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AFFINE DIFFEOMORPHISMS OF TRANSLATION
SURFACES: PERIODIC POINTS, FUCHSIAN GROUPS

AND ARITHMETICITY

BY EUGENE GUTKIN, PASCAL HUBERT AND THOMAS A. SCHMIDT

ABSTRACT. – We study translation surfaces with rich groups of affine diffeomorphisms—“prela
surfaces. These include the lattice translation surfaces studied by W. Veech. We show that the
prelattice but nonlattice translation surfaces. We characterize arithmetic surfaces among prelattice
by the infinite cardinality of their set of points periodic under affine diffeomorphisms. We give examp
translation surfaces whose periodic points and Weierstrass points coincide.

 2003 Elsevier SAS

RÉSUMÉ. – Nous étudions des surfaces de translation ayant un grand groupe de difféomor
affines—les surfaces « préréseaux ». Parmi celles-ci se trouvent les surfaces de translation réseau
par W. Veech. Nous montrons qu’il existe des surfaces de translation préréseaux qui ne sont pas
Nous donnons une nouvelle caractérisation des surfaces arithmétiques : ce sont les surfaces préré
ont un nombre infini de points périodiques sous l’action du groupe des difféomorphisms affines
exhibons des exemples de surfaces de translation dont les points périodiques et points de We
coïncident.

 2003 Elsevier SAS

1. Introduction

A translation surfaceis a flat surface with conical singularities (see say [23]), wh
transition functions are (restrictions of) translations. Translation surfaces arise in s
contexts: mathematical billiards, Riemann surfaces and their moduli, classification of s
diffeomorphisms and measured foliations. In this paper, we focus on the geometry and ari
of translation surfaces.

In [23] W. Thurston studied flat Riemannian metrics with conical singularities. In a parti
setting, these give rise to translation surfaces. LetS be a Riemann surface andφ a holomorphic
1-form onS. Integratingφ, we obtain a translation atlas off of the zeros ofφ. A zero ofφ of
multiplicity m− 1 yields a cone point with angle2mπ. See [19,30] for details.

The affine diffeomorphisms of a translation surface form a group,Aff(S). Assigning to
g ∈ Aff(S) its (constant) differential, we obtain thedifferential homomorphismD :Aff(S) →
SL(2,R). Let Γ(S) ⊂ SL(2,R) be its range. W. Veech showed thatΓ(S) is a Fuchsian group
and related it to the geometry and dynamics of the geodesic flow ofS [26]. It is customary to
call Γ(S) theVeech groupof S. 1

1 The flat structures considered by Veech and many others are induced by quadratic differentials. Translation
correspond to the quadratic differentials which are squares of linear ones. From the geometric viewpoint, the
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848 E. GUTKIN, P. HUBERT AND T.A. SCHMIDT

We say thatS has thelattice property, or simply thatS is a lattice surface, if Γ(S) is a lattice,
i.e., SL(2,R)/Γ has finite volume. (It is also common to callS a Veech surface.) The lattice
Γ(S) is necessarily nonuniform [26]. For instance, the standard flat torus is a lattice surface—its
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Veech group isSL(2,Z).
A nonuniform lattice isarithmeticif it admits a finite index subgroup which is conjugate t

subgroup ofSL(2,Z). A lattice translation surface isarithmeticif its Veech group is arithmetic
Arithmetic translation surfaces were investigated already in [7]. In [26,27] Veech gave th
examples of nonarithmetic lattice surfaces. He also showed that the geodesics on lattice
satisfy theVeech dichotomy: Every geodesic is either closed or uniformly distributed.

There are two major branches to the study of translation surfaces. One is the study
general or, at least, the generic translation surface. See, for instance, [4,18] and the surv
The other is the study of special translation surfaces, e.g., lattice surfaces. This branch n
subdivides: The purely geometric one [9,29] and the algebro-geometric one [10,11,14,15
The present work is of the latter type.

Every element ofSL(2,R) \ {±1} is eitherparabolic, elliptic, or hyperbolic. By convention,
we consider the elements±1 elliptic. We say thatφ ∈ Aff(S) is a parabolic, elliptic, or a
hyperbolicdiffeomorphism, ifDφ ∈ SL(2,R) is parabolic, elliptic, or hyperbolic respectively

The generic translation surface has no affine symmetries, while we study the su
with infinitely many of them. We emphasize the diffeomorphisms “generated” byparabolic
directions. A direction is parabolic forS if

(i) Every geodesic in this direction is either periodic or a saddle connection.
(ii) The moduli of the cylinders inS, formed by the geodesics in this direction a

commensurate.
To each parabolic direction,θ, one can associate a parabolic diffeomorphism,φθ ∈ Aff(S),

[26]. The restriction ofφθ to a cylinder in the directionθ is a power of the Dehn twist of tha
cylinder. This then allows us to identifyφθ with its differential, a parabolic element ofΓ(S).
Furthermore, for any parabolicg ∈ Aff(S), there existm,n ∈ N, and a parabolic directionθ
such thatgm = φn

θ ; see Proposition 2.4 of [26].
If α,β are arbitrary directions, then eitherα=±β orα andβ are transversal.

Definition 1. – A discrete groupΓ ⊂ SL(2,R) is a prelattice if it contains noncommuting
parabolic elements. A translation surfaceS is aprelattice surfaceif the groupΓ(S) is a prelattice
Equivalently,S is a prelattice surface if it has a pair oftransversal parabolic directions.

In Section 9 of [26] Veech briefly considered translation surfaces satisfying Definition 1
show that such surfaces need not be lattice surfaces—see Corollary 7.

LetS be a translation surface and letG⊂Aff(S) be a subgroup of infinite order. A point ofS
is G-periodic if its G-orbit is finite. WhenG=Aff(S), we simply speak of theperiodic points
of S. It follows from Theorem 5.5 of [11] that the periodic points of an arithmetic transla
surface form a countable, dense set.

THEOREM 1. – LetS be a prelattice translation surface. Then the following dichotomy ho:
(i) The surfaceS is an arithmetic lattice surface; the periodic points form a dense, counta

subset.
(ii) The surfaceS is not an arithmetic lattice surface; the set of periodic points is finite.

general flat structures are thehalf-translation surfaces[11]. All of our results extend mutatis mutandis to the ha
translation surfaces. This follows from the standard 2-sheeted covering of a half-translation surface by a tra
surface [12].
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Theorem 1 will follow from Theorem 7 in Section 32 , which gives an upper bound on the
number of periodic points that a nonarithmetic prelattice translation surface can have.

Recall that an action of a group on a compact set isminimal if there are no nontrivial closed
early”
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invariant subsets. We show that the action of the affine group on a prelattice surface is “n
minimal.

THEOREM 2. – LetS be a prelattice translation surface. Then the only closed infinite su
of S invariant underAff(S) is S itself.

Definition 2. – Let S be a translation surface, and letC(S) be its set of cone points
Let s1, . . . , sp ∈ S \ C(S). Marking s1, . . . , sp we create a formally new translation surfa
(S; s1, . . . , sp). It is the surfaceS punctured(or marked) at the pointss1, . . . , sp. Its set of cone
points isC(S) ∪ {s1, . . . , sp}. Its group of affine diffeomorphisms consists of the element
Aff(S) that preserveC(S) ∪ {s1, . . . , sp}.

Although puncturing a translation surface does not change the geodesics, it may dra
change its Veech group and the counting functions [9,14,15]. Marked translation su
naturally arise in the context of affine coverings. See Sections 2.2 and 5.2.

LetS be a prelattice surface. We say thats ∈ S is arational pointif there exist two transversa
parabolic directions forS such that for each direction,s is periodic with respect to the Deh
twist of the cylinder in which it lies. See Section 5 for a formal definition.

THEOREM 3. – Let S be a prelattice translation surface. LetSQ ⊂ S be the set of rationa
points and letP (S) be the set of periodic points.

(a) The setSQ is dense, countable, andP (S)⊂ SQ.
(b) The surfaceS is arithmetic if and only ifP (S) = SQ.
(c) Lets ∈ S. Then(S; s) is a prelattice surface if and only ifs ∈ SQ.

Claim (b) is a new characterization of arithmeticity for translation surfaces. Theorem 3 yi
classification of points in lattice surfaces.

COROLLARY 1. – Let S be a lattice translation surface, and lets ∈ S. Then the following
trichotomy is satisfied.

(i) We haves ∈ P (S) if and only if(S; s) is a lattice surface.
(ii) We haves ∈ SQ \P (S) if and only if(S; s) is a prelattice, but not a lattice surface.
(iii) We haves ∈ S \ SQ if and only if(S; s) is not a prelattice surface.

Our further results concernbalanced coverings[9] of translation surfaces. See Definition 4
Section 2.2. Veech groups behave naturally under balanced coverings: the lattice propert
served. Atranslation coveringis an affine coveringp :R→S, whose differential satisfiesDp=
1. The groupGL(2,R) acts on translation surfaces, by composition with coordinate funct
Let S → g · S denote the action. Translation surfacesS,S′ areequivalent(respectivelyequiv-
alent in the extended sense) if S′ = g · S with g ∈ SL(2,R) (respectivelyg ∈ GL(2,R)). This
equivalence allows us to replace a (balanced) affine covering by a (balanced) translation c

Recall that Fuchsian groupsΓ,Γ′ arecommensurableif Γ∩ Γ′ is of finite index in bothΓ,Γ′.
The groups are calledcommensurable in the wide senseif there is someg ∈ SL(2,R) such that
Γ andgΓ′g−1 are commensurable.

Definition 3. – Let Γ ⊂ SL(2,R) be a Fuchsian group. We say thatΓ is realizable
(respectivelyalmost realizable) as a Veech group if there exists a translation surfaceS such
thatΓ= Γ(S) (respectivelyΓ is commensurable withΓ(S)).

2 Our argument proves a stronger result. See theorem in E. Gutkin, Blocking of orbits and the phenom
(in)security for the billiard in polygons and flat surfaces, IHES/M/03/36 (preprint).
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THEOREM 4. – Let S be a lattice translation surface, and letΓ be its Veech group. ThenS
is nonarithmetic if and only if there exists a prelattice subgroupΓ′ ⊂ Γ of infinite index which is
almost realizable as a Veech group.
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Perhaps the most striking implication of Theorem 4 is the following

COROLLARY 2. – Let Γ ⊂ SL(2,Z) be a prelattice. ThenΓ is almost realizable as a Veec
group if and only if it is a lattice.

Recall that a Riemann surface,S, is hyperelliptic if it admits a holomorphic (hyperelliptic)
involution,σ, such that the quotientS/σ is the Riemann sphere. The fixed points ofσ are called
theWeierstrasspoints ofS. Since a translation surface defines a Riemann surface, we can
of hyperelliptic translation surfacesand their Weierstrass points.

THEOREM 5. – There are hyperelliptic translation surfaces whose sets of Weierstrass p
and of periodic points coincide.

This last cannot be true in general: IfS is arithmetic, then the set of its periodic points
infinite, while the set of Weierstrass points is always finite.

Organization of paper. In Section 2 we discuss background material. In Section 3
prove key qualitative results. In Section 4 we prove our main qualitative result, Theor
and then Theorems 1 and 2. In Section 5 we study rational points of prelattice surfaces,
in particular Theorems 3 and 4. In Section 6 we study hyperelliptic surfaces, and give e
examples proving Theorem 5.

2. Background and preliminaries

2.1. Parabolic diffeomorphisms of a translation surface

We recall the main concepts, referring the reader to the survey [19] for elaboratio
consider only closed, connected translation surfaces. A translation surface,S, has a finite set
C(S), of cone points. The points inS \ C(S) are called regular. A nonzero tangent vecto
a regular point ofS has adirection. For anyθ ∈ [0,2π), the unit tangent vectors in directio
θ form a vector field,Vθ , with singularities at the cone points. Integral curves ofVθ are the
geodesics onS in directionθ. We parametrize them by arclength. Ifγ(t) is a geodesic such th
γ(t+ �) = γ(t), γ(t+ �/n) �= γ(t) for n > 1, thenγ is a (prime)periodic geodesicof length�.
If γ(t), 0 � t � �, is a geodesic, whose endpoints belong toC(S), and whose interior points ar
regular, thenγ is asaddle connection of length�. We designate byclosed geodesicsboth periodic
geodesics and the saddle connections.

The only closed translation surfaces without cone points are the flat tori. To unif
treatment, we always mark a point of a flat torus and call this theorigin. Any regular closed
geodesic determines a maximal flat cylinder,C ⊂ S. The flat cylinder,C(�,w), of length� and
width w, is obtained by identifying the two vertical sides of the rectangleR(�,w) = {(x, y),
0 � x � �, 0 � y � w}. Although various cylinders are affinely equivalent, the modu
µ = �/w = µ(C) gives a conformal invariant. The interior of any (maximal) cylinderC ∈ S is
isometric toInt(C(�,w)), where� = �(C) andw = w(C) are respectively the length and t
width of C. If C ⊂ S is a cylinder of length�, width w, and directionθ, thenLy, 0 < y < w,
are periodic geodesics inS of length� and directionθ. The curvesL0 andLw are the unions o
saddle connections in the same direction.

The basic affine diffeomorphism ofC = C(�,w) is the Dehn twistT = TC . In the coordinate
above we haveT (s, t) = (s+ t �

w mod �Z, t). SinceT fixes the boundary∂C(�,w) pointwise, it
defines the Dehn twist for any cylinder,C ⊂ S, of length� and widthw. A directionθ is periodic
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for S if every geodesic in this direction is closed. A periodic direction defines a decomposition
of S as a finite union of cylindersCi, 1 � i � k(θ). Let wi, �i, µi be the respective parameters,
and letTi :Ci → Ci be the respective Dehn twists. There existNi ∈ N such that the iterates
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i , 1 � i � k(θ), fit together, yielding an affine diffeomorphismφθ :S → S, if and only if
the moduliµi are commensurable. In this caseθ is aparabolic direction. The smallest positiv
µ = µ(θ) such thatµ = Niµi, 1 � i � k(θ), is themodulus of the parabolic directionθ. The
diffeomorphismφθ ∈Aff(S) is theprincipal parabolic diffeomorphismcorresponding toθ. We
use the same notation for its differential, which belongs toΓ(S). In appropriate coordinates,φθ

is given by the parabolic upper triangular2× 2 matrix withµ(θ) in the corner.

2.2. Affine equivalence and coverings

There is a natural action ofGL(2,R) on the space of translation surfaces, which is sim
to describe in terms of the coordinate charts, [11,24,25]. IfS is a translation surface, an
g ∈ SL(2,R), we denote byg · S the new translation surface. The translation surfacesS and
g · S areaffinely equivalent, andΓ(g · S) = gΓ(S)g−1. Hence, this action preserves arithmetic
and the (pre)lattice property. In particular, ifα,β is a pair of transversal parabolic directions
S, theng · α, g · β is the corresponding transversal pair forg · S. The statements announced
the introduction are either invariant or equivariant under the affine equivalence.

We use this observation for two purposes:
(1) Tonormalizea pair of parabolic directions.
(2) To replace anaffine coveringby atranslation covering.

Let S be a translation surface, and letα,β be a transversal pair of parabolic directions
S. ReplacingS by an affinely equivalent surface, if need be, we can assume without lo
generality thatα,β are the positivex, y-directions respectively.

Natural mappings of translation surfaces are the affine coverings [11]. Letp :X →Y be one.
Thenp defines a (possibly branched) covering of the corresponding closed topological su
Furthermore,p is affine outside of the cone sets. The differential,Dp(x) ∈GL(2,R), is a constan
matrix. Translation coverings are the affine coverings whose differential is the identity m
Hence, replacing eitherX or Y by an affinely equivalent surface (in general, in the exten
sense), we can assume thatp :X →Y is a translation covering [10,11,15,29].

Definition 4. – Letp :X →Y be an affine covering of translation surfaces. Thenp is balanced
if p(C(X )) =C(Y) andp−1(C(Y)) =C(X ).

The following theorem was proved independently by E. Gutkin and C. Judge, and by Ya.
bets.

THEOREM 6 [10,11,29]. – Let p :X → Y be a balanced affine covering of translati
surfaces. Then the groupsΓ(X ) andΓ(Y) are commensurable in the wide sense. If, besi
p is a translation covering, thenΓ(X ) andΓ(Y) are commensurable.

3. Periodic points of translation surfaces

Let C be a flat cylinder, and letT :C → C be the Dehn twist. A pointz ∈ C is periodic if
T nz = z, for somen > 0. The smallest suchn is the period ofz.

We do the computations for the standard cylinderC = C(1,1). It is straightforward to exten
them to arbitraryC(�,w). Thus,T : (x, y) �→ (x+ ymod1, y). The restriction ofT to the closed
geodesicLy = {y = const} ⊂ C is the rotation byy. Hence, a pointz ∈ C is periodic if and only
if z ∈ Ly, wherey is rational. Moreover, the set of points of periodn is the union ofLk/n, with k
andn relatively prime. Thus, we haveφ(n) closed geodesics consisting of the points of perion,
whereφ is Euler’s totient function.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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The number of geodesics inC, consisting of the points of period at mostn is Φ(n) :=∑n
m=1 φ(m) = (3/π2) · n2 +O(n logn). See [13, Theorem 330].
We consider the subgroups of affine diffeomorphisms ofC, generated by powers ofT . For
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n ∈ N let Fn be the set of rational rotation numbers with denominator at mostn. Thus,
Fn := {(k, l) ∈ N2 | gcd(k, l) = 1, k < l � n}, and |Fn| = Φ(n) � n2. The map of the uni
interval to itself,x �→ {Nx}, isN -to-1 and sendsFn to itself. In particular, the points of perio
at mostn underTN lie onNΦ(n) closed geodesics inC.

The translation surfaceT = R/Z with the marked point(0,0) is the standard torus. Any
flat torus is affinely equivalent toT, we thus restrict our considerations to the standard to
The group of affine diffeomorphisms ofT is SL(2,Z), generated by the horizontal and t
vertical Dehn twists,Th and Tv respectively. We haveTh : (x, y) �→ (x + ymod1, y) and
Tv : (x, y) �→ (x, y+xmod1). The points(x, y) ∈ T which are periodic with respect toSL(2,Z)
are the rational points(x, y) ∈ Q2/Z2. The set of points which are periodic of period at mosn
underTv and of period at mostm underTh is the intersection of the horizontal and vertical clos
geodesics that we have just considered. The cardinality of this set is asymptotic to(9/π4) ·m2n2,
asm,n→∞.

Let θ be a parabolic direction on a translation surfaceS. Using the preceding material, w
speak ofrational closed geodesics, their periods and their rotation numbers. Note that the
periodic points of periodn under the restriction ofφθ to the cylinderCi lie onNiφ(n) rational
geodesics ofCi. The set of rotation numbers of these geodesics isFn.

THEOREM 7. – LetS be a translation surface, and letα,β be a pair of transversal paraboli
directions. Then there exist positive integersM and N , depending only on the ratios of th
parameters of the cylinder decompositions, so that the following statements hold.

(i) If S has more thanM periodic points with respect toAffα,β(S), thenS is arithmetic.
(ii) If S has anAffα,β(S)-periodic point of period greater thanN , thenS is arithmetic.

Theorem 7 follows from several technical lemmas and propositions. By the rema
Section 2.2, we assume without loss of generality thatα,β are the coordinate directions. W
use labelsv andh to refer to thevertical and thehorizontaldirections respectively. From no
until Proposition 4 the standing assumption is that both coordinate directions are par
A rectanglein S is a connected component of the intersectionCh

i ∩ Cv
j . The interior of any

rectangle is isometric to the Euclidean rectangle(0,wv
j ) × (0,wh

i ). Let µi,j be the number o
rectangles formed by this intersection. We denote the rectangles byRl

i,j , 1 � l � µi,j . The
(essentially disjoint) decomposition

S =
k(h)⋃
i=1

k(v)⋃
j=1

µi,j⋃
l=1

Rl
i,j(1)

implies

k(h)∑
i=1

k(v)∑
j=1

µi,jw
h
i w

v
j = Area(S).

LEMMA 1. – For 1� i� k(h) (respectively1� j � k(v)) letHi (respectivelyVj ) be a finite
set of closed geodesics inCh

i (respectivelyCv
j ). Then
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∣∣∣∣∣
(

k(h)⋃
i=1

Hi

)
∩
(

k(v)⋃
j=1

Vj

)∣∣∣∣∣=
k(h)∑
i=1

k(v)∑
j=1

µi,j |Hi||Vj |.(2)

s

d prove

s.

the
Proof. –The intersection of a longitude inCh
i with a longitude inCv

j consists ofµi,j points. ✷
To simplify the notation, we denote the subgroups ofAff(S) generated by the diffeomorphism

φh andφv byA andB, respectively. Let〈A,B〉 be the subgroup generated byA andB.
If f and g are functions of natural argument, we use the notationf �∼ g to indicate that

f(n)� g(n) for n sufficiently large, andf ∼ g means thatf(n)/g(n)→ 1 asn goes to infinity.
The proposition below is immediate from Lemma 1 and the preceding remarks.

PROPOSITION 1. – For any subgroupG⊂Aff(S) letPG ⊂ S be the set ofG-periodic points.
Denote byPG

n ⊂ PG the subset of points of periods at mostn. Then
(i) For anym andn we have

∣∣PA
m ∩ PB

n

∣∣=Φ(m)Φ(n)
k(h)∑
i=1

k(v)∑
j=1

µi,jN
h
i N

v
j .(3)

(ii) We have

∣∣PA
m ∩PB

n

∣∣∼ 9
π4

(
k(h)∑
i=1

k(v)∑
j=1

µi,jN
h
i N

v
j

)
m2n2.(4)

COROLLARY 3. – We have the asymptotic inequality

∣∣P 〈A,B〉
n

∣∣�∼ 9
π4

(
k(h)∑
i=1

k(v)∑
j=1

mi,jN
h
i N

v
j

)
n4.(5)

Proof. –Use Eq. (4) and the inclusionP 〈A,B〉
n ⊂ PA

n ∩ PB
n . ✷

We state a few immediate consequences of the propositions above, then formulate an
a few technical lemmas.

If α,β is a pair of transversal parabolic directions onS, we denote byAffα,β(S) ⊂ Aff(S)
the subgroup generated by the diffeomorphismsφα andφβ . A subgroupG⊂Aff(S) is basicif
its intersection with someAffα,β(S) has finite index in the latter.

COROLLARY 4. – Let S be a prelattice translation surface. LetG ⊂ Aff(S) be any basic
subgroup. Then:

(i) The setsPG
n are finite.

(ii) The cardinality|PG
n | grows at most quartically inn, asn tends to infinity.

(iii) The setPG is infinite if and only if it contains periodic points of arbitrarily large period

LEMMA 2. – There exist constantsc0 and n0, depending only on the parameters of
transversal pair of parabolic decompositions ofS, such that any finite orbit of〈A,B〉 of
cardinalityn > n0 contains points of periods at leastc0 4

√
n with respect to each ofA andB.

Proof. –We choosec0 > 0 so that

c40 =
(

3
π2

+ 1
)−2

(
k(h)∑
i=1

k(v)∑
j=1

µi,jN
h
i N

v
j

)−1

.
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By Eqs. (4) and (5), there existsm0 ∈ N such that form>m0 one has∣∣P 〈A,B〉
m

∣∣< c−1
0 m4.(6)

and

,
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Rewriting this inequality asm4 > c0|P 〈A,B〉
m | and settingn0 = c0m

4
0, we obtain the claim. ✷

If xα
i , 1 � i� k(α), are any parameters of the cylinders of a parabolic directionα, we denote

by xα
min andxα

max the smallest and the biggest ones.

LEMMA 3. – There ism0 ∈ N, depending only on the parameters of the horizontal
vertical decompositions ofS, such that the following holds:

If a finite 〈A,B〉-orbit contains a point ofA-periodm>m0, then theA-orbit of this point
contains a point whoseB-period is at least[2(mwv

min
�h
max

− 1)/Nv
max]1/2.

Proof. –Suppose thatO is a finite 〈A,B〉-orbit, ands ∈ O is of A-periodm. We assume
without loss of generality, thats ∈ Ch

1 , and letL ⊂ Ch
1 be the closed geodesic containings.

It intersects at least one vertical cylinder. Again, we can assume thatL intersectsCv
1 . Let

R⊂ Ch
1 ∩ Cv

1 be one of the rectangles.
The distance between consecutive points ofA · s is �h1/m. Hence the number of points o

the orbitA · s in the intervalL ∩ R is at least�wv
1/(�

h
1/m)� � (mwv

1/�
h
1 ) − 1. The interval

L∩R intersects each closed geodesic ofCv
1 exactly once. Hence{A · s} ∩R intersects at leas

(mwv
1/�

h
1)− 1 distinct closed geodesics ofCv

1 .
Let X ⊂ [0,1]∩ Q be the set of rotation numbers of these geodesics with respect to the

Dehn twist ofCv
1 . Recall that the closed geodesics in a cylinder are parametrized by their ro

numbers. SetN := Nv
1 andY := {{Nx} | x ∈ X}. ThenY is the set of rotation numbers

these geodesics with respect to the diffeomorphismφv of S. Let n be the smallest positiv
integer such thatY ⊂ Fn. Thenn is the largestB-period of the geodesics in question. Usi
that |Y | � |X |/N and the obvious upper bound for|Fn|, we have

m
wv

min
lhmax

− 1

Nv
max

<
n2

2
.(7)

Takingm> lhmax/w
v
min, we obtain the claim. ✷

The following two lemmas put the statements above into a more suitable form. The pro
straightforward, and we leave them to the reader.

LEMMA 4. – There existc1 > 0 andn0 ∈ N depending only on the parameters of the t
decompositions ofS, and such that the following holds:

Let n > n0, and letO ⊂ S be an〈A,B〉-periodic orbit of cardinality at leastc1n8. ThenO
contains a point,s, with the following properties:

(i) TheA-period ofs is at leastn;
(ii) Every vertical cylinder which intersects nontrivially the horizontal cylinder containins

contains a point ofB · {A · s}, whoseB-period is at leastn.

LEMMA 5. – There existc2, c3 > 0 andn0 ∈ N so that the following holds:
(i) Letn� n0, and letO ⊂ S be a finite〈A,B〉-orbit of cardinality greater thanc2n4. Then

O contains a point ofA-period at leastn, and a point ofB-period at leastn.
(ii) Suppose that an〈A,B〉-periodic orbitO contains anA-periodic point,s, of period at

least c3n2 with n � n0. Then every vertical cylinder which intersects nontrivially
horizontal cylinder containings contains a point ofA · s whoseB-period is greater than
or equal ton.
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Note that in the lemmas aboveA andB are interchangeable. The following proposition is the
main technical result.
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PROPOSITION 2. – Let the assumptions be as above. There existc4 > 0, n0 ∈ N andd ∈ N,
so that the following holds:

Let O ⊂ S be a finite〈A,B〉-orbit of cardinality greater thanc4n2d+2
with n � n0. Then

in every horizontal(respectively vertical) cylinder there is a point ofO whoseA-period
(respectivelyB-period) is at leastn.

Proof. –We sketch the proof, leaving the details to the reader. In particular, we will pre
that in the lemmas above the constantsci are equal to one and that all the thresholdsn0 are the
same. The latter can always be achieved by taking the biggest threshold of them all. The
can be arranged by (for instance) increasing the exponents in the lemmas by an arbitraril
but positive amount, and raising the threshold. By the first claim of Lemma 5, there is a hor
cylinder,Ch

1 , such thatO ∩ Ch
1 contains a finiteA-orbit of cardinality at leastn2d

. Then every
vertical cylinder intersectingCh

1 contains aB-periodic point ofO, whose period is greater tha
or equal ton2d−1

. See the second claim of Lemma 5. If the union of these vertical cylin
with Ch

1 coversS, then we proved the claim. Otherwise, we continue the inductive argume
each consecutive iteration of the argument we just lose a factor of2 in the exponent. SinceS is
connected, after a finite number of steps we exhaust the surface.✷

4. Large periodic orbits imply arithmeticity

We need a few more technical propositions about transversal pairs of parabolic directio
continue to use the convention of Section 2, and restrict the exposition to the pair of coo
directions.

4.1. Commensurability of parameters

LEMMA 6. – LetCv
i andCh

j be two cylinders such thatCh
i ∩Cv

j �= ∅. LetR⊂ Cv
i ∩Ch

j be one
of the rectangles in the intersection. Suppose that two distinct points ofR lie in the sameA-orbit
and in a finite〈A,B〉-orbit. Thenwv

j /�
h
i ∈ Q.

Proof. –We denote by(x, y) the natural coordinates inR. Then0 � x�wv
j , 0� y �wh

i . Let
s= (x, y) ands′ = (x′, y′) be the two points in question. By assumption, there is0 �= n ∈ Z so
that

x′ = x+ n
y

wh
i

�hi , y′ = y.(8)

Sinces isA-periodic, y
wh

i

∈ Q. On the other hand, sinces ands′ are bothB-periodic, they belong

to rational closed geodesics inCv
j . Thus, bothx/wv

j andx′/wv
j are rational numbers. Hence

x′ − x

wv
j

= n
y

wh
i

�hi
wv

j

∈ Q.(9)

Since, as we already noted,y
wh

i

∈ Q, we obtain the claim. ✷
Remark1. – The interchange ofA andB in the assumptions of the preceding lemma yie

wh
i /�

v
j ∈ Q.

The following technical proposition is crucial. It is also of independent interest.
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PROPOSITION 3. – Let the notation be as in Proposition2. Set

{
�hmax �vmax

}
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f whose
m=m(A,B) =max
wv

min

,
wh

min

.(10)

Suppose thatS has an〈A,B〉-periodic point of period greater than or equal toc4m2d+2
. Then:

(i) All numberswv
j /�

h
i andwh

i /�
v
j are rational.

(ii) The lengths�hi , 1 � i � k(h), are commensurate, and the lengths�vj , 1 � j � k(v), are
commensurate, as well.

(iii) The widthswh
i , 1 � i � k(h), are commensurate, and the widthswv

j , 1 � j � k(v), are
commensurate, as well.

Proof. –Let O be the〈A,B〉-orbit in question. By Proposition 2, every horizontal (resp
tively vertical) cylinder contains a point ofO of A-period (respectivelyB-period) greater tha
m. In view of Eq. (10), every rectangleR⊂ Ch

i ∩Cv
j contains (at least) two points,s ands′ of O,

such thats′ = φh · s (respectivelys′ = φv · s). Lemma 6 and Remark 1 imply our first claim.
Suppose thatCh

i andCh
i′ intersect the same vertical cylinder,Cv

j . We have already proved th
wv

j /�
h
i andwv

j /�
h
i′ are rational. Thus�hi and�hi′ are commensurate. In view of the connectedn

of S, for any pairC,C′ of horizontal cylinders, there is a sequenceC1, . . . ,Ck of horizontal
cylinders such thatC = Ch

1 , C′ = Ch
k , and every two consecutive cylinders of the seque

intersect a common vertical cylinder. Thus�(C)/�(C′) is rational. The same argument works
vertical cylinders, proving our second claim. The proof of the last claim is essentially iden
and we leave it to the reader.✷

From now on we drop our convention that our transversal parabolic directions is the pax, y,
and explicitly formulate all of our assumptions. The following proposition is of indepen
interest.

PROPOSITION 4. – Let S be a translation surface. Letα and β be transversal parabolic
directions. Letwα

i , 1 � i� k(α), andwβ
j , 1 � j � k(β), be the widths of the respective cylinde

Suppose that the numberswα
i are all commensurate, and the numberswβ

j are commensurate, a
well. ThenS is an arithmetic translation surface.

Proof. –ReplacingS by an affinely equivalent surface, we assume without loss of gene
thatα andβ are the coordinate directions. In what follows we useh for α andv for β.

Changing the translation structureS by a diagonal transformation, if need be, we ensure
all the widthswh

i andwv
i are rational. Now we use the relations

�vj =
k(h)∑
i=1

µi,jw
h
i , �hi =

k(v)∑
j=1

µi,jw
v
j .(11)

Thus, all the lengths�hi , �
v
j are rational, as well. Applying a homothety toS, we make all these

parameters integral. By Theorem 5.5 of [11],S is arithmetic. ✷
Proposition 4 is a special case of a more general statement: A translation surface all o

parameters are commensurate is arithmetic [11].

4.2. Proofs of Theorems 1, 8, 7

First, we prove the main quantitative result.
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Proof of Theorem7. – We begin with the latter claim. Letm=m(α,β) be given by Eq. (10).
By Proposition 3, ifN � m(α,β), then the assumptions of Proposition 4 are satisfied. Hence,
S is arithmetic.
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By Corollary 3, the existence ofM periodic points implies the existence of a periodic poin
period at leastN = const4

√
M . This holds forM greater than a certain threshold, depending

the data, which also determines the constant in question. Therefore, ifS satisfies the assumptio
of claim (i), then it satisfies the assumption of claim (ii), as well.✷

The hypothesis of the first claim of Theorem 7 implies that of the second, withM =N . By
this observation and the preceding argument, we reformulate Theorem 7 as follows.

COROLLARY 5. – Let S be a prelattice translation surface. Then there existsn ∈ N,
determined from any pair of transversal parabolic directions, so that the following holds:

If S has at leastn periodic points, then it is arithmetic.

THEOREM 8. – Let S be a translation surface, and letG ⊂ Aff(S) be a basic subgroup. I
the set ofG-periodic points ofS is infinite, thenS is an arithmetic translation surface.

Proof. –If H ⊂ G ⊂ Aff(S) is a tower of subgroups, thenP ⊂ PG ⊂ PH . The claim now
follows directly from Theorem 7. ✷

Proof of Theorem1. – We have already proved that a nonarithmetic (pre)lattice transl
surface has a finite number of periodic points. Note that the cone points are necessarily p
Now letS be an arithmetic translation surface. ReplacingS by an equivalent translation surfac
if need be, we can assume thatS admits a balanced translation covering of the standard toruT.
By Theorem 6,Aff(S) is commensurable withAff(T) = SL(2,Z).

The setQ2/Z2 of rational points is dense inT. But it is also the set ofSL(2,Z)-periodic
points. The set of periodic points inS is the preimage ofQ2/Z2 under the covering, hence it
dense inS. ✷
4.3. Proof of Theorem 2

It suffices to prove the claim under the convention that the coordinate directions are par
LetX ⊂ S be an infinite closed〈A,B〉-invariant subset. Suppose thatX contains a ‘coordinate
closed geodesic,L. We can assume without loss of generality thatL is vertical. LetR be one
of the rectangles intersectingL. The set ofφh-rotation numbers of the points in the vertic
intervalR∩L is (0,1). For every pointz ∈R∩L of irrational rotation number, theφh-orbit of
z is dense in the horizontal geodesic containingz. SinceX is closed, it contains this geodes
Since irrational numbers are dense in(0,1), the horizontal cylinder containingR∩ L belongs
to X . SinceR was chosen arbitrarily,X contains the union,X1, of the horizontal cylinder
intersectingL. ReplacingL by a horizontal closed geodesic inX1, we conclude thatX contains
the union,X2, of the vertical cylinders intersectingX1. This inductive process produces
sequenceL ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X , where eitherXi+1 \ Xi contains at least one coordina
cylinder, orXi = S. Since the number of cylinders is finite,X = S.

It remains to prove thatX contains a vertical or a horizontal closed geodesic. LetR be a
coordinate rectangle, and letz = (x, y) ∈ R be an arbitrary point. Denote byrh(z) andrv(z)
theφh andφv rotation numbers respectively. Note thatrh is a locally linear function ofy alone;
similarly for rv with respect tox. SinceX is infinite, there is at least oneR such that the se
X ∩ R is infinite. Denote byRh(X) andRv(X) the sets of horizontal and vertical rotati
numbers of the points inX ∩ R. SinceX ∩ R is closed, bothRh(X) andRv(X) are closed
subsets of[0,1].
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If Rh(X)∪Rv(X) contains an irrational number, then there exists a closed (vertical, without
loss of generality) geodesic,L, with an irrational rotation number, containing a point ofX . Then,
by minimality of irrational rotations,L⊂X . Assume then thatRh(X)∪Rv(X)⊂Q. There are
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two possibilities: the setRh(X)∪Rv(X) is infinite or finite.
Assume first that it is finite. Then there is a closed (horizontal, without loss of gener

geodesic,L, with a rational rotation number which contains infinitely many points ofX . Since
X ∩ L ∩ R is infinite, we have infinitely many vertical rotation numbers, contrary to
assumption.

Suppose now thatRh(X) ∪ Rv(X) is infinite. Assume, without loss of generality, th
|Rh(X)|=∞. Let r ∈ Q be an accumulation point ofRh(X). Then there is an infinite sequen
of pointszn ∈ X ∩ R converging toz ∈ X ∩ R, andr = rh(z). Setrh(zn) = pn/qn. Since
pn/qn → r, asn→∞, the sequenceqn is unbounded. LetLn (respectivelyL) be the horizonta
closed geodesic containingzn (respectivelyz). The distance between the consecutive point
the orbitA ·zn ⊂Ln is of the order ofq−1

n . SinceLn converges toL, we conclude thatL consists
of accumulation points ofX . SinceX is closed,L⊂X .

5. Prelattice surfaces

5.1. Rational points

Let S be a prelattice translation surface, and letα,β be a transversal pair of parabo
directions. LetR⊂ Ch

i ∩ Cv
j be one of theparallelogramsRl

i,j of the associated decompositio
We change the affine structure ofS by anyg ∈ SL(2,R) which sendsα andβ to the coordinate
directions. Letx, y be the Euclidean coordinates such that the interior ofR is parametrized
by (0 < x < wv, 0 < y < wh). In view of possible identifications on the boundary,R itself
may not be isometric to the Euclidean rectangle[0,wv]× [0,wh]. However, there is a mappin
[0,wv]× [0,wh]→R, inducing an isometry of(0,wv)× (0,wh) ontoInt(R).

Reversing the affine equivalence above, we return to the original directionsα,β. This
construction yields an affine mappingfR : [0,wv] × [0,wh] → R, which is onto, preserve
orientation and area, and is an affine isomorphism of(0,wv)× (0,wh) andInt(R).

Definition 5. – LetS be a translation surface, and letα,β be a transversal pair of parabolic d
rections. Letz ∈ S be an arbitrary point, letR be a parallelogram of the decomposition (1), c
tainingz, and letfR : [0,wv]× [0,wh]→R be the corresponding affine mapping. Thenz is ra-
tional with respect to the pairα,β if z = fR(x, y), wherex/wv, y/wh ∈ Q. A point z ∈ S is ra-
tional, if there is a pair of transversal parabolic directions such thatz is rational with respect to it

We useirrational for all points that are not rational in the sense of Definition 5. IfR is a
parallelogram of the decomposition (1), we denote byRQ the set of its rational points. We u
the notationSα,β

Q for the set of rational points with respect to the pairα,β, andSQ for the set of
rational points ofS. Note that the concepts of rational and irrational points are applicable
to prelatticesurfaces.

We leave the straightforward proof of the following proposition to the reader.

PROPOSITION 5. – Let S be a prelattice translation surface, and letα,β be a pair of
transversal parabolic directions forS. Let s ∈ S \ C(S). Then the following statements a
equivalent.

(i) The points is rational with respect toα,β.
(ii) The directionsα,β are parabolic for the punctured surface(S; s).
(iii) The points is periodic with respect to bothφα andφβ .
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(iv) The points is an intersection point of two rational geodesics, with directionsα andβ
respectively.
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5.2. Marking points

We continue with the proofs of the claims of the introduction.

Proof of Theorem3. – The setSQ is the union ofSα,β
Q over all transversal pairs of parabo

directions. Each setSα,β
Q is countable and dense inS. A parabolic direction is periodic, thu

the set of parabolic directions of any translation surface is at most countable. Anys ∈ P (S) is
periodic with respect to everyAffα,β(S) ⊂ Aff(S), henceP (S) ⊂

⋂
α,β S

α,β
Q ⊂

⋃
α,β S

α,β
Q =

SQ. Claim (a) follows.
If S is arithmetic, then, by the proof of Theorem 1,SQ ⊂ Sα,β

Q ⊂ P (S) for any transversa
pairα,β, henceSQ ⊂ P (S). If SQ ⊂ P (S), then the setP (S) is infinite, hence, by Theorem 8
S is arithmetic. This proves claim (b).

It remains to prove claim (c). Ifs ∈ SQ, then(S, s) is a prelattice surface, by Proposition
By the same proposition,Γ(S; s) is not a prelattice if and only if for any transversal parab
pairα,β we haves ∈ S \ Sα,β

Q , i.e.,s ∈ S \ SQ. ✷
Proof of Corollary1. – The first claim is in [14]. The second claim follows from the first a

Theorem 3. The third is contained in part (c) of Theorem 3.✷
As a byproduct of Corollary 1, we obtain a new characterization of arithmetic trans

surfaces. See [11] for other characterizations.

COROLLARY 6. – Let S be a lattice translation surface. ThenS is arithmetic if and only if
the following dichotomy holds:

For anys ∈ S the surface(S; s) is either a(necessarily arithmetic) lattice surface, or it is no
a prelattice surface.

THEOREM 9. – A. LetS be a prelattice translation surface, and lets ∈ S. Letp :R→ (S; s)
be a balanced affine covering. Then the following trichotomy holds.

(i) The surfaceR is a prelattice surface, and the groupsΓ(R),Γ(S) are commensurable i
the wide sense if and only ifs ∈ P (S).

(ii) The surfaceR is a prelattice surface, and the groupΓ(R) is commensurable in the wid
sense to a prelattice of infinite index inΓ(S) if and only ifs ∈ SQ \ P (S).

(iii) The surfaceR is not a prelattice surface if and only ifs ∈ S \ SQ.
B. Suppose further thatp is a balanced translation covering. Then the groups in question

commensurable(in the “narrow” sense).

Proof. –It suffices to prove the theorem under the assumption thatp :R→ (S; s) is a balanced
translation covering. By Theorem 6, the groupsΓ(R) andΓ(S; s) are commensurable. Henc
all but one of our claims follow from Theorem 3. The remaining claim concernsΓ(S; s) for
s ∈ SQ \P (S). Letα,β be a transversal pair of parabolic directions such thats ∈ Sα,β

Q . Then the
stabilizerΓα,β

s ⊂ Γ(S; s) is a prelattice. ThereforeΓ(S; s) ⊂ Γ(S) is a prelattice as well. Bu
since the orbitAff(S) · s is infinite, the index ofΓ(S; s) in Γ(S) is infinite. ✷

A translation surface,S, can be viewed as a closed Riemann surface,S, equipped with a
holomorphic 1-form, sayω, see say [19]; we writeS = (S,ω). The cone pointsC(S) is the set
of zeros ofω. Let p :R→ S be a branched covering of Riemann surfaces, and letα be the pull-
back ofω. LetR be the translation surface corresponding to(R,α). ThenC(R) is the union of
p−1(C(S)) and the set of the ramification points ofp :R→ S.
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PROPOSITION 6. – Let S be a translation surface without marked points, and lets ∈
S \ C(S). For anyn > 1 there exists a translation surfaceR without marked points, and a
balancedm-to-1, m� n, translation coveringp :R→ (S; s).
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Proof. –Let (S,ω) be the Riemann surface with 1-form corresponding toS. It suffices to
exhibit branched coverings of Riemann surfaces,p :R → S, of arbitrarily high degrees suc
that the branch locus ofp is contained inC(S) ∪ {s} and the setp−1(s) ⊂ R belongs to the
ramification locus ofp. It is well known that such coverings exist [5].✷

Proof of Theorem4. – Let S be a nonarithmetic lattice surface, and letα,β be a transversa
pair of periodic directions. Lets ∈ Sα,β

Q \ P (S), which is nonempty, by Theorems 1 and 3. S
Γ′ =Γ((S; s)). ThenΓ′ is a prelattice of infinite index. By Theorem 6, each one of the infini
many balanced translation coverings,p :R→ (S; s), provided by Proposition 6 gives an almo
realization ofΓ′.

Let nowS be arithmetic, and letΓ′ ⊂ Γ(S) be a prelattice subgroup of infinite index. Supp
thatΓ′ is almost realizable, and letR provide an almost-realization ofΓ′. Thus,Γ′′ =Γ(R)∩Γ′

has finite index in both groups. In view of arithmeticity, the trace of anyg ∈ Γ is rational.
SinceΓ′′ contains hyperbolic elements, by Theorem 28 of [17], the holonomy field ofR is Q.
Therefore, by Theorem 5.5 of [11],R is arithmetic. ButΓ(R) is not a lattice! ✷

COROLLARY 7. – Let S be a nonarithmetic lattice translation surface. Letα,β be a
transversal pair of parabolic directions forS. Then there exists a translation coveringp :R→S
whereR is a nonlattice, prelattice translation surface, andα,β are parabolic directions forR.

COROLLARY 8. – LetS be a prelattice, but nonlattice translation surface. ThenΓ(S) is not
commensurable(in the wide sense) with any subgroup ofSL(2,Z).

Proof of Corollaries7, 8, 2. – Corollary 7 follows from the proof of Theorem 4; Corollary 8
immediate from the statement of Theorem 4. The nontrivial implication of Corollary 2 fol
from Corollary 8. ✷
5.3. Examples and applications

In this subsection we illustrate and augment the preceding material, and apply it to pol
billiards. We begin with an infinite family of prelattice subgroups ofSL(2,Z).

Example1. – Form,n ∈ N, let Gm,n ⊂ SL(2,Z) be the group generated by the parab
matricesµ=

(
1 m
0 1

)
andν =

(
1 0
n 1

)
.

LetΓ⊂ SL(2,R) be any Fuchsian group. Denote byK1(Γ) (respectivelyK2(Γ)) the smalles
field extension ofQ containingtr(g) (respectivelytr(g2)) for all g ∈ Γ. The conditionK1(Γ) =
K2(Γ) is necessary forΓ to be realizable as a Veech group [15]. The groupsGm,n obviously
satisfy this condition. Formn > 4 (respectivelymn � 4) the groupGm,n has a fundamenta
domain inH2 of infinite (respectively finite) area [2]. By Corollary 2,Gm,n is almost realizable
as a Veech group if and only ifmn� 4.

Recall that a polygon,P , is rational if its angles are commensurate withπ. In the subject of
mathematical billiards there is a well known construction that replaces arational polygon,P , by
a translation surface,S = S(P ) and reduces the billiard flow inP to the geodesic flow inS, see
[6–8,16,19,22].

Definition 6. – LetP be a rational polygon, and letS be the corresponding translation surfa
We say thatP is alattice polygon(respectively aprelattice polygon) if S is a lattice (respectivel
a prelattice) translation surface.
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Remark2. – LetP andS be as above. IfΓ(S) has a parabolic element, then it also has a
hyperbolic element [17]. It then follows thatP is a prelattice polygon if and only if its translation
surface has a parabolic direction.

ght

s
is

g

es are

ring

.

e
gon.
ddle
of

ce are

ps are

e above

.
m

We will denote byΓ(P ) the Veech group of the translation surfaceS(P ), and say thatΓ(P ) is
the Veech group of the rational polygonP . Arithmetic polygonsare the polygonsP such that
Γ(P ) is an arithmetic lattice. They were investigated in [7] and [11]. In particular, ifP tiles the
plane under reflections, it is arithmetic;S(P ) is then a flat torus. Veech showed that the ri
triangle whose smallest angle isπ/n is anonarithmetic lattice polygonif n �= 4,6 [26].

Let p, q, r ∈ N be relatively prime. We denote byT (p, q, r) the Euclidean triangle with angle
pπ/(p + q + r), qπ/(p + q + r), rπ/(p + q + r). In this notation, the right triangle above
T (2, n− 2, n) if n is odd andT (1,m− 1,m) if n= 2m.

Example2. – SetT1 = T (2,3,5) andT2 = T (3,3,4). Let S1 andS2 be the correspondin
translation surfaces, and letΓ1 and Γ2 be the respective Veech groups. By [26],T1 is a
lattice triangle. We will show thatT2 is a prelattice but nonlattice triangle. The surfaceS1 is
obtained by glueing along parallel sides two copies of the regular pentagon; their vertic
glued into a single point,C(S1). The isosceles triangleT2, with angles2π/5, 3π/10, 3π/10,
is the “doubling” ofT1 along a side. Accordingly, there is a two-to-one translation cove
p :S2 →S1.

Let o1, o2 be the centers of the two pentagons. The coveringp :S2 → (S1;o1, o2) is balanced
By Theorem 6,Γ2 andΓ((S1;o1, o2)) are commensurable. By Proposition 3 of [14],Γ2 is not
a lattice. HenceT2 is not a lattice triangle. By Theorem 9,o1, o2 are not periodic points of th
lattice surfaceS1. Let α,β be the directions of two distinct diagonals of the regular penta
They are parabolic [26]. Thus,o1, o2 are intersection points of parabolic geodesics (sa
connections) for a transversal pair of parabolic directions. Hence, they are rational pointsS1.
Therefore,(S1;o1, o2) is a prelattice translation surface, andT2 is hence a prelattice triangle.

6. Weierstrass points versus periodic points

Definition 7. – Let S be a translation surface without marked points. We say thatS is a
hyperelliptic translation surfaceif the corresponding Riemann surface is hyperelliptic.

Under certain conditions, the Weierstrass points of a hyperelliptic translation surfa
periodic and can even be the only periodic points of the surface.

6.1. Periodicity of hyperelliptic Weierstrass points

Recall that the nonarithmetic lattice surfaces of [26] are hyperelliptic. Their Veech grou
either generated by elliptic elements, or by an elliptic and a parabolic element.

THEOREM 10. – LetS be a hyperelliptic translation surface such thatΓ(S) is generated by
elliptic elements. Then the set of Weierstrass points ofS is Aff(S)-invariant.

Since the set of Weierstrass points is always finite, these points are all periodic under th
hypotheses.

Our proof relies on the following simple lemma.

LEMMA 7. – Let S be a translation surface, and letφ ∈ Aff(S) be an elliptic element
Then there is an affinely equivalent translation surfaceT such that the induced diffeomorphis
ψ ∈Aff(T ) is an isometry.
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Proof. –A diffeomorphismf ∈ Aff(S) is an isometry ifDf ∈ SO(2). SinceDφ ∈ SL(2,R)
is elliptic, there is an elementg ∈ SL(2,R) such thatg ·Dφ · g−1 ∈ SO(2). SetT = g · S. The
induced diffeomorphismψ ∈Aff(T ) satisfiesDψ = g ·Dφ · g−1. ✷
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Proof of Theorem10. – To simplify the exposition, we will not notationally distinguis
between a translation surface and its underlying Riemann surface. By the results of Vee
any hyperelliptic translation surface is obtained by identifying the opposite sides of a ce
symmetric, planar polygon. Any such polygon,P , yields a hyperelliptic translation surface,S.
Without loss of generality, the center of symmetry ofP is the origin o. The hyperelliptic
involution is then induced by the mapz �→ −z. Denote byW (S) the set of Weierstrass point
The points of the cone setC(S) come from the vertices ofP , andC(S)⊂W (S). Furthermore
W (S) contains the points arising fromo and the midpoints of the sides ofP .

Let g ∈ SL(2,R), and letT = g · S. ThenT is represented by the polygonQ= g ·P . Hence,
T is hyperelliptic as well, andg induces a bijection ofW (S) andW (T ).

Let nowφ ∈ Aff(S) be an elliptic diffeomorphism. Letg andT = g · S be as in Lemma 7
Since the induced diffeomorphismψ : T → T is conformal, it preserves the Weierstrass
W (T ) [5]. Sinceψ = g ·φ · g−1, φ preservesW (S). Thus,W (S) is invariant underAff(S). ✷

Denote byTn the isosceles triangle with base angleπ/n, n � 3, and let Sn be the
corresponding translation surface. By results of Veech [26],Tn is a lattice polygon, which is
nonarithmetic ifn �= 3,4,6. The surfaceSn is hyperelliptic.

COROLLARY 9. – Let Sn be the hyperelliptic translation surface corresponding to
isosceles triangleTn, for n� 3. Then the set of Weierstrass points ofSn is Aff(Sn)-invariant.

Proof. –By [26], Aff(Sn) is generated by an elliptic element and a parabolic element
preserves the setW (Sn). The claim follows, by the preceding argument.✷
6.2. Examples proving Theorem 5

The examples below led to the present work. In particular, they prove Theorem 5.

Example3. –The golden mean gnomon.Let P be the polygon modeling the “Swiss cros
with the golden ratio parameterλ = (1 +

√
5 )/2. See Lemma 2 of [15]. Identifying opposi

sides ofP by translation, we obtain a translation surface,S, of genus2 (and thus certainly
hyperelliptic). The hyperelliptic involution is induced by inversion ofP with respect to its cente
The six Weierstrass points ofS thus arise from: the center ofP ; the exterior corners—giving tw
points; the interior corners—identified to the single cone point; the boundary points of the
which lie on the axes of either horizontal or vertical symmetry.

By a cut-and-paste operation, we transformP into a “gnomon” (i.e., an “L” shape), se
Fig. 1. We denote the gnomon byP , as well. The surfaceS is obtained from it by the natura
identifications. The 8 points marked by black circles in Fig. 1 are identified to the cone
of S. LetO,A, . . . ,D be the remaining five Weierstrass points, marked by open circles in F
The coordinate directions are periodic. SinceP is symmetric about the diagonal, it suffices
study the vertical cylinders. Their parameters are:wv

1 = 1, �v1 = λ,wv
2 = λ−1 and�v2 = 1. Hence

µ1 = 1/λ, µ2 = λ− 1. Since1/λ= λ− 1, these moduli are equal; thus the coordinate direct
form a transversal parabolic pair.

The directionsπ/4 and3π/4 are also periodic. Their cylinder decompositions have the s

parameters:wπ/4
1 = (λ − 1)/

√
2, �π/4

1 = (λ + 1)
√
2, wπ/4

2 = (2 − λ)/
√
2, �π/4

2 = λ
√
2, see

Fig. 2. Henceµ1 = (λ− 1)/(λ+ 1), µ2 = (2− λ)/λ, andµ1/µ2 = 1. Thus,π/4, 3π/4 is also a
transversal pair of parabolic directions.
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Fig. 1. The golden ratio gnomon.

Fig. 2. The cylinders in the direction3π/4.

Let U be the unit square contained inP . Denote byO the center ofU , and letx, y andx′, y′

be the standard coordinate system and its rotation by−π/4, respectively. See Fig. 1. By th
preceding material, ifs(x, y) ∈U is a periodic point, thenx, y are rational. Denote byI ⊂ U the
intersection of the two cylinders of width(λ− 1)/

√
2. If s= (x, y) ∈ I is a periodic point, then

(x, y) = ((x′+y′)/
√
2, (−x′+y′)/

√
2 ). Thus,

√
2y′ = x−y ∈ Q. Sincey′ is a rational multiple

of the width of the cylinders,
√
2y′ ∈ Q ∩ (λ− 1)Q. Hence,y′ = 0. Analogously,x′ = 0.

Let nows= (x, y) ∈ U \ I be periodic. By symmetry, it suffices to consider the bottom
corner ofU . The same rationality argument as above yieldsx′ = 0. Analogous consideration
show thaty′ ∈

√
2Q ∩ (2− λ)/

√
2Q. Hence,y′ = 0, andU \ I contains no periodic points

Therefore, the only periodic point inU is the center.
Let s be a periodic, regular point. We show that the orbit ofs meetsU . Suppose thats belongs

to the interior of the first vertical cylinder (i.e., the cylinder of width one). The vertical clo
geodesic upon whichs lies clearly must meetU in at least half of its length. Therefore, there
some power of the basic vertical affine map which takess into U . By symmetry, ifs belongs to
the interior of the first horizontal cylinder, the orbit ofs also meetsU . But, the horizontal Dehn
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Fig. 3. Cylinder decompositions for parabolic directions. The induced partition of the triangle.

twist sends the boundary of the first vertical cylinder into the union of the interiors of the
“first cylinders”.

We conclude that the orbit of any periodic point meets the set of Weierstrass poin
Theorem 10, the set of periodic points is exactly the Weierstrass points.

Example4. –The regular octagon. Denote byP the regular octagon, inscribed in the u
circle, and letS be the translation surface obtained by identifying the opposite sidesP .
It is a hyperelliptic surface of genus2. Furthermore,S is a nonarithmetic lattice surface a
Γ(S) is generated by elliptic and parabolic elements [26]. As in the preceding example, t
Weierstrass points ofS come from: the center ofP , the midpoints of its edges, and the vertic
The parabolic generator ofΓ(S), referred to above, stabilizesW (S) [1].

We claim that the Weierstrass and periodic points ofS coincide.
The coordinate directions form a transversal parabolic pair inS. The3π/8, 7π/8 pair is also

parabolic. There are two cylinders in each decomposition. By the8-fold symmetry of the regula
octagon, it suffices to determine the parameters of two of the four decompositions. In the n
of Fig. 3, we havew1 =

√
2/2,w2 = (2−

√
2 )/2, andw1′ = 2sinπ/8,w2′ = cosπ/8− sinπ/8.

Let s ∈ S be a periodic point. By symmetry, we can assume thats belongs to the triangl
T with vertices0, eiπ/4, i. IntersectingT with the cylinders above, we obtain the decomposi
T =A∪B∪C. See Fig. 3. The triangleA intersects the cylinders1, I, 1′ and I′. The quadrilatera
B intersects the cylinders1, I, 1′ and II′. The triangleC intersects the cylinders1, II, 1′ and II′.
We denote byx, y andx′, y′ the standard coordinate system about the center ofP and its rotation
by−π/8, respectively.

Let s ∈ A be a periodic point, of respective coordinates(x, y), (x′, y′). Then:x, y ∈
√
2Q,

x′, y′ ∈ (sinπ/8)Q, and

x= x′ cosπ/8+ y′ sinπ/8, y =−x′ sinπ/8 + y′ cosπ/8.(12)

Setx′ = p
q sinπ/8. By trigonometry,x′ cosπ/8 ∈

√
2Q, hencey′ sinπ/8 ∈

√
2Q. Sincey′ =

u
v sinπ/8, we conclude thatx′ = y′ = 0. Thus,s is the center ofP .

Let s ∈ B ∪ C be a periodic point, of respective coordinates(x, y), (x′, y′). Applying the
preceding argument, we obtain:x ∈

√
2Q, x′ ∈ (sinπ/8)Q, and y′ − sinπ/8 ∈ (cosπ/8 −
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sinπ/8)Q. The same argument yieldsx′ cosπ/8 ∈
√
2Q. By Eq. (12),y′ sinπ/8 ∈

√
2Q. Set

y′ = sinπ/8 + (cosπ/8 − sinπ/8)u
v . Then (2 −

√
2 )/4 + [

√
2/2 − (2 −

√
2 )/4]uv ∈

√
2Q,

implying thatu= v, andy′ = cosπ/8. Thuss belongs to the outer edge ofC. The Dehn twist of

le

n

ional

illiards,
to

s to

ss,

.

A.

its on
cylinder1′ fixes the endpoints and sends the midpoint of the edge into the center ofP . The rest
of the edge is sent into the interior ofP , avoiding the center.

We have shown above that the interior ofP contains no periodic points, with the possib
exception of the center. Therefores ∈W (S). By Corollary 9,W (S)⊂ P (S), hence the claim.
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