Together with the first statement
we deduce that the natural map of sheaf complexes τi(M ⊗K Ω•

X) → M ⊗K t�iΩ•
X induces an

isomorphism

RΓ
(
X, τi

(
M ⊗K Ω•

X

))∼= M ⊗K t�iΩ•
X(X).

This gives the second statement. The first one will be deduced from de Shalit’s acyclicity
theorem. We may of course assume M = K . It will be enough to show

Ht

(
X,

τiΩ•
X

τi−1Ω•
X

)
=

{
Hi

dR(X): t = i,

0: t �= i

where we set τ−1(M ⊗Ω•
X) = 0. For T ∈ F s (any s) let

Z(T ) = {Z ∈ F 0 | T ⊂ Z}

and Ṫ =
⋃

Z∈Z(T ) Z . For all sufficiently small open neighbourhoods U ⊂X⊗k of a given closed

point of X⊗ k we have U = Ṫ for some T . Then ]U [= ]Ṫ [ is a Stein space, hence

Hi

(]
U
[
,

τiΩ•
X

τi−1Ω•
X

)
= Hi

dR

(]
U
[)

.

Therefore, if Hi
dR denotes the sheaf associated with the presheaf

U �→Hi
dR

(]
U
[)

on X, then we must show

Ht
(
X,Hi

dR

)
=

{
Hi

dR(X): t = 0,

0: t �= 0.

For T ∈ F s (any s) let Ṫ 0 denote the maximal open subscheme of X ⊗ k which is contained
in Ṫ . We compute Ht(X,Hi

dR) as Čech cohomology with respect to the open covering X =⋃
T∈F d Ṫ 0. Note that for any collection (T1, . . . , Tr+1) ∈ (F d)r+1 the intersection Ṫ 0

1 ∩ · · · ∩
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Ṫ 0
r+1 is empty or equals Ṫ 0 for some T ∈ F s, some s. In the latter case it follows that

Ṫ 0
1 ∩ · · · ∩ Ṫ 0

r+1 = Ṫ . From the definition of Hi
dR we know on the other hand that for all T ∈ F s,

all s, we have Hr(]Ṫ [,Hi
dR) = 0 for all r > 0. Together we get

Hr
(
Ṫ 0

1 ∩ · · · ∩ Ṫ 0
r+1,Hi

dR

)
= 0

for all r > 0. Therefore it will be enough to show that the complex∏
T∈F d

Hi
dR

(
]Ṫ [

)
→

∏
(T1,T2)∈(F d)2

Hi
dR

(
]Ṫ1 ∩ Ṫ2[

)
→ · · ·

is a resolution of Hi
dR(X). By de Shalit’s acyclicity theorem [3] (see also [4]) we know that the

complex ∏
T∈F 0

Hi
dR

(
]T [

)
→

∏
T∈F 1

Hi
dR

(
]T [

)
→ · · ·

is a resolution of Hi
dR(X). Both these complexes map to the total complex of the double complex

Krs =
∏

(T1,...,Tr+1),T ′

Hi
dR

(
]T ′[

)
where the product is taken over all (T1, . . . , Tr+1) ∈ (F d)r+1 and all T ′ ∈ F s such that
T1 ∩ · · · ∩ Tr+1 ⊂ T ′. It will be enough to show that these maps are quasiisomorphisms. It is
clear that for fixed s the complex K•s is a resolution of

∏
T∈F s Hi

dR(]T [). On the other hand it
follows from Lemma 5.3 below that for fixed r the complex Kr• is a resolution of∏

(T1,...,Tr+1)∈(F d)r+1

Hi
dR

(
]Ṫ1 ∩ · · · ∩ Ṫr+1[

)
and this completes the proof of 5.2. �

LEMMA 5.3 (see [4] Corollary 2.9(1)). – For any T ∈ F s (any s) the sequence

0 → Hi
dR

(
]Ṫ [X

)
→

∏
Z∈Z(T )

Hi
dR

(
]Z[X

)
→

∏
R⊂Z(T )
|R|=2

Hi
dR

(] ⋂
Z∈R

Z

[
X

)
→ · · ·

is exact.

We have the covering spectral sequence

Er,s
2 = Hr

(
Γ,M ⊗K Hs

dR(X)
)
⇒Hr+s

(
XΓ,MΓ ⊗K Ω•

XΓ

)
(30)

which degenerates in E2, as is shown in [16]. Denote by

Hd
(
XΓ,MΓ ⊗K Ω•

XΓ

)
= F 0

Γ ⊃ F 1
Γ ⊃ · · · ⊃ F d+1

Γ = 0

the filtration on Hd(XΓ,MΓ ⊗K Ω•
XΓ

) induced by (30) (it turns out that the cohomology in
other degrees is not interesting). By [16] Theorem 2 and Proposition 2, Section 1, we have for
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i = 0, . . . , d + 1:

dimK F i
Γ =

⎧⎨⎩ (d + 1− i)μ(Γ,M): d is odd or 2i > d,

(d + 1− i)μ(Γ,M) + dimK MΓ: d is even and 2i � d,
(31)

μ(Γ,M) = μ
(
Γ,M∗).(32)

Here μ(Γ,M) = dimK Hd(Γ,M) and M∗ = HomK(M,K) and we must assume d � 2.

CONJECTURE (Schneider). –

Hd
(
XΓ,MΓ ⊗K Ω•

XΓ

)
= F i+1

H ⊕ F d−i
Γ(33)

for all 0 � i � d− 1.

THEOREM 5.4. – The following (i) and (ii) are equivalent:
(i) The map

Hd
(
XΓ, τi

(
MΓ ⊗K Ω•

XΓ

)
⊕MΓ ⊗K Ω•

XΓ,�i+1

)
→ Hd

(
XΓ,MΓ ⊗K Ω•

XΓ

)
(34)

and the analogous map for M∗ and d− i (instead of M and i + 1) are surjective.
(ii) We have the decomposition

Hd
(
XΓ,MΓ ⊗K Ω•

XΓ

)
= F i+1

H ⊕ F d−i
Γ(35)

and the analogous decomposition for M∗ and d− i (instead of M and i + 1).

Proof. – By definition we have

F i+1
H = im

[
Hd

(
XΓ,MΓ ⊗K Ω•

XΓ,�i+1

)
→ Hd

(
XΓ,MΓ ⊗K Ω•

XΓ

)]
F d−i

Γ = im
[
Hd

(
Γ,M ⊗K t�iΩ•

X(X)
)
→ Hd

(
Γ,M ⊗K Ω•

X(X)
)]

= im
[
Hd

(
Γ,M ⊗K t�iΩ•

X(X)
)
→ Hd

(
XΓ,MΓ ⊗K Ω•

XΓ

)]
(the last equality holds since X is a Stein space). From 5.2 it then follows that

F d−i
Γ = im

[
Hd

(
XΓ, τi

(
MΓ ⊗K Ω•

XΓ

))
→ Hd

(
XΓ,MΓ ⊗K Ω•

XΓ

)]
.(36)

This shows that (ii) implies (i). Conversely, if (34) is surjective then (36) shows

Hd
(
XΓ,MΓ ⊗K Ω•

XΓ

)
= F i+1

H + F d−i
Γ(37)

and similarly, if the analog of (34) with M∗ and d− i (instead of M and i + 1) is surjective then
the analog of (36) with M∗ and d− i (instead of M and i+1) shows the analog of (37) with M∗

and d − i (instead of M and i + 1). By a formal duality argument one then concludes that the
sum in (37) is in fact direct. This argument is easily extracted from the proof of [10] Theorem
5.4 and is worked out in a completely analogous situation in the proof of 6.2 below. It rests on
Serre duality on the smooth projective K-scheme underlying XΓ and the computations (31) and
(32) of dimK F j

Γ . �
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Remark. – As we just saw, the surjectivity of (34) alone implies (36). This is the sheaf
cohomology analog of [16] p. 631, Lemma 2(ii). To ask in addition for the surjectivity of the
analog of (34) for M∗ and d − i for obtaining F i+1

H ∩ F d−i
Γ = 0 is the strategy of [10], an

alternative to the strategy [16] p. 631, Lemma 2(i).

The inclusion of sheaf complexes L•(M)Γ →MΓ ⊗K Ω•
XΓ

induces a map

∇(M) :Hd
(
XΓ,L•(M)Γ

)
→ Hd

(
XΓ,MΓ ⊗K Ω•

XΓ

)
.

COROLLARY 5.5. – If ∇(M) and ∇(M∗) are surjective then (35) holds for all 0 � i � d−1.

Proof. – The differential in the complex L•(M)Γ is zero, consequently the inclusion

L•(M)Γ → τi

(
MΓ ⊗K Ω•

XΓ

)⊕
MΓ ⊗K Ω•

XΓ,�i+1

is a morphism of complexes and 5.4 proves the corollary. �
By [14] we know that XΓ is the analytification of a projective K-scheme XΓ,alg. Similarly

it follows from GAGA-theorems that the de Rham complex MΓ ⊗K Ω•
XΓ

on XΓ is the
analytification of a complex (MΓ ⊗K Ω•

XΓ
)alg on XΓ,alg. Consider the conjugate spectral

sequence

Epq
2 = Hp

(
XΓ,alg,Hq

((
MΓ ⊗K Ω•

XΓ

)alg))
=⇒ Hp+q

(
XΓ,alg,

(
MΓ ⊗K Ω•

XΓ

)alg)= Hp+q
(
XΓ,MΓ ⊗K Ω•

XΓ

)
.

It gives rise to the conjugate filtration

Hd
(
XΓ,MΓ ⊗K Ω•

XΓ

)
= Hd

(
XΓ,alg,

(
MΓ ⊗K Ω•

XΓ

)alg)= F 0
con ⊃ F 1

con ⊃ · · · ⊃ F d+1
con = 0.

PROPOSITION 5.6. – Assume

Hd
(
XΓ,MΓ ⊗K Ω•

XΓ

)
= F i+1

H + F d−i
con(38)

and the analogous decomposition for M∗ and d− i (instead of M and i + 1). Then (35) holds.
Conversely, if (35) holds then F i+1

H ∩ F d−i
con = 0.

Proof. – In general we have

F d−i
con = im

[
Hd

(
XΓ,alg, t�i

(
M⊗K Ω•

XΓ

)alg)→ Hd
(
XΓ,alg,

(
M⊗K Ω•

XΓ

)alg)]
.

Let XΓ,alg denote the OK -scheme (constructed in [14]) of which XΓ is the π-adic formal
completion and XΓ,alg the generic fibre. If t :XΓ → XΓ,alg and j :XΓ,alg → XΓ,alg denote the
natural maps then we have a canonical transformation

Rj∗t�i

(
MΓ ⊗K Ω•

XΓ

)alg → t∗τi

(
MΓ ⊗K Ω•

XΓ

)
.

From (36) it then follows that F d−i
con ⊂ F d−i

Γ . Therefore our hypothesis implies (37) and we may
conclude as in the proof of 5.4. �

Remarks. – (1) Observe that 5.6 formulates a purely algebraic approach to the splitting
conjecture. In particular it invites trying to find a non-p-adic proof of the splitting conjecture.
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This remark may in particular be relevant in cases where XΓ,alg is the base change to K of
a Shimura variety defined over a global number field, see [15]. In these cases the complexes
MΓ⊗K Ω•

XΓ
occur in the de Rham complexes of the relative de Rham cohomology (with Gauss–

Manin connection) of powers of the universal abelian scheme. Using the criterion 5.6 one may
hope to prove the splitting conjecture with global methods!

(2) From the point of view of p-adic Hodge theory the relevance comes from the following
fact: in [6] it is shown that if M is endowed with a structure of isoclinic F -isocrystal, then
Hd(XΓ,MΓ ⊗K Ω•

XΓ
) receives a Frobenius structure and F •

Γ is its corresponding (renumbered)
slope filtration.

6. The reduced Hodge spectral sequence

For general M the Hodge spectral sequence (29) does not degenerate in E1. For rational
representations M Schneider constructs a new (‘reduced’) Hodge spectral sequence computing
H∗(XΓ,MΓ ⊗K Ω•

XΓ
) which he conjectures to degenerate in E1. We discuss his conjecture in

this section.
If Ξ0, . . . ,Ξd denote the standard projective coordinate functions on Pd

K , then zj = Ξj/Ξ0 for
j = 1, . . . , d are holomorphic functions on X . Let

u(z) =
(

1 −z1 · · · − zd

0 Id

)
∈ SLd+1

(
OX(X)

)
.

Let now M be an irreducible K-rational representation of GLd+1. Suppose it has highest weight
(λ0 � λ1 � · · · � λd). By this we mean that there exists a non-zero vector m ∈ M such that
K.m is stable under upper triangular matrices and generates M as a G-representation, and such
that gm =

∏d
i=0 aλi

i m for all diagonal matrices g = e0(a0) · · ·ed(ad) ∈ G. Assume λd = 0. We
grade M by setting

grrM =
{
m ∈ M | e0(a0)m = aλ0−r

0 m for all a0 ∈K
}

for r ∈ Z, and we filter M by setting

frM =
⊕
r′�r

grr′
M.

Then fλ0+1M = 0 and f0M = M . We get a corresponding filtration of the constant sheaf M on
X and on X . We filter M ⊗K Ωj

X by setting

fr
(
M ⊗K Ωj

X

)
= OX .u(z)

(
frM

)
⊗OX

Ωj
X .

We let

Fr,• =
[
fr
(
M ⊗K Ω0

X

)
→ fr−1

(
M ⊗K Ω1

X

)
→ fr−2

(
M ⊗K Ω2

X

)
→ · · ·

]
.(39)

It follows from [16] that this is a SLd+1(K)-stable filtration of M ⊗K Ω•
X by subcomplexes

(notations and normalizations in loc. cit. are different, but equivalent). We obtain the spectral
sequence

Er,s
1 = hr+s

(
Fr,•/Fr+1,•)⇒ hr+s

(
M ⊗K Ω•

X

)
.(40)

The following is [16] Lemma 9, Section 3 (observe that X is a Stein space).
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PROPOSITION 6.1 (Schneider). – The terms Dj(M) = E
λ0−λj+j,λj−λ0
1 for 0 � j � d are

the only non-vanishing E1-terms in (40).

We define SLd+1(K)-invariant subobjects Bj and Zj of M ⊗K Ωj
X by requiring

fλ0−λj+1
(
M ⊗K Ωj

X

)
⊂Bj ⊂ Zj ⊂ fλ0−λj

(
M ⊗K Ωj

X

)
,

Zj/fλ0−λj+1
(
M ⊗K Ωj

X

)
= ker

(
δj
λj−j

)
, Bj/fλ0−λj+1

(
M ⊗K Ωj

X

)
= im

(
δj−1
λj−j

)
where δj

t :Fλ0−t,j/Fλ0−t+1,j →Fλ0−t,j+1/Fλ0−t+1,j+1 is the differential. Now 6.1 implies
(compare the proof of [16] Theorem 3, Section 3) that

Z0 → Z1 + dB0 → Z2 + dB1 → · · · → Zd + dBd−1(41)

is a subcomplex of M ⊗K Ωj
X such that the inclusion into M ⊗K Ωj

X is a quasiisomorphism.
Moreover it implies that for any j the map

Zj + dBj−1 → Zj/Bj = Dj(M)

z + db �→ z mod Bj

is well defined and that if we take via these maps the quotient complex

D0(M) → D1(M) → D2(M) → · · · →Dd(M)

of (41), then this quotient map is a quasiisomorphism, too. Hence an SLd+1(K)-equivariant
isomorphism between M ⊗K Ω•

X and D•(M) in the derived category D(X) of abelian sheaves
on X.

Let again Γ < SLd+1(K) be as before. Consider the spectral sequences

Est
1 = Hs+t

(
XΓ,

(
Fs,•/Fs+1,•)Γ)⇒Hs+t

(
XΓ,MΓ ⊗K Ω•

XΓ

)
,(42)

Est
1 = Ht

(
XΓ,Ds(M)Γ

)
⇒ Hs+t

(
XΓ,D•(M)Γ

)
= Hs+t

(
XΓ,MΓ ⊗K Ω•

XΓ

)
.(43)

The latter is called the ‘reduced’ Hodge spectral sequence computing our object of interest
H∗(XΓ,MΓ ⊗K Ω•

XΓ
). Let

Hd
(
XΓ,MΓ ⊗K Ω•

XΓ

)
= F 0

I ⊃ F 1
I ⊃ · · · ⊃ Fλ0+d

I ⊃ Fλ0+d+1
I = (0)

be the filtration induced by (42), let

Hd
(
XΓ,MΓ ⊗K Ω•

XΓ

)
= F 0

red ⊃ F 1
red ⊃ · · · ⊃ F d

red ⊃ F d+1
red = (0)

be the filtration induced by (43). These filtrations have the dame jumps; namely, from 6.1 it
follows that for all d � j � 1 we have

F j
red = F

λ0−λj−1+j
I = F

λ0−λj−1+j+1
I = · · ·= F

λ0−λj+j
I .(44)
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The irreducible K-rational GLd+1-representation

M∗ = HomK(M,K)⊗ detλ0

has highest weight (λ∗
0 � · · · � λ∗

d) with λ∗
d = 0, where λ∗

i = λ0 − λd−i for 0 � i � d.
A straightforward computation shows that the filtration (frM∗)r of M∗ is dual to the filtration
(frM)r of M , in the sense that the canonical perfect pairing

M ×M∗ → K

induces perfect pairings

grλ0−jM × grjM∗ → K

for any 0 � j � λ0 = λ∗
0. These are not SLd+1(K)-equivariant objects. However, applying the

SLd+1(K)-equivariance of the pairings

M ⊗K Ωi
X ×M∗ ⊗K Ωd−i

X → Ωd
X ,

(m⊗ η,m∗ ⊗ ω) �→m∗(m)η ∧ ω

to the action of the element u(z) one deduces perfect pairings

fλ0−j(M ⊗K Ωi
X)

fλ0−j+1(M ⊗K Ωi
X)

× f j(M∗ ⊗K Ωd−i
X )

f j+1(M∗ ⊗K Ωd−i
X )

→Ωd
X .

Clearly they are compatible with the differential when i varies, hence SLd+1(K)-equivariant
perfect pairings

Di(M)×Dd−i(M∗)→ Ωd
X .

Passing to Γ-invariant sheaves on XΓ, resp. XΓ, we get the perfect pairing

Di(M)Γ ×Dd−i(M∗)Γ → Ωd
XΓ

.

In particular, Serre duality on the smooth projective K-scheme XΓ gives us perfect pairings

Hs
(
XΓ,Di(M)Γ

)
×Hd−s

(
XΓ,Dd−i(M∗)Γ

)
→ K.(45)

CONJECTURE (Schneider). – For all 0 � i � d− 1 we have

Hd
(
XΓ,MΓ ⊗K Ω•

XΓ

)
= F i+1

red ⊕ F d−i
Γ .

THEOREM 6.2. – If ∇(M) and ∇(M∗) are surjective then F •
red = F •

H and

Hd
(
XΓ,MΓ ⊗K Ω•

XΓ

)
= F i+1

red ⊕ F d−i
Γ (0 � i � d− 1).(46)

Proof. – (i) We first claim that there exists a SLd+1(K)-equivariant morphism of sheaf
complexes

ν :L•(M) → D•(M)
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which in D(X) coincides with the inclusion of sheaf complexes L•(M) → M ⊗K Ω•
X , via the

previous isomorphism between M ⊗K Ω•
X and D•(M) in D(X).

For any j denote by dj :M ⊗K Ωj
X →M ⊗K Ωj+1

X the differential. By 6.1 we know that di−1

induces a surjection

M ⊗Ωi−1
X → Ker(di)

fλ0−λi(M ⊗Ωi
X)∩Ker(di)

.(47)

Now let ω ∈ Li(M). Choose an element α ∈ M ⊗ Ωi−1
X which maps under (47) to the class

represented by ω. Then di−1(α)−ω lies in fλ0−λi(M ⊗Ωi
X)∩Ker(di) and we define ν(ω) as

its class in

fλ0−λi(M ⊗Ωi
X)∩Ker(di)

fλ0−λi+1(M ⊗Ωi
X) + di−1(fλ0−λi+1(M ⊗Ωi−1

X ))
⊂ Di(M).

That ν has the stated property follows from 6.1.
(ii) Next we claim

Hd
(
XΓ,MΓ ⊗K Ω•

XΓ

)
= F i+1

red + F d−i
Γ .(48)

The map ν from (i) induces a surjective map

Hd
(
XΓ,L•(M)Γ

)
→ Hd

(
XΓ,D•(M)Γ

)
= Hd

(
XΓ,MΓ ⊗K Ω•

XΓ

)
.

This follows from 5.5 and the stated property of ν. Let

F d−i
γ = im

[
Hd

(
XΓ, t�iL

•(M)Γ
)
→Hd

(
XΓ,MΓ ⊗K Ω•

XΓ

)]
,

F i+1
L = im

[
Hd

(
XΓ,L•(M)Γ�i+1

)
→ Hd

(
XΓ,MΓ ⊗K Ω•

XΓ

)]
.

Then F i+1
L ⊂ F i+1

red , again by (i), and F i+1
γ ⊂ F d−i

Γ , by 5.2 (since t�iL
•(M) ⊂ τi(M ⊗K Ω•

X)).
Since L•(M) = t�iL

•(M)⊕L•(M)�i+1 we get (48).
(iii) (The remaining arguments are copied from the proof of [10] Theorem 5.4.) Let us denote

by F̌ •
Γ and F̌ •

red the filtrations on Hd(XΓ,M∗,Γ ⊗K Ω•
XΓ

) = Hd(XΓ,D•(M∗)Γ) analogous to
the filtrations F •

Γ and F •
red on Hd(XΓ,MΓ ⊗K Ω•

XΓ
). Here we claim

dimK

(
Hd

(
XΓ,M∗,Γ ⊗K Ω•

XΓ

))
= dimK

(
Hd

(
XΓ,MΓ ⊗K Ω•

XΓ

))
= dimK

(
F̌ d−i

red

)
+ dimK

(
F i+1

red

)
.

From the perfect pairings (45) we get perfect pairings

Hd
(
XΓ,D•(M)Γ�i+1

)
×Hd

(
XΓ,D•(M∗)Γ�d−i−1

)
→ K

Hd
(
XΓ,D•(M)Γ

)
×Hd

(
XΓ,D•(M∗)Γ

)
→ K

which commute with each other in the obvious sense. Thus (F i+1
red )⊥ = F̌ d−i

red and claim (iii)
follows.

(iv) The theorem is well known in case d = 1, thus we assume d � 2. From formula (31) we
get

dimK

(
F d−i

Γ

)
+ dimK(F i+1

Γ ) = dimK

(
Hd

(
XΓ,MΓ ⊗K Ω•

X

))
.

Γ
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This formula together with (48) implies

dimK

(
F i+1

red

)
� dimK

(
Hd

(
XΓ,MΓ ⊗K Ω•

XΓ

))
− dimK

(
F d−i

Γ

)
= dimK

(
F i+1

Γ

)
.(49)

We compute

dimK

(
F i+1

red

)
= dimK

(
Hd

(
XΓ,M∗,Γ ⊗K Ω•

XΓ

))
− dimK

(
F̌ d−i

red

)
� dimK

(
F̌ i+1

Γ

)
= dimK

(
F i+1

Γ

)
.

Here the first equality follows from claim (iii), the inequality uses formula (49) for M∗ instead
of M , and the last equality is a consequence of the formulae (31) and (32). Altogether we see
that in (49) we even have equality, which concludes the proof of (46) in view of (48).

(v) We have F i+1
L ⊂ F i+1

red and F d−i
γ ⊂ F d−i

Γ (see (ii)) as well as F i+1
L ⊂ F i+1

H . On the
other hand F d−i

γ + F i+1
L = Hd(XΓ,MΓ ⊗K Ω•

XΓ
) by the surjectivity of ∇(M). Since we have

F i+1
red ∩ F d−i

Γ = 0 = F i+1
H ∩ F d−i

Γ we find F d−i
γ = F d−i

Γ and F d−i
red = F i+1

L = F d−i
H . �

Denote by L•
D(M) the subsheaf complex of D•(M) on X⊗ k defined by

Li
D(M)(U) = Ker

[
Di(M)

(
]U [

)
→ Di+1(M)

(
]U [

)]
for open U ⊂ X⊗ k. The inclusion L•

D(M)Γ →D•(M)Γ induces a map

θ(M) :Hd
(
XΓ,L•

D(M)Γ
)
→ Hd

(
XΓ,D•(M)Γ

)
.

THEOREM 6.3. – (a) If θ(M) and θ(M∗) are surjective then we have the decomposition (46).
(b) The following two statements (i) and (ii) are equivalent:
(i) For any i, j the following map is bijective:

Hj
(
XΓ,Li

D(M)Γ
)
→ Hj

(
XΓ,Di(M)Γ

)
.

(ii) We have (46), and the reduced Hodge spectral sequence (43) degenerates in E1.

Proof. – (a) Proposition 5.2 also holds if τi(M ⊗Ω•
X) is replaced by

τiD
•(M) =

[
D0(M) → · · · →Di−1(M) → Li

D(M) → · · ·
]
.

Indeed, in view of the quasiisomorphism of sheaf complexes D•(M) ∼= M ⊗Ω•
X this version is

in fact reduced to 5.2. As in 5.4 we therefore obtain

F d−i
Γ = im

[
Hd

(
XΓ, τiD

•(M)Γ
)
→Hd

(
XΓ,D•(M)Γ

)]
(50)

and we get claim (a) just as in 5.5 and/or 6.2. Claim (b) is then also clear, again using (50). �
Remark. – In [16] it is conjectured that (43) always degenerates in E1. Thus 6.3 (b)(i) should

be a sufficient and necessary condition to prove the decomposition (46)!

COROLLARY 6.4. – Suppose that M is a K-rational G-representation with small weights.
(a) The splitting in Corollary 5.1 is given by the filtration F •

Γ :

Hd
(
XΓ,MΓ ⊗K Ω•

XΓ

)
= F i+1

H ⊕ F d−i
Γ (0 � i � d− 1).(51)

(b) We have F •
H = F •

red in Hd(XΓ,MΓ ⊗K Ω•
X ).
Γ
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Proof. – This is the combination of Corollary 5.5 and Theorem 6.2 with Corollary 5.1. We
may pass to the base field extension K → K̇ . Then we have inclusions of sheaf complexes

Log•
(
M0

OK̇

)Γ ⊗OK̇
K̇ → L•(M)Γ ⊗K K̇ →M⊗K Ω•

XΓ
⊗K K̇

and similarly for M∗ instead of M . Thus Corollary 5.1 implies that ∇(M) and ∇(M∗) are
surjective and (a) follows from 5.5 and (b) follows from 6.2. �

Remarks. – (1) The decomposition (51) was proven for the trivial representation M = K
for the first time by Iovita and Spiess [10]. Our present proof appears to provide a geometric
underpinning of the one given in [10].

(2) The degeneration of the Hodge spectral sequence (29) is of course well known for M = K
and char(K) = 0. On the other hand, for more general K-rational representations M than those
considered in 5.1 it cannot be expected to degenerate (see [16]).

(3) Let I be a K[Γ]-module (with dimK I <∞) which contains a Γ-stable free OK -lattice I0.
Let σ ∈Gal(K/Qp), let M be a K-rational G-representation and let Mσ denote M but with the
K-vector space structure twisted by σ—then G acts on Mσ again by K-linear automorphisms.
Everything we did in this paper with the local system defined by M carries over to the local
system defined by I ⊗K Mσ : simply replace every occurrence of M0

OK̇
by I0 ⊗OK

M0
OK̇ ,σ .

(4) Let K̆ denote the (completed) maximal unramified extension of K . The formal scheme
X × Spf(OK̆) carries a certain universal G-equivariant formal group G, see [15]. If K = Qp

the de Rham complex E ⊗ Ω•
X⊗̇K̆

of its relative Dieudonné module E (as a filtered convergent

F -isocrystal on X×Spf(OK̆)) can be identified with a sum of d+1 copies of Kd+1⊗K Ω•
X⊗̂KK̆

,

filtered as in (39) and with isotypical Frobenius action of slope d/(d + 1). From our results in
[6] it follows that the filtration F •

Γ on Hd(XΓ ⊗ K̆,EΓ ⊗ Ω•
XΓ⊗K̆

) is the (renumbered) slope

filtration. Hence 6.4 states that the slope filtration on Hd(XΓ ⊗ K̆,EΓ ⊗Ω•
XΓ⊗K̆

) is opposite to
the Hodge filtration. By the comparison isomorphisms of p-adic Hodge theory this is a statement
on the cohomology of the relative Tate module of the Γ-quotient of G.
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