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ON THE DE RHAM-WITT COMPLEX
IN MIXED CHARACTERISTIC

BY LARSHESSELHOLT!' aAND IB MADSEN 2

ABSTRACT. — The purpose of this paper is twofold. Firstly, it gives a thorough treatment of the de Rham—
Witt complex forZ,)-algebras, a construction we first considered in [L. Hesselholt, I. Madsen, Ann. of
Math. 158 (2003) 1-113]. This complex is the natural generalizati@ jpalgebras of the de Rham-Witt
complex forF,-algebras of Bloch-Deligne—lllusie [L. lllusie, Ann. Sci. Ecole Norm. Sup. 12 (4) (1979)
501-661] (forp odd). We also give an explicit formula for the de Rham—-Witt complex of a polynomial
ring in terms of that of the coefficient ring. Secondly, we generalize the main Theorem C of [L. Hesselholt,
I. Madsen, Ann. of Math. 158 (2003) 1-113] to smooth algebras over a discrete valuation ring of mixed
characteristic0, p) with perfect residue field andodd.
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RESUME. — Le but de cet article est double. D’abord, il donne un traitement complet du complexe de
de Rham-Witt pour le&,-algébres, une construction que nous avons considérée précédemment dans
[L. Hesselholt, I. Madsen, Ann. of Math. 158 (2003) 1-113]. Ce complexe est la généralisation naturelle
auxZ,-algeébres du complexe de de Rham-Witt poutflgsilgébres de Bloch-Deligne-lllusie [L. lllusie,

Ann. Sci. Ecole Norm. Sup. 12 (4) (1979) 501-661] (ppumpair). Nous donnons aussi une formule
explicite pour le complexe de de Rham-Witt d’'un anneau polynomial en termes de celui de I'anneau
des coefficients. Ensuite, nous généralisons le théoreme principal de [L. Hesselholt, I. Madsen, Ann. of
Math. 158 (2003) 1-113] (Theorem C) aux algébres lisses sur un anneau de valuation discret de non égale
caractéristiqug0, p) avec corps résiduel parfait gimpair.
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Introduction
For every ringA, the cyclotomic trace is a map of pro-abelian groups
tr: K (A) — TC,(A;p)

from the algebraids-theory of A to the topological cyclic homology of [2]. This is a highly

non-trivial invariant. For instance, it induces an isomorphism W -coefficients in non-
negative degrees, i is a finite algebra over the rind’ (k) of Witt vectors of a perfect field of
characteristip > 0. There is a natural long-exact sequence

- = TC,(4;p) — TR (A;p) =5 TR, (A;p) — TC,_; (A;p) — -+

1The author was supported in part by a grant from the National Science Foundation.
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2 L. HESSELHOLT AND I. MADSEN

and it is the pro-group¥'R, (A;p) which are our main object of study here. We recall from
[8, Theorem A] that the limitTR,(A;p) coincides with thep-typical curves onk, 1(A)
introduced by Bloch in [1]. Here and throughout we assume tha a Z,-algebra withp
anoddprime.

Associated with the ringd, one has the topological Hochschild spectriiifd). It has an
action by the circle grouffr, and by definition

TR (A;p) = mq (T(A) ")

is the gth homotopy group of the fixed points by the finite subgroup of the indicated order.
Usually these are very large abelian groups. But they are saglq varies, related by a number
of operators, and the combined algebraic structure is quite rigid. We call this struciMite a
complexover A. By definition, this is:

(i) a pro-differential graded ring* and a strict map of pro-rings

A:W.(A) — E°

from the pro-ring of Witt vectors imd;
(ii) a strict map of pro-graded rings

F:E*—E",
such that\ ¥ = F'\ and such that for alt € A,

FdX([aln) = M[aln—1)" " dA([a]n1),

where[a],, = (a,0,...,0) € W, (A) is the multiplicative representative;
(iii) a strict map of gradeds*-modules

V:F.E' |, —E*
such that\V = V' X\ and such that
FdV =d, FV =p.

A map of Witt complexes oveHd is a strict mapf: E* — E’* of pro-differential graded rings
suchthatN' = f\, F'f= fFandV’'f = fV.

In the Witt complexE* = TR, (A;p), the mapF is induced from the obvious inclusion,
V' is the accompanying transfer map, and the differential is induced frorTthetion. The
structure maps in the pro-system and the mvae harder to define. The mapurns out to be
an isomorphism in this case [10, Theorem F]. We writq for the category of Witt complexes
over A. Using standard category theory, we show:

THEOREM A. — The categoryV 4 has an initial objectV.€2* . Moreover, the canonical map
T 0y, 4y — WAL, s surjective.
For a ring homomorphisryfi: A — A’, we have the direct image functor
fetWar — Wy
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ON THE DE RHAM-WITT COMPLEX IN MIXED CHARACTERISTIC 3

given by viewing a Witt complex oved’ as a Witt complex over by replacing the map by
the compositeW.( f). We show that this functor has a left adjoint

f* ZWA — WA’7
the inverse image functor. The universal properties imply that the canonical map
W.Q% — [ IW.Q%
is an isomorphism. The proof of the existenceféf again, is by category theory. However, in
the case of the ring homomorphism
m: A — Alz)

given by the inclusion of the constant polynomials, we can give an explicit description of the
inverse image functor. I/ = E* is a Witt complex oveld, we consider the pro-graded abelian

group
P(E)=P(E)*

whereP(E)? is given by the set of (finite) formal sums of the form

S ot + U e+ 3 307 )+ 0V 0 ))

JE€Ng JEN s=1 jel,

with the components(“;) € E4, andb(“Jl € E4-1 and with[z],, a formal variable of degre@
Addition is component-wise, and the structure maps in the pro-system are induced from the ones
in E. If B/ = E’* is a Witt complex overd[z] and if f : E — 7. E’ is a map of Witt complexes
over A, there is an induced map of pro-graded abelian groups

f:P(E)—E'

which maps the formal sum above to the sum

S @SN (2l) + 7 roShN ([l dX ([].)

j€Ng JeEN

+ZZ Ve (£l N ([ ) +dve (F0 N (2 _L)))

s=1jel,

in ;™. The requirement that for all’ in W/, this be a map of Witt complexes leaves only one
possible way to define a product, a differential, and the nfags\dV on P(E). The explicit
formulas are given in Section 4.2 below.

The constructiorP(E) may be explained as follows: The first two summands in the formula
above form the sub-pro-differential graded ring

E* ®Z(p) Q%(p)[m] C P(E)*,
the Frobenius o (E) induces the map of pro-graded rings
» (]’

F=FQF:E’ ®1, U,z — B ®z, U,
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4 L. HESSELHOLT AND I. MADSEN

given on the second factor by'([z],) = [z]>_, and Fd[z], = [«]?~}d[z],_1, and the

n—1

Verschiebung o?(E) induces the (partially defined) map of pro-abelian groups
_ -1, * * * *

From this point of view,P(E) is the minimal extension af* ® QE( ] that admits a globally
defined Verschiebung operator. !

THEOREMB. —Let E be a Witt complex oved. ThenP(FE) is a Witt complex oveA|[z], and
the canonical map

" FE — P(FE)
is an isomorphism.

This gives, in particular, the promised formula for the de Rham-Witt compleX.dfin terms
of that of A. Indeed, the canonical map

is the inverse isomorphism. We also show:

THEOREMC. —The canonical map
P(TR.(A;p)) — TR, (Afz];p)

is an isomorphism.

The construction given in [13] of the de Rham-Witt complex fty-algebras proceeds
in two steps. Firstly, one considers a categotyf, (denotedVDR(A) in op. cit) whose
objects in essence are Witt complexes without J&soperator. This category has an initial
objectWW’Q*, which can be constructed somewhat more concretely. This works for all rings.
Secondly, one constructs dfroperator oniV/Q%, and proves that the combined structure is a
Witt complex, which then necessarily is the initial object)df,. The proof given inop. cit.
works only forF,-algebras. For it uses that for a polynomial algebra dygrthe inverse limit
W'Q4 = lim,, W €% is torsion free, and this is not the case for a polynomial algebraZygr
We give a different proof based on Theorem B. Hence, for e¥gfy-algebra we have:

THEOREMD. —The forgetful functoiV4 — W/, preserves initial objects.

Let V' be a complete discrete valuation ring of mixed characteristip) with quotient field
K and perfect residue field. Our second objective in this paper is to generalize [9, Theorem C]
to smoothV -algebras. To state the result, we first recall the notion of a log-differential graded
ring from [14].

A log-ring (R, M) is a ring R together with a pre-log structure defined as a map of
multiplicative monoidsy: M — R, and a log-differential graded ringD, M) is a differential
graded ringD, a pre-log structurer: M — D°, and a map of monoid® log: M — (D!, +)
such thatda(a) = a(a)Dloga, for all a € M. We note that a pre-log structure dhinduces
one onW,,(R) by composing with the multiplicative map|,,: R — W,,(R). The notion of
a Witt complex and Theorem A above generalize to log-rings; see [9, §3] for details. The
universal example is denoteW.QzR,M). It generalizes the construction of Hyodo—Kato [12]
for log-F,-algebras.
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ON THE DE RHAM-WITT COMPLEX IN MIXED CHARACTERISTIC 5

Let A be a smooth/-algebra, letd;, = A ®y k, and letAx = A ®y K. The canonical log-
structure onA is given by the inclusion

a:My=AnAj — A

In this situation, one has the localization sequenck itheory,

o Ky (Ar) 5 Ky (A) 5 Ky(Ar) % Ky (Ay) — -

We constructed in [9, 1] a corresponding sequence

- = TR, (Ak;p) > TR (A;p) L5 TR, (A|Ak;p) 2 TR 1 (Akip) — -+

and a trace map from the sequence above. The grbBRp$A| Ak ; p) form a Witt complex over
the log-ring(A4, M 4) with the map

dlog,, : Ma — TRY (A|Ak; p)
given by the composite
My =ANAl — Ay — K1 (Ag) 5 TRY (A|Ag;p).
Hence, we have the canonical map from the universal Witt complex,
WA A i) — TRL(AlAK; p).
If we assume that,» C K, there is, in addition, a unique ring homomorphism
Sz/pe (tpe) — TR (A|AK;p, Z/p?),

which takes a generatqre y,» to the image by the trace map of the corresponding Bott element
be € Ko(K,Z/p"). In all we have a map of Witt complexes

W ary @2 Szypv (Bpr) = TRL(A| Ak p, Z/p"),
where on the left, the mapRB, F', andV act as the identity on the second tensor factor. The

differential acts trivially on the second tensor factor.

THEOREME. —LetV be a discrete valuation ring of mixed characterigiicp) with quotient
field K and perfect residue fieltdl, and assume that is odd and thaj:,» C K. Then for every
smoothV -algebraA, the canonical map

Wy ar4y ®2 Szype () = TRL(A| Ak p, Z/p")

is an isomorphism of pro-abelian groups.

It appears an interesting problem to formulate and prove the analog of Theorenp E far
In this case, the right hand side of the statemenbisa Witt complex overd with the definition
given here. Fofd o d)(x) = n-d(x), wheren = tr(—1) = dlog.(—1). This class is non-zero, for
instance, ifA = Z,), but the square? is always zero, see Rognes [24, Theorem 1.5].
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6 L. HESSELHOLT AND I. MADSEN

Finally, we mention that at the same time as this paper was written, A. Langer and T. Zink
introduced a relative version of the de Rham-Witt complex [15], which to a mZ&p,pfalgebras
R — Aassociates a Witt compléX'.2, , .. Hence, there is a canonical mEp$2;, — W.0 /.
This map is always surjective, but it is not injectivelif= Z,,). The elements of the kernel are
important for the relation td<-theory. For example, we show in Example 1.2.5 below that the
map

dlog:Zy /T3P — W.Qy [p"W.Qy

is an isomorphism of the domain onto the sub-pro-abelian group of the target fixed by the
Frobenius operator. It takes the cIaSSe@f)(p/(p — 1)), which generates the domain, to the
classofy " ., dV°(1). ButWQ% Zo /p Lo/Ziry’ in comparison, is zero. See also [4].

Unless otherwise stated, all rlngs c0n5|dered in this paper will be commutative and unital
Z(,)-algebras withp an odd prime. We denote By (respectively byNy, respectively by/,)) the
set of positive integers (respectively non-negative integers, respectively positive integers prime
to p). By a pro-object of a category we mean a functor fron¥, viewed as a category with
one arrow fromn + 1 to n, to C, and by astrict map between pro-objects we mean a natural
transformation. A general map between pro-objéctandY of C is an element of

Hompyo —¢(X,Y) = lim colim Home (X, Y5,).

m

We view objects ot as constant pro-objects 6f

1. Witt complexes

1.1. We briefly recall Witt vectors and the de Rham complex. For a fuller discussion, we
refer the reader to [23, Appendix] and [21], respectively.

The de Rham complex of a ring is characterized by the following universal property: given
a differential graded rindge* and a ring homomorphism: A — E°, there exists a unique map
of differential graded rings

0% — BT,
which in degree zero is given by the maplt is also easy to construct. Létbe the kernel of the
multiplication A ® A — A. Itis generated as a#-module by the elements® 1 — 1 ® a,a € A.

The two A-module structures oh define the samel-module structure o}, = /1%, and the
map

d:A— QY

which takesz to (a ® 1 — 1 ® a) + I? is a derivation. This is the universal derivation frofrto
an A-module. One now defines the de Rham-complex to be the exterior algebra

E 1
QA_ AQA

with differential
d(agday ...da,) =dagda; ...day,.

Itis a differential graded ring and clearly has the universal property stated above.
The ringW,,(A) of Witt vectors of length. in A is the set ofn-tuples in A but with a new
ring structure characterized by the requirement that the “ghost” map

w:Wy,(A4) — A"
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ON THE DE RHAM-WITT COMPLEX IN MIXED CHARACTERISTIC 7

which takes the vectduyo, a1, . . ., a,—1) to the sequenc@wy, wi, ..., w,—1) With
7 i—1 .
w; =af +pal 4+ plag,

be a natural transformation of functors from rings to rings. If the tihg p-torsion free, the
ghost map is injective. If, in addition, there exists a ring homomorphfism — A with the
property thatf (a) = a”? modulopA, then a sequende, . .., x,—1) is in the image of the ghost
map if and only if

x; = f(x;—1) modulop®A,

for all 0 < i < n. The latter statement, the lemma of Dwork, encodes the congruences needed to
construct every map involving Witt vectors. As an example of how this works, we construct the
addition onW,, (A).

By naturality, it suffices to consided = Zao,...,an—1,bo,...,bn—1] and define the sum
of the vectorsy = (ay,...,a,—1) andb = (bg,...,b,—1). The ring homomorphisnf: A — A,
which raises the variables to th#h power, is a lift of the Frobenius, so we can use the lemma
of Dwork to identify the image of the ghost map. One verifies immediately that the sequence
w(a) + w(b) is in the image of the ghost map. Hence, there exists a vectofso, ..., sn_1)
such that

w(80y- -y 8n—1) =w(aog,...,an—1) +w(bo,...,bn_1),

and sinceA is p-torsion free, the vectos is unique. The only possible definition, therefore, is
thata +b=s.
The projection on the first — 1 factors is a ring homomorphism

R:W,(A) = W,_1(A),
calledrestriction, and this make$V.(A) a pro-ring. There is a second ring homomorphism, the
Frobenius

F:W,(A) - W,_1(A),

characterized by the formula
w(F(ag,...,an-1)) = (wi(a),...,wy—1(a)),
and alV,,(A)-linear map, th&/erschiebung
V:FW,_1(A) - W,(4)

given by
V(ao, . .,CLn,Q) = (O,CL(), . .,an,l).

Here the notatiorF.1W,,_; (A) indicates that¥,,_,(A) is considered &/,,(A)-module via the
FrobeniusF’: W,,(A) — W,,_1(A4). Thus, the linearity of the Verschiebung is the statement that
for all x € W, (A) andy € W,,_1(A), the Frobenius reciprocity formutal/ (y) = V(F(z)y)
holds. The Frobenius and Verschiebung both commute with the restrictioffeldtentllermap

is the multiplicative map

[ Jn:A— W,(4),
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8 L. HESSELHOLT AND I. MADSEN
given by [a], = (a,0,...,0). In particular, [1},, is the multiplicative unit inWV,,(A). The
following relations hold

F([a]n) =[af_,, FV=p,

where on the righty denotes multiplication by = [1] + - - - + [1] (p times). In general, it is very
difficult to describe the coordinates of the vegior in terms of the coordinates af It is often
convenient to display a Witt vector as

(ao, .. .,an_l) = i Vi([ai]n_i).

1.2. The definition of a Witt complex oveA was given in the introduction. The following
result will be used repeatedly throughout the paper.

LEMMA 1.2.1. -l et E* be a Witt complex oved. Then
dF =pFd, Vd=pdV, V(xdy)=V(z)dV(y).

Proof. —Letx,y € E;. Then

Vizdy) = (CCFdV(y)) V(z)dV (y);
dF(z) = FdVF(z) = Fd(V(1)z) = F(dV(1)x + V(1) dx)
=FdV(1)F(x) + FV(1)Fdx =d(1)F(z) + pF dx = pF dx;
V() =V(1)dV(z) =d(V()V(x)) —dV(1)-
=dV(FV(1)z) = V(FdV(1)z) =dV (pz) — V(d(1)z) =pdV (z).

i~2
&.

~—

This completes the proof.O0

Proof of Theorem A. Fhe existence of an initial object follows from the Freyd adjoint functor
theorem, [18, p. 116]. The category 4 clearly has all small limits, so it suffices to verify the
solution set condition. To this end, we show that for evBry E* in W4, the image of the map
induced from)\,

is a (sub) Witt complex off. Since the isomorphism classes of such images form a set, the
proposition will follow. We must show that the Frobenius and Verschiebung gbreserve the
image of the canonical map. To prove the statement for the Frobenius, it sufficesFsiace
multiplicative, to show that for alh > 1 and alla € W,,(A4), F'd\(a) is in the image of the
canonical map. But, using the formula

a=[ao)n + V([a1)n-1) + V*([az]n—2) + -+ V" ([an-1]1),
we find
Fd\a) = A([ao]n—1)""" dA\([ao)n—1) + dA([ar]n—1) + -+ dV" " A([an-1]1),

and this sum clearly is in the image of the canonical map. The statement for the Verschiebung
follows immediately from Lemma 1.2.1. This proves that an initial object exists.
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ON THE DE RHAM-WITT COMPLEX IN MIXED CHARACTERISTIC 9

Finally, we show that the map. is surjective, or equivalently, that the inclusion of the image
E of this map is a surjection. Sindg is a Witt complex, there is a unique m&p 2, — E* of
Witt complexes. But then also the composition

W — B - W.04

is a map of Witt complexes. And sind&.©2% is the initial object, this composite is the identity
map. The statement follows.O

Remark1.2.2. — Theorem A shows, in particular, that the canonical map
W.(A) — W.Q%

is surjective. In effect, this is an isomorphism. Hot = W.(A) is a Witt complex overd. We
will prove later that also the canonical m&xy — W% is an isomorphism. The proof of this,
however, requires Theorem D.

The direct image functof. : Wg — W4 associated with a ring homomorphisfnA — B
takesE* to E* and replaces the mapby the compositeaW.(f).

PrROPOSITION 1.2.3. -The direct image functof, has a left adjoint
[T Wa — Wp,

the inverse image functor.

Proof. —The proof, which is similar to the proof of Theorem A, is an application of the adjoint
functor theorem, [18, p. 116]. Given an objd€t= E* in Wy, the objectf*E in Wg is the
initial object in the over categor¥/ f.. This category has small limits, so we must verify the
solution set condition.

We first construct, for alh > 1, a non-commutative graded rifigf which depends only of.
Assume, inductively, thaE_, has been constructed (we Bf = {0}), and let

Sk = {e,de le € Wn(B) @w, (4 E:;} U {V(e'),dV(e/) le' e T;fl}

be the graded set, whezeandV (¢’) are assigned the degreecodinde’, respectively, and where
the degree ofle anddV (¢’) is one higher than the degreec©énde’. Then we defing’f to be
the free non-commutative graded ring generated by the graded Sgt of

Given an objectD, p: E — f.D) of the over categor§/ f., we recursively define maps of
graded rings

YTy — Dy

The given map of gradedV, (A)-algebrasy, :E: — f.D; induces a map of graded
W, (B)-algebras

(ibn : Wn(B) ®Wn(A) Er*z - D:,v

and withe,,_, : T*_, — D?_, already defined, we let), : S;: — D} be the map of graded sets
given by, (e) = ¢u(€), n(de) = d(n(€)), for e € W, (B) @, (a) E7, and by

Gn (VD) =V (nae)), wn(dV () =dV (n-1(e)),
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10 L. HESSELHOLT AND I. MADSEN

fore’ e T _,. Theny, : T, — D, is the unique map of graded rings which extefigls
One shows, as in the proof of Theorem A, that the images

Iip,p) = {im(wn) }n>1

form a Witt complex overB, and that the map': £ — f.Ip ), Which takese € E? to
Yl ®e) € IfD o) is a map of Witt complexes oveB. Hence, the canonical inclusion
Ip,,) — D defines a map

Iy ¢ E— fel(p,y)) = (D,p: E— f.D)

in the over categor¥/ f.. Since the isomorphism classes of the object&df. of the form
(Itp,py, "+ E— fi(p,) form a set, the solution set condition is satisfied:

Examplel1l.2.4.— We consideWQ%(p) . Ingeneral, an integer invertible ihis also invertible
in W, (A), and hence, the rin/,,(Z,)) is aZ,-algebra. We claim that asZ,,,-module,

n—1
Wa(Zg) =[] Zw) - V(1)
=0

with the product given by
Vi) - V(1) =p'VI(1),
for 0 < i < j < n. The first statement follows by an induction argument based on the exact
sequences
yn-t R
0= Zg)y — WilZp)) = Wn-1(Zg)) — 0,

and the product formula is an immediate consequence of the relafins= p and
xV(y) =V (F(z)y). In general, it is difficult to find the coordinates @fc W,,(Z,) with re-
spect to the basik?(1), 0 <i < n.

We can use the canonical surjection

Q?’Vn(Z@)) - W"Q%p)

to get an upper bound for the right hand side. The map is an isomorphism in degree zero, and in
degree one we have the relations that(fet i < j < n,

Vi) dvIi(1) = VH(F'dVI(1)) =V avI~i(1) = p' dV7 (1),
VI(1)dV'(1) = VI (F7dVi(1)) = VIFI~"d(1) =0.

It follows that p’ dV?(1) and dV(1)dV?(1) are zero, for all0 < i,j < n. HenceW, 2}
vanishes fog > 1, and there is canonical surjection

n—1
[1zw'z-aviq)—-w,0; .
1=0
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ON THE DE RHAM-WITT COMPLEX IN MIXED CHARACTERISTIC 11

In fact, this is an isomorphism. To prove injectivity, it suffices to find a Witt complex E*
such that the canonical map

n—1
Il zw'z-aviq)— E,
=0
is injective. We show in Proposition 2.6.1 below tHaR, (Z,); p) is such a Witt complex.

Example1.2.5. — We next considéii’.€2;, . One proves by induction on > 1 that for all
g > 0 andv > 1, the completion map induces an isomorphism

Wal [P Wal, S WaQL [p W
We wish to evaluate the map
dlog,,: Zy /T — Wo S, /p" WS, .

which to the class of € Z, assigns the class ¢f],, " d[z],, € Wnﬂép. We have

[Z]p =2 1], + Z p*(a? — ;vpsﬂ) -V ([Un—s),

0<s<n

where we use that th&,)-module structure ori¥,,Q;, extends to aZ,-module structure

by continuity. Indeed, as one readily verifies, the two S|des of the equallty have the same image
by the ghost map, and the ghost map is injective. If we differentiate this formula and multiply by
[z]1 = [z7],, we find that

dlog, © = Z p s (IPFI(P—U —1)-dV*([1]ns).

0<s<n

In particular, the class afxp(p/(p — 1)), which generates the domain éfog,,, is mapped to
the class ob .., dV*(1). Itis not difficult from Example 1.2.4 to see thatas> 1 varies,
the latter class generates the sub-pro-abelian group of the targébgf that is fixed by the
Frobenius operator.

2. TheWitt complex TR, (A;p)

2.1. Inthis paragraph we recall the Witt compl€R ., (A; p) associated with aring. Details
may be found in [5,8-10]. See also [19].

Let G be a compact Lie group. Th@-stable category is a triangulated category and a closed
symmetric monoidal category, and the two structures are compatible, [16, 11.3.13]. The objects
of the G-stable category are callgg-spectra. A monoid for the smash product is called a ring
G-spectrum. We denote the set of maps between@wspectral’ andT” by [T, T']

Associated with a pointed’-spaceX one has the suspensiéispectrum which we denote
by susp(X) or simply by X. If V is an orthogonalz-representation, we denote I’ the
one-point compactification. Then the suspension homomorphism

[szﬂh;:;[jjA‘gvvjvﬁ“SV]G
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12 L. HESSELHOLT AND I. MADSEN

is an isomorphism, [16, 1.6.1]. Léf C G be a closed subgroup, lgbe an integer, and |&t be
a G-spectrum. We define the (derived) homotopy group

g (T)=[G/Hy NS® Ta,

q
where the subscript indicates the addition of a disjoidi-fixed basepoint. There is a canonical
isomorphism
Wf (T) = Tq (TH)a

whereT ! is the H-fixed pointiW H-spectrum. More generally, given a pair of closed subgroups
K C H C G with K normal inH, there is a canonical isomorphism

i (T) 2 7 I R(TH).

A map in theG-stable category is an isomorphism if and only if the induced map of homotopy
groups is an isomorphism, for all C G and allg, [16, 1.5.12].

Let H C G be a closed subgroup. The diagonal map of the spgdé induces a map in the
G-stable category

AG/H+—>G/H+/\G/H+,

and if T"andT” areG-spectra, this gives rise to a pairing

T T)@al(T") = 7l (T AT).

If T is a ringG-spectrum, we may compose with the map of homotopy groups induced by the
multiplicationy.: T A T — T This way the homotopy groups? (T") form a graded ring, and if
T is commutative, this graded ring is commutative in the graded sense.
Finally, we mention the Segal-tom Dieck splitting, [25, Satz 2H1f- G is finite and if X is
a pointedG-space, there is a canonical isomorphism

(2.1.1) @wq (susp(E(Wr K) 1 Awyx X)) 5 7l (suspe (X)),
(K)

where the sum is over conjugacy classes of subgroups ahdFE (W K) is the universal cover
of the classifying spac8(Wy K).

2.2. Let T be the circle group. Associated with every rintyone has the topological
Hochschild spectrurii’(A). This is a ringT-spectrum, and by definition,

TR} (A:p) = [S7 AT/Cpn-sy T(A)] .

whereC,»-1 C T denotes the finite subgroup of the indicated order. The maps
F:TR}(A;p) — TRy (4;p),

(2.2.1) V:TR} ' (4;p) — TR (4;p),
d: TR (A;p) — TRy, 1 (A;p),

which are part of the structure of a Witt complex, are induced by maps ifi-gtable category
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ON THE DE RHAM-WITT COMPLEX IN MIXED CHARACTERISTIC 13

[:T/Cpn—2p = T/Cpn-1,
(2.2.2) U:T/Cpnfl+ _)T/Cpn72+7

d: T/Cpn—1+ ASt— T/Cpn—1+,
the definition of which we briefly recall.

The mapf is induced by the canonical projection Bfspaces, and is the corresponding
transfer map defined as follows. LétT/C,.-> — V be an embedding into an orthogonal
T-representation, and consider the product embedging): T/Cn—2 — T/Cpn-1 x V. The
normal bundle of the latter is trivial, and the linear structurd/ogives a preferred trivialization.

Hence, by the Pontryagin—Thom construction, which collapses the complement of a tubular
neighborhood to the base point, we have a map of poifitsdaces

T/Cpny NSV — T/Cpn-14 NSV,

and (under the suspension isomorphism) this induces theumiimally, the map) is induced
from a map of pointed@’-spaces

§:T/Cpury AS™ S T/Cpury AS™.

The set ofl-homotopy classes of such mapsyif> 2, is a direct sum of an infinite cyclic group
and a cyclic group of orde?, and the map is a generator of an infinite cyclic summand. The
induced map on reduced homology,

Hy 1 (T/Chuary AS™) S Hoy i1 (T/Cmi . AS™),

takes the generator on the left which, under the canonical isomorphism

Hy (X4 AS™) = H,_(X),

corresponds to class of the poifi.-: in Hy(T/C,»-1) to the generator on the right which
corresponds to the fundamental clgBgC,n—1] € Hi(T/Cpn-1).
If we ignore2-torsion, these maps satisfy the following relations

vf=p-id, fo=pdf, dv = pvo,
(2.2.3) vsf =9, 56 =0,

and hence the dual relations hold among the maps (2.2.1). Moreover, there are further relations
among the mapg, v, 4, and the diagonal mapr. The relations

(fAHA=AS, (f Nid)Av = (Id Av)A,
show thatF' is a map of graded rings, and tHatis a map of graded modules. And the relation
Ad= (0 ANidVidAI)TVA,
valid up to2-torsion, shows that is a derivation. Here permutes the appropriate smash factors,
i\gd.lviis the fold map. The proof of these facts may be found in [10, Lemma 3.3] and [8, 1.4.2,
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14 L. HESSELHOLT AND I. MADSEN

Remark2.2.4. — Up to2-torsion, the full subcategory of tHE-stable category with objects
T/Cpn-14 N S9, where0 < g <2 andn € N, is equal to the ringoid generated by the maps
(2.2.2) subject to the relations (2.2.3). In more detaibyifs the minimum of- ands, then:

(i) The maps fronfl'/C,s 4 to T/C),- form a free abelian group of rank + 1 generated by
Fr s~ with 0 < i < m.

(ii) The abelian group of maps frofi/Cy:1 A S* to T/C,- is, up to2-torsion, the sum
of a free abelian group of rank + 1 and, for everyl <i < m, a copy ofZ/p'Z. If r > s
(respectively ifr < s) then f™ w3~ (respectivelys f" ~*v°%) is a generator of a summaq
and in either casey’ ~™¢§ f"~ivs 1 — p*~™ fr~iy3 =15 generates a summafig p™ i 7Z.

(iii) The abelian group of maps froffi/C-+ A 5% to T/C,r+ is, up to2-torsion, the sum for
1 <i < m, of acopy ofZ/p™~Z generated by " ~*v5 6.

(iv) If ¢ > 0 then every map frorfi/Cys 4 t0 T/C,r+ A S?is zero.

This follows from the Segal-tom Dieck splitting, (2.1.1).

2.3. Anisomorphisny : G = G’ of compact Lie groups induces an equivalence of categories
f* from the G’-stable category to thé/-stable category, [16, I11.1.7]. If C G is a closed
subgroup, we lefl’ C G’ be the closed subgrouy’ = f(H). Then for every closed subgroup
H C G and every integed, there is a canonical isomorphism@fspectra

G/Hy NS f*(G'/H' N\ S9),
and this induces, for eve§’-spectrunil”, a canonical isomorphism

m (f1(1)) = (1),

q q
In the case of the circle group, we have the isomorphism
pp:T=T/C,p
given by thepth root. If T is a T-spectrum, the“» is aT/C,-spectrum, and hencp;(Tcp)
is aT-spectrum. We have the canonical isomorphisms

C on—2 Cpn,l/Cp

* Y C
" (pp(T7)) 27 1

(T) = mg ™ (T),

and these are compatible with the mdpsl’, andd induced from (2.2.2).
The topological Hochschildl-spectrumT'(A) is a cyclotomicspectrum in the sense of
[10, Definition 2.2]. This implies that there is a mapfpectra

Tip, (T(A)CP) —T(A).
Hence, we have the map
R:TR}(A;p) — TR ' (4;p)
defined as the composite

my " (T(A) 2™ (o (T(A) 7)) L g™ (T(A)),

and this map commutes with the operatbtsl/, andd. Moreover,r is a map of ringl'-spectra,
and hencer is a map of graded rings.
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2.4. In order to construct th&-spectrumi’'(A) we need a model category for tfiestable
category. The model category we use is the category of symmetric spectra in the category of
orthogonall-spectra, [20]. This model has a closed symmetric monoidal product which induces
the smash product on tHe-stable category. We first recall the topological Hochschild space
THH(A). See [5, §1] and [10, §82] for more details.

If Aisaring andX a pointed simplicial set, the homotopy groups of the space

A(X) = |A{X}/A{wo} |

are canonically isomorphic to the reduced singular homology group& pfvith coefficients
in A [22, Theorem 22.1]. Herd { X } denotes the degree-wise frdemodule generated by .
LetS! = A[1]/0A[1] be the standard simplicial circle and &tbe the smash product btopies
of S'. Then

A; = A(SY)

is an Eilenberg—MacLane space férconcentrated in degreelt has a naturat;-action given
by permuting the smash factors . Moreover, there are natural maps

GZSi—>Ai, ,u:fL/\Ai/HAH_i/,

which areX;-equivariant and:; x X, -equivariant, respectively. This constitutes a symmetric
ring spectrumA in the sense of [11], commutative if is. The spacHH(E) is defined for
every symmetric ring spectrui.

Let I be the category with objects the finite sets

12{1727"'77:}7 7’207

and morphisms all injective map8 € (). It is a strict monoidal (but not symmetric monoidal)
category under concatenation of sets and mapsELiee a symmetric ring spectrum and gt
be a pointed space. There is a funaty(£; X) from I*+! to pointed spaces, which on objects
is given by the pointed function space

Gr(E; X) (i ... yig) =F(S® A AS™ Ejg Ao+ NEj AX).

The homotopy colimit

THH,(E; X) = holim Gy (E; X)

Tk+1
is naturally the space d@f-simplices in a cyclic space, and by definition
THH(E; X) = |[k] — THH(E; X)|.
This is aT-space, [17, 7.1.4].
More generally, letn) be the finite ordered séftl,2,...,n}. The product category™ is a
strict monoidal category under component-wise concatenation of sets and maps. (The category
I is the category with one object and one morphism.) Concatenation of sets and maps
according to the ordering ¢h) defines a functor
U, 1™ — 1,
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16 L. HESSELHOLT AND I. MADSEN

but this doesiot preserve the monoidal structure. (The functgrtakes the unique object th)
We IetGé")(E; X) be the functor fron{I(™))*+1 to the category of pointed spaces given by
G (B: X) = Gi(B; X) o (Un)

and define
THH"(E; X) = holim G\ (E;X).

(k1
This again is the space éfsimplices in a cyclic space, and we define
THH™ (E; X) = |[k] — THH{" (E; X)|.
Itis aX, x T-space. IfE' is commutative, there is a natural product
THH™ (E; X) ATHH™ (E;Y) — THH™ Y (E; X AY),

whichisY,, x ¥, x T-equivariant withT acting diagonally on the left.
Let V be a finite dimensional orthogon@lrepresentation. We define tfie, V')th space in
the symmetric orthogondl-spectrunil’(E) by

(2.4.1) T(E),y = THH™ (E; S*"®V).

There are twdl-actions on this space: one which comes from the topological Hochschild space,
and another induced from thB-action onSY. There are also tw,,-actions: one which
comes from the:,, -action on the topological Hochschild space, and another induced from the
permutation representation Bf, onR™. We giveT' (E),, v the diagonak,, x T-action. IfE is
commutative, there is, in additiona,, x ¥,, x T-equivariant product

T(E)my AT(E)nw = T(E)minvew-

This product makes’(F) a monoid in the symmetric monoidal category of symmetric
orthogonall-spectra.

2.5. A pointed monoid is a monoitl in the category of pointed spaces and smash product.
The unit and multiplication are maps

e: S0 —1I, pwIIAIL — 1L

The (k + 1)-fold smash product
N (I = T

is thek-simplices of a cyclic space. The geometric realization
N (IL) = [[k] = N (D) |

is a pointedI'-space called the cyclic bar constructionibfsee [17, 7.3.10]. It comes equipped
with a naturall-equivariant homeomorphism [2, 1.1, 2.3]

A:NY(I) 5 ph oy (N (IT) %ot
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ON THE DE RHAM-WITT COMPLEX IN MIXED CHARACTERISTIC 17
If £ is a symmetric ring spectrum, then theh spaceF) is a pointed monoid. In the case
E = A, this is the underlying multiplicative monoid of the ringy with basepoint0. In the
symmetric orthogondr-spectrunil’(E) defined above, th®, 0)th space is
T(E)o,0=NY(Ey).
Hence, there is a canonical map
ki (pgn—a NV (Eo) ) — mq (phaa T(E) 1) = TR (E; p).
We define a map of pointed sets
wp i mo(Eop) — TRG (E;p)

to be the composite

o) = 70 (N (Fo)) 5 o (g1 N (Fo) 1) & mo (9 T(E) ),

where the left hand map is induced by the inclusion of the verticds.isf commutative, this is
a multiplicative map. It is proved in [8, Lemma 1.5.6] that for every m(Ey),

(2.5.1) Fdw,(x) :wn,l(x)p_ldwn,l(x).
For E = A, we now define the map
(2.5.2) AW, (A) — TRE(A; p)

by the formula

AMag,...,an) = i: % (wn,s(as)).
s=0

It is proved in [10, Theorem F] that this is an isomorphism of rings. This completes our
recollection of the Witt compleXXR, (A4; p).

2.6. LetS be the symmetric ring spectrum wifl = S*. This is the sphere spectrum. It was
provedin [2, 3.7], but see also [19, 4.4.4], that the unit for the ring spectrum structure

suspy(S°) — T'(S)

induces an isomorphism of homotopy groups, for all integeasid all finite subgroups df.
Hence, we have a canonical isomorphism

TR, (S;p) = [T/Cpn-14 A S, 5.
The groups on the right are well-known, at least for small valueg bf/ (2.1.1). We will use

the result foi0 < g < 2. Under the isomorphism above, the multiplicative unit corresponds to the
map of suspensiofi-spectra

e:T/Cpn-1ry — S°
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18 L. HESSELHOLT AND I. MADSEN

induced from the projection which collapsggC,,.-1 to the non-basepoint if°. Composition
with e defines a map

[T/Chnsy ASTT/Conmsylr — [T/Copnry A ST, 8.

If 0 < g <2, the group on the left was described, upttorsion, in 2.2.4 above. Singéis a
derivationed is zero. This is the only extra relation. Hence:

(i) The maps fronfl'/C,,.-1; to S° form a free abelian group of rankgenerated by f*v*
with 0 < s < n.

(i) The abelian group of maps froffi/C,.-: A S* to S is, up to2-torsion, the sum for
1< s < n, ofacopy ofZ/p°Z generated by fv*4.

(iii) Up to 2-torsion, every map frorff /C,n—1,. A S? to SU is null.

The unit mapS — Z induces an isomorphism of homotopy groups witfy, -coefficients in
degrees less thalp — 3. And the functofTR"(—; p) preserves connectivity. Thus we have:

PROPOSITION 2.6.1. —The groupT'Rg (Z,); p) is a freeZ, -module of rank: generated by
V*(1),0 < s <n.The groupI'RY (Z,);p) is asum forl < s < n, of a copy ofZ/p°Z generated
by dV*(1). The groupI'Ry (Z,); p) is zero.

3. Polynomial extensions

3.1. Inthis section we prove Theorem C of the introduction. We briefly recall the statement.
The ring homomorphism given by the inclusion of the constant polynomials,

m: A— Alx],
induces a map of Witt complexes ovér
f: TR, (4;p) — 7. TR, (Alz]; p),

where on the rightr, is the direct image functor. And as part of the structure of a Witt complex,
we have the map of pro-rings

A:W.(A[z]) — TRy (Alz]; p).

We wish to show that for ath > 1 andq > 0, every element of 'R (A[z];p) can be written
uniquely as a finite sum

")+ D (FaSHA([l) + FOSDA([21) dA([a]))

jeN

(3.1.1) +ZZ (Ve (£ @l Al )) +ave (P60 ))

s=1jel,

with a7"; € TR"(A;p) andb, m) € TRy 1 (4;p).
We recall that by def|n|t|0n the gI’OLFﬁRZ(A[:E];p) is the gth homotopy group of the
T-spectrum

(3.1.2) Phna T (Ala]) S
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LetIT = {0,1,z,22,...} be the sub-pointed monoid of[x] generated by the variable The
T-spaceN < (IT) decomposes as a wedge sum

\/ N(IL6) = NY(ID),
1€Ng

where theith summand is the realization of the pointed cyclic subseVof(I1) generated by
the0-simplex1, if ¢ = 0, and by the(i — 1)-simplexz A - - - Az, if < > 0. Hence, thél-spectrum
(3.1.2) can then be expressed as a wedge sum

Vs A AN

Jj€No

n—1
(313) \/ \/ \/ p;")s (p;n7173T(A)CP"7173 /\NCY(H,j))C’)S_

s=1jel,

We recall below how this equivalence is defined and show that the homotopy groups of (3.1.3)
are given by the finite sums of the form (3.1.1). This will prove Theorem C.

3.2. We prove in [10, Theorem 7.1] that the composite

T(A) A N (1) 225 7 (Aa]) A N (Afa]) 5 T (Afa]),

where. is the inclusion, is a natural equivalencelbspectra. Sincel andIl are commutative,
this equivalence is multiplicative with the componentwise multiplication on the left. This induces
an equivalence df-spectra

* C C n—1 n~ * C n—1
Pon—1 (T(A) AN () """ S pr (T (Afa]) ",
and the wedge decomposition of tiiespaceN ¥ (II) induces one of'-spectra

\/ s (T(A) AN (I 0)) " 5 (T(A) AN (D)
i€Ng

Regrouping the wedge summands after ghadic valuation of the index, we can write the left
hand side in the following way.

\/ Ppns (T(A) AN (I, p" 1))
J€No

Cpnfl

n—1
VAV e (s (TS AN (I~ 2)) ) 5,
s=1jel,

Finally, we have the equivalence Bfspectra given by the pairing
* v * c v - ™ c v\ Cpv
Py T(A) TP A ppu NV (IL,p" ) 7" = pp (T(A) AN (I, p° )~
and theT-equivariant homeomorphism
A:NY(IL ) 5 pro N (I, pt )" .
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This gives the desired equivalenceTbspectra from the wedge sum (3.1.3) to thepectrum
(3.1.2).

3.3.  We first consider the restriction of the equivalence described above to the top summand
in (3.1.3). This amounts to a map Bfspectra

* n—1 c * Cpn—1
i A T(A)Ct A N(IT) = i T(Ala])

which is multiplicative, if the left hand side is given the componentwise multiplication. Hence,
the induced map on homotopy groups

T (Pln 1 T(A) o=t ANVY(IT)) — TR (A[z]; p)

identifies the left hand side with a sub-differential graded ring of the differential graded ring on
the right.

We recall the structure of th&-spacesN<(II,:), but see also [10, Section 7.2] and
[8, Section 2.2]. The spac& ¥ (II,0) is the discrete spac€0,1}, and fori > 0, there is
a canonicalT-equivariant homeomorphismi—1/C; = N (Il,i). Here A*~! is the cyclic
standard(i — 1)-simplex, and the cyclic grou@’; acts through the (co)cyclic operatoy._; .
We show in [10, Section 7.2] that there isTaequivariant homeomorphisi—! ~ T x A#~!
such that, on the right, the cocyclic operator actsTohy multiplication bye2™v~1/i and on
A1 by the affine map which cyclically permutes the vertices. It follows that the inclusion of
the barycenter oA‘~! gives rise to a strong deformation retractlspaces

T/Ciy = N (IL,4).
The multiplication onV<¥ (II) restricts to a pairing of théth andi’th summands to th@ + i')th

summand. The equivalences above are compatible with this pairing in that there is a homotopy
commutative diagram of pointé}spaces

N (IL,i) ANV (IL,i') —5> N (I1,i + ')

- -

T/Cl+ /\T/Ci/+ T/C(i+i’)+7

where the lower horizontal map takesC;, 2/Ci) to (z'2"" )/ G+ .
LEmMA 3.3.1.-The map of differential graded rings
TR (4;p) © Q) — TR (Alz];p)

which takesi® 1to f(a) and1 ® x to \([z],,) is an isomorphism onto the sub-differential graded
(NG 7 (pf, 1 T(A) o=t A NY(IT)).

Proof. —We first show that the map of the statement lands in the indicated sub-differential
graded ring. The map of components induced from the composite

II— NCY(H) é, ppn71NCy(H)Cp"*1 — P;n71T(A[x])CPn7]
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takesz® to A([z]¢,). For by definition, the mapi[z] — TR{ (A[z]; p), which takesy to A([g]),
is the map of components induced by the composite

Alz] = N (Alz]) S ppos N (Ala]) 7 — p;nflT(A[x])CP"*1 .

And the composite

p;nflT(A)Cpnfl ip;n,lT(A)cpnfl A N (I1,0) Hp;nflT(A[w])Cpnfl’

where the left hand map is the canonical isomorphism, is equal to the map induced from
m: A — Alz].

Letz; € Ho(N (IT) be the image of the generator B (T/C; ) given by the poinC;. We
show that the map of differential graded rings

Oy = Ho (N (1D)),
which takesr to x; is an isomorphism. The map in homology induced by the product
T/CH_ A T/Ci/+ — T/C(i+i/)+

takes the cycle€’; ® C;s to the cycleC;,;/, and henceg;x;; = ;1. This proves that the map
is an isomorphism in degree zero. To prove that it is an isomorphism in degree one, it suffices to
show thatz'~! dz is a generator off, (N (I, i)). Butiz'~! dz = d(«?) andd(z?) is i times a
generator; compare [9, (2.1.2)] and (2.2.1) and (2.2.2) above.

Since the homology ofV<¥(II) is torsion free, the spectral sequence obtained from the
skeleton filtration ofV<¥ (II) takes the form

E? =TR}(A;p) ® H.(NY(D)) = m (ph 1 T(A) 1 ANV (ID)).

The spectral sequence is concentrated on the liffes and £7 ,, and hence all differentials
are zero. In particular, the edge homomorphism is an isomorphism. We can write this as the
composite

TR (A;p) ® Zlz] — TR (4;p) © Q) = 7 (1 T(A) S0 ANV(ID)),

where the left hand map is the inclusion and the right hand map is the map of the statement. It
remains to show that the induced map

(TRY(A;p) ® 1,)/ (TRE (A;p) @ Z[a]) — TR.(A;p) ® Hy (N (ID))

is an isomorphism. The domain and range are bothTfee( A; p) ® Z[x]-modules of rank one.
And the generatot ® dz = d(1 ® x) on the left maps to the generato® dx on the right. This
completes the proof. O

3.4. Itremains to prove that the homotopy groups of the lower wedge summands in (3.1.3)
correspond to the lower summands in (3.1.1). This follows from Lemma 3.3.1 and the following

LEMMA 3.4.1.-Let T be a T-spectrum, letj € I,, and let.:C;/C; — T/C; be the
canonical inclusion. Then for all integegsandv > 0, the map

VU4 dVVi:mg(T) ®mg1(T) S my(T AT/Cjy )Cr
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is an isomorphism.

Proof. —If X is a pointedC,.-CW-complex, the skeleton filtration gives rise to a spectral
sequence

Bl = et (T A X,/ Xom1)%) = moa (T A X)),

And if the C,,» -action onX is free away from the base point, the canonical map
~ Cpv
Tort (TAX)) 5 (Tope (T AX))T”

is an isomorphism. And since, non-equivarianfy;,/ X, is a wedge ofs-spheres, there are
Cpv-equivariant isomorphisms

Tort(TAXs/Xo1) Em(T) @ms(Xo/Xs1) S mi(T) @ Ho( X/ Xs—1).

Here the left hand map is the natural pairing and the right hand map is the Hurewitz
homomorphism. Hence, we have a natural isomorphism of chain complexes

Bl = (m(T) @ Cu(X)) ",

whereC, (X) is the reduced cellular complex &f.
In the case at hand, we givé = T/C; a C,»-CW-structure with one free cell in dimensions
zero and one. Lej be the generatar’™/?" € C,,.. Then the attaching maps

oD% x Cpo — X

are given bya(g") = ¢"C; anday (z, g") = g"e™ @ +1/P" C;, respectively. We defing (;)

to be the complex oZ[C,~]-modules which in degrees= 0,1 is a freeZ|[C)»]-module on

a single generatay, with differential d(y1) = (¢’ — 1)yo. Then the attaching maps define an
isomorphism of complexes

W(j) = C.(T/Cy),

which takesy; to the image of the generator &f,(D*,9D*) corresponding to the standard
orientation ofD*. SinceT is aT-spectrum the action af',» onm,(T) is trivial. Hence

El,~m(T) Ny, s=0,1,
whereN € Z[C,»] is the norm element. Moreover,
(¢ —1)N=N-N=0,

so thed!-differential vanishes. The higher differentials are zero for degree reasons, and hence,
the groupsr, ((T' A T/C;4) ") are as stated, at least up to an extension.

It remains to show that the map of the statement is an isomorphism. We also have a spectral
sequence

El =7 t(TAXs/Xs1) = mope(TAX).
In the case at hand, the same reasoning as above gives a natural isomorphism of complexes

Ei,t =y (T) ® W(])
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It follows that £5 , = 7, (T') - yo andE} , = my(T') - Ny1. The map
V' :m (T AT/Cji) = m (T AT/Cjs )7

induces a map of spectral sequences. With our identification df thierms, this corresponds to
the norm map

N:m(T) @ W(j) — (m(T) @ W(5)) "

The induced map orE&t mapsz - yo to = - Nyg, and hence, is an isomorphism. We also note
that the induced map oEit mapsz - Ny, tox - NNy, =p¥z - Ny;.
Finally, we show that under the above identifications, the composite

vy d v
E02,t Hﬂt((T/\T/CjJr)CP ) - 7Tt+1((T/\T/Oj+)Cp ) - E12,t

takesz - Nyg to jx - Ny;. By naturality, we may assume that(7') is torsion free. For given
x € m(T), we can find a map df-spectraSt AT, — T such that the induced map on homotopy
groups maps a generatoraf(St A T, ) = Z to z. Hence, it suffices to show that the composite

v Ud v
E§, — (T AT/Ci)) 25 m (T AT/Clp ) ) — EY,

takesz - Nyg to p¥jz - Ny;. Butz - Nyo = V¥ (z - y9), and hence it suffices to show that the
composite

B3 —m(T AT/Cyr) S m(TAT/Ciy) > Bf,
takesz - yo to jx - Ny;. This is the statement that the map
H\(T) ® Ho(T/Cj) = Hi(T x T/C;) £ Hi(T/C;)

takes|[T] ® yo to jNy1, which is standard. O

4. Thefunctor P(—)

4.1. We first evaluate the Witt ringV,, (A[x]).

LEMMA 4.1.1.-Let A be a ring. Then every elemerft”) e W, (A[z]) may be written
uniquely

F =3 a§le) +ZZVS (i)
J€No s=1jel,
with ai’f{s) € W, _s(A), and where all but finitely man;f;fj*s) are zero.

Proof. —Let @,, be the set of expressions of the form

f(n)zza& +ZZVS n 8)7

j€Ng s=1jel,
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with the componenta(” ) e W,—s(A), all but finitely many of which are zero. We consider

@, an abelian group under componentwise addition. Moreover, interpreting the exprgésion
as an element diV,, (A[z]) defines an additive map

and it is clear that this is an isomorphism, fo= 1. The proof of the general case is by induction
onn based on the diagram

0 O — Qo 0
0 —— Ala] =W (Ale]) — > W (Al2]) —o.

The lower sequence is exact and the right and left vertical maps are isomorphisms by the
inductive hypothesis. It thus suffices to show that the upper sequence is exact. The restriction

R:Qn— Qn-1,

Rf(n) _ Z Raénj) 1 J,.Z Z VS Ra (n S) ]nflfs)v

j€Ng s=1jeI,

is surjective sincez: W, (A) — W,,_1(A) is surjective, and’"~1:Q; — Q,,

anl(f(l)) — Z V”fl ((le))n 1 —|— Z Z Ve Vn 1= S ( )n 1— sj)[x]zz—s)7

j€Ng s=1jel,

is injective since the mapg™: A — W,,(A4), 1 < m < n, are injective. It is also clear that
the compositeRV"~! is zero. Finally,Rf(" vanishes if and only if each("_s) is in the

kernel of R: W,,_s(A) — W,_1_s(A), or equivalently, ifaiffj) =Vn-1=5(q (ln) -y ) Hence
n— n— 1
FOD =V (e, 0 ed). O
4.2. Letnw:A — Alx] be the inclusion of the constant polynomials. In this paragraph, we
give an explicit construction of the inverse image functor
" :WA — WA[I]'

Let F = E* be a Witt complex oveH, we let P(E) = P(E)* be the pro-graded abelian group
with P(E)? equal to the set of all (finite) formal sums of the form

S af [l + 3 b5 [ali d[a]

J€Ng JEN
(4.2.1) ZZ (Ve (a7 [l ) +ave (00 V[l ).
s=1jel,

with component&(m) e B andb(";) € E4-1. Addition is component-wise, and the structure
maps in the pro- system are induced from the oneB.iGiven a Witt complext’ = E’* over
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Alx] and a mapf : E — 7. E’ of Witt complexes over, the induced strict map of pro-graded
abelian groups

(4.2.2) f:P(E)— FE'

maps the formal sum (4.2.1) to the sum

D> HagN (k) + Zf(bé?})x([x]-zrl) )

EZZ:W Pl W ([fi)) + v (£ N ()

in £;". The requirement that for alt’ in Wy, this be a map of Witt complexes leaves only
one possible way to define a product, a differential, and the fiagedV on P(E). We give
the formulas which define these operations. There are several special cases to consider, and to
enhance readability, we suppress all non-essential indices. It is understood that the formulas are
valid for all possible values of non-restricted indices.

The differential

(4.2.3) d:P(E)! — P(E)™!
is given by the following formulas:
d(V*(alz]’)) = (da)[z)’ + (—1)%jalz) d[z], if s=0,
=dV*:(a[z)’), ifs>0;
(

The Frobenius
(4.2.4) F:P(E)
is given by
P(V*(afa}’) = F@[], i s=0,
=pV* ' (alz]?), ifs>0;
F (bl d[a]) = F(b)[2]"~

The Verschiebung
(4.2.5) V:P(E)I |, — P(E)
is given by

V(VS (a[:c]j)) =ystl (a[x]j),

V (b[z) " dz]) = (—1)‘1’1§ dv (blz}?) — (—1)‘1’1%V((db)[a:]j), if v,(5) =0,

=V)[z]P T d[z], if v,(j) > 0;
V(ave (o)) = pavet (play).
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The product
(4.2.6) pin: P(E)4 @ P(E)Y — P(E)i+
is given by

Ve (a[x]j)VS, (a’[:z:]jl)
=p V(P (@) ol ), if0<s <,
=iV Y (V”(aa’)[x]pw(]‘“/)), if0<s=sandv=uv,(j+j)<¢,
=p'V¥ (aa')[x]pfsl(j“/), if 0<s=s¢andv=uv,(j+j) >
Ve (ala)? )/ [2) " Ld[z] = ab [2 T "d]2], if s=0,
1
J+py

— B v @), o<

= (—1)*+ Ve (d(aF* (b)) [z

AV (b[z]) Ve (o' [2]7)
:VS/ FS/—S db ’ ps,75j+j/ pS] dvs/ FS/—S b / psl75j+_j/
( (db)a’[z] )+p75'_5j+j’ ( (b)a’[z] )
J

-V O ), o< <,

:v“wﬂwwwmﬂﬂfw””)+f%%m”L%V%M%ﬂV“””)
P’j

RS VI @V (bd) a0, if0<s=s andv=u,(j+5') < &,

= V¥ (d(b)a')[a]p " T+

- (—1)11+q/jVS/ (ba/)[:v]pfs,(j“/)_ld[x], if0<s=sandv=uv,(j+j)>¢,

— (—)V* (bF (da a7+ L gy (b (o))

J+p
j/ s s—s' [ 1 i+ s—s' 5 . ’ )

7,‘/ d(bF a )l TP J y |f0<5 < S,

Ty Ve @))lal )
bl dfa]t/ [z~ d[z] = 05
AV (e )W [ dla] = (—1)0 10— gy (dbFe () [

J+Dp%)
|

+(=1)7 Ve (dbFS(db)[2)HP), i 0 <s;

j+psj/
AV Ol av (¥l
=(-1)1dv* (Fslfs(db)b’[az]P‘”‘/*‘*‘jH")
j s’ s'—s s/ —s. .t )
V=T (d(F¥ == @)) [~ TH), if0<s<s.
Finally, the map
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(4.2.7) AW, (Alz]) — P(E)S
is given by
/\(VS (a[x]j)) =V* ()\(a) [1]7) .

Here we use Lemma 4.1.1 to write every elemenii®f( A[x]) as a sum of elements of the form
Ve (alz]?) with a € W,,—s(A).

THEOREM 4.2.8. —The formulag4.2.3H4.2.7)makeP(WV.Q%) a Witt complex overi|x].
Moreover, the canonical map

is an isomorphism.

Proof. —Suppose thaP (IWV.Q%) is a Witt complex overd[z]. Then the composition of the
map of the statement and the map

induced from the unique malpy. Q% — = W.Q% 2] is a self map oW,Q’A[z]. But the only self
map of an initial object is the identity, and hence the map of the statement is injective. It is
surjective because the composition

QT/I/,(A[I]) — W'Q*A[m] — P(W.Q2%)

is surjective. We proceed to prove thatiw.Q2* ) is a Witt complex. The proof is in two steps.

Suppose first thatd is a finitely generated polynomial algebra ovéy, . We prove by
induction on the number of variables th&{W.Q% ) is a Witt complex and that the canonical
map

WQZM — TR, (A[:C];p)

is injective. The proof of the basic cade= Z,) and the induction step are similar. In both cases,
the starting point is the fact that the canonical map

W.Q% — TR (4;p)

is injective. We proved in Example 1.2.4. and Proposition 2.6.1 that this is telie=ifZ,,), and
in the induction step, it follows from the previous case. It follows that the induced map

P(W.Q%) — P(TR.(4;p))
is injective. But the canonical map
P(TR,(A;p)) — TR, (Afz];p)
is an isomorphism by Theorem C, and hence the canonical map
P(W.Q)) — TR, (Alz];: p)

is injective. The definitions (4.2.3)—(4.2.7) were made such that this map is multiplicative and
commutes with the map$, F', V, and \. Hence, sincél R, (A[z]; p) is a Witt complex over
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Alz], so isP(W.%). Finally, in the diagram
P(W.4)—— P(TR.(A;p))

- lw

WA TR, (Alz]; p)

the top horizontal map is injective and the vertical maps are isomorphisms. Hence the lower
horizontal map is injective.

Let A be a general, -algebra. To show thaP(W.Q% ) is a Witt complex overA[z] we
must verify a number of relations. Each relation involves only a finite number of elements from
W.% . Hence, it suffices to show that given a finite set of elemeni¥ 61% , we can find a ring
homomorphismA” — A from a finitely generated polynomial algebra oy, such that this
finite set of elements is in the image of the induced map

W%, — WO

Indeed, we already know th&(17.€%,) is a Witt complex, so the corresponding relations hold
there. Itis clear that given a finite set of element§jf ), we can findA’ — A, whereA’ is a
finitely generated(,,) -algebra, such that these elements are in the imageg qf, ) — €y 4.
And sincefly;, o) — WL} is surjective, we are done.0

PROPOSITION 4.2.9. -Let E be a Witt complex oved. Then the produc{4.2.6)and the
differential (4.2.3)makeP(FE) a pro-differential graded ring, and the m&g@.2.7)is a map of
pro-rings. The Frobeniu$4.2.4)is multiplicative, and the Frobeniug.2.4)and Verschiebung
(4.2.5)satisfy Frobenius reciprocity.

Proof. —This is a long straightforward but tedious calculation which we omit. Along the way
one uses the relations amoAgd andV in E. As an example, we verify the associativity relation

(dV* (al))0'[2] L d[2))b" [} d]z] = dV* (afx]?) (' [a] ~da]p" [2]7"  d]2]).

The right hand side, by definition, is zero, so we must show that the left hand side, too, is zero.
This is easy ifs = 0, so we consider the case> 0. The product in the parenthesis is equal to the
unit (—1)7' /(j + p*j') times

(=)7Lt Ve (dbFe (b)) [+ + Vo (dbFe (b)) P,
If we multiply the first summand byb”[z]’"~'d[z] from the right, we get the unit
(=) /(G +p°j' +p°j") times
(=) aV*(d(dbF3 (b)) F* (") [x]i+P 3 +P"")
+ (=17 IV (d(dbF? (b)) Fo(db") [2]3 77347
= (=1)9+9 p* AVS (dbF* (db') F* (b") [x]7 47" P77

— p*V* (dbF* (db) F? (db//)[x]j+psj/+psj”) )

Here we use the relatial™® = p® F*d in E. Similarly, the product of the second summand with

V' [x)7" ~1d[z] is the same unit—1)7" /(j + p*j' + p*5”) times
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(=) V2 (d(dbF* (db')) F* (b") [z} 77 4773
(1) AV (dDF (db ) FS (6 [ )
= OV (A (A (@ [T )
— (= 1)+ s AV (dbF (db ) FS (6" [P T 403,
The sums cancel as desireda

Proof of Theorem B. Fo show thatP(F) is a Witt complex overd[z], it remains to verify
that for all f € Ax],

FdA([f]n) = A([fln—1)""" dA([fln)-

This is a relation between elements in the image of the R@p.Q2*% ) — P(E) induced by the
unique map¥.Q%, — E. And the relation holds itP(W.Q% ) by Theorem 4.2.8. Hence it also
holdsinP(E).

The second part of the theorem is equivalent to the statement that the map

Homyy,, (E,m.E') — Homyy, , (P(E), E'),

]

which takesf: £ — ., E’ to the induced ma[f:P(E) — E’ is a bijection. The inverse map
takesg: P(FE) — E' to the composite

ELr,P(E) ™ n,FE,
where the right hand map takes E! toa[z]’ € P(E)?. O
Remark4.2.10. — The proof of [15, Proposition 1.3] shows that

r(f) = FaA([fln) = A([fla=1)”" " dA([flnr)

is anadditivefunction of f. This makes it possible to prove thatf) = 0 without the use of
Theorem 4.2.8, hence completing a purely algebraic proof of Theorem B.

We conclude with the following result, which we shall need in Section 7 below.

LEMMA 4.2.11.- et E', E, and E” be Witt complexes and suppose there is a long-exact
sequence of strict maps of pro-abelian groups

q q hq
...HE{qf_)E?i)E{'q_,E_’q—l_>...

such that the maps commute with d, andV'. Then there is an induced long-exact sequence of
strict maps of pro-abelian groups

o pE) L Py L pE Y pE)

and the maps commute with d, andV'.

Proof. —Indeed, as an abelian groif{ £)¢ is the direct sum of copies @?, and EZ~* with
1<m<n. O
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5. The de Rham-Witt complex of Bloch-Deligne-lllusie

5.1. For F,-algebras, [13] contains a construction of the de Rham-Witt complex that is
somewhat more concrete than the construction in Theorem A. In this paragraph we extend
lllusie’s method tdZ,-algebras. We recall from [13, ] that¥é-pro-complexover A consists
of:

(i) a pro-differential graded ring* and a strict map of pro-rings

A:W.(A) — DY
(ii) a strict map of pro-graded abelian groups
V:D¥ | — D*
such that\VV = V' \ and such that for alt, y € D* anda € A,
V(zdy)=V(@)dV(y),  V(z)dr(lals) =V (@A([alnr)""") dV (A ([aln-1))-

A map of V-pro-complexes oved is a strict map of pro-differential graded rings D* — D’*
such that\’ = fAandV'f = fV.

There is a natural forgetful functor from the category of Witt complexes dverthe category
of V-pro-complexes oves,

Wa — W).
Indeed, the calculation
V(xdy)=V(xF dVy) =V (xz)dV(y),
V(y)dA(laln) =V (yF dA([aln)) = V (yA([a]h21) dA([a)n-1))
=V (yA(lalh 1)) aV (A(laln-1)),

shows that a Witt complex is -pro-complex upon forgetting the Frobenius.

The proof of Theorem A shows that the categi¥y{ has an initial object. A more constructive
proof is given by lllusie in [13, Theorem 1.1.3]. We will need this construction later on, so we
include it here.

PropPoOsITION 5.1.1. —The categoryV’, has an initial objectV’Q2* , and the canonical map
Qfy (4) — WG, is surjective.

Proof. —One recursively defines the differential graded rifig§ 2% and the map®, V', and
A, starting fromiV{ Q% = Q7. So suppose that for all < m, the differential graded ringy/;, 2%
and the maps

R:W/ Q% — W/ _,Q, VW QN =W, AW, (A) - QY5

have been constructed such tliais a map of differential graded ringg, is additive AR = R,
AV =V, and such that for att, y € W),_, Q% anda € A,

V(zdy) =V (z)dV(y), V(z)dA(la]n) = V(x/\([a]n_l)p_l) dV (A([a]n-1)).
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Suppose, in addition, that for all < m, the canonical map
Qi (a) = W%
is surjective. Then, one defines
Wo % =Ny (a)/Nons
wherelN;, is the differential graded ideal generated by the elements

(5.1.2) > V(Mza))dV (Ayr.a)) - AV (AMyia),

forall zo,yi o € Win—1(A) such that the sum

D AMaa) dA(y1.a) - dA(Yia)

is equal to zero i, _, Q% , and by the elements

(5.1.3) V(A@)) dA([a]m) = V@A (a)m-1)" ") aV (A ([a]m-1)),
forall a € A andz € W,,,_1(A4). The unique map of differential graded rings

Q*Wm(A) — W10,
which extends\R: W,,,(A) — W/, _,QY, factors to give a map of differential graded rings
R:W] Q% — W/ Q.
The additive map
VW — WL
given by

V(AM@)dA(y1) ... dX(y:)) =V (AM@)) dV (A(w1)) - .- dV (A(wi))
is well-defined and satisfies that” = V' A and that for alke,y € W), _, Q% anda € A,

—1
V(zdy) =V (x)dV(y), V(z)d\([a]m) = V(a:)\([a]m,l)p ) dV (A([a]m—1))-
This gives aV -pro-complexiW’Q . One verifies immediately that this is the initial object in
W, O
LEMMA 5.1.4. -The relationVd = pdV holds inW’€%.

Proof. —It follows from the construction above that the map is a map of graded
W, (A)-modules

VF W, Q% — W) Q%,

where on the left, _, % is considered &,,(A)-module via the Frobenius
F:W,(A) —» W,_1(4).
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Hence,
V(dz) =V (1)dV(z) =d(V(1)V(z)) —dV(1)-V(x)
=dV(FV(1)z) — V(d(1)z) = pdV ().
This proves the lemma.o

LEMMA 5.1.5. -Suppose that for the ring, the canonical map
W' — W.Q%

is an isomorphism. Then the same is true Adz].

Proof. —Only the injectivity of the map of the statement is at issue. The assumption of the
lemma implies that the induced map

PW'QY,) — P(W.Q%)

is an isomorphism of pro-graded abelian groups. We proved in Theorem 4.2.8 above that the
right hand side is a Witt complex ovet[z]. Therefore, the left hand side isl&pro-complex
over A[x]. But then the canonical map

W’Qj;‘[w] — P(W'Q)
is an inverse of the map
induced fromW/Q} — m W/ . O
Proof of Theorem D. e must construct a map
F-W'Q% —W! _ Q%
and show that this maké®’/ Q¥ a Witt complex overA.

Suppose first thatl is a polynomial algebra ové,, in a finite number of variables. Then we
claim that the canonical map

W' — W.Q%

is an isomorphism. By Lemma 5.1.5 it suffices to consider the das€Z,,). And in this case,
the statement follows from Example 1.2.4.

In the general case, we first construct a derivation

§:Wh(A) =W, _ Q%
such that, oncé’ is definedp = F' d\. Given a Witt vector
a=[aoln +V ([ar]n—1) + -+ V" ([an-1]1),

we define

8(a) = A([aoln—1)""" dA(Jaoln—1) + dA([a1]n_1]) + -+ +dV" 2 (A([an-1]1))-
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In order to verify that is a derivation, we may assume théts a polynomial algebra oveéx
in a finite number of variables. But in this case, the canonical map

W' — W.Q%
is an isomorphism, and the composite
Wi (A) 5 W) Q5 5 W, 10

is equal toF’ d\, which is indeed a derivation.
There is a unique map of grad&d, (A)-algebras

such thatF’ d\ = §: W, (A) — W/ _,QY4, and we claim that?” annihilates the differential
graded idealV;". Indeed, it follows immediately from the definition éfthato(V (a)) = da,
and henceF” annihilates elements of the form (5.1.2). And the calculation

F' (VA=) dA(Jan-1) =V (A@)A([aln—1)"" ) dV (A(Ja]n_1)))

=p(\@)3([ala-1) = A@A(la)u-1)""d(A(la)u-1))) =0,

shows thatF” annihilates the elements (5.1.3), too. Hence, the fafactors to give a map of
gradedV,,(A)-algebras

F:W Q% - W, _,Q4.

Itis clear from the way that’ was constructed that the canonical map
W'y — W.Q%

commutes with Frobenius operators. The map is an isomorphistnisifa polynomial algebra
in finitely many variables oveZ,). Hence, in this case, the operafdrsatisfies the relations
which makedV' a Witt complex. But then it satisfies these relations for e&ty-algebra;
compare the proof of 4.2.8.0

6. Etale extensions

6.1. A map ofringsf: A — B, we recall, is étale if it is finitely presented, flat, and)ig/A
vanishes; see [6, §17]. Let be a ring in whictp is a non-zero-divisor, and 1év,, ,(A) be the
reduction modulg® of the Witt ring,,(A). We show in Proposition 6.2.2 below thatdf— B
is étale, then the induced map

Wn,v (A) - Wn,v (B)

is étale. The analogous statementfpralgebras was proved in [13, Proposition 0.1.5.8], and
the proof in the case we consider is similar.

We need a slight generalization of standard results about flatness and filtrations, [3, Chapter I,
85]. Let A be aring and leFil® A, 0 < s < n, be a finite descending filtration by ideals,

A=Fil’A>Fil'! A>---DFil"A=0.
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The filtration is callednultiplicativeif for 0 < s,t < n, the multiplication maps
Fil* A®4 Fil' A — Fil*T* A.

If N isanA-module, we have the induced filtratidtl® N, 0 < s < n, whereFil® N is the image
of the canonical mapil®* A4 N — N.

LEmMMA 6.1.1. -LetFil® 4, 0 < s < n, be a finite descending multiplicative filtration of the
ring A, and letM be an A-module. Suppose that® M is a flat gr A-module and that the
canonical map

Fil' A® 4 M — Fil' M
is an isomorphism. Thel/ is a flat A-module.

Proof. —The sequence
Tor{' (A, M) — Tor{ (gr® A, M) - Fil' A@, M — M
shows thatTor{ (g1 A, M) vanishes. Sincer® M is assumedzr® A-flat, this implies that

Tor?' (N, M) vanishes for everyi-moduleN which is annihilated byil* A. Indeed, the change
of rings spectral sequence

E2, = Tor® A (N, Tor/ (gr° 4, M)) = Torl, (N, M)
has vanishingZ?-term in total degree one. In general, the short exact sequences
0—Fil*™" N S Fil* N - gr* N -0
give rise to exact sequences
Tor{' (Fil*T' N, M) — Tor? (Fil* N, M) — Tor{ (gr® N, M).
The right hand term vanishes by the above, since the magltil® is annihilated byFil' A.

But Fil" N is zero, and hence by easy inductidfyri'(N, M) vanishes. Thus\/ is a flat
A-module. O

LEMMA 6.1.2. -LetFil® 4, 0 < s < n, be a finite descending multiplicative filtration of the
ring A, and letM be anA-module. Suppose that for< s < n, the canonical map

gr¥ A ®go0 4 gr' M — gr* M

is an isomorphism. TheFil® A ® 4 M = Fil® M is an isomorphism) < s < n.

Proof. —The assumptions imply that the canonical map
gr* A®a M — gr® M
is an isomorphism. Indeed, the left hand map in the exact sequence
g AQAFII' M —gr®* A@a M — gr®* A4 gt° M — 0
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is zero. The statement now follows from the diagram
Fil'T"A@a M ——=FilP A@a M ——=gr* AQa M ——=(

l -

0——Fistt s Fil* M gr® M 0

by induction, starting fros=n—1. O

LEMMA 6.1.3.-Let f: A — B be aring homomorphism, |étC A be a nilpotent ideal, and
suppose tha (, /; 5, /(4,1 Vanishes. Thef; , vanishes.

Proof. —In the short-exact sequence
O—>IQ}3/A —>QIB/A —>Q}3/A ®aA/I—0,

the right hand term is isomorphic ©,, . 4/1y/(,1)» Which vanishes by assumption. Hence,

the left hand map is an isomorphism. By simple induction, so is
I”QlB/A lQ}B/A,
for all n > 0, and since is nilpotentQy,  , is zero. O

6.2. If pis anon-zero-divisorimd and if f : A — B is flat, thernp is a non-zero-divisor iB.
Indeed, this follows from the diagram

04>A®A34P>A®AB4>A/}7®A34>0

I,

B B B/p 0.

We recall from [7, XIV, §1, Proposition 2] that jf: A — B is an étale map df ,-algebras, then
the following diagram, where is the Frobenius, is cocartesian.

(6.2.1) .

A
I lf
—?. B

W<~

This means that we can write evérg B as a sum
b=> b f(ai)

with b; € B andq; € A.
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PROPOSITION 6.2.2. -Let f: A — B be an étale map and suppose thats a non-zero-
divisor in A. Then for alln,v > 1 and all0 < s < n, W, ,(f) is étale and the diagrams

R™s s

Wiw(A) ——= Ws ,(A) Whw(A) ——=W; ., (A)
\Lwnyv(-f) \LWS,U(]C) an,u(f) \st,u(f)
Wi o(B) 22 W, o (B) Wyo(B) 2= W, (B)

are cocartesian in the category of commutative rings.

Proof. —Suppose first that = 1. The Vfiltrations of W,, ; (4) andW,, 1 (B) are finite and
multiplicative. But in order to apply the results of the previous section, we must first show that
the Vfiltration of W, 1 (B) is equal to the filtration induced by thié-filtration of W,, 1 (A4), or
equivalently, that the canonical map

Wn,l(B) ®Wn,1(A) VSWn_rl(A) — VSWnyl(B)
is surjective. This, we note, is equivalent to the statement that the left hand square in the statement

of the proposition is cocartesian. Indeed, there is a natural short-exact sequéige, ©1)-
modules

0— FsWo_y1(A) S W1 (A) s RPW, 1 (A) — 0,

and the left hand map has ima§&W,, 1 (A). In particular, it will suffice to consider the case
s =n — 1. Butthe map

Wnyl(B) OW,.1(A) FfilAl — FfilBl

takes[b], ® a to b*" ' f(a), and hence, is surjective by (6.2.1). Indeg¢d; 4, — B is étale

sincef: A — B is. Hence, th& -filtration of W, 1 (B) is equal to the filtration induced from the

Vfiltration of W, 1 (A). We can now conclude from Lemma 6.1.2 that the canonical map
Wn,l(B) ®Wn,l(A) VSWn,l(A) — VSWRJ(B)

is an isomorphism, or equivalently, that the right hand square in the statement of the proposition
is cocartesian (witk andn — s interchanged). Indeed, the map

gry Wa,1(A) ®gr“’, Wa,1(A) gr?/ Wh1(B) — gry, Wy, 1(B)
is naturally identified with the canonical map
Py A1 ®a, B1 — By,
and the latter is an isomorphism by (6.2.1).
We can now show thalV,, 1 (f) is étale. FirstW,, 1(f) is finitely presented. To see this, it
suffices to show thairy, W, 1 (f) is finitely presented. But this follows from the isomorphism

Bl ®A1 gl“v Wn,l (A) :> grv Wn,l (3)7
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sincefi: A; — By isfinitely presented. Next, it follows from Lemma 6.1.1 thi}, 1 (f) is flat;
for f1: Ay — By is flat and the canonical map

Wn,l(B) ®Wn,l(A) VWn,l(A) — VWn,l(B)

is anisomorphism. Finally, sindéW,, ; (A) C W,, 1(A) is a square-zero ideal, and siﬁ@gl/Al
vanishes, Lemma 6.1.3 shows tia}, is zero. This completes the proof of the
proposition, ifv = 1.

In the general case > 1, we consider the-adic filtration of W, ,,(A), which is finite and
multiplicative. Moreover, the canonical map

1(B)/Wn,1(A)

pSWn,U(A) ®Wn,U(A) Wnu(B) HpSWn,v(B)v

clearly, is an isomorphism. Hence, one can easily conclude from the;cadethat W, ,,(f) is
étale. It remains to prove that the two squares in the statement of the proposition are cocartesian.
As we noted earlier, this is equivalent to the statement that fér<ilk < n, the canonical map

VSWH-,U(A) OW, 0 (A) Wnyv(B) - VSWH-,U(B)

is an isomorphism. Injectivity follows immediately from the fact tHat, ,(f) is flat. For
surjectivity it suffices to prove the case=n — 1. It follows by induction from (6.2.1) that
everyb € B can be written

b=>"at?" " +pV

with a; € A andb;, b’ € B. Hence
Vi) =Y V) b + p VYY),

which proves surjectivity. O
PROPOSITION 6.2.3. -Let A — B be an étale map and suppose thpas a non-zero-divisor
in A. Then for alln,v > 1 andq > 0, the canonical map

Wn,v (B) <§§Wn,u(A) Wn,vQ?q - Wn,quB

is an isomorphism.

Proof. —This is proved from Proposition 6.2.2 by the argument of [13, Proposition 1.1.14]: to
produce the inverse of the map of the statement one shows that the left hand sidepi®a
complex. O

PROPOSITION 6.2.4. —Let f: A — B be an étale map and suppose thats a non-zero-
divisor in A. Then for alln,v > 1 andq > 0, the canonical map

Wiw(B) @w, ,a) TRy (A;p, Z/p") — TRy (B; p,Z/p")

is an isomorphism.

Proof. —The proof is by induction om starting from the case = 1, which was proved in
[5, Proposition 3.2.1]. The proof of the induction step is similar to the proof of [10, Theorem 5.5].
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In brief, there is a natural long exact sequenc#&®f, (A)-modules

n v n vy R n— v
_’hTRq(Aﬂva/p )—>TRq(A7p7Z/p )HR*TRq I(A,p,Z/p )_>

The base-change of this sequence alding, (f), which is exact sincéV,, ,,(f) is flat, maps to
the long-exact sequence Wf,, ,(B)-modules

= W TR (Bsp, Z/p") — TR (B;p, Z/p")  R. TRy~ (B;p, Z/p") — -+
The map of the right hand terms,
Waw(B) ®w, ,(a) R« TRI (A;p, Z/p") — R. TR}~ (B;p, Z/p"),

inductively, is an isomorphism, since the left hand square in the statement of Proposition 6.2.2 is
cocartesian. In order to show that the map of left hand terms,

Wn,v(B) ®Wn,v(A) hTRZ(A7p7 Z/pv) - hTRZ(BJ?v Z/pv)a

is an isomorphism, we recall that there is a natural first quadrant spectral sequence of
W (A)-modules

E2, = Hy(Cpn, F' "' TRL(A;p, Z/p")) = W TRY,(A;p, Z/p");

see the discussion preceding [10, Theorem 5.5] and also [9, 84]. The desired isomorphism now
follows from the casen = 1, since the left hand square in the statement of Proposition 6.2.2 is
cocartesian. 0O

7. Smooth V-algebras

7.1. Inthis paragraph we prove Theorem E of the introductionWL.éie a complete discrete
valuation ring of mixed characterist{0, p) with quotient fieldK” and perfect residue fieltl Let
A be a smoothV -algebra, letdy = A ®y K, and letd;, = A Qv k.

LEMMA 7.1.1. et A be a smoottV-algebra and letf : A — B be an étale map. Then the
canonical map is an isomorphism

Wow(B) @w, ,(a) TRy (AlAk;p,Z/p") = TR} (B|Bx; p, Z/p").
Proof. —We recall from Proposition 6.2.4 that the canonical map
Wn,v (B) ®an(A) TRZ(Aypa Z/pv) - TRZ (vaa Z/pv)

is an isomorphism. We proved in [9, Remark 1.5.8] that there is a long-exact sequence of
W (A)-modules

< = TR (AR p, Z/p") = TRI (A, Z/p") 25 TRI (A Asc; p, Z/p?) — -,

where the left hand term isl&, ,,(A)-module viai, : W,, ,(4) — W, ,(Ax). We claim that also
the canonical map

Wn,U(B) ®Wn,v(A) TRZ(AlmpaZ/pv) - TRZ(B/Wpa Z/pv)
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is an isomorphism. Sinc®/,, ,(A) — W, ,(B) is flat by Proposition 6.2.2, the obvious five-
lemma argument completes the proof. To prove the claim, we first recall from [8, Proposi-
tion 2.4.4] that the canonical map

Wi (Br) @w, (a,) TRy (Ax; p) — TRy (By;p)

is an isomorphism; the proof is analogous to the proof of Proposition 6.2.4 above. A five-lemma
argument based on the coefficient sequence

- = TR (Axip) ™ TR} (Axip) — TRy (A p, Z/p") £ TRy (Aip) =+
shows that the canonical map
Wao(Br) ®w, . (a,) TRy (Ax;p, Z/p") — TRy (Bi; p, Z/p")
is an isomorphism. Hence, it suffices to show that
Wi,o(B) @w, () Wa,o(Ak) = Wi (Bi)

is an isomorphism. The statement foimplies the statement far — 1, so we can assume that
n < wv. ThenW,, ,(Ax) = W, (Ax) and W, ,(Bx) = W,,(By). We proceed by induction on

1 < n < v starting from the trivial case = 1. In the induction step, we consider the short exact
sequence ofV,, ,, (A)-modules

n—1 anl R
0—F Ay — W,(Ar) = RW,_1(A;) —0

(the corresponding sequence 3f, ,(A) is not exact, ifv < n). We wish to show that the
upper horizontal map in the diagram

Wnyv(B) AW, »(A) FfflAk _— Ff_lBk

Wn,u(B) OW, o (A) FfflA ®4 Ay ——> Ff_lB R4 Ag,
is an isomorphism. But Proposition 6.2.2 shows that the lower horizontal map is an isomorphism,

and the vertical maps are isomorphisms for trivial reasons. One shows in a similar fashion that
the map

W"-,U(B) ®Wn,v(A) R*anl(Ak) = R*anl(Bk)
is an isomorphism. This completes the proofl

We recall from the introduction thav.Q7, ,,,, denotes the universal Witt complex over the
logring (A, M 4); see also [9, Section 3.2].

LEMMA 7.1.2. et A be a smoottV-algebra and letf : A — B be an étale map. Then the
canonical map is an isomorphism

anv(B) ®Wn,v(A) Wn”UQ?A,MA) = Wn’UQgBa]WB)'
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Proof. —This is similar to the proof of Proposition 6.2.30

LEMMA 7.1.3. -Let A be a smoothV -algebra. Then the canonical map
P(TR,(A|Ak;p, Z/p")) — TR, (Alz]|Alz] k30, Z/p")

is an isomorphism.

Proof. —By Theorem C, the canonical map
P(TR.(R;p)) — TR, (R[z];p)

is an isomorphism, for every, -algebrak. The coefficient sequence

n Y n n U /6 n
-+ — TRy (R;p) = TRy (R:p) — TRy (R; p, Z/p*) = TRy (Rip) — -+,
by Lemma 4.2.11, gives rise to a long-exact sequence

= P(TR(R:p))" % P(TR.(R:p))! — P(TR.(R:p. Z/p"))" — -+

q
which maps to the coefficient sequence
- — TRy (R[z];p) & TR} (R[z];p) — TR. (R[];p, Z/p") — -

By Theorem C, this map is an isomorphism of two out of three terms, and hence, of the remaining
terms. This shows that for evety,,-algebrakz, the canonical map

P(TR,(R;p,Z/p")) — TR, (R[z};p,Z/p")

is an isomorphism. This applies, in particularfe= A andR = Aj,. A similar argument based
on the sequence

<o — TR (A p, Z/p°) > TR (Aip, Z/p*) 5 TR (A|Acip, Z/p¥) — -+

completes the proof. O

LEMMA 7.1.4.—-Let A be aV-algebra. Then the canonical map

P(W'Q?A,MA) ®Z SZ/pv (/,Lpu)) — W'Q?A[z],MA[I]) ®Z SZ/pv (‘LLPU)

is an isomorphism.

Proof. —Let 7: A — A[z] be the inclusion of the constant polynomials. A functor which has
a right adjoint preserves colimits; in particular, it preserves initial objects. It follows that the
canonical map

W ata) M) = T W4 ary)

is an isomorphism. Hence, by Theorem B, we have a canonical isomorphism
WQ?A[JCLMA[I]) - P(W'Q?A,MA))-
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Finally, the canonical map

P(W'Q?A,MA)) ®z 57,/pv (hpv ) — P(W'Q?A,MA) ®z Sz/pv (Hpv ))

is an isomorphism, sincé’ (respectivelyd) is the identity map (respectively the zero map) on
the factorSy . (v ). FOr instance,

Vi w)® (= Vs(w ®F5(()) =V (w®).

The lemma follows. O

A pro-abelian groupD is Mittag—Leffler zero, if for alln > 1, there existsn > n such that
the structure ma@,,, — D,, is zero. A strict mapf: D — D’ of pro-abelian groups is an
isomorphism of pro-abelian groups if and only if the kernel and cokerngleag Mittag—Leffler
zero.

LEMMA 7.1.5.-let f: E — E’ be a map of Witt complexes and suppose that, as a map of
pro-abelian groupsy is an isomorphism. Then, as a map of pro-abelian groups,

P(f):P(E)— P(E")

is an isomorphism.

Proof. —Let K be the kernel off : E — E’ considered as a strict map of pro-abelian groups,
and, by slight abuse of notation, [B{ K') denote the kernel aP(f): P(E) — P(E’) considered
as a strict map of pro-abelian groups. Foe 1, we can findt > 0 such that for alll < s < n,
the structure maFs+ — FE; is equal to zero. By inspection, we see that the structure map
P(K)p4+t — P(K), is zero, and hencé’(K) is Mittag—Leffler zero. A similar argument shows
that also the cokernel d?(f): P(E) — P(FE’) is Mittag—Leffler zero. O

Proof of Theorem E. We recall from [6, Corollary 17.11.4] that'd-algebraA is smooth if
and only if there exist relatively prime elemerfis. . ., /. € A and étale maps

1
Vizi,...,zn] — Ay, —A[—].
fi
We first prove the statement for polynomial algebras. The proof is by induction on the number
of variables; the basic case= V is the statement of [9, Theorem C]. In the induction step, we
assume the statement fdrand consider the following diagram of pro-abelian groups.

P(W. 4 ar,) ©2 820 (Hpv)) —— P(TR(A|Ak;p, Z/p"))

- X

W ata), Mary) ©2 Sz/pv (Hpr) — TR, (Alz]|Al2] k5 p, Z/p").

The left and right hand vertical maps are isomorphism by Lemmas 7.1.4 and 7.1.3, respectively,
and the top horizontal map is an isomorphism by Lemma 7.1.5 and by the assumption that the
theorem holds ford. This proves the induction step.

Let A be a smooth/-algebra, letf: A — B be an étale map, and suppose that the theorem
holds for A such that the canonical map

WA 4 014y @2 Sz/p0 (pv) = TR, (A Ak p, Z/p")
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is an isomorphism of pro-gradéd. ,,(A)-modules. Then the map obtained by base-change along
W. ,(f) again is an isomorphism, and hence, Lemmas 7.1.2 and 7.1.1 show that the canonical
map

WY 5 vy @2 Sz/p0 (Bpe) — TRL(B|Bre; p, Z/p")

is an isomorphism.

The proof is completed by the following covering argument. Egtbe a functor, which to a
smoothV -algebraA associates &, ,(A)-moduleE,, (A), and suppose that for afl € A, the
canonical map

Wiw(Af) @w, ,(a) Bn(A) — En(Ay)

is an isomorphism. Lefy,..., f,. € A be relatively prime elements. Then the canonical map
A —[]i<ic, Ay, is faithfully flat, and hence, the Koszul complex

C*= @ (A Ap)

1<ikr

is exact. Here we viewd — Ay, as a cochain complex of-modules withA located in degree
zero. The maps in this complex are alternating sumd-algebra homomorphisms. Hence, we
obtain complexes$V,, ,(C*) and E,,(C*) by applyingW,, ,(—) and E,,(—), respectively, to
each term of the compleX™*. The former complex is exact by an induction argument based on
the natural exact sequences

0 — Wio(Ar) " Wow(Ag) B W,_1,(Af) — 0.

The terms of this complex are flav,, ,(A)-modules by Proposition 6.2.2. Hence, also the
common complex

Wn,v(C*) ®Wn,v(A) E, (A) = En(C*)

is exact. We now consider the map of Witt complexgs — E’* from the statement of
Theorem E. Then the complexg$(C*) andE’?(C*) are exact, for alf > 0, by Lemmas 7.1.2

and 7.1.1, respectively. We can chodgse.. ., f, € A such that the map of cochain complexes
E%(C*) — E’4(C*) is an isomorphism in positive degrees. But then this map is an isomorphism
also in degree zero.O
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