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AFFINE DIFFEOMORPHISMS OF TRANSLATION
SURFACES: PERIODIC POINTS, FUCHSIAN GROUPS,
AND ARITHMETICITY

By EUGENE GUTKIN, PAascAL HUBERT AND THOMAS A. SCHMIDT

ABSTRACT. — We study translation surfaces with rich groups of affine diffeomorphisms—*“prelattice”
surfaces. These include the lattice translation surfaces studied by W. Veech. We show that there exist
prelattice but nonlattice translation surfaces. We characterize arithmetic surfaces among prelattice surfaces
by the infinite cardinality of their set of points periodic under affine diffeomorphisms. We give examples of
translation surfaces whose periodic points and Weierstrass points coincide.
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RESUME. — Nous étudions des surfaces de translation ayant un grand groupe de difféomorphisms
affines—les surfaces « préréseaux». Parmi celles-ci se trouvent les surfaces de translation réseaux étudiées
par W. Veech. Nous montrons qu'il existe des surfaces de translation préréseaux qui ne sont pas réseaux.
Nous donnons une nouvelle caractérisation des surfaces arithmétiques : ce sont les surfaces préréseaux qui
ont un nombre infini de points périodiques sous I'action du groupe des difféfomorphisms affines. Nous
exhibons des exemples de surfaces de translation dont les points périodiques et points de Weierstrass
coincident.
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1. Introduction

A translation surfaceis a flat surface with conical singularities (see say [23]), whose
transition functions are (restrictions of) translations. Translation surfaces arise in several
contexts: mathematical billiards, Riemann surfaces and their moduli, classification of surface
diffeomorphisms and measured foliations. In this paper, we focus on the geometry and arithmetic
of translation surfaces.

In [23] W. Thurston studied flat Riemannian metrics with conical singularities. In a particular
setting, these give rise to translation surfaces.4.bt a Riemann surface agda holomorphic
1-form onS. Integratinge, we obtain a translation atlas off of the zeros¢ofA zero of ¢ of
multiplicity m — 1 yields a cone point with angnr. See [19,30] for detalils.

The affine diffeomorphisms of a translation surface form a gro\fi(S). Assigning to
g € Aff(S) its (constant) differential, we obtain ttdéfferential homomorphisnb : Aff(S) —
SL(2,R). LetT'(S) C SL(2,R) be its range. W. Veech showed tH&tS) is a Fuchsian group,
and related it to the geometry and dynamics of the geodesic flaW[@8]. It is customary to
callT'(S) theVeech groupf S.1

1 The flat structures considered by Veech and many others are induced by quadratic differentials. Translation surfaces
correspond to the quadratic differentials which are squares of linear ones. From the geometric viewpoint, these more
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We say thatS has thdattice property or simply thatS is alattice surfaceif I'(S) is a lattice,
i.e., SL(2,R)/T" has finite volume. (It is also common to cdla Veech surfacg The lattice
I'(S) is necessarily nonuniform [26]. For instance, the standard flat torus is a lattice surface—its
Veech group iSL(2,Z).

A nonuniform lattice isarithmeticif it admits a finite index subgroup which is conjugate to a
subgroup oL (2,7Z). A lattice translation surface arithmeticif its Veech group is arithmetic.
Arithmetic translation surfaces were investigated already in [7]. In [26,27] Veech gave the first
examples of nonarithmetic lattice surfaces. He also showed that the geodesics on lattice surfaces
satisfy theVeech dichotomyEvery geodesic is either closed or uniformly distributed.

There are two major branches to the study of translation surfaces. One is the study of the
general or, at least, the generic translation surface. See, for instance, [4,18] and the survey [19].
The other is the study of special translation surfaces, e.g., lattice surfaces. This branch naturally
subdivides: The purely geometric one [9,29] and the algebro-geometric one [10,11,14,15,17,30].
The present work is of the latter type.

Every element ofL(2,R) \ {1} is eitherparabolic, elliptig or hyperbolic By convention,
we consider the elements] elliptic. We say thatp € Aff(S) is a parabolic, elliptic or a
hyperbolicdiffeomorphism, ifD¢ € SL(2,R) is parabolic, elliptic, or hyperbolic respectively.

The generic translation surface has no affine symmetries, while we study the surfaces
with infinitely many of them. We emphasize the diffeomorphisms “generateddargbolic
directions A direction is parabolic fos if

(i) Every geodesic in this direction is either periodic or a saddle connection.

(i) The moduli of the cylinders inS, formed by the geodesics in this direction are

commensurate.

To each parabolic directiod, one can associate a parabolic diffeomorphigme Aff(S),
[26]. The restriction ofpy to a cylinder in the directiod is a power of the Dehn twist of that
cylinder. This then allows us to identify, with its differential, a parabolic element &%S).
Furthermore, for any parabolic € Aff(S), there existn,n € N, and a parabolic directiof
such thay™ = ¢y ; see Proposition 2.4 of [26].

If «, 3 are arbitrary directions, then either= 45 or « andg are transversal.

Definition 1. — A discrete groug’ C SL(2,R) is a prelatticeif it contains noncommuting
parabolic elements. A translation surfa®es aprelattice surfacéf the groupl’(S) is a prelattice.
Equivalently,S is a prelattice surface if it has a pairtwnsversal parabolic directions

In Section 9 of [26] Veech briefly considered translation surfaces satisfying Definition 1. We
show that such surfaces need not be lattice surfaces—see Corollary 7.

Let S be atranslation surface and &tC Aff(S) be a subgroup of infinite order. A point &f
is G-periodicif its G-orbit is finite. WhenG = Aff(S), we simply speak of thperiodic points
of S. It follows from Theorem 5.5 of [11] that the periodic points of an arithmetic translation
surface form a countable, dense set.

THEOREM 1. — LetS be a prelattice translation surface. Then the following dichotomy holds

(i) The surfaces is an arithmetic lattice surfacehe periodic points form a dense, countable
subset.

(ii) The surfaceS is not an arithmetic lattice surfacéhe set of periodic points is finite.

general flat structures are ttmalf-translation surface§11]. All of our results extend mutatis mutandis to the half-
translation surfaces. This follows from the standard 2-sheeted covering of a half-translation surface by a translation
surface [12].
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Theorem 1 will follow from Theorem 7 in Section?3 which gives an upper bound on the
number of periodic points that a nonarithmetic prelattice translation surface can have.

Recall that an action of a group on a compact satiisimalif there are no nontrivial closed
invariant subsets. We show that the action of the affine group on a prelattice surface is “nearly”
minimal.

THEOREM 2. — LetS be a prelattice translation surface. Then the only closed infinite subset
of § invariant underAff(S) is S itself.

Definition 2. — Let S be a translation surface, and I€(S) be its set of cone points.
Let s1,...,8, € S\ C(S). Marking s1,...,s, we create a formally new translation surface
(S;s1,...,8p). Itis the surfaceS puncturedior marked at the pointssy, ..., s,. Its set of cone
points isC(S) U {s1,...,s,}. Its group of affine diffeomorphisms consists of the elements of
Aft(S) that preserve’(S) U{s1,...,sp}.

Although puncturing a translation surface does not change the geodesics, it may drastically
change its Veech group and the counting functions [9,14,15]. Marked translation surfaces
naturally arise in the context of affine coverings. See Sections 2.2 and 5.2.

Let S be a prelattice surface. We say that S is arational pointif there exist two transversal
parabolic directions foiS such that for each direction, is periodic with respect to the Dehn
twist of the cylinder in which it lies. See Section 5 for a formal definition.

THEOREM 3. — Let S be a prelattice translation surface. L&y C S be the set of rational
points and letP(S) be the set of periodic points.
(a) The setSy is dense, countable, arfl(S) C Sg.
(b) The surfaceS is arithmetic if and only ifP(S) = Sgp.
(c) Lets € S. Then(S; s) is a prelattice surface if and only i € Sgp.

Claim (b) is a new characterization of arithmeticity for translation surfaces. Theorem 3 yields a
classification of points in lattice surfaces.

COROLLARY 1. - LetS be a lattice translation surface, and lete S. Then the following
trichotomy is satisfied.
(i) We haves € P(S) ifand only if(S; s) is a lattice surface.
(i) We haves € Sp \ P(S) if and only if (S; s) is a prelattice, but not a lattice surface.
(i) We haves € S\ Sp if and only if (S; s) is not a prelattice surface.

Our further results concetralanced coveringfo] of translation surfaces. See Definition 4 in
Section 2.2. Veech groups behave naturally under balanced coverings: the lattice property is pre-
served. Atranslation coverings an affine covering: R — S, whose differential satisfiedSp =
1. The groupGL(2,R) acts on translation surfaces, by composition with coordinate functions.
Let S — g - S denote the action. Translation surfacesS’ areequivalent(respectivelyequiv-
alent in the extended sensé &’ = g - S with g € SL(2,R) (respectivelyg € GL(2,R)). This
equivalence allows us to replace a (balanced) affine covering by a (balanced) translation covering.

Recall that Fuchsian groupsI” arecommensurabldg I' NI is of finite index in bothl", T,

The groups are callecommensurable in the wide senfkthere is somg € SL(2,R) such that
I andgI’g~! are commensurable.

Definition 3. — Let I C SL(2,R) be a Fuchsian group. We say thht is realizable
(respectivelyalmost realizablg as a Veech group if there exists a translation surfdcgich
thatT’ =T'(S) (respectivelfl" is commensurable with(S)).

20ur argument proves a stronger result. See theorem in E. Gutkin, Blocking of orbits and the phenomenon of
(in)security for the billiard in polygons and flat surfaces, IHES/M/03/36 (preprint).
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THEOREM 4. — LetS be a lattice translation surface, and IEtbe its Veech group. The$i
is nonarithmetic if and only if there exists a prelattice subgrdie T" of infinite index which is
almost realizable as a Veech group.

Perhaps the most striking implication of Theorem 4 is the following

COROLLARY 2.— LetT' C SL(2,Z) be a prelattice. Thell" is almost realizable as a Veech
group if and only if it is a lattice.

Recall that a Riemann surfacg, is hyperellipticif it admits a holomorphictfyperelliptiq
involution, o, such that the quotiert/o is the Riemann sphere. The fixed points-cdre called
theWeierstrasgoints ofS. Since a translation surface defines a Riemann surface, we can speak
of hyperelliptic translation surfaceasnd their Weierstrass points.

THEOREM 5. — There are hyperelliptic translation surfaces whose sets of Weierstrass points
and of periodic points coincide.

This last cannot be true in general:3dfis arithmetic, then the set of its periodic points is
infinite, while the set of Weierstrass points is always finite.

Organization of paper. In Section 2 we discuss background material. In Section 3 we
prove key qualitative results. In Section 4 we prove our main qualitative result, Theorem 7,
and then Theorems 1 and 2. In Section 5 we study rational points of prelattice surfaces, proving
in particular Theorems 3 and 4. In Section 6 we study hyperelliptic surfaces, and give explicit
examples proving Theorem 5.

2. Background and preliminaries
2.1. Parabolic diffeomor phisms of a trandation surface

We recall the main concepts, referring the reader to the survey [19] for elaboration. We
consider only closed, connected translation surfaces. A translation susfabes a finite set,
C(S), of cone points. The points i§ \ C(S) are called regular. A nonzero tangent vector at
a regular point ofS has adirection For anyd € [0,27), the unit tangent vectors in direction
0 form a vector field,Vy, with singularities at the cone points. Integral curvesipfare the
geodesics ot in directionf. We parametrize them by arclengthlft) is a geodesic such that
v+ ) =~(t),v(t+£€/n) #£~(t) forn > 1, then is a (prime)periodic geodesiof length/.

If v(t), 0 <t < ¢, is a geodesic, whose endpoints belon@{@), and whose interior points are
regular, theny is asaddle connection of lengthWe designate bglosed geodesidsoth periodic
geodesics and the saddle connections.

The only closed translation surfaces without cone points are the flat tori. To unify our
treatment, we always mark a point of a flat torus and call thisottigin. Any regular closed
geodesic determines a maximal flat cylinder; S. The flat cylinderC (¢, w), of length¢ and
width w, is obtained by identifying the two vertical sides of the rectari@lé, w) = {(x,y),
0<z<¢ 0<y < w}. Although various cylinders are affinely equivalent, the modulus
w={/w = u(C) gives a conformal invariant. The interior of any (maximal) cylindet S is
isometric toInt(C(¢,w)), wherel = ¢(C) andw = w(C) are respectively the length and the
width of C. If C C S is a cylinder of lengtlY, width w, and directiorp, thenL,, 0 < y < w,
are periodic geodesics i of length/ and directiord. The curved., andL,, are the unions of
saddle connections in the same direction.

The basic affine diffeomorphism 6f= C (¢, w) is the Dehn twisfl’ = T¢. In the coordinates
above we havé (s, t) = (s + t£ mod (Z,t). SinceT fixes the boundaryC (¢, w) pointwise, it
defines the Dehn twist for any cylindérc S, of length? and widthw. A directioné is periodic
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for S if every geodesic in this direction is closed. A periodic direction defines a decomposition
of S as a finite union of cylinder§;, 1 < i < k(). Letw;, ¢;, u; be the respective parameters,
and letT;:C; — C; be the respective Dehn twists. There exifte N such that the iterates
TiNi, 1 <1 < k(6), fit together, yielding an affine diffeomorphisiy : S — S, if and only if

the moduliy; are commensurable. In this ca®és aparabolic direction The smallest positive

w= p(0) such thatu = N;u;, 1 <i < k(0), is themodulus of the parabolic directiof. The
diffeomorphismp, € Aff(S) is theprincipal parabolic diffeomorphismorresponding t@. We

use the same notation for its differential, which belongB {§). In appropriate coordinateg,

is given by the parabolic upper triangulax 2 matrix with x() in the corner.

2.2. Affineequivalence and coverings

There is a natural action d&L(2,R) on the space of translation surfaces, which is simple
to describe in terms of the coordinate charts, [11,24,25F ls a translation surface, and
g € SL(2,R), we denote by - S the new translation surface. The translation surfagesd
g- S areaffinely equivalentandl’(g- S) = gI'(S)g~!. Hence, this action preserves arithmeticity
and the (pre)lattice property. In particularoif 3 is a pair of transversal parabolic directions for
S, theng - a, g - G is the corresponding transversal pair forS. The statements announced in
the introduction are either invariant or equivariant under the affine equivalence.

We use this observation for two purposes:

(1) Tonormalizea pair of parabolic directions.
(2) To replace amffine coveringyy atranslation covering

Let S be a translation surface, and lets be a transversal pair of parabolic directions for
S. ReplacingS by an affinely equivalent surface, if need be, we can assume without loss of
generality thaty, 5 are the positiver, y-directions respectively.

Natural mappings of translation surfaces are the affine coverings [11}.:Llét— ) be one.
Thenp defines a (possibly branched) covering of the corresponding closed topological surfaces.
Furthermorep is affine outside of the cone sets. The differenfigl(z) € GL(2,R), is a constant
matrix. Translation coverings are the affine coverings whose differential is the identity matrix.
Hence, replacing eithet’ or ) by an affinely equivalent surface (in general, in the extended
sense), we can assume tpatt — ) is a translation covering [10,11,15,29].

Definition 4. — Letp: X — Y be an affine covering of translation surfaces. Thé&balanced
if p(C(X)) =C(Y) andp~H(C(Y)) = C(X).

The following theorem was proved independently by E. Gutkin and C. Judge, and by Ya. Voro-
bets.

THEOREM 6 [10,11,29].— Let p: X — Y be a balanced affine covering of translation
surfaces. Then the group¥ X)) andI'()) are commensurable in the wide sense. If, besides,
p is a translation covering, theR(X) andT'()) are commensurable.

3. Periodic pointsof trandation surfaces

Let C be a flat cylinder, and 1eT":C — C be the Dehn twist. A point € C is periodic if
T"z = z, for somen > 0. The smallest such is the period of.

We do the computations for the standard cylindet C(1,1). It is straightforward to extend
them to arbitrar\C(¢, w). Thus,T': (z,y) — (x + ymod 1,y). The restriction off" to the closed
geodesid.,, = {y = cons} C C is the rotation byy. Hence, a point € C is periodic if and only
if z € L,,, wherey is rational. Moreover, the set of points of perieds the union ofZ;, ,,,, with &
andn relatively prime. Thus, we hawg(n) closed geodesics consisting of the points of peripd
whereg is Euler’s totient function.
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The number of geodesics ifi, consisting of the points of period at mostis ®(n) :=
S _ o(m) = (3/m%)-n?+ O(nlogn). See [13, Theorem 330].

We consider the subgroups of affine diffeomorphismg pfienerated by powers @f. For
n € N let F,, be the set of rational rotation numbers with denominator at mwosthus,
Fo:={(k,1) € N? | ged(k,l) =1, k <l < n}, and|F,| = ®(n) < n?. The map of the unit
interval to itself,z — { Nz}, is N-to-1 and sendsF,, to itself. In particular, the points of period
at mostn underT'" lie on N®(n) closed geodesics i.

The translation surfac&® = R/Z with the marked poin{0,0) is the standard torus Any
flat torus is affinely equivalent t@, we thus restrict our considerations to the standard torus.
The group of affine diffeomorphisms df is SL(2,Z), generated by the horizontal and the
vertical Dehn twists, T}, and T, respectively. We havd},: (x,y) — (z + ymod1,y) and
Ty : (z,y) — (z,y+xzmod1). The pointx, y) € T which are periodic with respect 81.(2, Z)
are the rational pointér,y) € Q2/Z2. The set of points which are periodic of period at mest
underT, and of period at most underT}, is the intersection of the horizontal and vertical closed
geodesics that we have just considered. The cardinality of this set is asymptétiato - m?n?,
asm,n — oo.

Let # be a parabolic direction on a translation surféceJsing the preceding material, we
speak ofrational closed geodesicgheir periodsand theirrotation numbers Note that the
periodic points of period under the restriction apy to the cylinderC; lie on N;¢(n) rational
geodesics of;. The set of rotation numbers of these geodesids,is

THEOREM 7. — LetS be a translation surface, and let 3 be a pair of transversal parabolic
directions. Then there exist positive integérs and N, depending only on the ratios of the
parameters of the cylinder decompositions, so that the following statements hold.

(i) If S has more than\/ periodic points with respect taff,, 53(S), thenS is arithmetic.

(i) If S has anAff, 3(S)-periodic point of period greater thaiV, thenS is arithmetic.

Theorem 7 follows from several technical lemmas and propositions. By the remarks in
Section 2.2, we assume without loss of generality that are the coordinate directions. We

use labels andh to refer to thevertical and thehorizontaldirections respectively. From now
until Proposition 4 the standing assumption is that both coordinate directions are parabolic.
A rectanglein S is a connected component of the intersectityn C;. The interior of any
rectangle is isometric to the Euclidean rectan@lew?) x (0,w}"). Let y; ; be the number of
rectangles formed by this intersection. We denote the rectanglé%ﬁpyl << gy The
(essentially disjoint) decomposition

k(h) k(v) pi,;
1) S= Ri,
i=1 j=11=1
implies
k(h) k(v)
Z Z ;L”wf 7; = Are&(S)
i=1 j=1

LEMMA 1.-—Forl<i< k(h) (respectivel < j < k(v)) let H; (respectively;) be a finite
set of closed geodesicsd@} (respectivel)?). Then
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(@)

k(h) k(v) k(h) k
(U H) N ( U V)‘ ZZwH V1.
i=1 j=1

=1 j=1

Proof. —~The intersection of a longitude &f* with a longitude irC? consists ofs; ; points. O

To simplify the notation, we denote the subgroupAffS) generated by the diffeomorphisms
¢r ande, by A and B, respectively. Let A, B) be the subgroup generated Hyand B.

If f andg are functions of natural argument, we use the notafia@~ ¢ to indicate that
f(n) < g(n) for n sufficiently large, and ~ g means thajf(n)/g(n) — 1 asn goes to infinity.
The proposition below is immediate from Lemma 1 and the preceding remarks.

PROPOSITION 1. — For any subgrouis: C Aff(S) let P“ C S be the set ofi-periodic points.
Denote byP& c P¢ the subset of points of periods at masfThen
(i) Foranym andn we have

k(h) k

(3) |P2A N PP =d(m) ZZMWN NY.

=1 j=1

(i) We have

h) k(v)
(4) |PANPE|~ (ZZMWN;INU>

=1 j=1

COROLLARY 3. - We have the asymptotic inequality

h) k(v)
® JCIPS (szz,hoN”)

=1 j=1

Proof. —Use Eg. (4) and the mclusmﬁn ) ¢ PANPE. O

We state a few immediate consequences of the propositions above, then formulate and prove
a few technical lemmas.

If a, 8 is a pair of transversal parabolic directions &nwe denote byAff, 53(S) C Aff(S)
the subgroup generated by the diffeomorphigimmand¢s. A subgroupG C Aff(S) is basicif
its intersection with somaft,, z(S) has finite index in the latter.

COROLLARY 4. - LetS be a prelattice translation surface. Lét C Aff(S) be any basic
subgroup. Then
() The setsP& are finite.
(i) The cardinality| P¢| grows at most quartically im, asn tends to infinity.
(i) The setP@ is infinite if and only if it contains periodic points of arbitrarily large periods.

LEMMA 2.-— There exist constantg, and ny, depending only on the parameters of the
transversal pair of parabolic decompositions &f such that any finite orbit of A, B) of
cardinalityn > nq contains points of periods at leagt/n with respect to each od and B.

Proof. —We choose:, > 0 so that
3 —2 /k(h) -1
4 h atv
d=(Z+1) (zzumw N, ) -

=1 j=1
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By Egs. (4) and (5), there exists, € N such that forn > m one has
(6) ‘P,;A’B>| < 051m4.

Rewriting this inequality as* > c0|P,§1A’B>| and settingig = comg, we obtain the claim. O

If &, 1 <1< k(a), are any parameters of the cylinders of a parabolic directiome denote
by x%. andz?, the smallest and the biggest ones.

LEMMA 3.-— There ismg € N, depending only on the parameters of the horizontal and
vertical decompositions &, such that the following holds

If a finite (A, B)-orbit contains a point ofA-period m > my, then theA-orbit of this point
contains a point whos8-period is at leasf2(m %=i» — 1) /N, ]1/2,

Eh max.
max

Proof. —Suppose thaO is a finite (A, B)-orbit, ands € O is of A-periodm. We assume,
without loss of generality, that € C!, and letL c C}' be the closed geodesic containisg
It intersects at least one vertical cylinder. Again, we can assumelthatersectsCy. Let
R C Cl'NCY be one of the rectangles.

The distance between consecutive pointsdofs is ¢#/m. Hence the number of points of
the orbit A - s in the intervalL N R is at least|wy/(¢} /m)] > (mw} /%) — 1. The interval
L NR intersects each closed geodesi€pfexactly once. HencéA - s} N'R intersects at least
(mw? /£}%) — 1 distinct closed geodesics 6f .

Let X C [0,1] N Q be the set of rotation numbers of these geodesics with respect to the basic
Dehn twist ofCy. Recall that the closed geodesics in a cylinder are parametrized by their rotation
numbers. SefV := Ny andY := {{Nz} | 2 € X}. ThenY is the set of rotation numbers of
these geodesics with respect to the diffeomorphignof S. Let n be the smallest positive
integer such that” C F,. Thenn is the largestB-period of the geodesics in question. Using
that|Y’| > | X|/N and the obvious upper bound foF,, |, we have

mlﬁlmin _ 1 T[,2
7 —_—— .
(7) N 5

max

Takingm > I, /w?. , we obtain the claim. O

The following two lemmas put the statements above into a more suitable form. The proofs are
straightforward, and we leave them to the reader.

LEMMA 4. - There existt; > 0 andny € N depending only on the parameters of the two
decompositions af, and such that the following holds
Letn > ng, and letO C S be an(A, B)-periodic orbit of cardinality at least;n®. ThenO
contains a pointgs, with the following properties
(i) The A-period ofs is at leastn;
(i) Every vertical cylinder which intersects nontrivially the horizontal cylinder contairing
contains a point oB - {4 - s}, whoseB-period is at least.

LEMMA 5. — There exists, c3 > 0 andng € N so that the following holds

(i) Letn >ng, and letO C S be a finite(A, B)-orbit of cardinality greater tharean®. Then
O contains a point ofA-period at leastn, and a point ofB-period at leastn.

(i) Suppose that afA, B)-periodic orbit O contains anA-periodic point,s, of period at
least csn? with n > ng. Then every vertical cylinder which intersects nontrivially the
horizontal cylinder containing contains a point ofd - s whoseB-period is greater than
or equal ton.
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Note that in the lemmas abovkand B are interchangeable. The following proposition is the
main technical result.

PROPOSITION 2. — Let the assumptions be as above. There exist 0, ng € N andd € N,
so that the following holds

Let O C S be a finite(A, B)-orbit of cardinality greater tharmed+2 with n > ng. Then
in every horizontal(respectively vertical cylinder there is a point of® whose A-period
(respectivelyB-period) is at leastn.

Proof. —We sketch the proof, leaving the details to the reader. In particular, we will pretend
that in the lemmas above the constantare equal to one and that all the thresholgsare the
same. The latter can always be achieved by taking the biggest threshold of them all. The former
can be arranged by (for instance) increasing the exponents in the lemmas by an arbitrarily small,
but positive amount, and raising the threshold. By the first claim of Lemma 5, there is a horizontal
cylinder,Cl, such that® N C} contains a finited-orbit of cardinality at least?’. Then every
vertical cylinder intersecting? contains aB-periodic point of©, whose period is greater than
or equal ton2""'. See the second claim of Lemma 5. If the union of these vertical cylinders
with C}* coversS, then we proved the claim. Otherwise, we continue the inductive argument. At
each consecutive iteration of the argument we just lose a factbirothe exponent. Sinc§ is
connected, after a finite number of steps we exhaust the surface.

4, Largeperiodic orbitsimply arithmeticity

We need a few more technical propositions about transversal pairs of parabolic directions. We
continue to use the convention of Section 2, and restrict the exposition to the pair of coordinate
directions.

4.1. Commensur ability of parameters

LEMMA 6.— LetC; andC} be two cylinders such thal' NCY # . LetR C C/ NC}' be one
of the rectangles in the intersection. Suppose that two distinct poiftdiefin the sameA-orbit
and in a finite(4, B)-orbit. Thenw? /(7 € Q.

Proof. —We denote byz, y) the natural coordinates iR. Then0 <z < w¥, 0 <y < wh. Let
s=(z,y) ands’ = (a’,y’) be the two points in question. By assumption, ther@isn € Z so
that

A

(8) o =zt n2 g Yy =y.
w

K2

Sinces is A-periodic,-% € Q. On the other hand, sineeands’ are bothB-periodic, they belong
to rational closed geoaesicsdij. Thus, bothr/w? andz’/w} are rational numbers. Hence

' —x

v
w;

&l

<=

9) €Q.

—nL
=
wy

Since, as we already notegs € Q, we obtain the claim. O

Remark1.— The interchange of and B in the assumptions of the preceding lemma yields
wh/e? € Q.
/7y

The following technical proposition is crucial. It is also of independent interest.
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PrROPOSITION 3. — Let the notation be as in Propositich Set

v wh

thoo
(10) mzm(A,B):max{ﬂ,ﬂ}.
Suppose tha$ has an{A, B)-periodic point of period greater than or equal tgm2""”. Then
(i) Allnumbersw? /¢! andw!' /¢ are rational.

(i) The lengthg?, 1 <i < k(h), are commensurate, and the lengthjs 1 < j < k(v), are
commensurate, as well.

(iii) The widthsw’, 1 <4 < k(h), are commensurate, and the width$, 1 < j < k(v), are
commensurate, as well.

Proof. —Let O be the(A, B)-orbit in question. By Proposition 2, every horizontal (respec-
tively vertical) cylinder contains a point @ of A-period (respectivelyB-period) greater than
m. In view of Eqg. (10), every rectangie c C! NC;y contains (at least) two pointsands’ of O,
such thats’ = ¢y, - s (respectivelys’ = ¢, - s). Lemma 6 and Remark 1 imply our first claim.

Suppose that! andC! intersect the same vertical cylind€r,. We have already proved that
w? /0% andw? /¢% are rational. Thug and/; are commensurate. In view of the connectedness
of S, for any pairC,C’ of horizontal cylinders, there is a sequern&g...,C; of horizontal
cylinders such that = C?, ¢’ = C}, and every two consecutive cylinders of the sequence
intersect a common vertical cylinder. Th(€)/¢(C’) is rational. The same argument works for
vertical cylinders, proving our second claim. The proof of the last claim is essentially identical,
and we leave it to the readern

From now on we drop our convention that our transversal parabolic directions is the pair
and explicitly formulate all of our assumptions. The following proposition is of independent
interest.

PROPOSITION 4. — Let S be a translation surface. Let and 3 be transversal parabolic
directions. Letw$, 1 < i < k(w), andwf, 1 < j < k(B), be the widths of the respective cylinders.
Suppose that the number$' are all commensurate, and the numbexj% are commensurate, as
well. ThenS is an arithmetic translation surface.

Proof. —ReplacingS by an affinely equivalent surface, we assume without loss of generality
thata and are the coordinate directions. In what follows we aidfer o andv for 3.

Changing the translation structuSeby a diagonal transformation, if need be, we ensure that
all the widthsw! andw? are rational. Now we use the relations

k(h) (v)
(11) l; = Z i jwy, 0 = Zﬂi,jw;’)'
i=1 =1

Thus, all the Iengthé?,é; are rational, as well. Applying a homothety & we make all these

parameters integral. By Theorem 5.5 of [18]is arithmetic. O

Proposition 4 is a special case of a more general statement: A translation surface all of whose
parameters are commensurate is arithmetic [11].

4.2. Proofsof Theorems1,8, 7

First, we prove the main quantitative result.
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Proof of TheorenY. —We begin with the latter claim. Let = m(«, 3) be given by Eq. (10).

By Proposition 3, ifN > m(«, 3), then the assumptions of Proposition 4 are satisfied. Hence,
S is arithmetic.

By Corollary 3, the existence dff periodic points implies the existence of a periodic point of
period at leastV = const/M. This holds forM greater than a certain threshold, depending on
the data, which also determines the constant in question. TherefSreatfsfies the assumption
of claim (i), then it satisfies the assumption of claim (ii), as welt

The hypothesis of the first claim of Theorem 7 implies that of the second,Mith N. By
this observation and the preceding argument, we reformulate Theorem 7 as follows.

COROLLARY 5.— Let S be a prelattice translation surface. Then there exist& N,
determined from any pair of transversal parabolic directions, so that the following holds
If S has at least: periodic points, then it is arithmetic.

THEOREM 8. — Let S be a translation surface, and I¢t C Aff(S) be a basic subgroup. If
the set of7-periodic points ofS is infinite, thenS is an arithmetic translation surface.

Proof. —If H C G C Aff(S) is a tower of subgroups, theR ¢ P¢ ¢ PH. The claim now
follows directly from Theorem 7. O

Proof of Theorenil. —We have already proved that a nonarithmetic (pre)lattice translation
surface has a finite number of periodic points. Note that the cone points are necessarily periodic!
Now letS be an arithmetic translation surface. Replacihly an equivalent translation surface,
if need be, we can assume ti#aadmits a balanced translation covering of the standard rus
By Theorem 6 Aff(S) is commensurable withff(T) = SL(2, Z).

The setQ?/Z? of rational points is dense ifi. But it is also the set 08L(2,Z)-periodic
points. The set of periodic points # is the preimage of)?/Z? under the covering, hence it is
denseinS. O

4.3. Proof of Theorem 2

It suffices to prove the claim under the convention that the coordinate directions are parabolic.
Let X C S be aninfinite closedA, B)-invariant subset. Suppose th¥tcontains a ‘coordinate’
closed geodesid,. We can assume without loss of generality tha vertical. LetR be one
of the rectangles intersecting. The set ofg, -rotation numbers of the points in the vertical
intervalR N L is (0,1). For every point € R N L of irrational rotation number, the,, -orbit of
z is dense in the horizontal geodesic containin@ince X is closed, it contains this geodesic.
Since irrational numbers are dense(in1), the horizontal cylinder containing N L belongs
to X. SinceR was chosen arbitrarilyX contains the unionX;, of the horizontal cylinders
intersectingl.. ReplacingL by a horizontal closed geodesic My, we conclude thaX contains
the union, X5, of the vertical cylinders intersecting;. This inductive process produces a
sequencd. C X; C X C --- C X, where eitherX;;; \ X; contains at least one coordinate
cylinder, orX; = S. Since the number of cylinders is finit& = S.

It remains to prove thak contains a vertical or a horizontal closed geodesic. Rdbe a
coordinate rectangle, and let= (z,y) € R be an arbitrary point. Denote by, (z) andr,(z)
the ¢;, and¢, rotation numbers respectively. Note thatis a locally linear function of; alone;
similarly for r,, with respect tar. Since X is infinite, there is at least or® such that the set
X NR is infinite. Denote byR,(X) and R,(X) the sets of horizontal and vertical rotation
numbers of the points iX N R. SinceX NR is closed, bothR, (X) and R,(X) are closed
subsets of0, 1].
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If Rn(X)U R,(X) contains an irrational number, then there exists a closed (vertical, without
loss of generality) geodesi&, with an irrational rotation number, containing a point6f Then,
by minimality of irrational rotations]. C X. Assume then thak,(X)U R,(X) C Q. There are
two possibilities: the sek;, (X) U R, (X) is infinite or finite.

Assume first that it is finite. Then there is a closed (horizontal, without loss of generality)
geodesicL, with a rational rotation number which contains infinitely many point&ofSince
X N LnNR is infinite, we have infinitely many vertical rotation numbers, contrary to the
assumption.

Suppose now thaR?, (X) U R,(X) is infinite. Assume, without loss of generality, that
|Rp(X)| = co. Letr € Q be an accumulation point @i, (X ). Then there is an infinite sequence
of pointsz, € X N'R converging toz € X N R, andr = ry,(2). Setry(z,) = pn/¢n. Since
Pn/qn — T, @SN — 00, the sequence, is unbounded. LeL,, (respectivelyl) be the horizontal
closed geodesic containing (respectivelyz). The distance between the consecutive points of
the orbitA - z,, C L, is of the order of;, . SinceL,, convergestd., we conclude thak consists
of accumulation points k. SinceX is closed,L C X.

5. Prelattice surfaces
5.1. Rational points

Let S be a prelattice translation surface, and det3 be a transversal pair of parabolic
directions. LetR C C' N C3 be one of theparallelogramsR! i.; of the associated decomposition.
We change the afflne structureﬁfoy anyg € SL(2,R) which sendsy andg to the coordinate
directions. Letx,y be the Euclidean coordinates such that the interioRois parametrized
by (0 <z <w,, 0 <y <wy). In view of possible identifications on the boundaRy,itself
may not be isometric to the Euclidean rectanglev,] x [0, w;]. However, there is a mapping
[0,wy] % [0,wp] — R, inducing an isometry of0, w,,) x (0, wp) ontoInt(R).

Reversing the affine equivalence above, we return to the original directiofis This
construction yields an affine mappinfk : [0, w,] x [0,w,] — R, which is onto, preserves
orientation and area, and is an affine isomorphisifoof, ) x (0,w;,) andInt(R).

Definition 5. — LetS be a translation surface, and {et3 be a transversal pair of parabolic di-
rections. Let: € S be an arbitrary point, leR be a parallelogram of the decomposition (1), con-
taining z, and letfz : [0, w,]| x [0, w},] — R be the corresponding affine mapping. Theis ra-
tional with respect to the paiw, 8 if z = fr(x,y), wherex/w,,y/w, € Q. Apointz € S isra-
tional, if there is a pair of transversal parabolic directions such4listational with respect to it.

We useirrational for all points that are not rational in the sense of Definition 5Rlfis a
parallelogram of the decomposition (1), we denotefhyy the set of its rational points. We use
the notations(g’ﬁ for the set of rational points with respect to the pajg, andSg for the set of
rational points ofS. Note that the concepts of rational and irrational points are applicable only
to prelatticesurfaces.

We leave the straightforward proof of the following proposition to the reader.

PROPOSITION 5. — Let S be a prelattice translation surface, and let 5 be a pair of
transversal parabolic directions fof. Let s € S\ C(S). Then the following statements are
equivalent.

(i) The points is rational with respect tay, (5.
(i) The directionsy, 8 are parabolic for the punctured surfag¢e; s).
(iii) The points is periodic with respect to both, and¢gs.
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(iv) The points is an intersection point of two rational geodesics, with directionand 3
respectively.

5.2. Marking points

We continue with the proofs of the claims of the introduction.

Proof of Theoren8. — The setSy is the union ofSS’ﬁ over all transversal pairs of parabolic

directions. Each sefg’ﬁ is countable and dense #. A parabolic direction is periodic, thus
the set of parabolic directions of any translation surface is at most countable: Af(S) is
periodic with respect to everkff, 5(S) C Aff(S), henceP(S) C N, 4 Sfﬁ‘ﬂ C Uas Sg'ﬂ =
Sg. Claim (a) follows.

If S is arithmetic, then, by the proof of Theoremdg C S(S’B C P(S) for any transversal
pair «, 3, henceSg C P(S). If Sg C P(S), then the seP(S) is infinite, hence, by Theorem 8,
S is arithmetic. This proves claim (b).

It remains to prove claim (c). If € Sg, then(S, s) is a prelattice surface, by Proposition 5.
By the same propositiod;(S; s) is not a prelattice if and only if for any transversal parabolic
paira, 3 we haves € S\ S5 i, s €S\ Sp. O

Proof of Corollaryl. — The first claim is in [14]. The second claim follows from the first and
Theorem 3. The third is contained in part (c) of Theorem 8.

As a byproduct of Corollary 1, we obtain a new characterization of arithmetic translation
surfaces. See [11] for other characterizations.

COROLLARY 6. — LetS be a lattice translation surface. Théhis arithmetic if and only if
the following dichotomy holds

For any s € S the surfacgS; s) is either a(necessarily arithmetjdattice surface, or it is not
a prelattice surface.

THEOREM 9. — A LetS be a prelattice translation surface, and le€ S. Letp: R — (S;s)
be a balanced affine covering. Then the following trichotomy holds.
() The surfaceR is a prelattice surface, and the group$R),I'(S) are commensurable in
the wide sense if and onlyédfe P(S).
(i) The surfaceR is a prelattice surface, and the groiffR) is commensurable in the wide
sense to a prelattice of infinite indexIi{S) if and only ifs € Sg \ P(S).
(i) The surfaceR is not a prelattice surface if and only éfe S \ Sgp.
B. Suppose further that is a balanced translation covering. Then the groups in question are
commensurablén the “narrow” sens@.

Proof. —It suffices to prove the theorem under the assumptiorpthRt— (S; s) is a balanced
translation covering. By Theorem 6, the grodj{®R) andI'(S;s) are commensurable. Hence,
all but one of our claims follow from Theorem 3. The remaining claim conc&Yids s) for
s€8g\ P(S). Leta, 8 be atransversal pair of parabolic directions such ih«alsg*". Then the
stabilizerl':? C I'(S; s) is a prelattice. ThereforB(S;s) C T'(S) is a prelattice as well. But,
since the orbitAff(S) - s is infinite, the index of(S; s) in T'(S) is infinite. O

A translation surfaceS, can be viewed as a closed Riemann surfateequipped with a
holomorphic 1-form, say, see say [19]; we writ& = (S,w). The cone point€’'(S) is the set
of zeros ofw. Letp: R — S be a branched covering of Riemann surfaces, and ted the pull-
back ofw. Let R be the translation surface corresponding®«). ThenC(R) is the union of
p~1(C(8)) and the set of the ramification pointspf R — S.
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PROPOSITION 6. — Let S be a translation surface without marked points, and de¢
S\ C(S). For anyn > 1 there exists a translation surface without marked points, and a
balancedn-to-1, m > n, translation covering: R — (S; s).

Proof. —Let (S,w) be the Riemann surface with 1-form correspondingStdt suffices to
exhibit branched coverings of Riemann surfagesR — S, of arbitrarily high degrees such
that the branch locus of is contained inC'(S) U {s} and the sep~!(s) C R belongs to the
ramification locus op. It is well known that such coverings exist [5]0

Proof of Theoren#. —Let S be a nonarithmetic lattice surface, anddet3 be a transversal
pair of periodic directions. Let € Sg’ﬁ \ P(S), which is nonempty, by Theorems 1 and 3. Set
I =T((S;s)). ThenI” is a prelattice of infinite index. By Theorem 6, each one of the infinitely
many balanced translation coveringsR — (S; s), provided by Proposition 6 gives an almost-
realization ofl”.

Let nowsS be arithmetic, and I’ C T'(S) be a prelattice subgroup of infinite index. Suppose
thatI” is almost realizable, and I& provide an almost-realization &f. Thus,I"' =T'(R) NI’
has finite index in both groups. In view of arithmeticity, the trace of gny I is rational.
SinceI contains hyperbolic elements, by Theorem 28 of [17], the holonomy fiel & Q.
Therefore, by Theorem 5.5 of [11R is arithmetic. Buf'(R) is not a lattice! O

COROLLARY 7.— Let § be a nonarithmetic lattice translation surface. Let3 be a
transversal pair of parabolic directions f&. Then there exists a translation coveringR — S
whereR is a nonlattice, prelattice translation surface, ands are parabolic directions fofR.

COROLLARY 8. — LetS be a prelattice, but nonlattice translation surface. TH&EK) is not
commensurablén the wide sengawith any subgroup dfL(2,Z).

Proof of Corollaries?, 8, 2. — Corollary 7 follows from the proof of Theorem 4; Corollary 8 is
immediate from the statement of Theorem 4. The nontrivial implication of Corollary 2 follows
from Corollary 8. O

5.3. Examplesand applications

In this subsection we illustrate and augment the preceding material, and apply it to polygonal
billiards. We begin with an infinite family of prelattice subgroups$tf(2,7Z).

Examplel. —Form,n € N, let G,,,, C SL(2,Z) be the group generated by the parabolic

matricesy. = (") andv = (1 Y).

LetT" C SL(2,R) be any Fuchsian group. Denote Ky (") (respectivelyK»(T")) the smallest
field extension ofQ containingtr(g) (respectivelytr(g?)) for all g € T'. The conditionk; (I') =
K,(T') is necessary foF' to be realizable as a Veech group [15]. The groGps,, obviously
satisfy this condition. Formn > 4 (respectivelymn < 4) the groupG,, , has a fundamental
domain inH? of infinite (respectively finite) area [2]. By Corollary &,,, ,, is almost realizable
as a Veech group if and only ifin < 4.

Recall that a polygonP, is rational if its angles are commensurate with In the subject of
mathematical billiards there is a well known construction that replacatscnal polygon P, by
a translation surface§ = S(P) and reduces the billiard flow iF® to the geodesic flow i, see
[6-8,16,19,22].

Definition 6. — LetP be arational polygon, and I&tbe the corresponding translation surface.
We say thatP is alattice polygor(respectively grelattice polygohif S is a lattice (respectively
a prelattice) translation surface.
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Remark2. — Let P andS be as above. IT'(S) has a parabolic element, then it also has a
hyperbolic element [17]. It then follows thatis a prelattice polygon if and only if its translation
surface has a parabolic direction.

We will denote byl'(P) the Veech group of the translation surfage), and say thal'(P) is
the Veech group of the rational polygaR. Arithmetic polygonsare the polygong such that
I'(P) is an arithmetic lattice. They were investigated in [7] and [11]. In particuld?, tiles the
plane under reflections, it is arithmeti§{ P) is then a flat torus. Veech showed that the right
triangle whose smallest anglesign is anonarithmetic lattice polygoif n # 4,6 [26].

Letp, q,r € N be relatively prime. We denote 8y(p, ¢, ) the Euclidean triangle with angles
pr/(p+q+r), qr/(p+q+7), rr/(p+ g+ r). In this notation, the right triangle above is
T(2,n—2,n)if nisodd andl’'(1,m — 1,m) if n=2m.

Example2. — SetT; =T(2,3,5) andT> =T(3,3,4). Let S; andS, be the corresponding
translation surfaces, and Iét; and I'; be the respective Veech groups. By [2€], is a
lattice triangle. We will show thafy is a prelattice but nonlattice triangle. The surfaeis
obtained by glueing along parallel sides two copies of the regular pentagon; their vertices are
glued into a single point(S;). The isosceles triangl&,, with angles2x/5, 37/10, 37/10,
is the “doubling” of T} along a side. Accordingly, there is a two-to-one translation covering
p: 82 — 81.

Let o1, 02 be the centers of the two pentagons. The covesing, — (Si; 01, 02) is balanced.

By Theorem 6"y andT'((Sy;01,02)) are commensurable. By Proposition 3 of [18], is not

a lattice. Hencd; is not a lattice triangle. By Theorem 8,, 0, are not periodic points of the
lattice surfaceS;. Let o, 8 be the directions of two distinct diagonals of the regular pentagon.
They are parabolic [26]. Thusy, 0o are intersection points of parabolic geodesics (saddle
connections) for a transversal pair of parabolic directions. Hence, they are rational pa&¥ats of
Therefore(S1; 01, 02) is a prelattice translation surface, afigis hence a prelattice triangle.

6. Weier strass points ver sus periodic points

Definition 7. — LetS be a translation surface without marked points. We say shid a
hyperelliptic translation surfac# the corresponding Riemann surface is hyperelliptic.

Under certain conditions, the Weierstrass points of a hyperelliptic translation surface are
periodic and can even be the only periodic points of the surface.

6.1. Periodicity of hyperelliptic Weier strass points

Recall that the nonarithmetic lattice surfaces of [26] are hyperelliptic. Their Veech groups are
either generated by elliptic elements, or by an elliptic and a parabolic element.

THEOREM 10. — Let S be a hyperelliptic translation surface such tHatS) is generated by
elliptic elements. Then the set of Weierstrass poin isfAff (S)-invariant.

Since the set of Weierstrass points is always finite, these points are all periodic under the above
hypotheses.
Our proof relies on the following simple lemma.

LEMMA 7.— Let S be a translation surface, and let € Aff(S) be an elliptic element.
Then there is an affinely equivalent translation surfdcsuch that the induced diffeomorphism
Y € Aff(T) is an isometry.
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Proof. —A diffeomorphismf € Aff(S) is an isometry ifDf € SO(2). SinceD¢ € SL(2,R)
is elliptic, there is an elemegte SL(2,R) such thaty - D¢ - g1 € SO(2). SetT =g - S. The
induced diffeomorphisny € Aff(7) satisfiesDy =g-D¢-g~L. O

Proof of Theoreml0. —To simplify the exposition, we will not notationally distinguish
between a translation surface and its underlying Riemann surface. By the results of Veech [28],
any hyperelliptic translation surface is obtained by identifying the opposite sides of a centrally
symmetric, planar polygon. Any such polygadn, yields a hyperelliptic translation surface,
Without loss of generality, the center of symmetry Bfis the origino. The hyperelliptic
involution is then induced by the map— —z. Denote bylV(S) the set of Weierstrass points.
The points of the cone sét(S) come from the vertices dP, andC(S) C W (S). Furthermore,

W (S) contains the points arising fromand the midpoints of the sides &

Letg € SL(2,R), and let7 = ¢ - S. Then7 is represented by the polygéh= g - P. Hence,
7 is hyperelliptic as well, ang induces a bijection ofV (S) andW (7).

Let now ¢ € Aff(S) be an elliptic diffeomorphism. Lej and7 =g¢ - S be as in Lemma 7.
Since the induced diffeomorphisgh: 7 — 7 is conformal, it preserves the Weierstrass set
W(T) [5]. Sinceyy =g-¢- g1, ¢ preservesV (S). Thus,W (S) is invariantundeAff(S). O

Denote byT, the isosceles triangle with base angt¢n, n > 3, and letS,, be the
corresponding translation surface. By results of Veech [26]js a lattice polygon, which is
nonarithmetic ifn # 3,4, 6. The surfaces,, is hyperelliptic.

COROLLARY 9.— Let S,, be the hyperelliptic translation surface corresponding to the
isosceles triangld’,, for n > 3. Then the set of Weierstrass pointsSafis Aff(S,,)-invariant.

Proof. —By [26], Aff(S,,) is generated by an elliptic element and a parabolic element that
preserves the sét’(S,,). The claim follows, by the preceding argumenta

6.2. Examplesproving Theorem 5

The examples below led to the present work. In particular, they prove Theorem 5.

Example3. —The golden mean gnomolret P be the polygon modeling the “Swiss cross”
with the golden ratio parameter= (1 + v/5)/2. See Lemma 2 of [15]. Identifying opposite
sides of P by translation, we obtain a translation surfade,of genus2 (and thus certainly
hyperelliptic). The hyperelliptic involution is induced by inversion/ofvith respect to its center.

The six Weierstrass points 6fthus arise from: the center &f; the exterior corners—giving two
points; the interior corners—identified to the single cone point; the boundary points of the figure
which lie on the axes of either horizontal or vertical symmetry.

By a cut-and-paste operation, we transfoffminto a “gnomon” (i.e., an “L” shape), see
Fig. 1. We denote the gnomon [, as well. The surfacé is obtained from it by the natural
identifications. The 8 points marked by black circles in Fig. 1 are identified to the cone point
of S. LetO, A, ..., D be the remaining five Weierstrass points, marked by open circles in Fig. 1.
The coordinate directions are periodic. Sinées symmetric about the diagonal, it suffices to
study the vertical cylinders. Their parameters arg=1, /{ = A\, wy = A—1 and¢3 = 1. Hence
w1 =1/\ ua =X —1.Sincel/\ =\ — 1, these moduli are equal; thus the coordinate directions
form a transversal parabolic pair.

The directionsr/4 and37 /4 are also periodic. Their cylinder decompositions have the same
parametersw’* = (A — 1)/v2, €7/ = (A + 1)V2, w’* = (2 = A\)/V2, (5/* = \V/2, see
Fig. 2. Hencauy = (A — 1)/ (A + 1), u2 = (2 — A) /A, andpq /e = 1. Thus,n /4, 3w /4 is also a
transversal pair of parabolic directions.
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Fig. 1. The golden ratio gnomon.
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Fig. 2. The cylinders in the directiddwr /4.

Let U be the unit square contained ih Denote byO the center o/, and letz, y andz’, 3/’
be the standard coordinate system and its rotatior-by4, respectively. See Fig. 1. By the
preceding material, if(x,y) € U is a periodic point, them, y are rational. Denote by C U the
intersection of the two cylinders of widt\ — 1) /v/2. If s = (z,y) € I is a periodic point, then
(z,y) = (2" +y")/V2, (=2’ +4')/v/2). Thus,/2y' = x—y € Q. Sincey’ is a rational multiple
of the width of the cylindersy/2y’ € Q N (A — 1)Q. Hencey’ = 0. Analogouslyz’ = 0.

Let nows = (x,y) € U \ I be periodic. By symmetry, it suffices to consider the bottom left
corner ofU. The same rationality argument as above yieltls- 0. Analogous considerations
show thaty’ € v2Q N (2 - \)/v2Q. Hence,y’ =0, andU \ I contains no periodic points.
Therefore, the only periodic point iii is the center.

Let s be a periodic, regular point. We show that the orbit aieetsU. Suppose that belongs
to the interior of the first vertical cylinder (i.e., the cylinder of width one). The vertical closed
geodesic upon which lies clearly must medt/ in at least half of its length. Therefore, there is
some power of the basic vertical affine map which takego U. By symmetry, ifs belongs to
the interior of the first horizontal cylinder, the orbit ofilso meetd/. But, the horizontal Dehn
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Fig. 3. Cylinder decompositions for parabolic directions. The induced partition of the triangle.

twist sends the boundary of the first vertical cylinder into the union of the interiors of the two
“first cylinders”.

We conclude that the orbit of any periodic point meets the set of Weierstrass points. By
Theorem 10, the set of periodic points is exactly the Weierstrass points.

Example4. —The regular octagonDenote byP the regular octagon, inscribed in the unit
circle, and letS be the translation surface obtained by identifying the opposite sidd€3. of
It is a hyperelliptic surface of genus FurthermoreS is a nonarithmetic lattice surface and
I'(S) is generated by elliptic and parabolic elements [26]. As in the preceding example, the six
Weierstrass points & come from: the center P, the midpoints of its edges, and the vertices.
The parabolic generator &f(S), referred to above, stabilizé® (S) [1].

We claim that the Weierstrass and periodic point§ @incide.

The coordinate directions form a transversal parabolic pa#.ifthe 3 /8, 77 /8 pair is also
parabolic. There are two cylinders in each decomposition. Bgtfudd symmetry of the regular
octagon, it suffices to determine the parameters of two of the four decompositions. In the notation
of Fig. 3, we haveu; = v/2/2, ws = (2—+/2)/2, andw;, = 2sin /8, wy = cos /8 —sin7/8.

Let s € S be a periodic point. By symmetry, we can assume thhelongs to the triangle
T with vertices0, e?™/4, i. Intersectingl” with the cylinders above, we obtain the decomposition
T =AUBUC. See Fig. 3. The trianglé intersects the cylindefs |, 1’ and I'. The quadrilateral
B intersects the cylinders |, 1’ and If. The triangleC intersects the cylinderk II, 1’ and IV.

We denote by, y andz’, y’ the standard coordinate system about the centBranid its rotation
by —7/8, respectively.

Let s € A be a periodic point, of respective coordinatesy), (z',%'). Then:z,y € v2Q,
x',y € (sinm/8)Q, and

(12) x=21"cosm/8 + 1 sinm/8, y=—a'sinw/8 + 1 cosm/8.

Setaz’ = Lsinm/8. By trigonometry,z’ cos /8 € V2Q, hencey'sint/8 € v/2Q. Sincey’ =
L sin/8, we conclude that’ =y = 0. Thus,s is the center of°.

Let s € BU C be a periodic point, of respective coordinatesy), (z',y’). Applying the
preceding argument, we obtain:€ v2Q, 2’ € (sin7/8)Q, andy’ — sinm/8 € (cosm/8 —
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sinm/8)Q. The same argument yield$cos7/8 € v/2Q. By Eq. (12),y'sinm/8 € v/2Q. Set
y =sinm/8 + (cosm/8 —sinw/8)%. Then (2 — v2)/4 + [v2/2 — (2 — v2)/4]% € V2Q,
implying thatu = v, andy’ = cos /8. Thuss belongs to the outer edge 6f The Dehn twist of
cylinder1’ fixes the endpoints and sends the midpoint of the edge into the cenfferTdfe rest
of the edge is sent into the interior &% avoiding the center.

We have shown above that the interior Bfcontains no periodic points, with the possible
exception of the center. Therefores W (S). By Corollary 9,W (S) C P(S), hence the claim.
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