
Ann. Scient. Éc. Norm. Sup.,
4e série, t. 37, 2004, p. 819 à 839.

st
r

o show
ms.

n
uve
uivalent,
re. On
e pour les

s on
at it is

sson
oth
r
if

onian
gular
ates an
EQUIVARIANT NORMAL FORM
FOR NONDEGENERATE SINGULAR ORBITS
OF INTEGRABLE HAMILTONIAN SYSTEMS

BY EVA MIRANDA 1 AND NGUYEN TIEN ZUNG

ABSTRACT. – We consider an integrable Hamiltonian system withn degrees of freedom whose fir
integrals are invariant under the symplectic action of a compact Lie groupG. We prove that the singula
Lagrangian foliation associated to this Hamiltonian system is symplectically equivalent, in aG-equivariant
way, to the linearized foliation in a neighborhood of a compact singular nondegenerate orbit. We als
that the nondegeneracy condition is not equivalent to the nonresonance condition for smooth syste

 2004 Elsevier SAS

RÉSUMÉ. – On considère un système hamiltonien intégrable àn degrés de liberté et une actio
symplectique d’un groupe de Lie compactG qui laisse invariantes les intégrales premières. On pro
que le feuilletage lagrangien singulier attaché à ce système hamiltonien est symplectiquement éq
de façonG-équivariante, au feuilletage linéarisé dans un voisinage d’une orbite compacte singuliè
démontre aussi que la condition de non-dégénérescence n’est pas équivalente à la non-résonanc
systèmes différentiables.

 2004 Elsevier SAS

1. Introduction

In this paper, we are interested in the geometry of integrable Hamiltonian system
symplectic manifolds. When we refer to an integrable Hamiltonian system, we mean th
integrable in the sense of Liouville. That is to say, the system is given by a moment mapF on
(M2n, ω),

F = (F1, . . . , Fn) : (M2n, ω)→ Rn(1.1)

whose component functionsFi are functionally independent almost everywhere and Poi
commuting ({Fi, Fj} = 0 for anyi, j). The Hamiltonian system considered will be called smo
or real analytic if the corresponding moment map is so. LetX = XH be the Hamiltonian vecto
field associated to a given functionH , we say that this Hamiltonian vector field is integrable
there exists a moment map withF1 = H .

In our approach to the study of the integrable Hamiltonian system, the original Hamilt
function defining the system will be left aside and our study will be focused on the sin
Lagrangian fibration given by the level sets of the moment map. This moment map gener
infinitesimal PoissonRn-action on(M2n, ω) via the Hamiltonian vector fieldsXF1 , . . . ,XFn .

1 Partially supported by the DGICYT project number BFM2003-03458.
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820 E. MIRANDA AND N.T. ZUNG

Denote byO an orbit of thisRn-action. We will assume thatO is a closed submanifold (i.e.
compact without boundary) of(M2n, ω). Then it is well known thatO is diffeomorphic to a
torus since the vector fieldsXF1 , . . . ,XFn are complete onO, andO is a quotient of the Abelian
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The complete integrability of Hamiltonian systems is an old problem. In the XIX cen

Joseph Liouville [13] proved that if a Hamiltonian system hasn functionally independen
integrals in involution then it is integrable by quadratures. To our knowledge, Henri Mineu
the first who gave a complete description, up to symplectomorphism, of the Hamiltonian s
in a neighborhood of a compact regular orbit of dimensionn. In his papers [16–18], it is prove
that under the previous assumptions, there is a symplectomorphismφ from a neighborhood
(U(O), ω) of O in (M2n, ω) to (Dn × Tn,

∑n
1 dνi ∧ dµi), where(ν1, . . . , νn) is a coordinate

system on a ballDn, and(µ1(mod 1), . . . , µn(mod 1)) is a periodic coordinate system on t
torusTn, such thatφ∗F is a map which depends only on the variablesν1, . . . , νn. The functions
qi = φ∗µi on U(O) are called angle variables, and the functionspi = φ∗νi are called action
variables.

Although the works of Henri Mineur date back to the thirties, the theorem stated abov
been known in the literature as Arnold–Liouville theorem.

Mineur [16,18] also showed that the action functionspi can be defined via the period integra

pi(x) =
∫

Γi(x)

β.(1.2)

Hereβ is a primitive1-form of the symplectic form, i.e.dβ = ω, andΓi(x) for each pointx near
O is a closed curve which depends smoothly onx and which lies on the Liouville torus containin
x. The homology classes ofΓ1(x), . . . ,Γn(x) form a basis of the first homology group of t
Liouville torus. The above important formula for finding action functions will be called Mine
formula. It can be used to find action functions and hence torus actions and normalizat
only near regular level sets of the moment map, but also near singular level sets as w
e.g. [26,27]. In particular, in [27] this Mineur’s formula was used in the proof of the exist
of a local analytic Birkhoff normalization for any analytic integrable Hamiltonian system n
singular point.

The above-mentioned action-angle coordinates entail a “uniqueness” for the sym
structure and the regular Lagrangian fibration in a neighborhood of a compact orbit. In fac
provide a “linear model” in a neighborhood of a regular compact orbit. In the same spirit, th
of the present paper is to establish an analog of this classical Liouville–Mineur–Arnold th
for the case when the orbitO is singular, i.e. is of dimensionm = dimO smaller thann, under a
natural nondegeneracy condition. We will show that the system can be “linearized” nearO up to
fibration-preserving symplectomorphisms. The fibration in question is the singular Lagra
fibration given by the moment map. We also take into account the possible symmetries
system. Namely, we will show that in the case there exists a symplectic action of a comp
group in a neighborhood ofO preserving the moment map, this linearization can be carried
in an equivariant way.

2. Preliminaries and statement of the main results

2.1. Nondegenerate orbits

In this paper, the orbitO is assumed to be nondegenerate. The concept of nondegenera
was introduced by Eliasson. Let us recall what it means (see, e.g., [9], [25]). A pointx ∈ M2n is
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EQUIVARIANT NORMAL FORM FOR SINGULAR ORBITS 821

called singular for the system if its rank, i.e. the rank ofF atx, is smaller thann. If rankx = m
thenm is also the dimension of the orbit throughx of the local PoissonRn action. Ifrankx = 0,
i.e. x is a fixed point, then the quadratic partsF
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the moment map atx are Poisson-commuting and they form an Abelian subalgebra,A, of the
Lie algebraQ(2n,R) of homogeneous quadratic functions of2n variables under the standa
Poisson bracket. Observe that the algebraQ(2n,R) is isomorphic to the symplectic algeb
sp(2n,R). A point x will be called a nondegenerate fixed point ifA is a Cartan subalgebr
of Q(2n,R).

More generally, whenrankx = m � 0, we may assume without loss of generality t
dF1 ∧ · · · ∧ dFm(x) �= 0, and a local symplectic reduction nearx with respect to the local fre
Rm-action generated by the Hamiltonian vector fieldsXF1 , . . . ,XFm will give us anm-dimen-
sional family of local integrable Hamiltonian systems withn − m degrees of freedom. Und
this reduction,x will be mapped to a fixed point in the reduced system, and if this fixed p
is nondegenerate according to the above definition, thenx is called a nondegenerate singu
point of rankm and corank(n − m). The orbitO will be called nondegenerate if it contains
nondegenerate singular point. In fact, if a point inO is nondegenerate then every point ofO is
nondegenerate because nondegeneracy is a property which is invariant under the local
Rn-action.

2.2. The Williamson type of an orbit

According to [25] we will define the Williamson type of a nondegenerate singular pointx ∈ O
as a triple of nonnegative integers(ke, kh, kf ), whereke (resp.,kh, kf ) is the number of elliptic
(resp., hyperbolic, focus-focus) components of the system atx. Let us recall whatke, kh andkf

stand for. Whenrankx = 0, a generic linear combination of the linear parts of the Hamilton
vector fieldsXF1 , . . . ,XFn at x haske pairs of purely imaginary eigenvalues,kh pairs of real
eigenvalues, andkf quadruples of nonreal nonpurely-imaginary complex eigenvalues (not
the set of eigenvalues is symmetric with respect to the real axis and the imaginary a
rankx �= 0, we can perform a symplectic reduction first and the values ofke, kh andkf coincide
with the values ofke, kh andkf at the point corresponding tox in the reduced space. In particul
we haveke + kh + 2kf = n−m. The triple(ke, kh, kf ) is also called the Williamson type ofO,
because it does not depend on the choice ofx in O. Whenkh = kf = 0, we say that the singula
orbit is of elliptic type.

2.3. The linear model

We are going to introduce the linear model associated to the orbitO for a given symplectic
action preserving the system. Later, we will see that the invariants associated to the linea
are the Williamson type of the orbit and a twisting groupΓ attached to it.

Denote by(p1, . . . , pm) a linear coordinate system of a small ballDm of dimensionm,
(q1(mod 1), . . . , qm(mod 1)) a standard periodic coordinate system of the torusTm, and
(x1, y1, . . . , xn−m, yn−m) a linear coordinate system of a small ballD2(n−m) of dimension
2(n−m). Consider the manifold

V = Dm ×Tm ×D2(n−m)(2.1)

with the standard symplectic form
∑

dpi ∧ dqi +
∑

dxj ∧ dyj , and the following moment map

(p,h) = (p1, . . . , pm, h1, . . . , hn−m) :V → Rn(2.2)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



822 E. MIRANDA AND N.T. ZUNG

where
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hi = xiyi for ke + 1 � i � ke + kh,

hi = xiyi+1 − xi+1yi and

hi+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 � j � kf .

(2.3)

Let Γ be a group with a symplectic actionρ(Γ) onV , which preserves the moment map(p,h).
We will say that the action ofΓ onV is linear if it satisfies the following property:

Γ acts on the productV = Dm × Tm × D2(n−m) componentwise; the action ofΓ on
Dm is trivial, its action on Tm is by translations(with respect to the coordinate syste
(q1, . . . , qm)), and its action onD2(n−m) is linear with respect to the coordinate syste
(x1, y1, . . . , xn−m, yn−m).

Suppose now thatΓ is a finite group with a free symplectic actionρ(Γ) onV , which preserves
the moment map and which is linear. Then we can form the quotient symplectic manifoldV/Γ,
with an integrable system on it given by the same moment map as above:

(p,h) = (p1, . . . , pm, h1, . . . , hn−m) :V/Γ→ Rn.(2.4)

The set{pi = xi = yi = 0} ⊂ V/Γ is a compact orbit of Williamson type(ke, kf , kh) of the
above system. We will call the above system onV/Γ, together with its associated singu
Lagrangian fibration, the linear system (or linear model) of Williamson type(ke, kf , kh) and
twisting groupΓ (or more precisely, twisting actionρ(Γ)). We will also say that it is a direc
model ifΓ is trivial, and a twisted model ifΓ is nontrivial.

A symplectic action of a compact groupG on V/Γ which preserves the moment m
(p1, . . . , pm, h1, . . . , hn−m) will be called linear if it comes from a linear symplectic acti
of G on V which commutes with the action ofΓ. In our case, letG′ denote the group o
linear symplectic maps which preserve the moment map then this group is abelian and th
this last condition is automatically satisfied. In factG′ is isomorphic toTm × G1 × G2 × G3

beingG1 the direct product ofke special orthogonal groupsSO(2,R), G2 the direct produc
of kh components of typeSO(1,1,R) and G3 the direct product ofkf components of type
R× SO(2,R), respectively.

Now we can formulate our main result, which is the equivariant symplectic lineariz
theorem for compact nondegenerate singular orbits of integrable Hamiltonian systems:

THEOREM 2.1. – Under the above notations and assumptions, there exist a finite groupΓ, a
linear system on the symplectic manifoldV/Γ given by(2.1)–(2.4), and a smooth Lagrangian
fibration-preserving symplectomorphismφ from a neighborhood ofO into V/Γ, which sendsO
to the torus{pi = xi = yi = 0}. The smooth symplectomorphismφ can be chosen so that viaφ,
the system-preserving action of the compact groupG nearO becomes a linear system-preserv
action ofG onV/Γ. If the moment mapF is real analytic and the action ofG nearO is analytic,
then the symplectomorphismφ can also be chosen to be real analytic. If the system dep
smoothly(resp., analytically) on a local parameter(i.e. we have a local family of systems), then
φ can also be chosen to depend smoothly(resp., analytically) on that parameter.

Remarks. –
(1) In the case whenO is a point andG is trivial, the above theorem is due to Vey [22] in t

analytic case, and Eliasson [8,9] in the smooth case. The smooth one-degree-of f
case is due to Colin de Verdière and Vey [3].

4e SÉRIE– TOME 37 – 2004 –N◦ 6
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(2) In the case whenO is of elliptic type andG is trivial, the above theorem is due to Dufour
and Molino [7] and Eliasson [9].

(3) The analytic case withG trivial of the above theorem is due to Ito [12].
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(4) The case withn = 2,m = 1, O of hyperbolic type andG trivial is due to Colin de
Verdière and Ṽu Ngo.c San [4], and Currás-Bosch and the first author [6]. The sympl
uniqueness for the linear twisted hyperbolic case is not completely established
A complete proof for the twisted hyperbolic case whenn = 2 andm = 1 was given by
Currás-Bosch in [5]. The general smooth nonelliptic case seems to be new.

(5) A topological classification for nondegenerate singular fibers of the moment map (
contain nondegenerate singular orbits but are much more complicated in genera
obtained in [25], together with the existence of partial action-angle coordinate sys
However, the problem of classification up to symplectomorphisms of singular orb
singular fibers was not considered in that paper.

(6) As it was already pointed out by Colin de Verdière and Vũ Ngo.c San, the abov
theorem has direct applications in the problem of semiclassical quantization of inte
Hamiltonian systems. Of course, it is also useful for the global study of integ
Hamiltonian systems and their underlying symplectic manifolds.

(7) As it has been shown by the first author in [19], this theorem has applications
analogous contact linearization problem for completely integrable systems on c
manifolds.

The rest of the paper is organized as follows: in Section 3 we study the case of a fixed po
give the correspondingG-equivariant result. As a by-product, we prove that the path compo
of the identity of the group of symplectomorphisms preserving the system is abelian. In Se
we prove the general case. In Appendix A we show that the nondegeneracy condition
equivalent to the nonresonance condition for smooth systems.

3. The case of a fixed point

In this section we consider the case whenO is a point and we prove that the symplectic act
of G can be linearized symplectically in a fibration-preserving way.

This linearization result can be seen as a generalization of Bochner’s linearization th
[1] in the case the action of the group preserves additional structures: the symplectic fo
the fibration. An equivariant Darboux theorem for symplectic actions of compact Lie group
neighborhood of a fixed point was proved by Weinstein in [24]. In the case the actions cons
are the initial action and the linear action this equivariant Darboux theorem entails a sym
linearization result in a neighbourhood of a fixed point (see for example [2] and [24]).

We will linearize the action ofG using the averaging method of Bochner’s linearizat
This averaging trick will be applied to fibration-preserving symplectomorphisms which w
presented as time-1-maps of Hamiltonian vector fields.

In order to linearize the action of the compact Lie group in a fibration preserving wa
will work with a linear fibration and with the standard symplectic form. The results of Elia
[8,9] (for smooth systems) and Vey [22] (for real analytic systems) show that there is a fibr
preserving symplectomorphism from a neighborhood ofO in (M2n, ω,F) to a neighborhood o
the origin of the linear system(R2n,

∑n
i=1 dxi∧dyi,h), whereh = (h1, . . . , hn) is the quadratic

moment map given by formula (2.3). If the compact symmetry groupG in Theorem 2.1 is trivial
then we are done. Suppose now thatG is nontrivial. We can (and will) assume that the singu
Lagrangian fibration nearO is already linear. We will refer to this Lagrangian fibration asF . It
remains to linearize the action ofG in such a way that the fibration remains the same. It wo

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



824 E. MIRANDA AND N.T. ZUNG

be interesting to adapt the proof of Eliasson for actions of compact Lie group but unfortunately
some of the steps in his proof do not seem to admit an equivariant version.

Let us fix some notation that we will use throughout the paper. The vector fieldXΨ will stand
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for a Hamiltonian vector field with associated Hamiltonian functionΨ. We denote byφs
X the

time-s-map of the vector fieldX . Let ψ be a local diffeomorphismψ : (R2n,0) → (R2n,0). In
the sequel, we will denote byψ(1) the linear part ofψ at0. That is to say,ψ(1)(x) = d0ψ(x).

The groupG stands for the group of local automorphisms preserving the system,G =
{φ : (R2n,0)→ (R2n,0), such thatφ∗(ω) = ω, h◦φ = h}, andG0 stands for the path-compone
of the identity ofG. We denote byg the Lie algebra of germs of Hamiltonian vector fields tang
to the fibrationF .

The subgroup of linear transformations contained inG is denoted byG′. As we have observe
in the introductionG′ is abelian.

The goal of this section is to prove a local linearization result (Proposition 3.6) for a
smooth action of a compact Lie groupG. In order to prove this result we will have to show th
given any local automorphismψ ∈ G thenψ(1) ◦ ψ−1 can be presented as the time-1-flow of a
Hamiltonian vector field as it is shown in Corollary 3.4.

As we will see this is, in fact, a consequence of Theorem 3.2 which shows that the expo
mappingexp :g→G0 determined by the time-1-flow of a vector fieldX ∈ g is a surjective group
homomorphism.

Before stating this theorem we need the following sublemma.

SUBLEMMA 3.1. – The Lie algebrag is abelian and for any pair of vector fieldsXG1 and
XG2 contained ing the following formula holds

φs
XG1+XG2

= φs
XG1

◦ φs
XG2

.

Proof. –Let XG1 andXG2 be two vector fields ing. Since{G1,G2} = ω(XG1 ,XG2) and
XG1 andXG2 are tangent to the Lagrangian fibrationF then{G1,G2}L = 0 for any regular
fiber L of F . On the other hand, since the set of regular fibers is dense andXG1 andXG2 are
also tangent along the singular fibers, the bracket{G1,G2} vanishes everywhere.

This implies in turn that[XG1 ,XG2 ] = 0 and the Lie algebrag is abelian. Therefore the flow
associated toXG1 andXG2 commute. As a consequenceαs = φs

XG1
◦ φs

XG2
is a one-paramete

subgroup.
A simple computation shows that its infinitesimal generator isXG1 + XG2 and this ends th

proof of the sublemma. �
Observe that given a vector fieldXG in g, its time-s-flow φs

XG
preserves the moment ma

h becauseXG is tangent toF . It also preserves the symplectic form since it is the flow o
Hamiltonian vector field. Finally since the vector fieldXG vanishes at the origin the mappin
φs

XG
fixes the origin. Therefore,φs

XG
is contained inG. In fact it is contained inG0 since

φ0
XG

= Id.
We denote byexp :g → G0 the exponential mapping defined byexp(XG) := φ1

XG
for any

XG ∈ g. We can now state and prove the first theorem of this section.

THEOREM 3.2. – The exponentialexp :g → G0 is a surjective group homomorphism, a
moreover there is an explicit right inverse given by

φ ∈ G0 �→
1∫

0

Xt dt ∈ g,

4e SÉRIE– TOME 37 – 2004 –N◦ 6
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whereXt ∈ g is defined by

Xt(Rt) =
dRt

up

ic
n.

t
f the

e

dt

for anyC1 pathRt contained inG0 connecting the identity toφ.

Proof. –The formula proved in Sublemma 3.1 withs = 1 shows that the exponential is a gro
homomorphism. It remains to show that it is surjective.

Let Rs be aC1 path inG0 such thatR0 = Id andR1 = φ for a givenφ ∈ G0.
We define the time-dependent vector fieldXt by the following formula:

Xt(Rt) =
dRt

dt
.

Observe thatXt is tangent to the fibrationF for any t contained in [0,1] because
the diffeomorphismRt preserves the fibrationF , ∀t. On the other hand sinceRt is a
symplectomorphism for anyt, the vector fieldXt is locally Hamiltonian. Since the symplect
manifold considered is a neighbourhoodU of the origin the vector field is indeed Hamiltonia
Thus,Xt is contained in the Lie algebrag.

Now considerYt =
∫ t

0
Xr dr. This vector field is also contained ing.

We will show thatexpYt = Rt for any t ∈ [0,1]. Particularizingt = 1, this shows tha
expY1 = R1 = φ and therefore the mapping of the statement is an explicit right inverse o
exponential mapping and the exponential is surjective.

In order to show the equalityexpYt = Rt, t ∈ [0,1]. We will show that it satisfies the sam
nonautonomous differential equation

Xt(expYt) =
d(expYt)

dt

and this will implyexpYt = Rt, t ∈ [0,1], since the initial conditions are the same.
In fact, we will prove that

sXt(φs
Yt

) =
dφs

Yt

dt
(3.1)

which leads to the desired result whens = 1 since by definitionφ1
Yt

= expYt.
Observe that the formula we want to prove is equivalent to the fact that the vector fieldsXt is

tangent to the curveφs
Yt+u

◦ (φs
Yt

)−1 at any pointp. Therefore, we can write formula (3.1) as

sXt =
d

du |u=0

(
φs

Yt+u
(φs

Yt
)−1

)
.

After differentiation with respect tos the formula we want to prove becomes:

Xt =
d

ds

d

du |u=0

(
φs

Yt+u
(φs

Yt
)−1

)
.(3.2)

We will first compute

d

ds

(
φs

Yt+u
(φs

Yt
)−1

)
.

According to Sublemma 3.1 the Lie algebrag is abelian and we may write(
φs

Yt+u
(φs

Yt
)−1

)
= φs

Yt+u−Yt
.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



826 E. MIRANDA AND N.T. ZUNG

Observe thatYt+u − Yt =
∫ t+u

t
Xr dr.

On the one hand using the definition of flow
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d

ds

(
φs

Yt+u
(φs

Yt
)−1

)
=

d

ds
(φ∫ t+u

t
Xrdr

) =

t+u∫
t

Xr dr ;

on the other hand, since

lim
u→0

∫ t+u

t
Xr dr − uXt

u
= 0,(3.3)

we can write
∫ t+u

t
Xr dr = uXt + o(u), uniformly in t.

Therefore,

d

ds

(
φs

Yt+u
(φs

Yt
)−1

)
= uXt + o(u).(3.4)

Finally differentiating inu and particularizingu = 0 we obtain

d

du

d

ds |u=0
(φs

Yt+u
(φs

Yt
)−1)|u=0 = Xt.

This proves formula (3.2) and this ends the proof of the theorem.�
Remark. – Observe that this exponential mapping is not always injective. Since a vecto

X ∈ g is a Hamiltonian vector field tangent toF , its Hamiltonian function is a first integral of th
system given byh. ThereforeX = Xφ(h1,...,hn) when restricted to each connected componen
the regular set ofh. Bearing this in mind, it is easy to see that the exponential is injective if t
are only hyperbolic components (Williamson type(0, n,0)). If there are elliptic or focus-focu
components any vector field of typeX = X2πkhi , k ∈ Z (with hi standing for an elliptic function
or for a functionhi in a focus-focus pairhi, hi+1) is contained in the kernel of the exponent
In fact, the kernel is generated by these vector fields. In particular, this guarantees thatexp is
always locally injective.

The theorem above has direct applications to the linearization problem posed at the be
of this section but it also tells us thatG0 is abelian.

COROLLARY 3.3. – The groupG0 is abelian.

Proof. –According to Theorem 3.2, the exponential mapping is a surjective morphis
groups and according to Sublemma 3.1 the Lie algebrag is abelian. This implies thatG0 is
abelian.

Remarks. –
(1) One could also check thatG0 is abelian using the following: Observe that it is enou

to check that any two diffeomorphismsφ1 and φ2 in G0 commute on an open den
set. We consider the dense setΩ determined by the regular points of the fibratio
Now consider the submanifoldL(δ1,...,δn) = {(x1, y1, . . . , xn, yn), xi = δiyi, ∀i} with
δi ∈ {−1,+1}. It is a Lagrangian submanifold. In the case there are no hyper
components, takingδi = 1 and δi+1 = −1 for the focus-focus pairshi and hi+1, the
submanifoldL(δ1,...,δn) is transversal to the regular Lagrangian fibration induced bF
on Ω. So we may apply a result of Weinstein [23] which ensures that the foliatio
symplectomorphic in a neighborhood ofL to the foliation by fibers inT ∗(L) endowed

4e SÉRIE– TOME 37 – 2004 –N◦ 6
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with the Liouville symplectic structure. In this way we may assume that the symplectic
form is ω =

∑
i dpi ∧ dqi being qi coordinates onL. The fibration is then determined

by F = (q1, . . . , qn). Now any diffeomorphism lying inG can be written in the form

this

e of
ld
for

g the
ctic

sider

n

local

-

on
φ(q1, . . . , qn, p1, . . . , pn) = (q1, . . . , qn, p1 + α1(q), . . . , pn + αn(q)) for certain smooth
functionsαi. Clearly any two diffeomorphisms of this form commute and therefore
proves thatG0 is abelian. In the case there are hyperbolic components sinceφ1 andφ2

leave each orthant invariant. In each orthant we may consider an appropriate choicδi

for hyperbolic functionshi such thatL(δ1,...,δn) is a transversal Lagrangian submanifo
to the fibration restricted to this orthant. And we may repeat the argument aboveF
restricted to each orthant to conclude thatG0 is abelian.
As observed by Weinstein in [23], the study of local symplectomorphism preservin
foliation by fibers inT ∗(L) has relevance in the study of lagrangian-foliated symple
manifolds.

(2) AlthoughG is also abelian for analytical systems, it is not always abelian if we con
smooth systems as the following example shows:
Considern = 1 andh = xy. Let ψ be the smooth function:

ψ(x, y) =

{
e−1/(xy)2 , x � 0,

2e−1/(xy)2 , x � 0,

and let φ be the time-1-map of Xψ . Then φ does not commute with the involutio
I(x, y) = (−x,−y).

Another interesting consequence of Theorem 3.2 is the following result about the
automorphisms of the linear integrable system(R2n,

∑n
i=1 dxi ∧ dyi,h).

COROLLARY 3.4. – Suppose thatψ : (R2n,0) → (R2n,0) is a local symplectic diffeomor
phism ofR2n which preserves the quadratic moment maph = (h1, . . . , hn). Then,

(1) The linear partψ(1) is also a system-preserving symplectomorphism.
(2) There is a vector field contained ing such that its time-1-map isψ(1) ◦ ψ−1. Moreover,

for each vector fieldX fulfilling this condition there is a unique local smooth functi
Ψ: (R2n,0) → R vanishing at0 which is a first integral for the linear system given byh
and such thatX = XΨ. If ψ is real analytic thenΨ is also real analytic.

Proof. –We are going to construct a path connectingψ to ψ(1) contained in

G =
{
φ : (R2n,0)→ (R2n,0), such thatφ∗(ω) = ω, h ◦ φ = h

}
.

Given a mapψ ∈ G, we consider

Sψ
t (x) =


ψ ◦ gt

t
(x), t ∈ (0,2],

ψ(1)(x), t = 0,

beinggt the homothetygt(x1, . . . , xn) = t(x1, . . . , xn).
Observe that in caseψ is smooth, this mappingSψ

t is smooth and depends smoothly ont. In
caseψ is real analytic, the correspondingSψ

t is also real analytic and depends analytically ont.
First let us check thath ◦ Sψ

t = h whent �= 0. We do it component-wise.
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Let x = (x1, . . . , xn), then(
ψ ◦ gt

)
(hj ◦ψ ◦ gt)(x) hj ◦ gt(x)

refore

n of

s

s

)
te a

)

hj ◦
t

(x) =
t2

=
t2

= hj(x),

where in the first and the last equalities we have used the fact that each componenthj of the
moment maph is a quadratic polynomial whereas the conditionh ◦ ψ = h yields the second
equality.

Now we check that(Sψ
t )∗(ω) = ω whent �= 0. Sinceω =

∑
dxi ∧dyi, theng∗t (ω) = t2ω. But

sinceψ preservesω then (
Sψ

t

)∗(ω) =
(

ψ ◦ gt

t

)∗
ω = ω

whent �= 0.
So far we have checked the conditionsh ◦ Sψ

t = h and(Sψ
t )∗(ω) = ω whent �= 0 but since

Sψ
t depends smoothly ont we also have thath ◦ Sψ

0 = h and(Sψ
0 )∗(ω) = ω. So, in particular,

we obtain thatSψ
0 = ψ(1) preserves the moment map and the symplectic structure and the

ψ(1) is also contained inG. This proves the first statement of the corollary.
In order to prove the second statement we only need to show thatψ(1) ◦ ψ−1 is contained in

G0. Then, we can apply Theorem 3.2 to conclude.
Consider

Rt = ψ(1) ◦ S
(ψ−1)
t

with t ∈ [0,1], this path connects the identity toψ(1) ◦ψ−1 and is contained inG0.
Then the formula of Theorem 3.2 applied to this path provides a vector fieldX whose time-

1-map isψ(1) ◦ ψ−1 and there exists a unique Hamiltonian functionΨ vanishing at0 such that
XΨ = X . Since the vector fieldXΨ is tangent to the foliation then{Ψ, hi} = 0,∀i, in other
words,Ψ is a first integral of the system.�

In the case the action ofG depends on parameters we have a parametric versio
Corollary 3.4.

COROLLARY 3.5. – Let Dp stand for a disk centered at0 in the parametersp1, . . . , pm.
We denote byp = (p1, . . . , pm). Assume thatψp : (R2n,0) → (R2n,0) is a local symplectic
diffeomorphism ofR2n which preserves the quadratic moment maph and which depend
smoothly on the parametersp. Then there is a local smooth functionΨp : (R2n,0)→ R vanishing
at 0 depending smoothly onp which is a first integral for the linear system given byh and such
that ψ

(1)
0 ◦ ψ−1

p is the time-1 map of the Hamiltonian vector fieldXΨp of Ψp. If ψp is real
analytic and depends analytically on the parameters thenΨp is also real analytic and depend
analytically on the parameters.

Proof. –We will apply again Theorem 3.2. We consider the path

Mt = ψ
(1)
0 ◦ (ψgt(p))−1,

wheregt(p) = (tp1, . . . , tpm). This path is smooth (resp. analytic) ifψ is smooth (resp. analytic
and depends analytically ont and is contained inG0. Because of Theorem 3.2 we can associa
Hamiltonian vector fieldXΨp to this path such that its time-1-map coincides withψ(1)

0 ◦ (ψp)−1.
By construction, this functionΨp is smooth (or real analytic) ifψp is smooth (or real analytic
and depends smoothly or analytically on the parameters ifψp does so. �
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After this digression, we will prove our local linearization result. By abuse of language, we will
denote the local (a priori nonlinear) action of our compact groupG on (R2n,

∑n
i=1 dxi ∧ dyi,h)

by ρ. For each elementg ∈ G, denote byXΨ(g) the Hamiltonian vector field constructed via the

.

-
ation.

can

ave

liptic
s

formula explicited in Theorem 3.2 applied to the pathRt explicited in Corollary 3.4. The time-1
map of this vector field isρ(g)(1) ◦ ρ(g)−1 whereρ(g)(1) denotes the linear part ofρ(g). It is
clear that this defines a smooth functionΨ(g).

Consider the averaging of the family of vector fieldsXΨ(g) over G with respect to the
normalized Haar measuredµ onG. That is to say

XG(x) =
∫
G

XΨ(g)(x)dµ, x ∈ R2n.(3.5)

This vector field is Hamiltonian with Hamiltonian function
∫

G
Ψ(g)dµ. Denote byΦG the

time-1 map of this vector fieldXG.

PROPOSITION 3.6. – ΦG is a local symplectic coordinate transformation ofR2n which
preserves the system(R2n,

∑n
i=1 dxi ∧ dyi,h) and under which the action ofG becomes linear

Proof. –SinceΦG is the time-1 map of vector field contained ing, ΦG is a symplectomor
phism preserving the fibration. Therefore it defines a local symplectic variable transform
Let us check that this transformation linearizes the action ofG.

From the definition ofΦG and formula (3.5),

ΦG(x) = φ1
XG

(x) =
∫
G

φ1
XΨ(g)

(x)dµ.

But since,φ1
XΨ(g)

= ρ(g)(1) ◦ ρ(g)−1 we have

ΦG(x) =
∫
G

ρ(g)(1) ◦ ρ(g)−1(x)dµ.

We proceed as in the proof of Bochner’s linearization theorem [1]

(
ρ(h)(1) ◦ΦG ◦ ρ(h)−1)(x) = ρ(h)(1) ◦

∫
G

(
ρ(g)(1) ◦ ρ(g)−1

)(
ρ(h)−1(x)

)
dµ.

Using the linearity ofρ(h)(1) and the fact thatρ stands for an action, the expression above
be written as ∫

G

(
ρ(h) ◦ ρ(g)

)(1) ◦
(
ρ(h) ◦ ρ(g)

)−1(x)dµ.

Finally this expression equalsΦG due to the left invariance property of averaging and we h
provenΦG ◦ ρ(h) = ρ(h)(1) ◦ΦG as we wanted. �

Remark. – A fortiori, one can show that any analytic action of a compact Lie groupG on
(R2n,

∑n
i=1 dxi ∧dyi,h) must be linear (so no need to linearize). Only in the smooth nonel

case the action ofG may be nonlinear. And even in the smooth case, ifG is connected then it
action is also automatically linear.
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In the case the action ofG depends on parameters, this proposition and Corollary 3.4 lead to
its parametric version.

hood

ation
rity.
pecific

alid in
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ingular
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e
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ng
g
rbits

ts.
a

a

g

PROPOSITION 3.7. – In the case the actionρp depends smoothly(resp. analytically) on
parameters there exists a local symplectic coordinate transformation ofR2n, Φp, which
preserves the system and which satisfies

Φp ◦ ρp(h) = ρ0(h)(1) ◦Φp.

The proposition above will be a key point in the proof of the linearization in a neighbor
of the orbit.

Remark. – In this section we have addressed a linearization problem with a foli
determined by a moment maph = (h1, . . . , hn) corresponding to a nondegenerate singula
Thanks to the smooth linearization result of Eliasson this moment map has very s
component functionshi of elliptic, hyperbolic and focus-focus type.

However, some of the results in this section do no use this particularity and remain v
a more general context. For instance Sublemma 3.1 and Theorem 3.2 hold for a com
integrable system which defines a generically Lagrangian foliation and has the origin as s
point.

Corollaries 3.4 and 3.5 also remain valid if we also assume that the component functihi

are homogeneous because the pathSt also preservesh under this condition. In particular, th
final linearization results Propositions 3.6 and 3.7 also hold for foliations whose momen
has homogeneous component functions.

4. The general case

Suppose now thatdimO = m > 0. For the moment, we will forget about the groupG, and try
to linearize the system in a nonequivariant way first.

First let us recall the following theorem proved by the second author in [25]:

THEOREM 4.1. –Let (U(N),F) be a nondegenerate singularity of Williamson type(ke, kh,
kf ) of an integrable Hamiltonian system withn degrees of freedom. Then there is a natu
Hamiltonian action of a torusTn−kh−kf which preserves the moment map of the integra
Hamiltonian system. This action is unique, up to automorphism ofTn−kh−kf and it is free almos
everywhere inU(N).

In this theoremU(N) stands for a neighborhood of a leafN . If we consider an orbit instea
of a leaf of rankm and Williamson type(ke, kh, kf ) we obtain a locally free system-preservi
torus Tm-action in a neighborhood of the orbitO. In fact, this action can be found by usin
either Mineur’s formula (1.2) or alternatively the flat affine structure on the (local) regular o
nearO of the PoissonRn-action, and the existence ofm nonvanishing cycles on these orbi
Let us denote by(p1, . . . , pm) an m-tuple of action functions nearO which generates such
locally-freeTm-action, and denote byX1, . . . ,Xm them corresponding periodic (of period1)
Hamiltonian vector fields.

Of course,O is an orbit of the aboveTm-action. Denote byΓ the isotropy group of the

action ofTm on O. SoΓ is a finite abelian group. There is a normal finite covering̃U(O) of
a tubular neighborhoodU(O) of O such that theTm-action onU(O) can be pulled back to

free Tm-action onŨ(O). The symplectic formω, the moment mapF and its correspondin

singular Lagrangian fibration, and the action functionsp1, . . . , pm can be pulled back tõU(O).
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We will use ˜ to denote the pull-back: for example, the pull-back ofO is denoted byÕ, and

the pull-back ofp1 is denoted byp̃1. The free action ofΓ on Ũ(O) commutes with the free
Tm-action. By cancelling out the translations (symplectomorphisms given by theTm-action are

r

lo

l
ced
e fixed
n,
s

on

f

he
s

.

t
e

called translations), we get another action ofΓ on Ũ(O) which fixesO. We will denote this latte
action byρ′.

Take a point̃x ∈ Õ, a local diskP̃ of dimension(2n − m) which intersects̃O transversally
at x̃ and which is preserved byρ′. Denote byq̂1, . . . , q̂m the uniquely defined functions modu

1 on Ũ(O) which vanish onP̃ and such that̃Xi(qi) = 1, X̃i(qj) = 0 if i �= j. Then each loca
disk {p̃1 = const, . . . , p̃m = const} ∩ P̃ near x̃ has an induced symplectic structure, indu
singular Lagrangian fibration of an integrable Hamiltonian system with a nondegenerat
point, which is invariant under the actionρ′ of Γ. Applying the result of the previous sectio
i.e. Theorem 2.1 in the case with a fixed point, compact symmetry groupΓ, and parameter
p1, . . . , pm, we can define local functions̃x1, ỹ1, . . . , x̃n−m, ỹn−m on P̃ , such that they form a
local symplectic coordinate system on each local disk{p̃1 = const, . . . , p̃m = const} ∩ P̃ , with
respect to which the induced Lagrangian fibration is linear and the actionρ′ of Γ is linear. We

extend̃x1, ỹ1, . . . , x̃n−m, ỹn−m to functions onŨ(O) by making them invariant under the acti

of Tm. Define the following symplectic form oñU(O):

ω̃1 =
∑

d̃pi ∧ dq̃i +
∑

dx̃i ∧ dỹi.(4.1)

Consider the difference betweenω̃ andω̃1:

LEMMA 4.2. – There exist functions̃gi in a neighborhood of̃O in Ũ(O), which are invariant
under theTm-action, and such that

ω̃1 − ω̃ =
∑

dp̃i ∧ dg̃i .(4.2)

Proof. –By definition of ω̃1, the vector fieldX̃i is also the Hamiltonian vector field o
p̃i with respect toω̃1. Thus we havẽXi�(ω̃1 − ω̃) = 0 and X̃i�d(ω̃1 − ω̃) = 0. In other
words, ω̃1 − ω̃ is a basic2-form with respect to the fibration given by the orbits of t
Tm-action, i.e. it can be viewed as a2-form on the(2n − m)-dimensional space of variable
(p̃1, . . . , p̃m, x̃1, ỹ1, . . . , x̃n−m, ỹn−m). Moreover, by construction, the restriction of̃ω1 on each
subspace{p̃1 = const, . . . , p̃m = const} coincides with the restriction of̃ω on that subspace
Thus we can write

ω̃1 − ω̃ =
∑

dp̃i ∧ α̃i

where eachα̃i is an 1-form in variables(p̃1, . . . , p̃m, x̃1, ỹ1, . . . , x̃n−m, ỹn−m). We have tha∑
dp̃i ∧ dα̃i = dω̃1 − dω̃ = 0, which implies that the restriction of̃αi on each subspac

{p̃1 = const, . . . , p̃m = const} is closed (hence exact), so we can writeα̃i as

α̃i = dβ̃i +
∑

c̃ij dp̃j

whereβ̃i andc̃ij are functions of variables(p̃1, . . . , p̃m, x̃1, ỹ1, . . . , x̃n−m, ỹn−m). Thus

ω̃1 − ω̃ =
∑
i<j

(c̃ij − c̃ji)dp̃i ∧ dp̃j +
∑

dp̃i ∧ dβ̃i.
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Sinced(ω̃1 − ω̃) = 0, the 2-form
∑

i<j(c̃ij − c̃ji)dp̃i ∧ dp̃j is closed (hence exact), and the

functionsc̃ij − c̃ji are independent of the variables(x̃1, ỹ1, . . . , x̃n−m, ỹn−m). Thus we can write

d

stem of

f

of

linear
type

c

∑
i<j

(c̃ij − c̃ji)dp̃i ∧ dp̃j = d

(∑
dp̃i ∧ γ̃i

)

whereγ̃i are functions of variables(p̃1, . . . , p̃m). Now putg̃i = β̃i + γ̃i. �
Consider thẽgi given by the lemma and define

q̃i = q̂i − g̃i.(4.3)

Then with respect to the coordinate system(p̃i, q̃i, x̃j , ỹj), the symplectic form̃ω has the standar
form, the singular Lagrangian fibration is linear, and the free action ofΓ is also linear.

Remark. – There is another proof of Theorem 2.1 in the general case with trivialG which
does not use Lemma 4.2. It goes as follows. Assume that we have constructed the sy
coordinates

p̃1, q̂1, x̃1, ỹ1, . . . , p̃m, q̂mx̃n−m, ỹn−m

as before. LetDR be the symplectic distribution

DR =
〈

∂

∂p̃1
,X1, . . . ,

∂

∂p̃m
,Xm

〉
and letDS be the distribution symplectically orthogonal toDR. Thus, we can write

w̃ = ω̃R + ω̃S .

It is easy to check thatDS is an involutive distribution. Denote byN p
S the integral manifold o

DS through the pointp thenω̃S |p = ω̃Np
S
|p. We can apply Theorem 2.1 to eachN p

S to obtain a
new system of coordinateŝx1, ŷ1, . . . , x̂n−m, ŷn−m in a neighborhood of the origin such that

ω̃S =
∑

dx̂i ∧ dŷi.

Finally, in the system of coordinates̃p1, q̂1, x̂1, ŷ1, . . . , p̃m, q̂mx̂n−m, ŷn−m, the symplectic form
ω̃ has the standard form, the singular Lagrangian fibration is linear, and the free actionΓ is
also linear.

Thus we have shown that the original singular Lagrangian fibration nearO is symplectically
equivalent to a linear model (direct ifΓ is trivial and twisted ifΓ is nontrivial).

As was mentioned in the introduction, the group of all linear automorphisms (i.e.
moment map preserving symplectomorphisms) of the linear direct model of Williamson
(ke, kh, kf ) is isomorphic to the following Abelian group:

Tm ×Tke × (R×Z/2Z)kh × (R×T1)kf .

In particular,Γ is necessarily a subgroup of(Z/2Z)kh . (It comes from involutions of hyperboli
components, and it does not mix the components.)
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Remark. – In [15] and [14] Marle establishes a model for a Hamiltonian action of a compact
Lie group in a neighborhood of an orbit. This result was obtained independently by Guillemin and
Sternberg in [10]. In our construction a Hamiltonian action of anm-dimensional torus preserving

ization
–Marle
n

metry

of

t loss
s
,

tion
ify the
ters
the fibration determined by the moment map comes into the scene. In fact the linear
result we have just proved can be understood as a generalization of Guillemin–Sternberg
theorem in the case the group considered isTm. It gives a linear model for a Hamiltonian actio
of a torus preserving an additional structure: a singular Lagrangian fibration.

In order to prove Theorem 2.1 it remains to consider the case when the compact sym
groupG is nontrivial.

In the case there exists an action of a nontrivial groupG onV/Γ we have an induced action
G onV . The following theorem shows that this action can be linearized.

THEOREM 4.3. – LetG be a compact Lie group preserving the system(
Dm ×Tm ×D2(n−m),

m∑
i=1

dpi ∧ dqi +
n−m∑
i=1

dxi ∧ dyi,F

)

then there existsΦG a diffeomorphism defined in a tubular neighborhood of the orbitL = Tm

which preserves the system(
Dm ×Tm ×D2(n−m),

m∑
i=1

dpi ∧ dqi +
n−m∑
i=1

dxi ∧ dyi,F

)

and under which the action ofG becomes linear.

Proof. –After shrinking the original neighborhood if necessary, we may assume withou
of generality that we are considering aG-invariant neighborhood ofL. First of all, let us expres
in local coordinates how the action looks like. We denote byρ the action ofG. For convenience
we use the simplifying notationp = (p1, . . . , pm) and(x, y) = (x1, y1, . . . , xn−m, yn−m). Since
G preserves the system, in particularρ preservesp and sends ∂

∂qi
to ∂

∂qi
. After all these

considerations, for eachh ∈G the diffeomorphismρ(h) can be written as

ρ(h)(p, q1, . . . , qm, x, y) =
(
p, q1 + gh

1 (p,x, y), . . . , qm + gh
m(p,x, y), αh(x, y, p)

)
where the functionsgh

i andαh are constrained by more conditions given by the preserva
of the system. Before considering these constraints, it will be most convenient to simpl
expression ofαh first. This will be done using the local linearization theorem with parame
(Proposition 3.7).

In order to do that, we restrict our attention to the induced mapping,

ρ(h)(p,x, y) =
(
p,αh(p,x, y)

)
and we consider the family of diffeomorphismsρ(h)p :D2(n−m) →D2(n−m) defined as follows

ρ(h)p(x, y) = αh(p,x, y).
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We may look atp = (p1, . . . , pm) as parameters. For eachp the mappingρ(h)p(x, y) induces
an action ofG on the diskD2(n−m) which preserves the induced system( )

n fixes

o

d,

-

n

ters

on

se
lectic

uct
D2(n−m),

n∑
i=1

dxi ∧ dyi,h .

Observe that the preservation of the induced system implies, in particular, that the actio
the origin.

According to Proposition 3.7 we can linearize the actionρ(h)p in such a way that it is taken t

the parametric-free linear actionρ(h)(1)0 . We can extend trivially the diffeomorphismΦp in the
disk provided by Proposition 3.7 to a diffeomorphismΨ in the whole neighborhood considere
simply by declaring,Ψ(p, q1, . . . , qm, x, y) = (p, q1, . . . , qm,Φp(x, y)). This diffeomorphism
does not preserve (in general) the symplectic structureω, let ω1 = Ψ∗(ω), we can apply Lem
ma 4.2 toω andω1. Consider thẽgi given by Lemma 4.2 and define

q̃i = qi − g̃i.(4.4)

Then after this change of coordinatesω1 is taken toω. For the sake of simplicity we will keep o
using the notationqi for the new coordinates. After this linearization in the(x, y)-direction the
initial expression ofρ(h) looks like

ρ(h)(p, q1, . . . , qm, x, y) =
(
p, q1 + gh

1 (p,x, y), . . . , qm + gh
m(p,x, y), ρ(h)(1)0 (x, y)

)
.

Since the action preserves the symplectic form
∑m

i=1 dpi ∧ dqi +
∑n−m

i=1 dxi ∧ dyi we
conclude that the functionsgh

i do not depend on(x, y) and so far just depend on the parame
(p1, . . . , pm). In other words,

ρ(h)(p, q1, . . . , qm, x, y) =
(
p, q1 + gh

1 (p), . . . , qm + gh
m(p), ρ(h)(1)0 (x, y)

)
.

Observe that if we prove that these functionsgh
i do not depend onp then we will be done

because then the induced action onTm will be performed by translations. And, in all, the acti
will be linear.

ConsiderH = {ρ(h), h ∈G}, we are going to prove that this group is abelian.
We have to check thatρ(h1) ◦ ρ(h2) = ρ(h2) ◦ ρ(h1).
We compute

ρ(h1) ◦ ρ(h2)(p, q1, . . . , qm, x, y)

=
(
p, q1 + gh2

1 (p) + gh1
1 (p), . . . , qm + gh2

m (p) + gh1
m (p), ρ(h1)

(1)
0 ◦ ρ(h2)

(1)
0 (x, y)

)
;

On the other hand

ρ(h2) ◦ ρ(h1)(p, q1, . . . , qm, x, y)(
p, q1 + gh1

1 (p) + gh2
1 (p), . . . , qm + gh1

m (p) + gh2
m (p), ρ(h2)

(1)
0 ◦ ρ(h1)

(1)
0 (x, y)

)
.

Clearly, the first2m components coincide. As for the2(n−m) last components, we can u
the fact thatG′, the group of linear transformations preserving the fibration and the symp
form is abelian, as we pointed out in the introduction.

So far we know that the groupH is abelian. It is also compact, therefore it is a direct prod
of a torusTr with finite groups of typeZ/nZ. We are going to check that for eachρ(h) ∈ H
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the functionsgh
i do not depend onp. It is enough to check it forρ(h) in one of the components

Z/nZ andTr. So we distinguish two cases
• ρ(h) belongs toZ/nZ. Then ρ(h)n = Id; this condition yields,ngh

i (p) = 2πmi(p),

o

ne. We
paper.
in the

undet i
does

eracy
nance
which

time. In

ly
ion
mi(p) ∈ Z for all 1 � i � m. Sincemi(p) is a continuous function taking values inZ it
is a constant functionmi. Thus,gh

i (p) = 2πmi

n andgh
i does not depend onp.

• ρ(h) belongs toTr. We can consider a sequenceρ(hn) lying on the torus which belong t
a finite groupZ/knZ and which converge toρ(h). For each of these pointsρ(hn) we can
apply the same reasoning as before to obtainghn

i (p) = 2πmi

kn
.

Now for eachn, the diffeomorphismρ(hn) does not depend onp; we may write this
condition as

∂ρ(hn)
∂pi

= 0, 1 � i � m.

Now since the action is smooth we can take limits in this expression to obtain that

∂ρ(h)
∂pi

= 0, 1 � i � m,

and finallygh
i (p) does not depend onp.

And this ends the proof of the theorem.�
This linearizes the action ofG on V . After considering the quotient with the action ofΓ this

theorem yields Theorem 2.1.
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Appendix A. Nonresonance versus nondegeneracy

As pointed out by Ito [11,12] (see also [27]), in the real analytic case, the nondegen
condition explained in the introduction of this paper is essentially equivalent to the nonreso
condition. However, in the smooth case, this is no longer true: smooth integrable systems
are nonresonant at a singular point can be very degenerate at that point at the same
particular, we have:

PROPOSITION A.1. – Let γ1, . . . , γn be anyn-tuple of positive numbers which are linear
independent overZ, n � m+2,m � 0. Then, there is a smooth integrable Hamiltonian funct
H in a neighborhood of the(elliptic invariant) torus Tm

0 = Tm × {0} × {0} in the standard
symplectic space(Tm × Rm × R2(n−m), ω0 =

∑m
i=1 dpi ∧ dqi +

∑n
i=m+1 dxi ∧ dyi), such

that H = 1
π

∑m
i=1 γipi +

∑n
i=m+1 γi(x2

i + y2
i ) + higher order terms atTm

0 , and such thatH
does not admit aC1-differentiable local Birkhoff normalization nearTm

0 (i.e. the corresponding
Lagrangian fibration cannot be linearized). Moreover, this integrable Hamiltonian functionH
can be chosen so that it does not admit a nontrivial symplecticS1-symmetry nearTm

0 .
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In the above proposition, by integrability ofH we mean the existence of a smooth moment
map (F1, . . . , Fn) from a neighborhood ofTm

0 = Tm × {0} × {0} in Tm × Rm × R2(n−m)

to Rn, with F1 = H , such that{Fi, Fj} = 0, anddF1 ∧ · · · ∧ dFn �= 0 almost everywhere. By

ille’s
dition
t
,

r

ns of
variant
aotic

uct an

nt

e
ains

s.
n
ge

n

“higher order terms” inH we mean terms which are at least quadratic in variablespi, or cubic in
variablespi, xi, yi. According to Sard’s theorem (about the set of singular values) and Liouv
theorem, almost all common level sets of such a moment map are Liouville tori. The con
that γ1, . . . , γn are independent overZ means thatTm × {0} × {0} is a nonresonant invarian
elliptic torus of the HamiltonianH . Recall that if there is a differentiable Birkhoff normal form
then (since we are in the elliptic case), the system also admits a HamiltonianTn-symmetry nea
the elliptic singular orbit. Thus, if the system does not admit a nontrivialS1-symmetry nearTm

0 ,
then of course it cannot admit a differentiable Birkhoff normal form.

The proof of Proposition A.1 is inspired by what happens to generic perturbatio
integrable systems: resonant tori that break up and give way to smaller-dimensional in
tori, homoclinic orbits, diffusion, etc. Usually this breaking up of resonant tori leads to a ch
behavior of the system, see, e.g., [21]. In order to prove Proposition A.1, we will constr
integrable perturbationof the quadratic Hamiltonian1π

∑m
i=1 γipi +

∑n
i=m+1 γi(x2

i + y2
i ) +

higher order terms atTm
0 in such a way that there are also invariant tori arbitrarily close toTm

0

that break up.
First let us consider the case withm = 0 (i.e. a fixed point). Our construction ofH in this case

consists of two steps.
Step1. Creation of resonant regions.
Choose a smooth functionQ(I1, . . . , In) of n variables I1, . . . , In with the following

properties:
a)Q(0) = 0, and the linear part ofQ at0 is

∑
γiIi.

b) There is a series of disjoint small open ballsUk in Rn
+ = {(I1, . . . , In) ∈ Rn, I1 > 0,

. . . , In > 0}, which tend to0 (in Hausdorff topology) ask →∞, such that we have

Q(I1, . . . , In) =
∑

γk
i Ii ∀(I1, . . . , In) ∈ Uk,

whereγk
i are rational numbers such thatlimk→∞ γk

i = γi.
Of course, such a function exists, and it can be chosen to be arbitrarily close to

∑
γk

i Ii in
C∞-topology. Now put

H1 = Q(x2
1 + y2

1 , . . . , x2
n + y2

n).

Then for this integrable Hamiltonian functionH1, there are open regionsVk ⊂ R2n arbitrarily
close to0 in R2n which are filled by resonant tori in which the Hamiltonian flow ofH1 is
periodic. These regionsVk are preimages of the open setsUk chosen above under the mome
map(I1, . . . , In).

Step2. Creation of hyperbolic singularities.
We will modify H1 inside each open subsetVk by aC∞-small function which is flat on th

boundary ofVk, in such a way that after the modification our Hamiltonian function rem
integrable insideVk but admits an hyperbolic singularity there. SinceH1 has periodic flow inVk

for eachk, we can create a common model and then put it to eachVk after necessary rescaling
The model can be done for a2-dimensional system depending onn − 1 parameters, and the
take a direct product of it withTn−1. In the 2-dimensional case, it is obvious how to chan
a regular function onD1 × S1 into a function with a hyperbolic singularity by aC∞-small
perturbation. After the above modifications, we obtain a new smooth Hamiltonian functioH2,
which isC∞-close toH1, which coincides withH1 outside the union ofVk, and which is still
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smoothly integrable (though smooth first integrals forH2 will necessarily be very degenerate
at0). Note that, by construction, the quadratic part ofH2 at0 is

∑n
i=1 γi(x2

i + y2
i ).

Since H2 has hyperbolic singularities arbitrarily near0, it cannot admit a differentiable
the

r

rities,

e
t

t
n

h

er the

ion

en

or the
n,

te

r
t.
Birkhoff normal form in a neighborhood of0, for simple topological reasons concerning
associated Liouville foliation. It is also easy to see thatH2 cannot admit anS1 symmetry near0:
if there is a symplecticS1-action in a neighborhood of0 which preservesH2, then this action
must also preserve the hyperbolic periodic orbits ofH2 in the resonant regionsVk. This, in turn,
implies that there is a natural numberN such thatNγk

i ∈ Z, ∀k, i, which is impossible by ou
construction.

Let us now consider the casem � 1. For simplicity, we will assume thatm = 1. (The case
m > 1 is absolutely similar.) We will repeat the above two steps to create hyperbolic singula
but with n replaced byn − 1 (recall that by hypothesisn � m + 2 son − 1 � 2). The regions
Vk now lie inR2n−2, andH2 =

∑n
i=2 γiIi + · · · . By choosing our open setsUk, we can assum

that there is a functionF = F (x2
2 + y2

2 , . . . , x2
n + y2

n) on R2n−2, which is flat at0, and such tha

F =
π

k
(x2

n + y2
n) in Vk.

Denote byϕ the time-1 map of the Hamiltonian vector fieldXF of F on R2n−2. Observe tha
ϕ is a symplectomorphism formally equivalent to the identity map at0, and that in each regio
Vk the mapϕ generates a nontrivialZ/kZ symmetry (i.e. thek-times iteration ofϕ in Vk is the
identity, and the lower iterations are not). Now we can constructH2 in such a way that in eac
regionVk it is also invariant under theZ/kZ symmetry generated byϕ. Then, sinceH2 = H1

outside of the setsVk, and{H1, F}= 0 by construction, the mapϕ preservesH2 everywhere in
R2n−2.

We now construct our symplectic manifold using suspension. More precisely, consid
free component-wise symplectic action ofZ onR2 ×R2n−2, where the action ofZ onR2n−2 is
generated byϕ, and its action onR2 (with coordinates(p, q) and symplectic formdp ∧ dq)
is generated by the shift(p, q) �→ (p, q + 1). Then the suspension ofϕ is the quotient of
R2 ×R2n−2 by thisZ-action. Denote this quotient byM and denote the projection byπ. Let V k

beπ(R2 × Vk). Observe that the functionH2 is ϕ-invariant and both functions,H2 andp, are
invariant by the shift; thereforeH3 = γ1

π p + H2 can be projected toM . We denote byH3 the
projection ofH3. SinceH3 is integrable onR2 × R2n−2 and the action defining the suspens
is symplectic, the functionH3 defines an integrable Hamiltonian system onM . We denote by
Lk an orbit ofXH3

through an hyperbolic singularity ofH2 in the regionV k and denote byL
the orbit ofXH3

through the originO. Observe that, by construction, the orbitsL andLk are

circles. Let us see that there is no symplecticS1-action preservingH3 in a neighborhood ofL.
Assume there existed one, then the orbits ofXH3

would also be preserved by this action. Giv
an action of a Lie groupφ :G×M → M , we use the standard notationGx for the isotropy group
at the pointx. We are going to use the Slice theorem to reach a contradiction.

According to the slice theorem [20] for proper group actions there would exist a slice f
action throughx ∈ L. Takex = O, we denote byS the slice through the origin. From now o
we are going to consider a neighborhood ofL invariant by thisS1-action. Then, there exists ak0

such that for allk � k0, the orbitLk is fully contained in this neighborhood. SinceS is a slice,
the orbitLk is transverse toS at eachp ∈ S and ifS ∩Lk is not empty then it consists of a fini
number of points. Further, by construction,S ∩ Lk consists exactly ofk points {p1, . . . , pk}
for k � k1. Those points lie in an orbit for the action, therefore for eachpi we can conside
an elementgi ∈ S1 such thatφ(gi, pi) = p1 and all thegi obtained in this way are differen
Following [20], if S is a slice thoughx then forp ∈ S and g ∈ G the conditionφ(g, p) ∈ S
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implies g ∈ Gx. Therefore all the elementsgi are contained inS1
0, the isotropy group at the

origin. By construction,k tends to infinity as we are approaching the origin, andS1
0 is a compact

group containing an infinity of elements, thereforeS1
0 = S1. This yields a contradiction because

plectic

.

ms,

c
1989)

liptic

d.),

tée au

tique,

ion

s

u temps.
ces
,

rsitat
then the orbit through the origin would be reduced to a point. Therefore there exists no sym
S1-action preservingH3.

This ends the proof of the proposition.�
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