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SMOOTHNESS OF ITÔ MAPS AND
DIFFUSION PROCESSES ON PATH SPACES (I)

BY XIANG-DONG LI AND TERRY J. LYONS

ABSTRACT. – Let p ∈ [1,2) and α, ε > 0 be such that α ∈ (p − 1,1 − ε). Let V , W be two Euclidean
spaces. Let Ωp(V ) be the space of continuous paths taking values in V and with finite p-variation. Let
k ∈ N and f :W →Hom(V,W ) be a Lip(k +α+ ε) map in the sense of E.M. Stein [Stein E.M., Singular
integrals and differentiability properties of functions, Princeton Mathematical Series, vol. 30, Princeton
University Press, Princeton, NJ, 1970]. In this paper we prove that the Itô map, defined by I(x) = y, is
a local Ck, ε

1+ε map (in the sense of Fréchet) between Ωp(V ) and Ωp(W ), where y is the solution to the
differential equation

dyt = f(yt)dxt, y0 = a.

This result strengthens the continuity results and Lipschitz continuity results in [Lyons T., Differential
equations driven by rough signals. I. An extension of an inequality of L.C. Young, Math. Res. Lett. 1 (4)
(1994) 451–464; Lyons T., Qian Z., System Control and Rough Paths, Oxford Mathematical Monographs,
Clarendon Press, Oxford, 2002] particularly to the non-integer case. It allows us to construct the fractional
like Brownian motion and infinite dimensional Brownian motions on the space of paths with finite
p-variation. As a corollary in the particular case where p = 1, we obtain that the development from the
space of finite 1-variation paths on R

d to the space of finite 1-variation paths on a d-dimensional compact
Riemannian manifold is a smooth bijection.

© 2006 Elsevier Masson SAS

RÉSUMÉ. – Soient p ∈ [1,2), et α tel que α ∈ (p − 1,1 − ε). Soient V et W deux espaces euclidiens.
On désigne par Ωp(V ) l’espace des chemins continus à valeurs dans V et de p-variation finie. Soit
f :W → Hom(V,W ) une application de classe Lip(k + α + ε) au sens de E.M. Stein, avec k ∈ N et
k � 1. Dans cet article, nous montrons que l’application de Itô I :Ωp(V ) → Ωp(W ), définie par I(x) = y,
où y est la solution de l’équation différentielle suivante :

dyt = f(yt)dxt, y0 = a,

est localement de classe Ck, ε
1+ε au sens de Fréchet. Cela nous permet de construire des processus de type

mouvement brownien fractionnaire ainsi que des mouvements browniens de dimension infinie sur l’espace
des chemins de p-variation finie. Comme corollaire, nous obtenons, dans le cas particulier où p = 1, que
l’application de développement de l’espace des chemins de 1-variation finie sur R

d dans l’espace des
chemins de 1-variation finie sur une variété riemannienne compacte d-dimensionnelle est une bijection
régulière.
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1. Introduction

Differential equations model the evolution of systems; they can be classified in a number of
ways, and fall loosely into two basic classes:

(1) The deterministic or autonomous ones: these are specified in terms of a locally Lipschitz
vector field f which defines a differential equation

dyt

dt
= f(yt), y0 = a.

(2) The controlled or non-autonomous ones: the essential feature that distinguishes these from
the former is that one vector field defined the autonomous evolution, while the non-
autonomous evolution is tangential to one of a collection of vector fields according to
the choice of the controller, chance etc. Choosing a local basis, one might express these
non-autonomous equations in the form

dyt

dt
=

∑
i

f i(yt)
dxi

t

dt
, y0 = a.(1.1)

The former setting embraces the classical theory of dynamical systems where today most
interest revolves around long term behaviour, attractors, etc. In the latter setting there is a much
richer local theory, with classical concrete examples giving considerable insight. The Cartan
development of a smooth path from the tangent space or Lie algebra into the frame bundle or Lie
group using the canonical vector fields provides an excellent example. See [2–4].

Note that Eq. (1.1) has an invariance: time re-parameterisation of x and y produces a new
solution pair. Moreover one can simplify the expression by assuming vector notation and it is
now commonplace to write

dyt = f(yt)dxt, y0 = a(1.2)

and refer to the contact transformation taking the control x to the response of the system y as the
Itô functional If [11].

The mathematics of this second class of objects is rich and spans from Hopf algebras to
technical aspects of analysis. One area of current research aims to understand the ‘microlocal’
structure and extend classical analysis to allow such equations to make sense when x is not
smooth. It is now understood that the Itô functional is defined for any rough 1 path providing the
vector fields f are correspondingly smooth.

Interesting evolving systems are not necessarily finite dimensional. For example, there are
many examples of real world dynamics where the state of the system is represented by a path or
“a thread” that evolves or changes shape. Sometimes the evolution is parabolic in nature and can
be dealt with via the techniques of PDE, where the path is regarded as a function and the “vector
field” is the Laplace operator. But there are examples of a more hyperbolic nature where it seems
that it is better to use modern mathematical methods to understand the vector fields and then use
classical techniques to get solutions.

This paper is in the second direction. The aim of this paper is to develop a machinery allowing
one to smoothly regard Itô functionals as the vector fields on path spaces. Our goal is to get
sufficient control on the vector fields to allow one to apply the rough path theory to differential
equations on path spaces.

1 A technical term.
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SMOOTHNESS OF ITÔ MAPS AND DIFFUSION PROCESSES ON PATH SPACES (I) 651
The Itô functional x → y produces one path from another; suppose that y takes its values in
a space M and the control x takes its values in a Banach space E and that F :M →E is a smooth
map, then F (y) is a path in E. The path F (y) can be regarded formally as a vector field on the
space of paths in E and one has a differential equation on path space

dx

dt
= F

(
If (x)

)
.

When correctly interpreted, Driver flows [7], as such equations are often called, have proved
very natural and useful in probability theory, the classical Jacobi fields [21] and the geodesic
equations on path and loop spaces [13–15] provide other examples with a similar flavour.

The analysis of such equations is not so straightforward. The basic Itô functional makes no
sense for general continuous paths x. Even for bounded variation paths it is not so easy to
establish the existence of the flow (which corresponds to a nonlinear hyperbolic PDE). Spaces of
rough paths seem to provide the correct domain for these vector fields as If (x) exists; it is proved
in [20] that an evolution or flow does exist even for rough initial conditions. The solution may
explode, but exists at least for a finite period of time; the existence of a flow makes it clear that the
functional F (If (x)) really is a vector field, and is not just a formal object; we can differentiate
functions on rough path space in these directions. However, not much else is known, and for
example the Lie Brackets of these fields, as well as the smoothness of these vector fields have
remained obscure. This is a pity, as smoothness results might allow the direct construction of
higher order differential operators, diffusions etc. on these spaces of paths.

The finite dimensional approach to solving a differential equation would have been to check
that If was Lipschitz, and then use the Picard theorem to get a solution. There is an understanding
that this does not work in infinite dimensions because the interesting examples do not have this
sort of smoothness; however we show carefully here that this is not correct. We prove that, as the
vector fields f get smoother, and for 1 � p < 2, the Itô map is appropriately differentiable in the
Lipschitz sense. In this way we get very good control over the errors in system response as one
varies a control, and in addition we are able to solve differential equations. Taking matters further
we can even use the rough path theory again to solve stochastic differential equations on these
spaces directly and so construct interesting and non-trivial flows and diffusions on path space.

These methods can be developed to discuss the Itô functional on the rough paths of any degree
p � 1 and we expect to publish a paper on this second case. However, we believe that even in the
bounded variation case p = 1, our results are interesting as the differentiability of the control map
as a function on paths of bounded variation already seems quite useful in engineering contexts.
There is a phase transition of understanding between what happens for 1 � p < 2 and for rougher
paths with many new concepts. The case 1 � p < 2 already exposes some of the essential ideas,
and so it makes sense to separate out these ideas and to present this case out in detail.

2. Part I — The linear case

2.1. Smoothness of Itô maps between path spaces

Let 1 � p < 2. Let V,W be two real separable Banach spaces. We denote by Ωp(V ) the
collection of continuous paths from [0,1] into V with finite p-variation:

Varp(x) := sup
D

∑
t ∈D

‖xtl
− xtl−1‖p <∞,(2.1)
l
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652 X.-D. LI AND T.J. LYONS
where D = {0 < t1 < · · ·< tn = 1}, t0 = 0, and D ranges over all finite partitions of [0,1]. Then
Wiener showed that Ωp(V ) is a Banach space with the norm

‖x‖p =
[
Varp(x)

]1/p + sup
u∈[0,1]

‖xu‖.

It is straightforward that (1.2) has a solution in the classical sense whenever x has bounded
variation. The paths of bounded variation are dense in Ωp(V ) for every p′ > p (see footnote 2).
By [17,18,22], this mapping x → y extends uniquely to a Lipschitz continuous functional
I :Ωp(V ) → Ωp(W ) provided that f ∈Lip(γ) with γ > p. If y = I(x), then y solves the
obvious integral equation and can be recovered as the limit in p-variation of the associated Picard
iterations. Indeed, the uniform convergence of the Picard iteration process and the continuity of
the iteration step ensure that I :Ωp(V ) → Ωp(W ) is a continuous and in fact a Lipschitz function
in x. We refer to this map as the Itô map or Itô functional I :Ωp(V ) → Ωp(W ) and denote by y
the solution to the differential equation when driven by the rough path x ∈ Ωp(V ). In summary,
we have the following

THEOREM 2.1 [17,22]. – Let 1 � p < 2 and f :W →Hom(V,W ) be Lip(γ) with γ > p.
There exists a R > 0 depending only on ‖f‖Lip(γ) such that the differential equation

dyt = f(yt)dxt, x0 = a

has a unique solution y ∈ Ωp(W ) for any x that has p-variation less than R. Any path
x∈ Ωp([0,1], V ) can be partitioned into finitely many pieces each of whose p-variation is less
than R and so a solution is available for all x ∈Ωp([0,1], V ).

The case of a general x can then be treated by a careful chaining together of these pieces of x.
Moreover, the Itô map I :Ωp([0,1], V ) →Ωp([0,1],W ) is continuous and 1-Lipschitz continuous
with respect to the p-variation norms on bounded sets of paths.

Regarding I :Ωp(V ) → Ωp(W ) as a map between two Banach spaces, we can then ask
whether there is a regularity condition on f that forces the Itô map I to be smooth in the sense
of Fréchet.

Recall that for two real separable Banach spaces E1 and E2, a map F :E1 → E2 is called
Fréchet differentiable if for all x ∈ E1 there exists a bounded linear map denoted by dF (x) ∈
L(E1,E2) such that for some ε > 0 and all v ∈BE1(0, ε) = {v ∈E1: ‖v‖E1 � ε} we have∥∥F (x + v)− F (x)− dF (x)v

∥∥
E2

= o
(
‖v‖E1

)
.

By induction, we can define the twice differentiability and k-times differentiability in the sense
of Fréchet of a map f :E1 → E2. For this, see e.g. [6, Section 12, Chapter VIII]. As usual, we
call F :E1 →E2 a smooth map in the sense of Fréchet if F is k-times differentiable in the sense
of Fréchet for all k ∈ N.

Before stating the main results of this paper, let us recall that for all 0 < α < 1 the space
Lip(α) of Lipschitz continuous functions on R

n can be identified as C0,α(Rn,R), and for any
non-integer number α ∈ R

+, if we let [α] be the integer part of α and {α} = α − [α], then the
space Lip(α) can be identified as C [α],{α}(Rn,R). For this, we refer the reader to E.M. Stein
[25, Section 4, Chapter V, pp. 141–150]. Here we follow Stein in calling a “Hölder continuous

2 Precisely, the dyadic linear interpolations of a path x have a p-variation at most 4p−1 times that of x and converge
to x in p′-variation for every p′ > p.
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SMOOTHNESS OF ITÔ MAPS AND DIFFUSION PROCESSES ON PATH SPACES (I) 653
function” a Lipschitz function. We also mention that an essential part of the definition in Stein is
that f and all its derivatives of order less than α are bounded—in particular linear functions are
not globally Lipschitz! This will also explain to some readers why the estimates in Theorem 2.1
do depend on a.

Now we are ready to state the main results of this paper as follows.

THEOREM 2.2. – Suppose that V and W are finite dimensional Banach spaces. Let p ∈ [1,2),
α, ε > 0, α ∈ (p−1,1−ε). Suppose that f :W →Hom(V,W ) is in Lip(k+α+ε) where k ∈ N

and k � 1. Then the Itô map I :Ωp(V )→ Ωp(W ) is locally k-times Fréchet-differentiable. More
precisely, if we work in the Euclidean norms on V,W there exists a constant K depending only
on p, α, k, ε and ‖f‖k+α+ε such that for all x ∈ Ωp with ‖x‖p � K , there exists a bounded
k-linear operator, denoted by I(k)(x) ∈ Ln(Ωp(V ),Ωp(W )), such that for v1, . . . , vk ∈ Ωp(V )
with ‖v1‖p, . . . ,‖vk‖p � K , and for i = 1, . . . , k, we have the Gâteaux derivatives

I(i)(x)(v1, . . . , vi) :=

{
∂i

∂ε1 · · ·∂εi
I

(
x +

i∑
j=1

εjvj

)}∣∣∣∣
ε1=···=εi=0

exist in Ωp(W ) with respect to the p-variation norm, and I is Fréchet differentiable∥∥∥∥∥I(x + v)− I(x)−
k∑

i=1

I(i)(x)v⊗i

i!

∥∥∥∥∥
p

� C‖v‖k+ ε
1+ε

p .

Here C is a constant depending only on p, α, ε, ‖f‖k+α+ε, ‖x‖p � K and ‖v‖p � K .

The proof of Theorem 2.2 is based on the Fréchet differentiability of the Picard iteration
In :Ωp(V ) → Ωp(W ), yn = In(x), of the differential equation (1.2) given by

yn+1(t) = a +

t∫
0

f
(
yn(s)

)
dx(s).(2.2)

We shall prove that In :Ωp(V )→ Ωp(W ) is locally k-times differentiable in the sense of Fréchet
and satisfies the estimate∥∥∥∥∥In(x + v)− In(x)−

k∑
i=1

I(i)(x)v⊗i

i!

∥∥∥∥∥
p

� C‖v‖k+ ε
1+ε

p

with a uniform constant C that does not depend on n. To this end, we shall first prove that the
Young integral

(x, y) →
·∫

0

f
(
y(s)

)
dx(s)

is k-times Fréchet differentiable from Ωp(V ) × Ωp(W ) into Ωp(W ) under the assumption
f ∈ Lip(k + α + ε). By the chain rule and induction, we need only to prove that the map
Φf :Ωp(V ) → Ω p

α
(W ) defined by

Φf (x) = f(x)(2.3)
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654 X.-D. LI AND T.J. LYONS
is smooth in the sense of Fréchet. The complete proof of Theorem 2.2 will be given in
Sections 2.3 and 2.4. Moreover, we can further prove that if f ∈ Ck+1,α with p − 1 < α < 1,
then ∥∥∥∥∥I(x + v)− I(x)−

k∑
i=1

I(i)(x)v⊗i

i!

∥∥∥∥∥
p

� C‖v‖k+1
p .

Here C is a constant depending only on p, α, ε, ‖f‖k+1,α, ‖x‖p � K and ‖v‖p � K .
We emphasise that our techniques establish a rigorous machinery for considering many

concrete problems on path space. The space Ω1(M) comprises bounded variation paths on a
compact Riemannian manifold. Many interesting computational problems arising in variational
calculus on Riemannian manifolds aim to approximate (or identify) the global minimum or
global maximum of a smooth functional F :Ω1(M) → R. The smoothness of the Itô map
I :Ωp(Rd) → Ωp(M) allows us to study the optimisation problems on path spaces by transferring
the optimisation problem of a smooth F :Ωp(M) → R to a corresponding problem for the map
F̃ = F ◦ I :x→ F̃ (x) = F (I(x)).

In the last section we point out that we have developed an infinite dimensional framework
where the classical finite dimensional numerical tools (from steepest descent to simulated
annealing) can be used. Of course, each specific example has essential features that would have
to be addressed before real progress could be claimed (e.g. is the minimum attained). We cannot
begin to answer these within this paper and would be delighted if we stimulate others to take up
the challenges.

2.2. Smoothness of the Young integral

To prove the Fréchet smoothness of the Young integral (x, y) →
∫ ·
0
f(y)dx under the

assumption f ∈ Lip(1 + α + ε), where α ∈ (0,1), ε > 0, we first prove that the map
Φf :Ωp(V ) → Ω p

α
(W ) defined by

Φf (x) = f(x)(2.4)

is smooth in the sense of Fréchet. It is interesting to note that our proof is essentially
finite dimensional and exploits basic harmonic analysis, for example, Lemmas 2.9, 2.11 and
Lemma 2.12 take the advantage of the Poisson integral formula and the characterisation of
Lipschitz functions in terms of the partial derivatives of their harmonic extension.

Below we collect some elementary facts and results on the p-variation norm and the Young
integral. Some proofs are easy and will be omitted. The reader can consult [9,17,18,22] for the
definition of the Young integral. Theorem 2.17 is our main result in this section.

PROPOSITION 2.3. – Let x ∈ Ωp(V ), y ∈Ωq(W ), p � q. Then xy ∈Ωp(V ⊗W ). Moreover,
there exists a constant C = Cp > 0 such that

‖x⊗ y‖[s,t],p � C‖x‖∞‖y‖q + C‖y‖∞‖x‖p.

Here V ⊗W is the tensor product of V and W , ‖ · ‖V ⊗W is any compatible norm on V ⊗W .

COROLLARY 2.4. – For any 1 < p < 2, there exists a constant Cp such that

‖xy‖p � Cp‖x‖p‖y‖p.

For any s, t ∈ [0,∞), s < t, we denote by ‖x‖[s,t],p the p-variation norm of x : [s, t] → V . We
now recall the so-called Young–Love inequality. For a proof, see [9,17].
4e SÉRIE – TOME 39 – 2006 – N◦ 4
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PROPOSITION 2.5. – Let x ∈ Ωp(V ), y ∈ Ωq(W ). If 1
p + 1

q > 1, then the Young integral∫ ·
0
ys ⊗ dxs exists and is a finite p-variation path. Moreover,

∥∥∥∥∥
·∫

0

y ⊗ dx

∥∥∥∥∥
[s,t],p

�
(
ξ(1/p + 1/q)‖y‖[s,t],q + ‖y‖∞

)
‖x‖[s,t],p.

PROPOSITION 2.6. – Let x ∈ Ωp(V ), y ∈ Ωq(W ). Then F : (x, y) →
∫ ·
0
y ⊗ dx is a C∞-

smooth map from Ωp(V )×Ωq(W ) → Ωp(V ⊗W ). Moreover, the first order derivative of F at
(x, y) is given by

(v,w) →
·∫

0

wdx +

·∫
0

y dv

PROPOSITION 2.7. – Let x ∈ Ωp(V ), α ∈ (0,1), and f ∈ C0,α(V,W ). Then y = f(x) ∈
Ωq(W ), for q � p

α . Moreover ∥∥f(x)
∥∥

[s,t], p
α

� ‖f‖C0,α‖x‖α
[s,t],p.(2.5)

Proof. – Let ‖f‖C0,α be the Hölder norm of f . Then∥∥f(xsi)− f(xsi−1)
∥∥

W
� ‖f‖C0,α‖xsi − xsi−1‖α

V .

By a standard argument, it is easy to see that f(x) is a finite q-variation path for all q � p
α and so

(2.5) holds. �
Combining Proposition 2.7 and the Young–Love inequality, we have the following

COROLLARY 2.8. – Let x ∈ Ωp(V1), y ∈ Ωq(V2), α ∈ (0,1), and for all
f ∈ C0,α(V2,L(V1,W )). If 1

p + α
q > 1, then z =

∫ ·
0
f(y)dx ∈Ωp(W ). Moreover,

∥∥∥∥∥
·∫

0

f(y)dx

∥∥∥∥∥
[s,t],p

�
[
ξ(1/p + α/q)‖f‖C0,α‖y‖α

q + ‖f‖∞
]
‖x‖[s,t],p.

We need two technical lemmas. For a function f ∈ Lip(α), α > 0 and defined on R
m we

introduce the Poisson integral of f by

ft(x) =
Γ(m+1

2 )

π
m+1

2

∫
f(x− y)t

(t2 + |y|2)m+1
2

dy, t > 0.(2.6)

LEMMA 2.9. – For any 0 < β < α, we have

‖ft‖α � Cα,β |f‖βtβ−α, ∀t > 0.

Proof. – By [25, Section 4.3, p. 145], we see that f ∈Lip(β) with the norm ‖f‖β if and only
if for k = [β] + 1, ∥∥∥∥ ∂k

∂yk
fy

∥∥∥∥ � ‖f‖βyβ−k, ∀y > 0.

∞
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656 X.-D. LI AND T.J. LYONS
Hence for all t > 0 and y > 0, we have∥∥∥∥ ∂k

∂yk
fy+t

∥∥∥∥
∞

� ‖f‖β(y + t)−k+β ,

and therefore ∥∥∥∥ ∂k

∂yk
fy+t

∥∥∥∥
∞

� ‖f‖β sup
y>0

[
yk−α

(y + t)k−β

]
y−k+α.

Now it is easy to see that supy>0[
yk−α

(y+t)k−β ] is attained at y = k−α
α−β t. Thus

sup
y>0

[
yk−α

(y + t)k−β

]
= Cα,β,ktβ−α.

Hence ∥∥∥∥ ∂k

∂yk
fy+t

∥∥∥∥
∞

� Cα,β,tt
β−α‖f‖βy−k+α, ∀y > 0,

which is equivalent to

‖ft‖α < Cα,β‖f‖βtβ−α. �
PROPOSITION 2.10. – Let β > 0, ε > 0, β + ε < 1. Then there exists a constant C = Cβ,ε

such that

yβ+ε−1 − (y + h)β+ε−1 � Cyβ−1hε, ∀y > 0, h > 0.

Proof. – Let h = zy. Then the desired inequality is equivalent to

1− (1 + z)β+ε−1 � Czε, ∀z > 0.

Let

FC(z) = Czε + (1 + z)β+ε−1, z � 0.

Then

FC(0) = 0.

We need only to prove that for any β ∈ (0,1), ε ∈ (0,1 − β) there exists a constant C = Cβ,ε

such that

F ′
C(z) > 0, ∀z > 0.

Note that

F ′
C(z) = εCzε−1 + (β + ε− 1)(1 + z)β+ε−2.

Moreover, the inequality F ′
C(z) > 0 holding for all z > 0 is equivalent to

γ := inf
z>0

log
zε−1

(1 + z)β+ε−2
> −∞.

Indeed, if γ >−∞, then for all

C � 1− β − ε
γ

,

εe
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we have F ′
C(z) > 0 for all z > 0.

Below we prove γ >−∞. Set

Gβ,ε(z) = log
zε−1

(1 + z)β+ε−2
, z > 0.

Then

Gβ,ε = (ε− 1) log z − (β + ε− 2) log(z + 1),

and

Gβ,ε(z) = Gε,β

(
z−1

)
, z > 0.

Moreover,

lim
z→0+

Gβ,ε(z) = lim
z→0+

Gε,β(z) = +∞.

Combining this with the continuity of Gβ,ε(z) with respect to z ∈ (0,+∞), we get

γ := inf
z>0

Gβ,ε(z) >−∞. �
LEMMA 2.11. – For any h > 0, we have

‖fh − f‖α � C‖f‖α+εh
ε.

Proof. – Using the same argument as used in the proof of Lemma 2.9, for sufficiently small
ε > 0 we have∥∥∥∥ ∂k

∂yk
(fy+h − fy)

∥∥∥∥ =
∥∥∥∥ ∂k

∂yk

1∫
0

∂

∂y
fy+θhhdθ

∥∥∥∥
�

1∫
0

∥∥∥∥ ∂k+1

∂yk+1
fy+θh

∥∥∥∥hdθ

� ‖f‖α+ε

1∫
0

(y + θh)−(k+1)+α+εhdθ

= (k − α− ε)−1‖f‖α+ε

[
y−k+α+ε − (y + h)−k+α+ε

]
.

By Proposition 2.10, for all y > 0 and h > 0, we have

y−k+α+ε − (y + h)−k+α+ε � Ck,α,βy−k+αhε.

Hence ∥∥∥∥ ∂k

∂yk
(fy+h − fy)

∥∥∥∥ � Ck,α,ε‖f‖α+εh
εy−k+α.

which is equivalent to

‖fh − f‖α � C‖f‖α+εh
ε. �
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LEMMA 2.12. – Let f ∈ Lip(1 + α), 0 < α < 1. Then for any K > 0 and for any
x, y ∈Ωp(V ) with ‖x‖p � K and ‖y‖p � K , we have∥∥f(x)− f(y)

∥∥
p
α

� Cα,K‖f‖1+α‖x− y‖p.

Proof. – By the mean value theorem we have

f(x)− f(y) =

1∫
0

f ′(y + θ(x− y)
)
(x− y)dθ.

Hence ∥∥f(x)− f(y)
∥∥

p
α

� max
θ∈[0,1]

∥∥f ′(y + θ(x− y)
)
(x− y)

∥∥
p
α

� max
θ∈[0,1]

∥∥f ′(y + θ(x− y)
)∥∥

p
α

‖x− y‖ p
α

� max
θ∈[0,1]

[
‖f ′‖α

∥∥y + θ(x− y)
∥∥α

p

]
‖x− y‖p

� ‖f‖1+α

[
‖y‖α

p + ‖x− y‖α
p

]
‖x− y‖p.

Thus ∥∥f(x)− f(y)
∥∥

p
α

� C‖f‖1+α‖x− y‖p,

with

Cα,K = 3Kα. �
THEOREM 2.13. – Let f ∈ Lip(α + ε) and α ∈ (0,1 − ε). Then x → f(x) is ε

1+ε -Lipschitz
continuous from Ωp into Ω p

α
. More precisely,

∥∥f(x)− f(y)
∥∥

p
α

� Cp,ε,α‖f‖α+ε‖x− y‖
ε

1+ε
p .(2.7)

Proof. – Let fh be the Poisson integral of f on R
m × R

+, h > 0. By Lemmas 2.9, 2.11 and
Lemma 2.12, we have∥∥f(x)− f(y)

∥∥
p
α

� ‖f − fh‖α

(
‖x‖α

p + ‖y‖α
p

)
+ ‖fh‖1+α‖x− y‖p

� C1h
ε‖f‖α+ε + C2

‖f‖α

h
‖x− y‖p.

Hence ∥∥f(x)− f(y)
∥∥

p
α

� inf
h>0

[
C1h

ε‖f‖α+ε + C2
‖f‖α

h
‖x− y‖p

]
� ‖f‖α+ε inf

h>0

[
C1h

ε +
C2‖x− y‖p

h

]
.

It is easy to show that the infimum of the right-hand side is attained at

h = C3‖x− y‖
1

1+ε
p .
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Substituting this into the previous inequality, we get∥∥f(x)− f(y)
∥∥

p
α

� Cp,ε,α‖f‖α+ε‖x− y‖
ε

1+ε
p . �

The following lemma holds even for infinite dimensional Banach spaces V and is used in
the proof of our main theorem. This representation of differences as integrals seems critical and
appears in slight different forms in

LEMMA 2.14. – Let f ∈ Lip(2 + α) with 0 < α < 1. Then for any K > 0 and for any
x, y ∈Ωp(V ) with ‖x‖p � K and ‖y‖p � K , there exists a constant CK such that∥∥f(x)− f(y)− f ′(x)(x− y)

∥∥
p
α

� CK‖f‖2+α‖x− y‖2
p.

Proof. – Let R(x, y) = f(x)− f(y)− f ′(x)(x− y). By the mean value theorem,

Rf (x, y) =

1∫
0

(1− θ)f ′′(y + θ(x− y)
)
(x− y,x− y)dθ.

Hence ∥∥Rf (x, y)
∥∥

p
α

� max
θ∈[0,1]

∥∥f ′′(y + θ(x− y)
)∥∥

p
α

‖x− y‖2
p
α

� ‖f ′′‖α max
θ∈[0,1]

∥∥y + θ(x− y)
∥∥α

p
‖x− y‖2

p

� ‖f‖2+α

[
‖y‖α

p + ‖x− y‖α
p

]
‖x− y‖2

p.

Thus for CK = 3Kα, we have∥∥Rf (x, y)
∥∥

p
α

� CK‖f‖2+α‖x− y‖2
p. �

The following result uses our estimates that depended on the Poisson extension and plays a
crucial role in the proof of our main theorem.

THEOREM 2.15. – Let f ∈ Lip(1+α+ε), α ∈ (p−1,1−ε). Then Φf :x → f(x) is smooth in
the sense of Fréchet from Ωp(Rm) into Ω p

α
(Rl). Moreover, there exists a constant C = C(p,α, ε)

such that ∥∥Φf (y)−Φf (x)−Φ′
f (x)(y − x)

∥∥∣∣
p
α

� C‖f‖1+α+ε‖x− y‖
1+2ε
1+ε

p .

Proof. – By definition, we need to prove

∥∥f(y)− f(x)− f ′(x)(y − x)
∥∥

p
α

� C‖f‖1+α+ε‖x− y‖
1+2ε
1+ε

p .

Let fh be the harmonic extension of f on R
m ×R

+. Using Lemmas 2.12 and 2.14, we have∥∥Rf (x, y)
∥∥

p
α

�
∥∥Rf−fh

(x, y)
∥∥

p
α

+
∥∥Rfh

(x, y)
∥∥

�
∥∥f(x)− fh(x)−

(
f(y)− fh(y)

)∥∥
p
α

+
∥∥(f − fh)′(x)(x− y)

∥∥
p +

∥∥Rfh
(x, y)

∥∥
p

α α
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� C1‖f − fh‖1+α‖x− y‖p +
∥∥(f − fh)′(x)

∥∥
p
α

‖x− y‖ p
α

+ C2‖fh‖2+α‖x− y‖2
p

� C2‖fh‖2+α‖x− y‖2
p + C1‖f − fh‖1+α‖x− y‖p

+
∥∥(f − fh)′

∥∥
α
‖x‖α

p ‖x− y‖p

� C2‖fh‖2+α‖x− y‖2
p

+
[
C1‖f − fh‖1+α +

∥∥(f − fh)′
∥∥

α
‖x‖α

p

]
‖x− y‖p

� C2‖fh‖2+α‖x− y‖2
p + C3‖f − fh‖1+α‖x− y‖p.

Now by Lemmas 2.9 and 2.11, we have

‖fh‖2+α � C4
‖f‖1+α

h
,

‖f − fh‖1+α � C5‖f‖1+α+εh
ε.

Hence for all h > 0,∥∥Rf (x, y)
∥∥

p
α

� C6‖x− y‖2
p‖f‖1+αh−1 + C7‖x− y‖p‖f‖1+α+εh

ε

� ‖f‖1+α+ε‖x− y‖p

[
C6‖x− y‖ph

−1 + C7h
ε
]
.

Taking the infimum over h we get

∥∥Rf (x, y)
∥∥

p
α

� C8‖f‖1+α+ε‖x− y‖
1+2ε
1+ε

p . �
By repeating the argument as set out above, we can prove a general result as follows

THEOREM 2.16. – Let f ∈ Lip(k + α + ε), α ∈ (p − 1,1 − ε). Then there exists a constant
C = C(k,α, ε) such that∥∥∥∥∥Φf (y)− f(x)−

k∑
i=1

Φf(i)(x)(x− y)⊗i

i!

∥∥∥∥∥
p
α

� C‖f‖k+α+ε‖x− y‖k+ ε
1+ε

p ,

where Φf(i)(x) := f (i)(x), i = 0, . . . , k, x ∈Ωp(Rn).

Now we are ready to prove the main result of this section. Let V1 and V2 be two finite
dimensional Banach spaces.

THEOREM 2.17. – Let x ∈ Ωp(V1), y ∈ Ωq(V2), f ∈ Lip(1 + α + ε,V2,L(V1,W )). If
1
p + α

q > 1, then Φ: (x, y) →
∫ ·
0
f(y)dx is differentiable in the sense of Fréchet from

Ωp(V1)×Ωq(V2) into Ωp(W ). Moreover, the Gâteaux derivative of Φ at (x, y) is given by

Φ′(x, y)(v,w) =

·∫
0

f ′(ys)ws dxs +

·∫
0

f(ys)dvs.

Moreover, ∥∥∥∥∥
·∫
f(y)dv

∥∥∥∥∥
[s,t],p

�
[
ξ(1/p + α/q)‖f‖C0,α‖y‖α

[s,t],q + ‖f‖∞
]
‖v‖[s,t],p,
0
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∥∥∥∥∥
·∫

0

f ′(y)wdx

∥∥∥∥∥
[s,t],p

�
[
ξ(1/p + α/q)‖f ′‖C0,α‖y‖α

q + ‖f ′‖∞
]

×
[
ξ(1/p + 1/q)‖w‖[s,t],q + ‖w‖∞

]
‖x‖[s,t],p.

Proof. – Let F be as in Proposition 2.6, i.e., F (x, y) =
∫ ·
0
y dx. Then

Φ(x, y) = F
(
x, f(y)

)
.

Combining Theorem 2.15 with Proposition 2.6 and using the chain rule, we can conclude that
the Young integral Φ is Fréchet differentiable from Ωp(V1) × Ωq(V2) into Ωp(W ). Moreover,
for (x, y), (v,w) ∈Ωp(V1)×Ωp(V2), we have

Φ′(x, y)(v,w) = F ′(x, f(y)
)
◦

(
Id , f ′(y)

)
(v,w).

Hence

Φ′(x, y)(v,w) = F ′(x, f(y)
)(

v, f ′(y)w
)

= F
(
x, f ′(y)w

)
+ F

(
v, f(y)

)
=

·∫
0

f ′(ys)ws dxs +

·∫
0

f(ys)dvs.

The estimate on ‖
∫ ·
0
f(y)dv‖[s,t], p follows from Corollary 2.8. By the Young–Love inequality,

we have∥∥∥∥∥
·∫

0

f ′(y)wdx

∥∥∥∥∥
[s,t],p

�
[
ξ(1/p + α/q)‖f ′‖C0,α‖y‖q + ‖f ′‖∞

]∥∥∥∥∥
·∫

0

wdx

∥∥∥∥∥
[s,t],p

�
[
ξ(1/p + α/q)‖f ′‖C0,α‖y‖q + ‖f ′‖∞

]
×

[
ξ(1/p + 1/q)‖w‖q + ‖w‖∞

]
‖x‖[s,t],p. �

2.3. Uniform convergence of the derivatives of the Picard iterates

Recall that our goal is to prove the Fréchet differentiability of the Itô map I :Ωp(V ) →
Ωp(W ) with a quantitative control. The Itô map is the limit of Picard iterates in the same way

that the exponential function ex is the limit of a sequence of polynomials
∑n

k=0
xk

k! . Every
undergraduate knows that, as each of these polynomials is differentiable and their derivatives
converge uniformly (to ex), the exponential function ex is differentiable (with derivative ex).
In Section 2.2 we proved that the Picard iterates are Fréchet differentiable. If we can prove
their derivatives converge uniformly on bounded sets we will have our main result on the
differentiability of the Itô map.

Let In :Ωp(V ) → Ωp(W ) be the n-th Picard iterate, given by I0(x) = y0 = a, In(x) = yn,
where yn is defined recursively:

yn+1(t) = a +

t∫
0

f
(
yn(s)

)
dx(s).(2.8)
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THEOREM 2.18. – Let f ∈ Lip(1 + α + ε) with α ∈ (p − 1,1 − ε). Then In :Ωp → Ωp is
Fréchet differentiable. For any v ∈ Ωp(V ), let zn := I ′n(x)v. Then

zn+1 =

t∫
0

f ′(yn(s)
)
zn(s)dx(s) +

t∫
0

f
(
yn(s)

)
dv(s),(2.9)

with ∥∥∥∥∥
·∫

0

f(yn)dv

∥∥∥∥∥
[s,t],p

�
[
ξ(1/p + α/p)‖f‖C0,α‖yn‖α

[s,t],p + ‖f‖∞
]
‖v‖[s,t],p,

∥∥∥∥∥
·∫

0

f ′(yn)zn dx

∥∥∥∥∥
[s,t],p

�
[
ξ(1/p + α/p)‖f ′‖C0,α‖yn‖α

p + ‖f ′‖∞
]

×
[
ξ(2/p)‖zn‖[s,t],,p + ‖zn‖∞

]
‖x‖[s,t],p.

Moreover, if for some constant A ∈ (0,1), one has the inequality

ξ(2/p)
[
ξ(1/p + α/p)‖f ′‖C0,α sup

n
‖yn‖α

[s,t],p + ‖f ′‖∞
]
‖x‖[s,t],p < A,(2.10)

then there is a constant C = C(‖f‖C0,α , p,α,A) such that one has the uniform a priori bound

sup
n∈N

‖zn‖[s,t],p < C‖v‖[s,t],p.

Proof. – By definition, In+1(x) = a+Φ(x, In(x)), where Φ(x, y) =
∫ ·
0
f(y)dx. By induction

and by Theorem 2.17, In is differentiable in the sense of Fréchet and zn = I ′n(x)v satisfies the
recursive formula (2.9). The first and the second a priori estimates follow from the Young–Love
inequality. Moreover, by (2.9) and these estimates, we obtain

‖zn+1‖[s,t],p � An‖zn‖[s,t],p + Bn,

where

An = ξ(2/p)
[
ξ(1/p + α/p)‖f ′‖C0,α‖yn‖α

[s,t],p + ‖f ′‖∞
]
‖x‖[s,t],p,

Bn =
[
ξ(1/p + α/p)‖f‖C0,α‖yn‖α

[s,t],p + ‖f‖∞
]
‖v‖[s,t],p.

By [17], we see that yn converges in Ωp to y, which is the solution of the differential equation
dyt = f(yt)dxt with the initial condition y0 = a. Thus ‖yn‖[s,t],p is bounded by a constant
M = M(‖f‖C0,α , p,α,K) for all x with p-variation less than K:

sup
n∈N

‖yn‖[s,t],p � M.

This also yields that Bn � C‖v‖p for some constant C = C(‖f‖C0,α , p,α,A). Hence under the
condition (2.10) we have An � A < 1, therefore

‖zn+1‖[s,t],p � A‖zn‖[s,t],p + C‖v‖p.
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By induction, and since z0 = 0 we have

‖zn‖[s,t],p � An‖z0‖[s,t],p +
n∑

i=0

AiC‖v‖p

�
n∑

i=0

AiC‖v‖p.

Therefore

sup
n∈N

‖zn‖[s,t],p � C

1−A
‖v‖p. �

Now we are ready to state our main result in this section.

THEOREM 2.19. – Under the same assumptions as in Theorem 2.18, for any A ∈ (0,1), and
for all x with

‖x‖[s,t],p � A

2
[
ξ(2/p)

(
ξ(1/p + α/p)‖f ′‖0,αMα + ‖f ′‖∞

)]−1
,

the sequence (zn) converges in Ωp with respect to ‖ · ‖[s,t],p. If z is the limit

z = lim
n→∞

zn in Ωp(2.11)

then

z =

t∫
0

f ′(y(s)
)
z(s)dx(s) +

t∫
0

f
(
y(s)

)
dv(s)(2.12)

and for the some constant C = C((‖f‖C1,α+ε , p,α,A))

‖z‖p � C‖v‖p.(2.13)

Moreover, ∥∥∥∥∥
·∫

0

f(y)dv

∥∥∥∥∥
[s,t],p

�
[
ξ(1/p + α/p)‖f‖C0,α‖y‖α

[s,t],p + ‖f‖∞
]
‖v‖[s,t],p,

∥∥∥∥∥
·∫

0

f ′(y)z dx

∥∥∥∥∥
[s,t],p

�
[
ξ(1/p + α/p)‖f ′‖C0,α‖y‖α

[s,t],p + ‖f ′‖∞
]

×
[
ξ(2/p)‖z‖[s,t],p + ‖z‖∞

]
‖x‖[s,t],p.

Proof. – By (2.9), we have zn+1 − zn = I1 + I2 + I3, where

I1 =

t∫
0

[
f
(
yn(r)

)
− f

(
yn−1(r)

)]
dv(r),

I2 =

t∫
f ′(yn−1(r)

)[
zn(r)− zn−1(r)

]
dx(r),
0
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I3 =

t∫
0

[
f ′(yn(r)

)
− f ′(yn−1(r)

)]
zn(r)dx(r).

By the Young–Love inequality, Corollary 2.8 and Theorem 2.13, we have

‖I1‖[s,t],p =

∥∥∥∥∥
·∫

0

[
f
(
yn(r)

)
− f

(
yn−1(r)

)]
dv(r)

∥∥∥∥∥
[s,t],p

� ξ(1/p + α/p)‖f(yn)− f(yn−1)‖[s,t],p/α‖v‖[s,t],p

+
∥∥f(yn)− f(yn−1)

∥∥
∞‖v‖[s,t],p

� C1ξ(1/p + α/p)‖f‖α+ε‖yn − yn−1‖
ε

1+ε

[s,t],p/α‖v‖[s,t],p

+ ‖f ′‖∞‖yn − yn−1‖∞‖v‖[s,t],p;

‖I2‖[s,t],p =

∥∥∥∥∥
·∫

0

f ′(yn(r)
)[

zn(r)− zn−1(r)
]
dx(r)

∥∥∥∥∥
[s,t],p

�
[
ξ(1/p + α/p)‖f ′‖0,α‖yn‖α

[s,t],p + ‖f ′‖∞
]∥∥∥∥∥

·∫
0

[
zn(r)− zn−1(r)

]
dx(r)

∥∥∥∥∥
[s,t],p

�
[
ξ(1/p + α/p)‖f ′‖0,α‖yn‖α

[s,t],p + ‖f ′‖∞
]

×
[
ξ(2/p)‖zn − zn−1‖[s,t],p + ‖zn − zn−1‖∞

]
‖x‖[s,t],p;

‖I3‖[s,t],p =

∥∥∥∥∥
·∫

0

[
f ′(yn(r)

)
− f ′(yn−1(r)

)]
zn(r)dv(r)

∥∥∥∥∥
[s,t],p

� ξ(1/p + α/p)
∥∥f ′(yn)− f ′(yn−1)

∥∥
[s,t],p/α

∥∥∥∥∥
·∫

0

zn(r)dx(r)

∥∥∥∥∥
[s,t],p

+
∥∥f ′(yn)− f ′(yn−1)

∥∥
∞

∥∥∥∥∥
·∫

0

zn(r)dx(r)

∥∥∥∥∥
[s,t],p

�
[
C1ξ(1/p + α/p)‖f ′‖α+ε‖yn − yn−1‖ε/(1+ε)

[s,t],p + ‖f ′‖α‖yn − yn−1‖α
∞

]
×

[
ξ(2/p)‖zn‖[s,t],p + ‖zn‖∞

]
‖x‖[s,t],p.

Hence

‖zn+1 − zn‖[s,t],p � An

[
‖zn − zn−1‖[s,t],p + ‖zn − zn−1‖∞

]
+ Bn

� 2An‖zn − zn−1‖[s,t],p + Bn.

Here

An = ξ(2/p)
[
ξ(1/p + α/p)‖f ′‖0,α‖yn‖α

[s,t],p + ‖f ′‖∞
]
‖x‖[s,t],p,

Bn = ξ(1/p + α/p)C1‖f‖α+ε‖yn − yn−1‖
ε

1+ε

[s,t],p‖v‖[s,t],p

+ ‖f ′‖∞‖yn − yn−1‖∞‖v‖[s,t],p
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+
[
ξ(1/p + α/p)‖f ′‖α+ε‖yn − yn−1‖

ε
1+ε

[s,t],p + ‖f ′‖α‖yn − yn−1‖α
∞

]
×

[
ξ(2/p)‖zn‖[s,t],p + ‖zn‖∞

]
‖x‖[s,t],p.

Since

sup
n∈N

‖yn‖[s,t],p � M,

we have

An � ξ(2/p)
[
ξ(1/p + α/p)‖f ′‖0,αMα + ‖f ′‖∞

]
‖x‖[s,t],p.

Thus, for any A ∈ (0,1) and for all x such that

‖x‖[s,t],p � A

2
[
ξ(2/p)

(
ξ(1/p + α/p)‖f ′‖0,αMα + ‖f ′‖∞

)]−1

we have

‖zn+1 − zn‖[s,t],p � A‖zn − zn−1‖[s,t],p + 2Bn.

By induction, and since z0 = 0,

‖zn+1 − zn‖[s,t],p � An‖z1‖[s,t],p + 2
n∑

i=0

AiBn−i.(2.14)

Hence
∞∑

n=0

‖zn+1 − zn‖[s,t],p � A

1−A
‖z1‖[s,t],p + 2

∞∑
n=0

n∑
i=0

AiBni

=
A

1−A
‖z1‖[s,t],p + 2

∞∑
n=0

Ai
∞∑

i=0

Bn

=
A

1−A
‖z1‖p +

2A

1−A

∞∑
n=0

Bn.

To show that (zn) converges in Ωp we need only to show that
∑∞

n=0 Bn < +∞.
By Theorem 2.18, we have supn∈N ‖zn‖[s,t],p,∞ < C2‖v‖p. Moreover, from the explicit

expression for Bn, we have

Bn � C1‖yn − yn−1‖
ε

1+ε

[s,t],p‖v‖p + C2‖yn − yn−1‖α
∞‖v‖p + C3‖yn − yn−1‖∞‖v‖p,

where C1 = C‖f‖1+α+ε, C2 = C‖f‖1+α, C3 = C‖f‖1 and

C = C
(
‖f‖1+α+ε, α, ε, p,A

)
.

Let β = min{α, ε
1+ε}. Then

Bn � C‖f‖1+α+ε‖v‖p

[
‖yn − yn−1‖

ε
1+ε
p + ‖yn − yn−1‖α

p + ‖yn − yn−1‖p

]
� C‖f‖1+α+ε‖yn − yn−1‖β

p

[
1 + ‖yn − yn−1‖

α− ε
1+ε

p + ‖yn − yn−1‖1−β
p

]
� C‖f‖1+α+ε‖yn − yn−1‖β

p

[
1 + sup‖yk − yk−1‖

α− ε
1+ε

p + sup‖yk − yk−1‖1−β
p

]
.

k∈N k∈N
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Following [17, p. 461], there exists a constant C4 such that

‖yn − yn−1‖[s,t],p �
[
1 + ξ(2/p)

]n−1
Cn

4 ‖f‖n
1+α

[‖x‖n
[0,t],p − ‖x‖n

[0,s],p

n!

]1/p

.

Hence, there exists a constant C5 such that

Bn � C5‖f‖1+α+ε

([
1 + ξ(2/p)

]
C4‖f‖1+α‖x‖1/p

[0,1],p

)nβ(n!)−β/p.

Therefore for an appropriate constant C we have

∞∑
n=0

Bn � C5‖f‖1+α+ε

∞∑
n=1

Cn

(n!)β/p

� C5‖f‖1+α+ε

(
C +

1
C

)
p

β
eC

p
β

since (n!)β/p > [nβ/p]!
Now we come back to the proof of Theorem 2.19. The convergence of (zn) in (Ωp,‖ · ‖[s,t],p)

follows from
∑∞

n=0 Bn < +∞. Using the continuity of the Young integral (see [18,22]) and
(2.9), it is easy to see that z = limn→∞ zn satisfies (2.12). The lower-semi-continuity of the
norm ‖ · ‖p and the last inequality in Theorem 2.18 yield the uniform bound ‖z‖p � C‖v‖p. The
a priori estimates in Theorem 2.18 follow from the Young–Love inequality. �
2.4. Lipschitz continuity of the derivatives of the Itô map

In this section we shall prove the Lipschitz continuity of the derivative of the Itô map under
the appropriate smoothness assumption on f .

THEOREM 2.20. – Let f ∈ Lip(1+α+ ε) with α ∈ (p− 1,1− ε) and M (the same constant
appeared in the proof of Theorem 2.18, see [17]) be such that supn∈ N ‖yn‖[s,t],p � M . Let K
be chosen so that

K � A
[(

ξ(1/p + α/p)‖f ′‖0,αMα + ‖f ′‖∞
)]−1

, 0 < A < 1.

Then for all x, x̃ ∈Ωp(V ) with ‖x‖p � K and ‖x̃‖p � K and for all v ∈ Ωp(V ),

‖z − z̃‖ � C‖x− x̃‖
ε

1+ε
p ‖v‖p

where z = I ′(x)v, z̃ = I ′(x̃)v.

Proof. – Let y = I(x), ỹ = I(x̃). By Theorem 2.19, we have

dz = f ′(y)z dx + f(y)dv, z0 = v,

dz̃ = f ′(ỹ)z̃dx̃ + f(ỹ)dv, z̃0 = v.

Hence
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[z − z̃]st =

t∫
s

f ′(y)[z − z̃]dx +

t∫
s

f ′(ỹ)z̃ d(x− x̃)

+

t∫
s

[
f(y)− f(ỹ)

]
dv +

t∫
s

[
f ′(y)− f ′(ỹ)

]
z̃ dx.

Using the Young–Love inequality, we can obtain

‖z − z̃‖p �
[
ξ(1/p + α/p)‖f ′‖αnα + ‖f ′‖∞

]
‖z − z̃‖p‖x‖p

+ C‖f ′‖α‖y‖α
p ‖z‖p‖x− x̃‖p + C‖f‖1+α‖y − ỹ‖p‖v‖p

+ C‖f ′‖α+ε‖y − ỹ‖
ε

1+ε
p ‖z̃‖p‖x‖p,

where we have used Theorem 2.13 for the estimate of ‖f ′(y)− f ′(ỹ)‖ p
α

. Therefore

‖z − z̃‖p � A‖z − z̃‖p + B.

Here

A =
[
ξ(1/p + α/p)‖f ′‖αnα + ‖f ′‖∞

]
‖x‖p,

B = C‖f‖1+α+ε

[
‖x‖p‖z̃‖p‖y − ỹ‖

ε
1+ε
p + ‖y‖α

p ‖z‖p‖x− x̃‖p + ‖v‖p‖y − ỹ‖p

]
� C‖f‖1+α+ε

[
‖x‖p + ‖y‖α

p

][
‖x− x̃‖p + ‖y − ỹ‖p + ‖y − ỹ‖

ε
1+ε
p

]
‖v‖p.

Using the Lipschitz continuity of the Itô map, cf. [18,22], we have

‖y − ỹ‖p � C‖x− x̃‖p.

Modifying the proof of Theorem 2.18, we can also prove that for ‖x‖p � K and ‖x̃‖p � K , we
have

‖z − z̃‖p � CK‖f‖1+α+ε‖x− x̃‖
ε

1+ε
p ‖v‖p. �

Now we are ready to prove Theorem 2.2 concerning the Fréchet differentiability of the Itô
map.

Proof of Theorem 2.2. – By the main result of [17], In converges uniformly to I and I is con-
tinuous from the p-variation ball Bp(0,K)⊂Ωp(V ) into Ωp(W ). Moreover, Theorem 2.19 says
that the derivatives zn = I ′n(x)v converge uniformly to z = z(x) in Ωp(W ), and Theorem 2.20
says that x → z(x) is ε

1+ε -Hölder continuous on Bp(0,K) = {x ∈ V : ‖x‖p � K}. We conclude
that I is locally Fréchet differentiable 3 from the ball Bp(0,K)⊂ Ωp(V ) into Ωp(W ). Moreover,
its derivative is given by

I ′(x)v = z.

Furthermore, Theorem 2.20 can be reformulated as∥∥I ′(x)− I ′(x̃)
∥∥ � C‖x− x̃‖

ε
1+ε
p .

3 If fn :E1 → E2 is a sequence of continuously Fréchet differentiable (in the sense of) functions between two
Banach spaces such that fn → f and their derivatives f ′

n ∈ L(E1,E2) are uniformly convergent with continuous limit
g ∈ L(E1,E2), then f is Fréchet differentiable and f ′ = g.
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This proves the ε
1+ε -Hölder continuity of the derivative of the Itô map. �

THEOREM 2.21. – Let f ∈ Lip(1 + α + ε) with α ∈ (p − 1,1 − ε). Then, defining K as in
Theorem 2.20, one has that for any x, v ∈Ωp(V ) with ‖x‖p � K and ‖v‖p � K:

∥∥I(x + v)− I(x)− I ′(x)v
∥∥

p
� C‖f‖1+α+ε‖v‖

1+2ε
1+ε

p ,(2.15)

where C = C(K,α,p,‖f‖1+α) is a constant.

Proof. – Denote x̃ = x + v. Then

dyt = f(yt)dxt, y0 = a,

dỹt = f(ỹt)dx̃t, ỹ0 = a,

dzt = f ′(yt)zt dxt + f(yt)dvt, z0 = 0.

Note that

d(ỹt − yt − zt) = f(ỹt)dx̃t − f(yt)dxt − f ′(yt)zt dxt − f(yt)d(x̃t − xt)

= f(ỹt)dx̃t − f(yt)dx̃t − f ′(yt)zt dxt

= f ′(yt)zt dvt + f ′(yt)[ỹt − yt − zt]dx̃t

+
[
f(ỹt)− f(yt)− f ′(yt)(ỹt − yt)

]
dx̃t.

Therefore

‖ỹ − y − z‖[s,t],p � J1 + J2 + J3,

where

J1 =

∥∥∥∥∥
·∫

0

f ′(yu)zudvu

∥∥∥∥∥
[s,t],p

,

J2 =

∥∥∥∥∥
·∫

0

f ′(yu)[ỹu − yu − zu]dx̃u

∥∥∥∥∥
[s,t],p

,

J3 =

∥∥∥∥∥
·∫

0

[
f(ỹu)− f(yu)− f ′(yu)(ỹu − yu)

]
dx̃u

∥∥∥∥∥
[s,t],p

.

Using the Young–Love inequality, Theorem 2.15 and the Lipschitz continuity theorem of the Itô
map [17,22], we have

J1 �
[
ξ(1/p + α/p)

∥∥f ′(y)
∥∥

[s,t],p
+

∥∥f ′(y)
∥∥
∞

]∥∥∥∥∥
·∫

0

zu dvu

∥∥∥∥∥
[s,t],p

�
[
ξ(1/p + α/p)‖f‖1+α‖y‖α

[s,t],p + ‖f ′‖∞
]
‖z‖[s,t],p‖x̃− x‖[s,t],p,

J2 �
[
ξ(1/p + α/p)

∥∥f ′(y)
∥∥

[s,t],α/p
+

∥∥f ′(y)
∥∥
∞

]∥∥∥∥∥
·∫

0

[ỹu − yu − zu]dx̃u

∥∥∥∥∥
[s,t],p

�
[
ξ(1/p + α/p)

∥∥f ′(y)
∥∥

[s,t],α/p
+

∥∥f ′(y)
∥∥
∞

]
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×
[
ξ(2/p)‖ỹ − y − z‖[s,t],p + ‖ỹ − y − z‖∞

]
‖x̃‖[s,t],p

� ‖x̃‖[s,t],p

(
1 + ξ(2/p)

)
×

[
ξ(1/p + α/p)‖f‖1+α‖y‖α

[s,t],p + ‖f ′‖∞
]
‖ỹ − y − z‖[s,t],p,

J3 �
[
1 + ξ(1/p + α/p)

]∥∥f(ỹ)− f(y)− f ′(y)(ỹ − y)
∥∥

[s,t],p
‖x̃‖[s,t],p

� C
(
α,p,‖f‖1+α+ε

)
‖y − ỹ‖

1+2ε
1+ε

p ‖x̃‖[s,t],p

� C2

(
α,p,‖f‖1+α+ε

)
K‖x̃− x‖

1+2ε
1+ε

[s,t],p.

Note that by Theorem 2.18 and the lower-semi-continuity of the norm ‖ · ‖p, we have

‖z‖[s,t],p � C3‖v‖[s,t],p = C3‖x̃− x‖[s,t],p.

Thus

‖ỹ − y − z‖[s,t],p � ‖x̃‖[s,t],p

[
ξ(1/p + α/p)‖f‖1+α‖y‖α

[s,t],p + ‖f ′‖∞
]

× ‖ỹ − y − z‖[s,t],p + C2

(
α,p,‖f‖1+α+ε,K

)
‖x̃− x‖

1+2ε
1+ε

[s,t],p

+ C4

(
α,p,‖f‖1+α,K

)
‖x̃− x‖2

[s,t],p.

Hence, for x, x̃ ∈Ωp(Rm) with ‖x‖p � K , ‖x̃‖p � K , we have

‖ỹ − y − z‖[s,t],p � A‖ỹ − y − z‖[s,t],p + C2‖x̃− x‖
1+2ε
1+ε

[s,t],p + C4‖x̃− x‖2
[s,t],p.

Hence

‖ỹ − y − z‖[s,t],p � (1−A)−1C2‖f‖1+α+ε‖x̃− x‖
1+2ε
1+ε

[s,t],p

+ (1−A)−1C4‖f‖1+α‖x̃− x‖2
[s,t],p

� C5

(
K,α,p,‖f‖1+α+ε

)
‖f‖1+α+ε‖x̃− x‖

1+2ε
1+ε

[s,t],p. �
In the special case where f ∈ Lip(2 + α) we have the following estimate.

THEOREM 2.22. – Let f ∈ Lip(2 + α). Then for x, x̃ ∈B(0,K), we have∥∥I ′(x)− I ′(x̃)
∥∥

p
� C6

(
α,‖f‖2+α,K

)
‖x− x̃‖p,∥∥I(x̃)− I(x)− I ′(x)(x̃− x)

∥∥
p
� C7

(
α,‖f‖2,α,K

)
‖x− x̃‖2

p.

Proof. – By Lemma 2.12 and the Young–Love inequality we have∥∥∥∥∥
·∫

0

[
f ′(y)− f ′(ỹ)

]
z̃ dx

∥∥∥∥∥
p

�
[
ξ(1/p + α/p)

∥∥f ′(y)− f ′(ỹ)
∥∥

p/α
+

∥∥f ′(y)− f ′(ỹ)
∥∥
∞

]
‖z̃‖p‖x‖p

�
[
ξ(1/p + α/p)C

(
α,K,‖f ′‖1+α

)
‖y − ỹ‖p + ‖f ′′‖∞‖y − ỹ‖∞

]
‖z‖p‖x‖p

� C
(
α,K,‖f‖2+α

)
‖v‖p‖y − ỹ‖p.

From this and the proof of Theorem 2.20 we have

‖z − z̃‖p � A‖z − z̃‖p + C
(
α,K,‖f‖2+α

)[
‖x− x̃‖p + ‖y − ỹ‖p

]
‖v‖p.
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Hence for ‖x‖p � K and ‖x̃‖p � K we have

‖z − z̃‖p � C‖f‖2+α‖v‖p

[
‖x− x̃‖p + ‖y − ỹ‖p

]
.

Using the Lipschitz continuity of the Itô map, we obtain

‖z − z̃‖p � C‖f‖2+α‖v‖p‖x− x̃‖p.

This is equivalent to ∥∥I ′(x)− I ′(x̃)
∥∥

p
� C

(
α,K,‖f‖2+α

)
‖x− x̃‖p.

Similarly, using Lemma 2.14 and the Young–Love inequality we can prove

J2 � ξ(1/p + α/p)
∥∥f(ỹ)− f(y)− f ′(y)(ỹ − y)

∥∥
p
‖x̃‖p

+
∥∥f(ỹ)− f(y)− f ′(y)(ỹ − y)

∥∥
∞‖x̃‖p

�
[
C

(
α,p,‖f‖2+α

)
ξ(1/p + α/p)‖y − ỹ‖2

p + ‖f ′′‖∞‖y − ỹ‖2
∞

]
‖x̃‖[s,t],p

� C
(
α,p,K,‖f‖2+α

)
K‖y − ỹ‖2

p

� C
(
α,p,K,‖f‖2+α

)
‖x− x̃‖2

p.

From this and the proof of Theorem 2.21 we deduce that

‖ỹ − y − z‖[s,t],p � A‖ỹ − y − z‖[s,t],p + C‖x̃− x‖2
[s,t],p.

Hence for ‖x‖ � K and ‖x̃‖p � K we get

‖ỹ − y − z‖[s,t],p � C
(
K,α,p,‖f‖2+α

)
‖x̃− x‖2

p. �
2.5. Higher order differentiability of the Itô map

By induction, for any k ∈ N, a map f :E1 → E2 between two Banach spaces E1 and E2 is
k-times differentiable at x0 ∈ E1 in the sense of Fréchet if there exist a constant K > 0 and a
bounded linear map f (k)(x0) ∈ Lk(E1,E2) := L(E1,Lk−1(E1,E2)) such that for v ∈B(0,K),∥∥f (k−1)(x0 + v)− f (k−1)(x0)− f (k)(x0)v

∥∥
Lk−1(E1,E2)

= o
(
‖v‖E1

)
.

If there exists a bounded open subset O ⊂ E1 such that f is k-times differentiable at x0 for
all x0 ∈ O, we call f a locally k-times Fréchet differentiable function in O. We now prove the
higher order Fréchet differentiability of the Itô map.

THEOREM 2.23. – Let f ∈ Lip(k + α + ε) with α ∈ (p − 1,1 − ε). Then the Itô map
I :Ωp(V ) → Ωp(W ) is locally k-times Fréchet differentiable. More precisely, there exists
a constant K depended on ‖f‖k+α+ε such that for x, x̃, v ∈ Ωp(V ) with ‖x‖p � K ,
‖x̃‖|p � K , and ‖v‖p � K , there exist bounded multilinear maps denoted by I(i)(x) :Ωp →
Li(Ωp(V ),Ωp(W )), i = 1, . . . , k, such that

∥∥I(k−1)(x + v)− I(k−1)(x)− I(k)(x)v
∥∥

L (Ω (V ),Ω (W ))
� C

(
‖f‖k+α+ε

)
‖v‖

1+2ε
1+ε

p ,

k−1 p p
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and ∥∥I(k)(x̃)− I(k)(x)
∥∥

Lk(Ωp(V ),Ωp(W ))
� C

(
‖f‖k+α+ε

)
‖x̃− x‖

ε
1+ε
p .

Moreover, in the case where f ∈ Lip(k + 1 + α) with α ∈ (p− 1,1), one has∥∥I(k−1)(x + v)− I(k−1)(x)− I(k)(x)v
∥∥

Lk−1(Ωp(V ),Ωp(W ))
� C

(
‖f‖k+1+α

)
‖v‖2

p,

and ∥∥I(k)(x̃)− I(k)(x)
∥∥

Lk(Ωp(V ),Ωp(W ))
� C

(
‖f‖k+1+α

)
‖x̃− x‖p.

Proof. – Since the proofs for all k are similar we will only give a proof for k = 2. Let
zi(x, t) = (I ′(x)vi)(t), i = 1,2. Then

dzi = f ′(y)zi dx + f(y)dvi, zi(0) = 0.

Thus

z1(x + εv2) =

t∫
0

f ′(y(x + εv2)
)
z1(x + εv2)d(x + εv2) +

t∫
0

f
(
y(x + εv2)

)
dv1.

Using the same argument as used in Section 2.3, we can prove that for any ‖x‖p � K ,

W (x) := lim
ε→0

z1(x + εv2)− z1(x)
ε

exists in Ωp(W ) and satisfies the following linear differential equation

dW = f ′(y)W dx + f ′′(y)(z2 ⊗ z1)dx + f ′(y)z1 dv2 + f ′(y)z2 dv1,

with the initial condition W (0) = 0. Repeating the same argument used in the proof of
Theorem 2.15, we can prove that for ‖x‖p � K , ‖v1‖p � K , and ‖v2‖p � K ,∥∥W (x)

∥∥
p
� C‖v1‖p‖v2‖p,∥∥z1(x + v2)− z1(x)−W (x)

∥∥
p
� C‖v1‖p‖v2‖

1+2ε
1+ε

p ,∥∥W (x̃)−W (x)
∥∥

p
� C‖x̃− x‖

ε
1+ε
p .

Hence, the Itô map I :Ωp(V ) → Ωp(W ) is locally C2, ε
1+ε -differentiable in the sense of Fréchet

with

I ′′(x)(v1, v2) = W (x), ∀x, v1, v2 ∈Bp(0,K).

The proof for the latter case where f ∈ Lip(k + 1 + α) is easy so we omit it. �
The following Taylor formula holds for the Itô map I :Ωp(V )→ Ωp(W ).

THEOREM 2.24. – Let f ∈ Lip(k + α + ε) with α ∈ (p − 1,1 − ε). Then, for x, v ∈ Ωp(V )
with ‖x‖p � K and ‖v‖p � K , we have

I(x + v)− I(x)−
k−1∑
i=1

I(i)(x)v⊗i

i!
=

( 1∫
I(k)(x + sv)(1− s)k−1

(k − 1)!
ds

)
v⊗k,
0
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and ∥∥∥∥∥I(x + v)− I(x)−
k∑

i=1

I(i)(x)v⊗i

i!

∥∥∥∥∥
p

� C
(
‖f‖k+α+ε

)
‖v‖k+ ε

1+ε
p .

Moreover, in the case where f ∈ Lip(k + 1 + α) with α ∈ (p− 1,1) one has∥∥∥∥∥I(x̃)− I(x)−
k∑

i=1

I(i)(x)(x̃− x)⊗i

i!

∥∥∥∥∥
p

� C
(
p, k,α,K,‖f‖k+1+α

)
‖x̃− x‖k+1

p .

Proof. – Let g(t) = I(x + tv), t ∈ (−1 − δ,1 + δ), δ > 0. By the chain rule, we have
g ∈Ck, ε

1+ε (−1,1). Applying the Taylor formula to f , we have

g(t) = g(0) + g′(0)t + g′′(0)
t2

2
+ · · ·+ g(k)(0)

tk−1

(k − 1)!
+

t∫
0

g(k)(s)
(1− s)k−1

(k − 1)!
ds.

Now

g(i)(t) = I(i)(x + tv)v⊗i, i = 1, . . . , k.

Substituting this to the previous formula, we prove Taylor’s formula with an integral remainder.
Obtaining the stated estimates on this remainder is very easy. �

3. Part II — The nonlinear case

3.1. Path spaces on manifolds

In this section let M be a d-dimensional compact Riemannian manifold endowed with the
Levi-Civita connection, let m0 ∈ M be a fixed point and let O(M) be the orthonormal frame
bundle over M . For 1 � p < 2, let Ωp(M) be the collection of p-variation paths on M :

Ωp(M) =
{
γ ∈C

(
[0,1],M): Varp(γ) < ∞

}
where

Varp(γ) = sup
D

(
n∑

i=1

d(γsi , γsi+1)
p

)1/p

,

and the supremum is taken over all finite partitions

D = {0 = s0 < s1 < · · ·< sn < sn+1 = 1}.

We now extend Theorem 2.2 to the nonlinear case where the driving signal x and the response y
take values in compact Riemannian manifolds M and N .

THEOREM 3.1. – Let M and N be two compact Riemannian manifolds, f :TM → Γ(TN)
be a Lip(k + α + ε) bundle map 4 , α ∈ (p − 1,1 − ε), ε ∈ (0,1). Let I :Ωp(M) → Ωp(N) be

4 That is to say, for all (x, v) ∈ TM , f(x, v) :N → TN is a vector field, moreover, v → f(x, v) is linear.
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the Itô map defined by I(x) = y, where y solves the differential equation on M driven by a finite
p-variational path x ∈Ωp(M):

dyt = f(yt)dxt, y0 = n0 ∈N.

Then I :Ωp(M) → Ωp(N) is Ck, ε
1+ε in the sense of Fréchet.

Proof. – Following the Nash isometric embedding theorem, we regard M and N as closed
sub-manifolds of some Euclidean space R

l. Using the Whitney extension theorem for Lipschitz
functions (see [25, p. 177]), we can extend the Lip(k+α+ε)-function f :M → End(TM,TN)
to a Lip(k + α + ε)-function f̄ :Rl → End(TR

l, TR
l). Let iM :M → R

l be our Nash
embedding. Then iM ∈ C∞(M,Rl). Let Ī :Ωp(Rl) → Ωp(Rl) be the Itô map associated to the
differential equation

dȳ = f̄(y)dx̄, ȳ0 = a ∈M.

By Theorem 2.2, we have Ī ∈Ck, ε
1+ε (Ωp(Rl),Ωp(Rl)). By the chain rule and the uniqueness of

solutions to differential equations

I = Ī ◦ iM ,

we can easily conclude Theorem 3.1. �
Remark 3.2. – By E.M. Stein [25] the extension of the vector fields from M to R

l increases the
Lip(k + α + ε) norm in a bounded way that is independent of the manifold M , i.e., for some
constant Cl which only depends on M through l, we have

‖f̄‖Lip(k+α+ε) � Cl‖f‖Lip(k+α+ε).

The compactness of N ensures the extrinsic and intrinsic distances on N are equivalent and
so also ensures that the induced p-variation metrics on paths in N are also equivalent.

3.2. Dynamics on path spaces

By [17], for any γ ∈Ωp(M), we can solve the parallel transport differential equation along γ:

∇dγ(s)Us(γ) = 0, s ∈ [0,1].(3.1)

Working in a local coordinate chart at γ(s), it can be written as:

dUk
s (γ) = −Γk

ij

(
γ(s)

)
dγi(s)U j

s (γ), s ∈ [0,1],

with the initial condition U0(γ) = U0 ∈ O(M), where Γk
ij denotes the Christoffel symbol of the

Levi-Civita connection, and U0 is a given initial orthonormal frame over γ(0). Since Ut(γ) is
an isometry from Tγ(0)M to Tγ(t)M , we see that Ωp(M) is a Banach manifold modelled on
Ωp(Rd) with a global chart U(γ)(s) := Us(γ) from Ωp(Tm0(M)) to Ωp(M), s ∈ [0,1].

Remark 3.3. – Any bounded variation path γ is differentiable almost everywhere on [0,1]. So
one can define J :Ωp(M) →Ωp(Tm0(M)) by

x(t) =

t∫
0

U−1(s)dγ(s), t ∈ [0,1].(3.2)

J(γ) := x.
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Now, γ → U is differentiable if Γk
ij is Lip(p + 1 + ε). Using the smoothness of the Young

integral, we see that J is Fréchet differentiable. Conversely, if x ∈ Ωp(Tm0(M)), then there are
unique U ∈Ωp(O(M)) and γ ∈Ωp(M) satisfying (3.1) and such that

dγt = U(γt)dγt, γ0 = m, U0 = u0.

Then the Cartan–Itô development of paths in Ωp(Tm0(M)) is defined by the map

I :Ωp

(
Tm0(M)

)
→ Ωp(M),

I(x) := γ.

By Theorem 3.1, I is Fréchet differentiable. Moreover, one can prove that I ◦ J = IdΩp(M), and
J ◦ I = IdΩp(Tm0M). Hence, one can deduce from the chain rule that the derivatives of I and J
are invertible at every point.

Remark 3.4. – Let h ∈Ωp(Tm0M). For any γ ∈Ωp(M) with the initial condition γ(0) = m0,
we define a vector field along γ by

Xh(γ, s) = Us(γ)h(s).(3.3)

By Theorem 2.2, the Itô map γ → U(γ) is a local C1-map (indeed it is a local C∞-smooth
map). Hence γ → Xh(γ) is a local C1-Lipschitz vector field on Ωp(M). Therefore, applying the
classical results showing the existence and the uniqueness of solutions to differential equations
on Banach spaces, see e.g. [6], we have the following:

THEOREM 3.5. – The vector field Xh generates a flow on Ωp(M). More precisely, there exist
some T > 0 and a C1-curve Φ: [−T,T ] × Ωp(M) → Ωp(M) such that for every γ ∈ Ωp(M)
and t ∈ [−T,T ],

∂

∂t
Φt(γ) = Xh

(
Φt(γ)

)
,

Φ0(γ) = γ.

In view of earlier work on the Brownian setting, see e.g. [7], we call Φt the Driver flow
generated by the vector field Xh on the finite p-variation path space Ωp(M). Here we would like
to point out that the vector fields Xh and the corresponding Driver flows are the natural ways to
develop the variational calculus on the path space Ωp(M) for the following reasons. First, the
parallel transport U :Ωp(M) → TΩp(M) along a curve γ provides with us a “moving frame”
which is global over Ωp(M) and preserves the p-variation metric. Second, the parallel transport
gives us a way to test whether a vector field along every γ ∈ Ωp(M) is good or not. The most
important point is that, since for h ∈ Ωp(Tm0M), the vector field Xh generates a local flow on
Ωp(M), we can use this flow to introduce the variational calculus on Ωp(M) in a usual way: for
every functional F defined on Ωp(M), we say that F is a differentiable functional on Ωp(M) if
the following limit exists

DXh
F (γ) := lim

ε→0

F (γε)− F (γ)
ε

.

Remark 3.6. – In the case of smooth path spaces, the Cartan development map and its inverse,
i.e., the anti-development map, were introduced by E. Cartan [2–4]. In [10], Eells and Elworthy
proved that the Cartan development map and its inverse, when defined on finite energy path
spaces, are diffeomorphisms of infinite dimensional Hilbert manifolds. See also Andersson and
Driver [1] for a simplified proof. In [13,16], the first named author proved that the stochastic
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Cartan-Itô development map and its inverse (i.e., the stochastic anti-development) are smooth in
the sense of stochastic variational calculus on infinite dimensional continuous path spaces. We
also point out that, strictly, to talk about smooth maps one needs charts on the target space.
In general charts around paths on a manifold are messy, however, one can instead use this
construction with a connection to construct a chart. It is clear that if we take two connections and
developing the paths out with one connection and back with the other one has a differentiable
functional and so provide a consistent family of (global) charts.

3.3. Fractional like motions on path spaces

As our first simple application we show how it is possible to construct fractional Brownian
motion type processes on path spaces. Let (hi)n

i=1 be a family of elements of Ωp(Tm0M). Take
wt to be n-dimensional fractional Brownian motion with the Hurst parameter H ∈ (1/4,1); by
[5] we can consider w as a q-rough path for any q > H−1. Consider the stochastic differential
equation on the path space Ωp(M) driven by w and starting from a given p-path γ in M as
follows:

dΠt =
n∑

i=1

Xhi(Πt) ◦ dwi
t,(3.4)

Π0 = γ.(3.5)

Since p ∈ [1,2), we can apply our main theorems Theorem 2.2 and Theorem 3.1 to conclude
that the vector fields Xhi are locally C∞ on Ωp(M). Therefore, applying the standard theory
of differential equations driven by q-rough paths (which is infinite dimensional but requires
smoothness of the vector fields) [17], one sees that Eq. (3.4) has a unique solution Πt which
is continuously dependent on the initial path γ and the driving path w.

Of course Πt is a nonlinear object and does not the scaling or invariance properties that
characterise true fractional Brownian motion and there is a great deal of arbitrariness in the
choices of hi in Ωp(Tm0M).

3.4. Infinite dimensional Brownian motions on path spaces

As a second application of our methods we specialise the above example to the case where
H = 1/2 but extend the analysis to the case where the dimension of the driving Brownian motion
is infinite. We construct an infinite dimensional Brownian motion on path spaces.

Fix a control ω on the triangle Δ = {(s, t): 0 � s � t � 1}. Take p ∈ [1,2) and p′ ∈ (p,2). Let
E be the completion of Ωp,ω([0,1],Rd) with respect to ‖ · ‖p′ . The smooth paths are dense in
E with respect to ‖ · ‖p′ and so E is a separable Banach space. Let {en, n ∈ N} be a countable
collection of linearly independent elements in the unit ball of E such that the vector space
spanned by (en) is dense in E. Let {xn(t), n ∈ N} be a sequence of independent Brownian
motions; then

∑∞
n=1 n−2xnen converges in probability to an E-valued Brownian denoted by

Bt with law μt at time t. Then the support of μ = μ1 is dense in span(en) and so is in E. Let
H := {h =

∑∞
n=1 anen: ‖h‖H < ∞} where ‖h‖2

H :=
∑∞

n=1 a2
nn4. Then

∥∥∥∥∥
∞∑

n=1

anen

∥∥∥∥∥
E

�
∞∑

n=1

|an|�
( ∞∑

n=1

a2
nn4

)1/2( ∞∑
n=1

n−4

)1/2

and ‖h‖E � C‖h‖H . So H is densely embedded in E and (E,H,μ) is a Wiener space in the
sense of Leonard Gross.
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Let {hn, n ∈ H} be an orthonormal basis of H . Then hn ∈ E ⊂ Ωp([0,1], Tm0M). Using
Theorem 3.1 we can see that the vector fields Xhi defined in (3.3) are C2 in the injective tensor
product norm as a map

Ωp(M)
Xhi−−−→ Ωp(TM).

Define

X :Ωp(Tm0M)×Ωp(M) → Ωp(TM)

by

(h,γ)→ Xh(γ).

Then X is a bounded linear operator from E to the C2 vector fields on Ωp(M). Since every
Brownian Motion on a Banach space is a rough path when one uses the injective tensor product
[19] we have the following

THEOREM 3.7. – Let p ∈ [1,2). For any γ ∈ Ωp(M) with γ(0) = m0, there exists a unique
diffusion process 5 {Xt, t ∈ [−T,T ]} such that

dΣt = X(Σt) ◦ dBt,

Σ0 = γ.

Following [23,8], we call {Σt, t ∈ [0, T ]} a Brownian motion on the path space Ωp(M) and
refer to the law Σt as the heat kernel measure on Ωp(M) and the law of Σ as the associated
Wiener measure on C([0, T ],Ωp(M)). Of course, the above construction only depends on the
reproducing Hilbert space H of the Gaussian space (E,H,μ) (and this was somewhat arbitrarily
chosen) but is at least independent of the choice of {hn, n ∈ N}. It might be interesting to
investigate the construction for other Gaussian measures on E.
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