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THE SYNTOMIC REGULATOR
FOR THEK-THEORY OF FIELDS

By AMNON BESSER AND RoB DE JEU

ABSTRACT. — We define complexes analogous to Goncharov’s complexes fdf ttieeory of discrete
valuation rings of characteristic zero. Under suitable assumptiods-itheory, there is a map from the
cohomology of those complexes to tlié&-theory of the ring under consideration. In case the ring is a
localization of the ring of integers in a number field, there are no assumptions necessary. We compute
the composition of our map to th&-theory with the syntomic regulator. The result can be described in
terms of ap-adic polylogarithm. Finally, we apply our theory in order to compute the regulator to syntomic
cohomology on Beilinson’s cyclotomic elements. The result is again given by-duic polylogarithm.

This last result is related to one by Somekawa and generalizes work by Gros.
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RESUME. — On définit des complexes analogues a ceux introduits par Goncharov péitthiéorie
des anneaux de valuation discréte de caractéristique zéro. Sous des hypothéses conveiiathiésran il
existe une application de la cohomologie de ces complexes vErgt@orie de I'anneau considéré. Lorsque
I'anneau est un localisé de I'anneau des entiers d'un corps de nombres, aucune hypotheése n’est nécessaire.
Nous calculons la composée de notre application vek&théorie par le régulateur syntomique. Le résultat
peut se décrire a I'aide d’'un polylogarithmpeadique. Enfin, nous mettons notre théorie en application
pour calculer le régulateur a valeurs dans la cohomologie syntomique sur les éléments cyclotomiques de
Beilinson. Le résultat est aussi donné par le polylogarithraelique. Ce dernier résultat s'apparente a un
autre d0 @ Somekawa, et généralise des travaux de Gros.
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1. Introduction

Let K be a complete discrete valuation field of characteristic z&ats valuation ring,
andk its residue field. Assume has positive characteristicand is algebraic ovef,. If X/R
is smooth, separated and of finite type, there is a regulator map Kettmeory to syntomic
cohomology

KEP(X) = HI (X, 5),

syn

see [2]. In many interesting cases the target group of the regulator is isomorphic to the rigid
cohomology group, in the sense of Berthelﬁﬁé_"_l(Xﬁ/K), where X, is the special fiber

of X. We will be most interested in the situation wheXe= Spec(R), and theK-group is
Kéle(R) for n > 2. The target group for the regulator in this caséi§, (Spec(x)/K) = K

(see Definition 4.6 for the precise identification). Becausis algebraic oveif,, K, (k) is
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868 A. BESSER AND R. DE JEU
torsion for alln > 1, so from the long exact localization sequence
= K0 () = K (R) — KQ(K) = K7D () —

we get an |somorph|srf(2”) (R) = Kéﬁ?_l( K) for n > 2. Hence we get a regulator map (for
n > 2)

reg:Kéle(K) = Kézll(R) — K.

In this paper we try to explicitly compute this regulator map. We note thatig a number field
with an embedding” — K, we can combine the natural mag"™ | (F) — Kéﬁll(K) with this

n—1

regulator map to obtain a regulator mapﬁéﬁll(F). Also, for a number field, all K,,(F)

are torsion ifn is even and positive. For the odd ones,/éll, 1 (F) @z Q areKéle(F), so the

computation forKQ") (K) is the most interesting from the point of view of number fields.
Our principal tool of study will be the complexe‘sl(n)( ), which were constructed in [12]

for arbitrary fields of characteristic zero. Writ€y; for K* ®z Q. The complexA/l' ( ) for
n > 2 is of the form

2 n—2
MnHanl(g)Ké—)anQ@/\K(a —>M2® /\KQ—>/\KQ

where M, = Mk(K) is aQ-vector space generated by symbjalk;, with = in K, 2 # 0 or 1,
and the differential is given by

d([x]k(g)yl/\/\ynfk):[x]kfl QT ANYL N NYn—k

if k>3, and
d([x]2®y1/\---/\yn,2):(1—17)/\50/\y1/\---/\yn,2.

We give this complex a cohomological grading in degrees 1 througtUnder suitable
assumptions about weights K-theory (as formulated in the Beilinson—Soulé conjecture, see
Definition 3.2), there is a map

(1.1) H" (M, (K)) — K{

2n— T(K)
We note in passing that the symio],, also exists fom > 2, and satisfies$l],, = 2"~ 1([1],, +
[-1],) (see[12, Lemma 3.19]).

In Section 3, we construct analogous comple&végn (R) for the ring R, whose cohomology
(again under suitable assumptions) maps directly toAhtheory of R, and in Section 7 we
compute the regulator map on its image. In the cases we are intereﬁanR) can be
identified with the subcomplex of the complex frspanned in degrée+ 1 (k=0,...,n—2)
by all [u],—x ®v1 A -+ Avg With vy, ..., v, in R*, win R* such thatl — v is also inR*, and in
degreen by all v; A --- A v, with all v; in R*. But redoing the construction has the advantage
that we can work oveR all the time, which is required for the computation of the regulator.

The case that the field is a number field deserves special mentioning. First of all, no
assumptions about weights are necessary in this case. Furthermore, it is knownfthataf

number field, the mapf *( Nzn) (F)) — K$™ | (F) is an isomorphism fon = 2 andn = 3, as

4€ SERIE— TOME 36 — 2003 -N° 6



THE SYNTOMIC REGULATOR FOR THEK-THEORY OF FIELDS 869

well as whenF' is a cyclotomic field for allh > 2. (There is also substantial numerical evidence
that it should be an isomorphism for allfor number fields, which is part of a conjecture by
Zagier, as well as a corresponding conjecture for infinite fields by Goncharov.) Therefore one
would have a complete description of the syntomic regulator for our discrete valuatioR ifng

we knew that the image (ﬁ(l(/\/l' (R)) in Kéﬁ) 1(R) would be everything. This may not be

the case, as perhapsdoes not have enough uniisuch thatl — v is also a unit. One can try to
overcome this difficulty by rewriting elements in the imageb( (n)(F)) as being part of the

image ofH'! (/\/l' ) () whereF”/F'is afinite field extension®’ the corresponding ring iR

We do this in the case of cyclotomic fields, so that we obtain a full description of the syntomic
regulator in this case. We also state a conjecture that the formulas found for the regulator on the
complex forR generalize to be the regulator on the complex#or

In order to present our results, we shall need the following functionslogetC; — C, be a
branch of thep-adic logarithm. This means we defikg; on the elements with |1 — z| < 1 by
the usual power series, and we extend thi€foby choosingr in C;; with || < 1, declaring
log(7) = 0, and extending to a homomorphism fradj to C, (see Definition 2.1). Note that
the values on the elements @, with |z| = 1 is independent of the choice af, but log
and the functiond.i,,(z) about to be described depend on this choice. For the relation, see
Proposition 2.6.

Let Liy(2) = —log(1 — z) for z # 0 or 1. We follow Coleman to recursively define, using
his integration theory, function&i,(z) for n > 2. The defining relations areLi,(z) =
Li,,—1(z)dlog z andlim,_,q Li,, (2) = 0, and they have a unique solution in the class of functions
defined by Coleman. It is shown in [11] that those functions are locally analytic in the naive
topology onC,, and thafLi,,(z) is given by a convergent power serjgs- , z*/k™ on the open
unit disc inC,,. The functionLi, (z) extends to a locally analytic function aB, \ {1} with
Li,(z) =0 for n > 1. These functions satisfy the functional equation

(12) Lin(2) + (~1)" Lin(1/2) =~ 108" (2),

see Proposition 6.4 of [11]. We also introduce the funcfigndefined as

(1.3)

(2)log™ (2).

m=0

In order to state the theorems below easily, we shall need linear combinations of these
functions. Namely, we want a suitable combination that satisfies a clean functional equation

for z and1/z. It follows from (1.2) thatly () + (— 1)Ly (1/2) = S15 log* (2). Therefore the
function

Liodn(z) = Z am L (2) log" ™™ (2)
m=1

with a,, = 1 satisfies
(1.4) Linoa n(z)+(_1)an0d n(l/z):O

if Zm 1 Qm _m = 0. Below, Lyoq,» Will mean any of those choices. Far= 2, there is a
unigue such function, namely

Lo(2)+ %1og(z)L1(z) — Lis(2) %1og(z) Lin(2),
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870 A. BESSER AND R. DE JEU

which is studied in Section 6 and beyond in [11], where it is calléd).

Itis easily deduced from Coleman’s theory (see Remark 2.3)1hat Galois equivariant. In
particular, if K C C, is a complete subfield, thdr,,, and as a result alsb,, and Ly,.4,», Send
K to K providedlog was defined such thadg(7) = 0 with 7 € K.

Remark1.5. — By considering the coefficients of the tefhig, (z) log” ™™ (2) in the functions
above, one sees that the functidns(z) log" ™ (z) form =1, ...,nandLyed,m(2) log" ™ (2)
as above formn = 1,...,n span the sam€,-vector space (or eve@d-vector space in case all’s
are inQ), namely the space spannedliy, (z)log" " (z) for m =1,...,n. Therefore one can
consider any function of the forrﬁ:"’1 b; Li,_;(2)log’ (z) with all b, in C,, as a candidate for

Lmod,n, providedby =1 andz _0 (n—j) =0.LetB;fori=0,1,...bethe Bernoullinumbers,
defined by the identity of formaI power-series

(e o)
S Tt=ar
i! et —1

=0

Then the functiond. 04, () defined byzzl’o1 Jf,j Li,_;(2)log’ () satisfy the above require-
ments asBy = 1, and the other identity holds by definition of tig; if n > 2. Note that

this formula is different from the classical case, where one uses the real or imaginary part of

the functionsy """~ B;_ Li,_;(z)log’ |z|, see [28] and [12, Remark 5.2]. Another possible
natural candldate for the functioByod m (2) IS Lmod,m(2) = Lm(2) + Lim—1(2)log(z)/m.
This function is distinguished by the following fact proved in [5, Theorem 1.1]: it is the
unique combination of typé.,,.q,, With coefficients independent gf such that the function
—mp' ™2 (1 — 2)dLmoa,m(2)/dz has a reduction modulp, for sufficiently largep, which is

the so-calledm — 1)-polylogarithm function introduced in the = 2 case by Kontsevich [21]
and by Elbaz-Vincent and Gangl [15] in general.

If Ris aring with 1, letR” be the set of elementsin R such that both: and1 — « are units.
We shall refer to those elementssggecial units
We are now ready to state our main results.

THEOREM 1.6. — Let F' be a field of characteristic zero. L& C F' be a discrete valuation
ring, and letF be the residue field. Assume that the Beilinson—Soulé conjecture holds for fields of
characteristicO and forF. For n > 2 let /\7@((’)) be the subcomplex of the compl&/(zn)(F)
constructed if12] (see also SectioB) generated by symbols of the fofm, @ y1 A -+ A yp—k.,
where ally; are elements i©0*, andz is in ©°. Then

(1) Thereisamag”( Nzn) (0)) — KD (O) such that the diagram

2n—r

H"(MS,(0)) —= K& (0)

H'(MS, (F)) —= K" (F)

commutes, where the lower horizontal map is the mgp.ih).
(2) If in addition o: F — K (with K complete, etc., as befdrés an embedding with
o(0) C R, then forr = 1, the regulator map
H' (M7,)(0)) = Ky 1(0) % K3y (R) — K
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THE SYNTOMIC REGULATOR FOR THEK-THEORY OF FIELDS 871

is given by mappinge],, to £(n — 1)! Liyoa,n(0(2)).
Moreover, if n = 2, those results hold without any assumptions on the Beilinson—Soulé
conjecture.

Remark1.7. — The mapsi” (M, (0)) — K52 (0) and H" (M, (F)) — K{ (F) in
Theorem 1.6 are natural only up to a choice of sign (depending ontyeanlr). This is expressed
in the indeterminacy of the sign in the formula for the regulator, which will show up in various

places below as well.

Remark1.8. — Our computations in later sections will show that there is aﬁa@R} — K
given by mappindz],, to (n — 1)! Lyoa,»(x), and that this map is compatible with the regulator
mang(") (R) — K if the assumptions in Theorem 1.6 are fulfilled.

n—1
Remark1.9. — With ', © andF as in Theorem 1.6, in the exact localization sequence

o KSTD(F) = K5 (0) — Ksn) (F) — Kgn ) ((F) — -

2n—r 2n—r 2n—r—1

>n_r (F) and KQ(Z:ill(]F) are both zero ifr =1 andn > 2 because we
are assuming that the Beilinson—Soulé conjecture holdsFfoHence forr = 1 the map

KQ(Z)_l(O) — Kéfl)_l(F) in Theorem 1.6 above is an isomorphism. Note that if an embedding
o:F — K exists as in Theorem 1.6, this implies tffais algebraic oveF,, so all K (F) are

torsion forn > 1. In particular, in that case we have an isomorthéﬁ’_T(O) = Kéz)_T(F)
forall n > 2 and allr.

we have thatx "~V

If F'is a number field, the Beilinson—Soulé conjecture is knownHorand one can get
the mapH’“(Mzn)(F)) — K" (F) without making assumptions. In fact, far= 2 and

2n—r

n =3, as well as in the casg' is a cyclotomic field, for alln > 2, one gets an isomorphism
HY(M? (F)) = Kéﬁ?_l(F) this way, see [12, Theorem 5.3]. We formulate our results for

(n

number fields separately, as there are no assumptions involved about weights in this case.
Note that becaus& will be a finite field in this case, as before we get an isomorphism

KM ()= K™ (F)foralln>2andallr.

2n—r 2n—r

THEOREM 1.10. — Let F' be a number field. LaD be a localization of the ring of integers of
F at a nonzero prime ideal. Then

(1) Thereis a mag?" (M7, (O)) — K (O) such that the diagram

2n—r

H"(MS,(0)) — K (0)

2n—r

| j

H'(M,(F)) —= K" (F)

2n—r
commutes, where the lower horizontal map is the mgp.ih).

(2) If in additiono : FF — K (K complete agaipis an embedding witlr(O) C R, then for
r = 1, the regulator map

reg, : H' (M7, (0)) = K331 (0) % K3y (R) — K
is given by mappinge],, to £(n — 1)! Liyoa,n(0(2)).
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872 A. BESSER AND R. DE JEU

Remark1.11. — For any fixed element iff’! ( an) (F)), all elements involved are special

units for almost allp, so that this theorem applies to any given eIemenHi]r(/WZn) (F)) for
almost allp.

If we try to apply Theorem 1.10 to cyclotomic elements, i.e., to the elemgfits
corresponding to amth root of unity( we notice that it applies directly only if, is not a power
of p since otherwisg is not special. However, using relations between symbols (the distribution
relation, see Proposition 2.11) we are able to prove the following theorem.

THEOREM 1.12. — Under the assumptions of Theordm Q, the regulator map
reg, : H' (M?,,(F)) = K& (F)= K (0) S K& (R)— K
€0+ (n) 2n—1 2n—1 2n—1

maps((], to £(n — 1)! Lioa,n(c(¢)) if ¢ is any root of unity inF™*.

Remark1.13. — Because it is known that the elemegts for n > 2, where( runs through

the primitive mth roots of unity, generaté(Q(le(Q(um)), this gives a complete description

of the syntomic regulator for cyclotomic fields. This particular result extends the results of
[18], where the corresponding result was proved only for roots of unity of ondewith

(m,p) =1 (see Théoréme 2.22), and is equivalent to the results of [26]. That paper has a different
formulation, with another version of a syntomic regulator and also using a specialized version of
the polylogarithm at roots of unity. The relation with Coleman’s polylogarithm was proved by
Barsky (unpublished). The result of Gros is that, farF — K as before, the elemefy],, is
mapped under the syntomic regulatoii i’ ((¢)), whereLi") is defined by

LiP) (2) = Li, (2) — 1 Lin (z7).
pn
Note that the expansion &fi”) at 0 is 3, ,_; 2*/k", and thatLumea »(0(C)) = Lin(c(C))
for any root of unity¢ becauselog(¢) = 0, so the formula in Theorem 1.12 above reads

+(n—1)! Li,(e(¢)). The difference between the results is caused by the different normalizations
of the regulators. One has the relation

( Frob)
regaros = ( 1 — o reg,

whereFrob is the Frobenius automorphism. (The Gros regulator is only defined for unramified
fields.) From Galois equivariance it follows that

Frob(Li,(¢)) = Li, (Frob(¢)) = Li, (¢?).

The relation between the two results is therefore clear.

We now state the following conjecture.

Conjecture1.14. — LetK C C, be a complete discrete valuation subfield (i.e., the valuation
is induced from the one 08,,). Let R be the valuation ring ofC. Assume the Beilinson—-Soulé
conjecture holds in characteristic zerait> 3. Then, for alln > 2, the regulator map

H (M (K)) = K5y (K) = Ky (R) — K

is given by the same formula as befofe,, being mapped te:(n — 1)! Lyod,n ().
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Remark1.15. — Of course, Conjecture 1.14 would imply that the map
M,(K)— K

given by mappingz], to Lmn.an.(x) is well defined, as any relation among thd,, would
give rise to the zero elementﬁl(/\/lzn) (K)), and that this map induces the regulator map on

Hl(ﬂzn)K). As the regulator does not depend on the choice of the branch of the logarithm, it
implies that

H' (M, (K)) = K

given by mappingz], t0 Lyeq.n(z) is independent of that choice. We shall verify this last

statement under the assumption that the mfyth) — K given by mappingdz] to Limod.k ()
is well defined for alk < n in Proposition 2.8 below, after determining the dependentg gk)
on the choice of the logarithm.

Remark1.16. — As will be described in Section 37{”) (K) and M{n)(R) are quotient
complexes of corresponding complex%{n)(K) and an)(R)- obtained by imposing the
relations[z];, + (—1)*[1/z]x for all k£ > 2. The general assumptions about the Beilinson-Soulé
conjecture are necessary in order to prove this quotient map to be a quasi-isomorphism. There is
amapH” (an) (R)) — Kéﬁ),r(R) assuming only the Beilinson—Soulé conjecturefbandx.
Therefore, assuming only the Beilinson—-Soulé conjecturdsfand x, we get a commutative
diagram

H' (M, (R)) —= HY(M?,,(R))

\L [zln—=E(n—=1)! Lmod,n (2)

reg

K§Y ((R)

K

As each of the steps in the proofs of Theorems 1.6 and 1.10 is fairly technical, we give a brief
outline of the main steps and where in the paper they occur.
Using multi-relativeK -theory and localization (both discussed in Section 3), we get a diagram

KéZlI(O) = Kf(ln) (Xg—l; anl) - K7(ln) (ngcl)c;mnfl) o

|

KQ(le(R) = K7(ln) (X;%—l; anl) - K7(ln) (X}%,_lc}c;mn_l) .

The rows (except the first term) will be used to construct the comple‘\?qg)((’)) and
Nzn)(R) in Section 3. If the Beilinson—Soulé conjecture holds generally enough, there is a map
HY( Nzn)((’))) — K{(x3~'0m1) = K5 (0). On the other hand, there is a syntomic

regulatoer(Z)_l(R) — K. Using the embeddin@ — R as in Theorem 1.6 gives us the map

HY(M,(0)) — K3 (0) — K54 (R) — K.

n—1
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874 A. BESSER AND R. DE JEU

Similar results will be proved ifF" is a number field, but ijthout assumﬂtions on weights in
algebraicK-theory. We will also compare the complexad?,  (O) and M7, ) (R) with the

complexesﬂ{n) (F) Mvzn) (K) and constructed in [12, Section 3].
After reviewing syntomic regulators in Section 4, we analyze this in Sections 5 through 7 by
extending the regulator map over the maps

KSRy = K (X507 — KO (XL 0m ).
The computation involves Coleman integration, and we start the paper by reviewing it, and tying
up some loose ends, in Section 2.

Notation — Throughout the paper, 4 is an Abelian group, we shall writdg for A ®z Q. If
S is a subset of an Abelian group, we writ&) for the subgroup generated By Therefore, ifS
is a subset of &-vector space(S)q is theQ-subspace generated By

If T"is any ring with nonzero identity we I&t> denote the special units, i.e., the unitef T
such thatl — « is also a unit off".

R will be a complete discrete valuation ring of characteristic zero, with field of fractions
and residue field of characteristip > 0 and algebraic ovefr,. (Please note that in Appendix A
K will have a different meaning, whereaswill not.)

2. Some preliminary material

We begin with recalling Coleman'’s integration theory in the form and to the extent that it will
be needed for this work. References for the theory are [11] and [9]. There is also a short summary
in [3].

Our basic data is a “basic wide open” in the sense of Coleman. The data defining such an
object consist of a complete cur¢&/C,,, which is defined over some complete discretely valued
subfield and which has good reductiéh(the reader may také! for C since this is the only
case that will be used in this paper), together with a finite nonempty set of gint€'(F,)
whereF, is the algebraic closure @,. To every pointy € C(F,) corresponds a “residue disc”

Uy, a subspace of the rigid analytic space associated@ittonsisting of all points il whose
reduction isy. The basic wide opely = U, associated with the data above is a rigid analytic
space obtained fror@ by “removing discs of radiug < 1 from the insides of the residue discs
U, fory € S”. Technically this means that if the poiptis locally defined by the equation= 0,
with z = 2z, some local parameter negrthen one removes the pointsify where|z| < A. This
procedure depends on the choice dfut becomes independent of this choice\agpproaches.

We will not fix A but think of it as approaching and will take it as large as needed. From
now on we will useU, to denote the residue disc gfin U, which is the intersection of the
residue disc withU. This is the same as before unlgss S in which caselU, is an annulus
given by the equation < |z,| < 1. Our final basic datum is a Frobenius endomorphism. This is
arigid analytic mag: Uy, — U,,, for some\; and)\,, whose reductiow is some power of the
Frobenius endomorphism of some modeldbbver a finite field, extendes, linearly. A good
example of such a morphismdgz) = 27 on P! for some power; of p.

The goal of Coleman’s theory is to integrate certain differential formd/ohis is first
done locally, on each residue dig. If y ¢ S this residue disc is isomorphic to the open disc
{]z| < 1}. A rigid differential form on such a disc has a convergent power series expansion
Z@O a,z"dz and integration is done term by term. Whea S the formdz,, /2, is also analytic
onU, and so there is no choice but to introduce a logarithm.

4€ SERIE— TOME 36 — 2003 -N° 6



THE SYNTOMIC REGULATOR FOR THEK-THEORY OF FIELDS 875

DEFINITION 2.1.— Letr € C; be such thafr| < 1. The branch of the-adic logarithm
determined byr is the unique functiortog = log,. : C;* — C,, which is multiplicative, defined
by the usual power series when— 1| < 1 and satisfieog(w) = 0.

We fix once and for all a branch of the logarithm. Then the integrakgf z,, can be taken to
belog(z,) and that allows integration of an arbitrary rigid analytic form on &Ry

Let A(U) (respectively2! (1)) be the ring of rigid analytic functions (respectively one forms)
onU and letA,.(U) (respectively2). (U)) be the ring ofC,-valued functions (respectively
module of one forms) o/ which are in A(U,) (respectivelyQ!(U,)) for eachy ¢ S and
are in the polynomial ringd(U,)[log z,] (respectively inA(U,)[log z,]dz,) wheny € S. It
is implicit in this definition that it is independent of the choice of the local paramegter
a fact which follows because for any two choiceszgfthe difference between theg(z,) is
in A(U,).

Eachw € Q] (U) can be integrated inl;,.(U) in many ways, because we can choose a
different constant of integration for eaéh,. Coleman’s theory finds a subclass of forms for
which one can assign canonically an integraHig.(U) defined up to a global constant. This is
done recursively as follows. First one finds integrals to all forms Q! (U). At each stage one
integrates all forms that can be writtena5f;w; wheref; are integrals which have been found
in previous stages and, € Q'(U). The rules for finding the integrals are:

(1) The integral is additive.

(2) Wheng € A(U), [dg= g+ C, for some constar(.

(3) We havep* [w= [¢*w+C.

The fact that these rules suffice to carry out the integration process uniquely and that it is
independent of the choice af is the main result of Coleman (see [11] and [9]). One other
result about Coleman integration that will be used is the following.

PROPOSITION 2.2. —Let f € A(U)*. Then the Coleman integral of the fordif / f is log(f).
Proof. —See [9, Lemma 2.5.1]. O

The original reason that Coleman integrals were introduced is probably to givadéic
analogue of complex iterated integrals. L&t wo, ...,w, be forms inQ*(U) and letx € U.
Then we can define an iterated integral

z

fT(z):/wlowgmuowT

x

by definingf,(z) = [ w1 normalized so thaf; (z) = 0 and then by inductiorf, (z) = [ fr—1wk
again normalized so thé, (z) = 0.

The definition of thep-adic polylogarithmd.i,.(z) is a slight modification of the above. Here
we takew; = —dlog(1 — z) andw; = dlog z for ¢ > 1. Notice thatdlog z has a simple pole &t
However, if we normaliz&ii,. (z) at each step to vanish@this zero will cancel with the pole and
we will obtain a form which is also integrable at the residue dise.dfhis gives the definition
of the introduction.

Remark2.3. — LetU be a wide open defined over a complete subfieldf C,, containing
at least onel-rational pointz, and suppose we have chosen the braogh with = in L. If
one has formsvy,...,w, which are all defined ovek, then an iterated Coleman integrak=
f; w1 o---ow,, Where the constants are fixed so that all the intermediate intefals - - - o wy,
take anL-rational value at:, is Galois equivariant in the sense that for every automorphisin
C, over L we have thaff (=) = (f(z))? for everyz in U. In particular, ifz is defined ovell
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thenf(z)isin L. ForLi,, since the forms are eithdiog z or dlog(1 — z), which are all defined
overQ,, this means that if we take a brankfg,., with = in Q,, thenLi,, is Galois equivariant
overQ,.

We now want to collect some facts about the functiiys and other things that we need in
the rest of the paper.

We begin with recalling some results from [11]. The following is contained in Proposition 6.1
and Corollary 7.1a of loc. cit. (Note that Proposition 6.1 of loc. cit. contains an obvious misprint.)

The functiondli, (=) are defined orC,, \ {1}. If L is a complete finitely ramified extension
of Q, then the limitlim . _.; Li, (z) exists forn > 2, and is independent di. Using this limit as

z€L
the value forli,, at 1,Li,, extends to a function off,,, which is continuous on finitely ramified
extensions of),,.
If m andn are integers at least equal to 2, then@n

(2.4) Lin(z™)=m""" Y Lin(C2).

Clearly the same formula holds fer= 1 providedl — z™ # 0.

Let log, andlog, be two different branches of the logarithm. Denote the corresponding
different branches dti,, by Li, , andLi, ;. Let 8 =log, p — log, p, and letv be the valuation
such that(p) = 1. Note that

(2.5) log, (z) —log,(2) =v(2)8.

PROPOSITION 2.6. — We have

1

(2.7) Lip,q(2) — Linp(2) = ——'v(l — z)ﬁ(log;‘_l z+log" 2 zlog, z + - --
n!

+log, zlog} %z + logp ™" z).

Proof. —We first remark that by the construction of Coleman integrals the polylogarithm
depends on the branch of the log chosen only on residue discs where one of the forms involved
in the definition, i.e.dz/z anddz/(z — 1), has a pole. This means tHait, ., andLi,, ;, can differ
at most on the residue discs®fl andoo, and in fact only on the latter two discs becalisg(z)
is analytic onz| < 1. We note that a priori it would seem that because the constant of integration
is determined by the value atthe function could depend on the branch of the log everywhere,
but this is not the case exactly because logs do not app&ay it the residue disc of. Because
v(1 — z) # 0 only on the residue discs df and oo the formula is proved except in the cases
|z| > 1 and|z — 1| < 1. Supposez| > 1. Using (1.2) we obtain

. : no(T s : 1 n n
Lin,a(2) — Linp(2) = (—1)" (Linp(1/2) — Lin,a(1/2)) — o (logl; z — logy, 2)

1 n n

= (loga z — logy, z)
1

= ——(log, z — log; 2) (logh ™'z +logl > zlog, 2 + - - - +logy ' (2))
n!
1

=——v(l- 2)B(logl "z +logl * zlog, 2 + -+ - + log) ' (2))
n!
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because(z) = v(1 — z) for suchz. It remains to consider the cage— 1| < 1. Note that here
log(z) is independent of the branch so the formula to be proved reads

1
(n—1)!

Lin.a(2) = Lina(2) = = —gg0(1 = 2)Blog" ' =.

We prove this by induction on. Forn = 1 this follows immediately from (2.5). Assume> 1.
According to [11, Proposition 7.1Li, 4 (2) — =27 Lin—1,4(2)log(z) extends to an analytic
function on|1 — z| < 1. (Note thatB(0, 1) should be replaced witf(1,1) everywhere in the

formulation and the proof of loc. cit.) The result will follow from the induction hypothesis if we
show that

Yn(2) 1= (Lima(z) - 1og(z)Lin_17a) - (Lin,b(z) - log(z)Lin_Lb) =0.

n—1 n—1

When we differentiate;, () we find

d <Lin7a(z) — log(z) Linlya) —d <Lin_,b(z) —

log(z) Lip—1. >

n—1 n—1

_ ((1 _ ﬁ) Lin_1a(2) - ni 1 log(Z)Lin—za(Z))leg(z)

—(Q—;%)m%mw—nig%@u%w@O&ma
= Z : fyn_l(z)dlog(z) =0

by induction. Soy, (=) is a constant ofr — 1| < 1, call it C', and we must show th&t = 0. But
vn(2) satisfies the distribution relation corresponding to (2.4).|Ecer 1| < 1 andm = p this
relation now read§’ = m"~! - m - C, which shows” = 0 as required. O

PROPOSITION 2.8. — Letlog, andlog;, denote two branches of the logarithm, and denote the
corresponding functions involvirigi’s by a subscript: or b. If the maps

M (K)—C,

given by mappingz|x t0 Lioa k.. (z) are well defined foR < k < n, then the map orzf/[/n(K)
mapping[x],, t0 Limod,nb(%) is well defined, and the map it induces on

H' (M, (K)) = C,

is the same as the one induced by mapging to Lod n,q ().

Remark?2.9. —Mk(K) will be constructed below in Section 3, but for a heuristic approach to
working with it we refer to the beginning of the introduction. Our computation of the regulator
map in Sections to come will show that, for a fixed choicéogf the map

M,(R) —C,
given by mappindz],, t0 Limod,»(x) is well defined, but we have to assume this ﬁfn(K).
Note also that for the special units, the functibg.q, (z) does not depend on the branch of the

logarithm by Proposition 2.8.
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Proof of Proposition2.8. —First of all observe that the functions,_,,(z)log™(z) (m =
0,...,n—1) and Li,_,,(2)log™(z) (m =0,...,n — 1) span the sam@&-vector space, and
thereforeL,a,,(2) is any Z"m_:lo @, Lip—m (2)log™ () for which ap =1 and Lyed,n(2) +
(=1)"Liod,n(1/2) = 0 (see (1.4)). The functiong, (z) = Li,(z) — < log(z)Li,—1(z) and
gn(z) = Lin(2) + %logn_l(z)log(l — z) satisfy this so they can be used BSoq,n(2). In
fact, any Ly,o4,, () = >_ @m Lin—m log™(z) can be expressed as linear combination of either
Jfr—m(2)1log™(z) (m=0,...,n—2) Of gp—m(2)log™(2) (m=0,...,n — 2), with coefficients
in the field generated ovép by thea;. Using this, one sees that, no matter what the choice of
the Lynoa,k(2) is, provided thatL is a subfield ofC, containing alla;’s for all Ly,oa,%(2)’s,
the L-vector spaces spanned Wynod,m(z)log™ (z) (m =0,...,n — 2), fn_m(z)log™ ()
(m=0,...,n—2)andg,_.,(z)log™(z) (m =0,...,n — 2) are the same. lterating thkon
M, (K), we get maps

2

M (K) — My (K) @ Ky — My _o(K) @ (K5) ™ — - — NEg o (K5) "

mapping[z], to (1 — z) Az) ® (¢ ® --- ® ). Because a functiol o k.q(z)log” *(2)
defines a map ol (K) ® (K@)@?”*k by assumption, the intermediate steps tell us that

all such Lyoax.qa(2)log" % (2) for k = 2,...,n are well defined functions on/,,(K), and

that this is equivalent to the same statement for the(z)log” "(z) (k = 2,...,n) or the
gr.a(2)1og"*(2) (k=2,...,n). (This also shows that our assumptions do not depend on our
particular choice of,,04,x(2)’s.) Applying this ton — 1 rather tham, we see that the function
gn—1,a(2) is well defined onM,_1(K), and therefore the function,—1,4(2)v(z) is a well

defined function on\/,,(K). By (2.7), if we let
1
Fr(z) = —Ev(l - z)ﬁ(logffl z4logh2 zlogy z 4 - - + log, zlogy 2z + logy ! z)
thenfn,a(z) - fn,b(z) equals

F.(z)— %(Lin_l,a(z) - Lin_l,b(z)) log,(z) — %Lin_l,a(z) (loga(z) - logb(z))

= Fu(2) — ~ Fu 1 () 10gy(2) = —0(2)3Tin1,0(2)

= o1 - 2)Blog) () ~ ~ () Lin 10(2)

= ()90 1,0(2) + B [(2) 08, (1~ 2) — v(1 — 2) 105, ()] logl (2).

This allows[z],, — fn»(x) to be expressed in terms of functions that are well definetlpfi ).

Finally, note that this also tells us th],, — fn..(x) — fnp(x) can be factorized through the
mapM,,(K) — M, _1(K)® Kg, so thatf,, , and f,, , induce the same map di’* ( ) (K)).

For the same reasof,od,n,, and f, . (respectivelyLmoa.n,» and f, ») induce the same map
on Hl(MZn) (K)), so thatLod.n,q @NdLmed »,» iNduce the same map dih! (M¢, (K)). O

Remark2.10.—The]\7n(K)’s will be constructed in Section 3 as quotients f, (K)'s.
These aré)-vector spaces generated by symbelg for 2 in K, « # 0, 1, subject to (unknown)
relations. Fom > 3, there is a magl : M,,(K) — M, 1 (K) ® K¢ mapping[z],, to [z], 1 ®z,
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and forn = 2 there is a mapV>(K) — K¢ ® K¢ mapping[z]z to (1 — z) ® =. M, (K)

is constructed as the quotie@-vector space by imposing the relatiops,, + (—1)"[1/z],

for n > 2. One can check along the lines of the proof of Proposition 2.8 that if the map
M, (K) — C, given by mappingdz],, to Li, .(z) is well defined for some > 2, then the map

M, (K) — C, given by mappingz],, to Li,, ;(z) is also well defined, and induces the same map
on Hl(/\/l;n)(K)). Similarly, if the map given by mapping]x to L . (z) is well defined for all

2 < k < n, thenthe magr],, — L, () is well defined, and the induced map &t ( ) (K))

is the same as when we ukg ; instead ofL,, ,.

Finally, we shall also need the distribution relation for elementd/ip( F'), as given in [12,
Proposition 6.1].

ProPOSITION 2.11. - If F isE field of characteristic zero that contains theth roots of
unity, then inM,, (F') (and hencé,,(F')) we have

(2.12) [™], =m" ! Z [cvx],,.

am=1

3. Some K -theory

In this section we construct the complex&{n)((?) as quotient complexes of complexes
an)(o) for n > 2. The main idea is the same as in [12], but the fact that we will be working
with a discrete valuation ring rather than a field gives rise to complications. For a fairly gentle
introduction to this method, for a field rather than §ywe refer the reader to [13, pp. 526-529],
where there is an exposition far= 2 andn = 3. A brisk overview of the construction for fields
for all n is given in [14, pp. 144—-148]. The notation below will follow the notation in those two
papers closer than the one in [12].

In order to highlight the idea we start with a rather gentle expaosition. For the proofs of the
statements that are used in the construction, we refer the reader to loc. cit., especially Sections 2.1
through 2.3, and 3. In loc. cit. most of the work was done @¥gbut in fact the proofs hold over
our baseD , a discrete valuation ring of characteristic zero, without any change. There is also a
very brief introduction to multi-relativés-theory in Appendix A.

The idea of the whole construction is the following Hfis a regular Noetherian scheme, then
the pullbackK . (B) — K.(AL) is an isomorphism. We shall be using an Adams decomposition

with respect to weightsis,,(X)g = €D, K5 (X). The weight behaves naturally with respect to
pullback, and under suitable hypotheses for a closed embedding, there is a pushforward Gysin
map with a shift in weights corresponding to the codimension (see, e.g., [12, Proposition 2.3]).

Let X5 =PL \ {t = 1} with ¢ the standard affine coordinate Bh. Write O} for the closed
subset{t = 0,00} in P}. Then the relative exact sequence for the coqlg; [I%) gives us

= Kng1(Xp) = Kni1 (Op) = K (Xp;0p) — Kn(Xp) = Kn(Op) — -+

for n > 0. Because the pullback,,1(B) — K,+1(Xg) is an isomorphism, combining it
with the pullbackK,,+1(Xg) — Kn11(Ok) = K,41(B)? shows that the mag,, 1 (Xg) —
K,+1(0O%) corresponds to the diagonal embedditig; 1 (B) — K,+1(B)?. As this holds for
all n > 0, we get that we have an isomorphish),(X5;0%) = K,,11(B) for n > 0. Note
that we have a choice of sign here in the isomorphism of the cokernkl,08) — K,,(B)?
with K,,(B).
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We can iterate this procedure using multi-relatiietheory. (The construction of this is
recalled in Appendix A.) For the sake of exposition we give the argument here for the next level
of relativity. If we let(J% = {t; = 0,00}; {t2 = 0,00}, then we can get a long exact sequence

1 (X {t1 =0,00}) — Kpy1({t2 =0,00}; {t1 =0, 00})
— K (X3:;0%) = Kn (X5 {t1 =0,00}) — Ky ({t2=0,00}; {t1 = 0,00} ) —
Using induction on the degree of relativity one sees that the composition
K1 (Xpi{t1 =0,00}) 2 K, 41 (X3; {t1 =0,00})
nt1 ({t2 = 0,00}; {t1 = 0,00}) = Ky y1 (X3 {t1 =0, OO})2

(with the first map the pullback along the projectign, t2) — t2) is the diagonal embedding,
hence we obtain an isomorphisk, (X %;0%) =~ K,,+1(X5; 0%) for n > 0. Therefore we get
Ko (X%;0%) 2 K1 (Xp;0p) 2 K, 12(B ) forn > 0. By mductlon one proves that

(31) Kn(XgLng) g[(ner(B)

for n > 0 and m > 1, with O% shorthand for{¢t; = 0,00};...; {tm = 0,00} (mth order
relativity). One can also do this with weights, and as the Welghts are compatible with pullbacks,

wegetisomorphismk’,(lj)(Xgl;Dm) Kfflm( B) for n > 0 andm > 1. In those isomorphisms

we will always pick the one that, at the stage of identifying the cokernel of the diagonal
embedding

K (X5 5057) = K ({tm-j1 =0,005 05 ) 2 Koy (X305 7)

with K, ;(Xp~7;0%77), subtracts the contribution at, ;.1 = co from the one at
tm,jJrl =0.

In order to get elements in groups liké, .., (X ;0% ), we use localization sequences. We
shall explain the idea fat, = 1. (Form > 2 the localization sequences get replaced by a spectral
sequence, see below.)dfis an element in our discrete valuation ri@such that both: and
1 — w are units, then we get an exact localization sequence

e Km(o) - Km (X(97|:|%9) - Km (XO,IOC; D%’)) - mfl(o) e

whereXo 1oc = Xo \ {t = u} and we identifiedt = u} C X with O (or ratherSpec(0)). We

used here that and1 — u are units inO so that{t = u} does not meefl}, or {¢t = 1}, and

thatO is regular in order to identifys,,, (O) with K/, (O). (If we want to leave ouft = u} and

{t = v} simultaneously for two distinct elemenisandv in O such that all ofu, v, 1 — » and

1 — v are units, which we shall do below, this already becomes far more complicated and one is
forced to use a spectral sequence.) The imagEgt)) — K»(Xo;0}) can be controlled by
looking at the weights, which for the bit that we are interested in gives us

= Kél)(O) — K§2) (Xo;0p) — K2(2) (X0.10¢; ) — Kfl)(o) o

Because of weights i -theory, one knows th&’(él) (O)=0,sowecan anaIyzK2(2) (Xo;0p)
as subgroup oKf) (X0,100;05)- In[12, Section 3.2] universal elementy,, were constructed,
of which we want to us¢S]. here. It gives rise to an elemept], in KQ(Q)(XO,IOC; Oy) with
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boundary(1 —u)~tin Kl(l) (O). If we use this for various (suitably modifying the localization
sequence above into a spectral sequence) and consider elements coming from the cup product

KM (X0100;0b) x KP(0) = K2 (X0 100 0b)

we can get part oKéQ) (Xo;0}) = K§2)((9) by intersecting the kernel of the map correspond-
ing toKéQ) (X0,10c;04) — Kl(l) (O) with the space generated by the symHols and the image
KM (X0 100;0%) UK (0) of the cup product.

Unfortunately, this gets fairly technical, but after this gentle introduction we are now ready to
begin. The reader is encouraged to compare this construction with the simpler construction for
fields, which is carried out in [12, Section 3].

To ease the notation somewhat, we will drop the subscript (indicating the base scheme) from
an.

DEFINITION 3.2.— A schemeB has no low weightK-theory if the Beilinson—Soulé

conjecture holds foB, i.e., K(7)( B)=0if 2 <m andm > 0. Aring A is said to have no
low weight K -theory if Spec(A) does not have low weighit'-theory.

We shall use the following notation. Létbe the standard affine coordinate Bh We let
X =P, \ {t=1}.If Bis any scheme, we leXp = X xz B, andX% = Xp xp --- xp X5.
If U is a subset of(B,0*) such that ifb is in U, then1 — b is also inT'(B,0*), we let
XBloc=Xp\{t=0b, b€ U}, anng,loC = XBloc XB " XB XB 10c. The selU will normally
be clear from the context. We shall also abuse notation by wrikfig . even after we took
direct limits over finite setd/. In the multi-relative K -theory below, we shall writé)™ for
{t1 =0,00};...;{tn =0,00}. We will also write(Y’; O") for (Y;Y nO").

Notation 3.3. — For the remainder of the sectid@dwill be a discrete valuation ring with field
of fractionsF" and residue field. (Later on, we want to make another assumption as well, see
Assumption 3.9.)

LEMMA 3.4.— AssumeF' andF have no low WeighK theory. Then fo2j < ¢ + m and
m>q,allof K (X Xf10e:89), K(J)(X(qg be;09) and K (X X§ 100;009) are zero.

Proof. —Lemma 3.4 of [12] shows the statement to be trueifar F. The result forO follows
immediately from the exact localization sequence

B KO Y (X]F loc Dq) - K7(7€) (Xg’).,loc; 0 ) - K(j) (XF loc DQ) o o

Remark3.5. — F has no low weighf(-theory if F is algebraic oveF,, because alk,, (F) are
torsion forn > 1. It also holds iffF is of transcendence degree 1 o¥giby a result of Harder, see
[19, Korollar 2.3.2]. BecausA,, (F) is torsion forn > 1 for a finite field F*, using localization it
is enough to show thakt’,, (O) is torsion for a Dedekind ring in a function field of transcendence
degree 1 over a finite field, which is the result quoted.

Remark3.6. —F' has no low weightd<{-theory if F' is a number field, or more generally a
subfield of the algebraic closure @f. As the residue field is an algebraic extensiotfpin this
case, the conditions of Lemma 3.4 are certainly satisfied, and all constructions in this section go
through without assumptions about the weights onihgroups involved.

Consider the divisors oX} defined by putting; = u; for someu; in O, Puti® = X5,
and letiW! be the union of divisorgt; = u;} for all u; in some finite set/ ¢ O°. Considering
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the singular locus of/’!, it is easy to see that one can extend this to a stratificatiérp W' >
<D W2 = on Xy, with all W#\ Wt for s =0,...,n+ 1 consisting of a finite union of
Xo1oer X Floc andXﬁ;i“’s, which are regular. Using the localization sequences

o K (X8O — K (X6 0)

n,Wst+1

= K e (XB\TWH507) = KU (X807 =

(3+s)
whereKnyWS+1

rise to a spectral sequence converginmﬁ) (X&;0"™). We have isomorphisms

(X&;0m) etc. isK-theory with support. We get an exact couple, which gives
K5 e (XB\ W0 = KO (W \ Wt O7)

and we can identify the terms in the spectral sequence with terms of this type. Note that
the components ofW* \ Ws+1:[0") are of the form(X g 00" 7%), (Xp: 0" %) and
(X];;fc*l; On—s*t1), Takingj = n + 1 we get a spectral sequence w}.ﬂj’t equal to

KUZ) (XG0 0 ) KU (X0 ) RV (X 07

—s5—t —s5—t

and converging tok "™ (X4~ 0"1). If we write Kszgm for Kﬁj)(Xgﬁ’loc;Dm) for
typographical reasons, and similarly fBrand[F, this looks as

K(n),nfl K(n;lgan H K(7171),n72 K(7172),n73 H K(7172},n73 H K(7172),n72
n—2,

n—1,0 n—2,F n—3,0 n—3, n—3,F
(n),n—1 (n—1),n—2 (n—1),n—2 (n—2),n—3 (n—2),n—3 (n—2),n—2

(37) Kn,o anl,o HKn—l,F anz,o Hanz,F Hanz,F
(n),n—1 (n—1),n—2 (n—1),n—2 (n—2),n—3 (n—2),n—3 (n—2),n—2

Kn+1,o Kn,O HKn,F anl,o HKn—l,F HKn—l,F

Observe that, due to the choice of the stratificatib’rﬁ’,’_s)(X];ii; 00m"~*) occurs only when
s > 2. Also, by Lemma 3.4, if both# and F have no low weightsik-theory, then in the

spectral sequence (3.7) converging[fé")(X;g}loc; 0n~1) there are no nonzero terms in the
row below the one beginning witKﬁ”)(nggc;D"—l) (i.e., the middle row of (3.7), where
U(Xgl:0m1) is denoted by ")),

LEMMA 3.8.—If F has no low weigh -theory, then the map
K (X5 00" ) = K (X0 0"
is injective.
Proof. —Immediate from the localization sequence

= KD (X 0 = K (X 0s D771 = K (X O 1) — -

as the first term here is zero by Lemma 3.41

We now notice that all our localizations are compatible with localizing in a largdr sand
that we can take direct limits of our localizations over finite étg we want. In order not to
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overburden the notation we shall suppr&sfom the notation. Notice that this means also that
all components in the spectral sequence (3.7) of codimension at least on® asthase become
the corresponding components withas base, but that the corresponding coproducts are taken
overt; in O’ rather thanf” = F\ {0,1}.

Assumption3.9. — We assume for the remainder of the section that the discrete valuation ring
O has characteristic zero.

We now define symbols ik -theory. LetG = Spec(Z[S, S, (1 — S)71]). In [12, Sec-
tion 3.2] universal symbols

(3.10) [Sln € K{ (X007
were constructed. Here we only removetall= S from X" in order to obtainng](}C. The

boundary of|S],, is

n—1

> (DSl rju=s

i=1
inTl, K,(l"_’ll) (ngfc; [07~2) under the boundary in the spectral sequence corresponding to (3.7)
for G. (Although the proofs in loc. cit. were formulated ov@rthe constructions hold for a much
larger class of base schemes without any change.) Recall that we denBtetbg units inO,
and by the set of elements in O* such thatl — « is also inO*.

DEFINITION 3.11.— Foru in ©” we define the symbol
[u]n € K (X007
as the pullback of the universal symHb6,, under the magpec(O) — G induced by mapping

S to u.

It was also shown in loc. cit. that the symHb],, exists forn > 2, but we shall tacitly ignore
this symbol here, as it can also be defined by the distribution relation Proposition 2.11 if there
are other roots of unity i

We define inductively the symbolic part of tié-theory. Let

s Myl .1y t—u; \" n;
(312) (A+1)* =K (Xb 10O )_{1;[<t_1> suchthatl?[uj _1},

where theu; are inO* and then; are inZ, and letSymb, (O) C K,i )(Xf9 léC,D’“ 1) be defined
bysettmgSymb (0) = 0g, and

Symby 41 (0) = ([ulks1, u € O") + (1 +1)* U Symby (O)

for k > 1. The notationJ means the following. There afeprojections ofX}; . to X(’gfkl)c,
giving rise tok cup products

(L+ 1) x K (XE L 0R 1) — KD (XE s O%).
(1+ I)* U Symb, (O) is theQ-subspace spanned by the image of all thoseap products.
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Becausel[z],, = Z?;ll (—1)%[2]5—1)¢, = Whered is the differential in the spectral sequence,
we get a complexSymbzn)((’)) mapping to the row of (3.7) which starts witﬁfl%”*l =
K (X3l;0m 1), given by

Symb,, (0) — I Symb,,_;(O) — IISymb,,_,(0) — --- — I Symb,(0) — 11O".

If F has no low weight-theory, then by Lemma 3.8 we can view those groups as subgroups
of the corresponding spaces fér As the components correspondingRdn (3.7) will never

play a role in the boundary for eIementsSiymb;n)((’)), we can view the above complex as a
subcomplex of the complex

KM (X0 - I (X 2:0772) - DK (Xp20m7%) — -

where all coproducts for codimensiorare taken over-tuples(us,...,u,) in ((’)")T.

LEMMA 3.13.— AssumeF has no low weightK-theory. Then the map correspond-
ing to further localization fromK,(ln)(X;ijolc;D”‘l) for one set of localizing elements to

K,(I”)(X;Egolc; gn~1) for a larger one is injective.

Proof. —Forn = 1 there is nothing to prove. Fer > 2, we use the exact sequence (which we
obtain from (3.7) ag” has no low weighf<-theory so we can consider the lowest nonvanishing
row)

0— KM (XE50" 1) = K (X0 07 = TG Y (XG50 )

for two different set of localizing elements. As clearly the rightmost term injects under localizing
more (i.e., make the coproduct larger as well), we are done by induction.

By Lemmas 3.8 and 3.13, if bothand ' have no low weigh#{-theory, then we also have an
inclusionSymb,, (O) C Symb,, (F), so thatSymb(,, (O) is a subcomplex oBymb?,,) (F). We
can also forget about exactly which finite sub&eof ©” or F* \ {1} we use, and work in the
direct limit for suchU from now on.

If both F* andFF have no low weighf#-theory, then all this takes place in the lowest nonzero
row of the spectral sequence (3.7) above, and if we g’lymbzn) a cohomological grading in
degrees 1 through, we get a commutative diagram of maps

H'(Symb,y (0)) —— k™ (xa=10n1) ——= KW

| |

HT(Symen)(F)) H«K',(Zn_),,«_Fl(—*XV;}‘_I;|:|n_1) - Ké:,)—T

(0)

(F)
because the differentials isymb(,)(O) and Symb(, (F) are induced from the spectral

sequence (3.7).

Remark3.14. — Note that if botff and ' have no low weigh#{-theory, then the horizontal
maps here are injections by constructionsfet 1.

The complexSymbEn)((’)) can be changed into a tensor complex, using the following
subcomplex. DefineJ, = J,(O) as (1 + I)*U Symb,(O) for k > 2. Let I, (0) be the
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subcomplex ofSymby,,, (O) given by
Jp—ddy + 1L, —d(.. )+ 1o — - —d(...) + 1L —d(...).

PROPOSITION 3.15. — The subcomples(, (O) is acyclic.
Proof. —The same as the proof of Lemma 3.7 of [12], see also Remark 3.10 in locLtit.
Note that the symmetric grouf,,—; acts onSymb,, and J ) (0) becauselS], is in

K,(]I)(ngljc; 0m~1) by Lemma 2.12 and the beginning of Section 3.2 of [12]. Denote the parts
of those complexes on which,, _; acts alternatingly by the superscrigt. Let the complex
¢, be the quotient complefSymb(,,) )™ / (T, (©)*. It has the form

2 n—2 n—1
My — M, 1005 =M, 20 \NOg—- =Moo \ 05—052 \ 04

with Mj,(O) = Symb, (0)*!*/J&$, which is generated by the classes of the elemfriswith

uin ©". Denote the class dfi];, simply by [u].. Then the differential is given by
d([2]e @y1 A+ Ayn—i) = [2le—1 QT AYL A+ AYn_

if k>3, and
d([:v]2®y1/\---/\yn_2) =1-2)@TAYy1 A AYp_a.
Remark3.16. — Note that we now have maps

(3.17) HP(M?,,(0)) — K5 (0)

2n—p
if either F" andF have no low weighf -theory, or if F' is a number field.

PrRopPoOsSITION 3.18.— If F and F' have no low weightK-theory, then the localization
map M, (0) — M, (F) is injective. In particular, we can view17, ,(O) as a subcomplex of
Proof. —From the localization sequence

e KTV (F) = K5 (0) — Ky (F) — -

we get that the maKéZ)_l(O) — 2( )_1(F) is injective. Consider the commutative diagram

0—— H! (Mzk) (0)) —— M(k)(O) _— M(k—l)(o) ® (962

| |

0 —— Hl(MZk)(F)) - M(k)(F) — > M(k,l)(F) (9 F6

Because the maps tﬁ’g(z)_l(O) (respectiverKg(Z)_l(F)) from the H'’'s are injective by
Remark 3.14, we find that the m&bl(/\/lzk) (0)) — Hl(/\/lzk) (F)) is injective. It follows by
induction onk that the maps\f;,(O) — M, (F) are injective, as this is clear fér= 2, where

the vertical map on the right is the inclusiélj ® Og — Fy ® Fg. O
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Let Ny, = Ni.(0) = ([u]x + (—1)*[u~']x)q where theu runs through®®. This is the analogue
of N (F) defined in [12, Proposition 3.20]. We consider the subcomp/fggs((’)) of M7, (0)
given by

n—2 n—2

Ny =Ny 1®05— = No® /\(9;@-@(%@ /\%).

LEMMA 3.19. —If F has more than two elements, or equivalentl@if (, thend No(O) =
Sym? O, and similarly forF.

Proof. —Becausel|u]s + d[u" ]2 = u ® u in Sym? Of, dN2 = (u®u,u € 0%)g. Sym? 0%
is spanned by elements of the forn® v wherew runs throughO*. If v is a special unit, then
it is clear from the formula above that® v is in dN». If not, v reduces tal in F. Letw be a
special unit inO*. Thenw, wv andwv~! are special units, and they give the elements w,
(wv) @ (wv) and (wv™!) ® (wv=1t) in Sme((’)a), and a linear combination of them gives
v@u. O

ProPOSITION 3.20. — If the Beilinson—-Soulé conjecture holds fér and for fields of
characteristic zero, then the complﬁﬁ{n) (O) is acyclic.

Proof. —If there are no special units, there is nothing to prove as the commgﬂ’)) is zero.
If ©" is nonempty, we show thauf('n)(O) is quasi-isomorphic to the complex

2
Sym” (0g) — Sym" ™! (0g) ® O — Sym"™*(0g) ®g \ O — -+
n—2
N O3).

It is well known that this last complex is acyclic, with an explicit homotopy operator
given in Corollary 3.22 of [12]. It was proved in Proposition 3.20 of [12] that the map
[u], + (—=1)*[1/u]x — v ® - - - ® u induces an isomorphism betwedi (F') and the subspace of
Sym’“(F@) generated by the elements - - - ® u with » in F*. Considering Proposition 3.18, our

complexis a subcomplex of the corresponding complexfo®o it will suffice to check that the
image of N (O) is Symk(Of@) fork=2,...,n. Thisis done as in the proof of Lemma 3.19

n—2
— Sym*(03) ®q /\ Og—d (Sym2 (0%) ®q

Remark3.21. — In casé’ is a number field, we can prove the statement of Proposition 3.20
without assuming the Beilinson—Soulé conjecturesatisfies the Beilinson—Soulé conjecture,
because by [7, Theorem 10.9] and [8], far> 2 the Beilinson regulator gives an injection of

K (F) into H2 ™! (Spec(F ©g C);R(j — 1)). This can only be nonzero ifi = 2j — 1,
i.e., the only nontorsior,, (F)’s with m > 2 are KQ(';)_l(F)’s with j > 2. It was shown in
[12, Proposition 5.1] that the mdp], + (—1)*[1/u]x — v ® - - ® u gives an injection from
Ni(F) into Sym” F. Becauser is finite, K, (IF) is torsion form > 1, we have inclusions
Ni(O) C N,(F) by Proposition 3.18. The proof thaf('k) (O) is acyclic then proceeds as in the
general case.

Let ﬂzn)(O) be the quotient compIeMZn)(O)/j\/('n)(O). It has the form

2 n—2 n
M, (0) = My—1(0) ® Of — My, —2(03) @ N Oy — - = My (0) @ \ 05— \ O
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with M, (O) = My (0)/N,(O), and is clearly still generated by the classes of the elentefts

whereu € ©°. We have similarly the compleﬂzn)(F) defined in [12, Corollary 3.22]. In both
cases, the differential is now given by

d([2]e @y1 A+ Ayn—k) = [2]e—1 QT AYL A+ AYn_i

if k>3, and
d([x]2®y1/\---/\yn,2):(1—17)/\50/\y1/\---/\yn,2.

Remark3.22. — If the Beilinson—Soulé conjecture holds for fields of characteristic zero and
for F, or F is aiumber field, then one proves in the same way as in Proposition 3.18 that the
map M, (0) — M, (F) is injective forn > 2, so we can identify\/lzn)((’)) with a subcomplex

of M, (F).

We have now proved the assertions (1) in Theorem 1.6 and Theorem 1.10. Namely, either
assume the Beilinson—Soulé conjecture is true for fields of characteristic zero as welF asrfor
thatF' is a number field. We then have a map

H™(M?,)(0)) — K§) (),

2n—r

which is obtained as the composition of the maps

(3.23)  H"(M},)(0)) < H'(M¢,)(0)) & H™(Symb?,)(0)) — )

n
n—r

(F

From left to right, those maps are justified by Proposition 3.20 or Remark 3.21, Proposition 3.15,
and Lemma 3.4, as that lemma implies that we are working in the lowest nonvanishing row of
the spectral sequence (3.7). Note that the Beilinson—Soulé conjecture for fields of characteristic
zero in general is only needed for the leftmost map to be an isomorphism.

If the Beilinson—Soulé conjecture holds fé, one has similar maps when replacifigwith
F everywhere, with the leftmost map being an isomorphism if the Beilinson—Soulé conjecture
holds for fields in characteristic zero, orAfis a number field.

If the Beilinson—Soulé conjecture holds fBrandF, then the inclusion o into F’ induces an
injection of complexes\/lzn) (O) into M, (F) by Proposition 3.18. Similarly, by Remark 3.22,
the map froW’n) (O)to ﬂzn) (F) is aninjection if in addition the Beilinson—Soulé conjecture
holds for fields of characteristic zero. Those maps are compatible with the maps in (3.23) and the
corresponding ones fdr, i.e., the diagram

H"(M¢, (0)) <—— H"(M?,(0)) —= K[V (0)

(n) 2n—r

o

H (M2, (F)) =~— H" (M, (F)) —= K"

2n—r

(F)

commutes.

Remark3.25. — If F'/F is an arbitrary field extension, ar® C F”’ is a discrete valuation
ring with © C 0" N I, then there are obvious mapd?, \ (0) — Mg, (O’), and similarly forF”
andF”, as well as for the complexes(?, , . The corresponding map fromt7, | (£') to M?, , (F)
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is injective provided eitheF" is a number field, or the Beilinson—Soulé conjecture is true-for
(and hence for"), cf. [12, Remark 3.17]. Again, if in addition the Beilinson—Soulé conjecture

holds for fields of characteristic zero, &V is algebraic ovefQ, the map fromﬂ/lvzn) (F) to
M® )(F’) is injective. This is proved as in the proof of Proposition 3.18 or Remark 3.22, as the

(n
assumptions mean that the necessary maﬁ‘éﬁdl (F) andK éz)_l (F") exist and are injective,
and because the map"_ (F) — K" (F') is always injective.

n—r 2n—r

Similarly, if the Beilinson—Soulé conjecture holds fBf andF’ (and hence fo' andTF),
the mapK{" ,(0) — K" (0" is injective as those inject int&’{" | (F) and K\ | (F")
respectively. It then follows in the same way that the map fr n)((’)) to an)(ol) is
injective. If in addition the Beilinson—Soulé conjecture holds for fields of characteristic zero,
or F’ is algebraic ovef), then the map fromq;n)((’)) to /\7@((’)’) is injective.

In particular, all those maps are injective if the Beilinson—Soulé conjecture is true for fields
of characteristic zero and fd’, or F’ is algebraic ovef). If this is the case, we shall always
view all complexes as being subcomplexes of the corresponding complek&sarid view all
K -groups (tensored witf)) as being contained in the correspondiiegroups ofF”.

Remark3.26. — We make a few remarks about the above constructions without assuming the
Beilinson—Soulé conjecture. There are various places where it plays a role, and we will briefly
run through them.

It is well known thatK,(ll)(O) =0 forn > 2, Kflo)(]F) =0forn>1, andKfll)(]F) =0 for
n > 2. This means that in (3.7), the last two columns (which would correspond to degeses
n + 1 for our complexes) are always zero below our main row. Lemma 3.8 and its proof still
apply forn =1 andn = 2. Forn = 1, the localization sequence used in the proof is simply

= K ) = K (0) — K (F) =
and forn = 2 we conclude from
o= KMV (xh0Y) - K (X} 01 = TEO (F) — -

andi (Y (x50 = K{V(F) = 0 that KV (X} ,,:0") = 0, allowing the proof to go through.
Lemma 3.13 still applies with = 2. Together this gives us that we have inclusions

Symb,(O) Symb, (F')

| |

2 2
Ké )(X(lﬂ,loc;ljl) KQ( )(X}:‘,loc;ljl)v

as well as mapsi” (Symb?,,(0)) — Ky (O) and H" (Symb}, (F)) — K5 (F) (which

2n—r 2n—r
are compatible with the localization frofl to F') for r =n — 1 andr = n. Again those maps
are injections by construction if = 2 andr = 1. Proposition 3.15 always applies, and we get

corresponding statements far?, \ (O) and Mg, | (). Because the maK?EQ)(O) — Kéz)(F)
is always an injection, we see as in Proposition 3.18 #at©) injects intoM,(F), and that
we may identify it with the subspace of the latter generated bjgBliwith « in O°.

Moving on to the/?/lvzn)(. ..)’s, it follows from the proof of [12, Proposition 3.20] that the map
Nao(F) — Sym?(F) given by mappinga], to = ® « is an injection agcy" (L) and K" (L) are
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zero for any fieldL. Therefore the comple»(/('n) (F) is acyclic in degrees — 1 andn. Because

we already know thad/>(O) injects intoM>(F'), the proof of Propaosition 3.20 still shows that
('n) (O) is acyclic in degrees — 1 andn. This gives us a commutative diagram

H"(M¢,,(0)) <=— H"(M7,,(0)) —= KV (0)

2n—r

| | |

HY (8 (F) < (M3 (F) — K5 ()

for r = n — 1 andr = n without any assumptions.

Finally, one checks as in Remark 3.22 tlﬁi((?) injects intoMQ(F).

4. Syntomicregulators

In this section we briefly recall some parts of the theory of rigid syntomic regulators, originally
due in the affine case to Gros [18], as described in detail in [2]. Our goal is to describe the theory
in the minimal details required to understand constructions to follow and to develop certain
computational tools that are needed in later sections.

Recall thatR is a complete discrete valuation ring with quotient fi&ldf characteristi€® and
residue field< of characteristip. We will assume that is algebraic over the prime field since
this is required for some of the versions of syntomic cohomology we will be using. All schemes
will be separated and of finite type over their respective bases. We describe as little as we need
of the general theory, referring the interested reader to [2]. All versions of syntomic cohomology
are defined as cohomologies of certain huge complexes. These are needed for the definition of
the regulators but are useless when it comes to calculations. The cohomology can, however, be
realized, using some auxiliary data, as the cohomology of very explicit complexes, and maps on
cohomology can similarly be realized explicitly. The theory developed in loc. cit. guarantees that
these explicit maps are indeed the correct maps and we avoid explicit mentioning of that in the
sequel.

For the purpose of this work, the version best suited for computations is the Gros style
modified syntomic cohomology denoted By, in [2]. This is the weakest version of syntomic
cohomology and all other versions, in particukdy,,, has natural maps to it [2, Proposition 9.5],
which, by definition, are compatible with Chern classes in algebk&itheory. Fortunately,
according to [2, Proposition 8.6.3], whe¥y/ R is proper and smooth, arth # ¢,i — 1,7 — 2,
the canonical mapf?, ,(X,n) — Hi (X,n) is an isomorphism. Therefore, for the purpose of
computing the syntomic regulators for tth&-groups we are interested in, working with,,, is
just as good as working with/,,,. To further simplify matters, we only give the description of

H,,s given certain additional data that may not exist in general but do exist in our situation.
Suppose first thak is a scheme over a field of characteristipp. Following Berthelot we

define the rigid complex oK over K as follows: we choose an open immersi&n® X into
a propers-scheme and a closed immersiagh— P into a p-adic formal R-scheme which is
smooth in a neighborhood d€. We remark that in general there may be some difficulty doing
this but in the cases we will consider it will be totally obvious how to do so.

In the above situation we can, following Berthelot, define the complex

RTyie(X/K)p == RT (] X[, jm]'m).
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Here, the notatioth[P stands for the tube oX in P, which roughly means the space of points
in the rigid analytic space associateddhat reduce to a point iX. The functor;’ of “sections

of overconvergent support” goes from the category of Abelian sheav}af[qﬁto itself and is
defined by

it (F) = lim(juv ). (Flv),
U

where the direct limit is over all’ which are strict neighborhoods pX [, in | X[ in the sense

of Berthelot andjy is the inclusion ofU in | X[,. We recall that/ is a strict neighborhood

if {U,]X[» —]X[p} is an admissible cover diX[ in the sense of rigid analysis. We have
indexed the complex for simplicity b but we should remember the entire setup leading up to
the definition. In any case, Berthelot shows that in the derived categdkywdctor spaces this
complex is independent of all choices, so its conomoldgy, (X/K), is entirely well defined.

To simplify notation we will drop thé® subscript from the notation. In the applications it will be
clear which additional data is being used.

We will often need to let ax-linear) Frobenius act on our complexes. To do that we will
consider a morphismp: X — X which is ax-linear base change from a model &f defined
over a finite field withy = p” elements of theth power of the absolute Frobenius. We insist that
o preservesX. Such ap is called aFrobenius endomorphisof X. We then assume that there
is a lift ¢ of ¢ to P. We callg the degree ofp and ¢. It is then clear that acts on the rigid
complex.

Next we describe the construction of the syntomic complexes. Here we assuni¢ that
smoothR-scheme and that we have an open immersion- X into a properR-scheme and
a closed immersioX — P into a R-scheme, smooth in a neighborhood%f and that there
is a R-morphism¢: P — P inducing on the special fiber a Frobenius endomorphism. In this
situation we can clearly embeX, into X ,. and this last scheme into tipeadic completionP of
P to get to the situation we had when we defined the rigid complexganil induce a lift of a
Frobenius endomorphism.

The given data induces a filtration on the compRR,;, (X, /K) defined as follows: let/
be the sheaf of ideals defining the generic fibgt inside]Y,i[lg and consider the filtration of

Q].Y [ given by the complexes
~p

F}IQ]'7 = JQ0 — il —
"'p
where it is understood that” = O for non positiver. This filtration induces a filtration on the
rigid complex by
F'RTUyig(X,/K) := RI(] X [, j"F}lQTE [;).

Berthelot shows that these complexes are again independent of the additional data up to quasi-
isomorphism. We can now define the Gros style modified syntomic complex to be the complex

) 1—6* /q"

RTns(X, 1) := Cone(F"RTyig (X, / K RTyig (X, /K))[~1].

The map in the cone is a shorthand for the composition of the indicatedl mag* /¢™ with
the natural map of "RI',;; (X, /K) into R, (X, /K). To fix notation for Cones we use the
following sign convention here. If: A* — B*, thenCone(A®* — B*)[—1] is given in degreé
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by
(4.1) A'e B! with differentiald(a, b) = (da, f(a) — db).

One can show thdﬁ“ms(X, n) is independent of the additional data except for the choice of the
Frobenius endomorphism. Here, in the general case one takes a direct limit over all possible
Frobenius endomorphisms as described in [2, Definition 8.4]. For a pfop@rparticular when
X = R, and under the same conditions where the map from syntomic to modified syntomic are
isomorphisms as described before, all the connecting homomorphisms of the limit are quasi-
isomorphisms so we may in fact fix a singte

In [2] syntomic regulators from thé-theory of X into the various versions of syntomic
cohomology were constructed. For the cohomology theory we are considering these take the
form of Chern classes,

cij i Kj(X) — HE79(X6).

In this work we will need to consider similar maps in the relative and multi-relative situations.
These were not constructed in loc. cit. but are constructed in Appendix A.

We recall the computation of the regulator on a part of Bx¢heory of affineR-schemes.
SupposeX = Spec(A) is such a scheme. We will give an explicit description of the rigid
and syntomic cohomology oX. We can choose an embedding 8f as an open subset in
the projectiveP = X. SupposeX,, is defined inX . by the nonvanishing of the reductions of
functionsh;. Then for\ < 1 we define a rigid spackE,, by the conditionsh;| > \. TheU, are
strict neighborhoods dfX [ in 1X. [5- It follows that there exists a map

Hm T (Uy, Q%) — Ry (X,/K).
A<1

PROPOSITION 4.2. — This map is a quasi-isomorphism. In addition, this quasi-isomorphism
is functorial with respect to maps of paifX, X).

Proof. —The first statement follows from the proof of Proposition 1.10 in [1]. The second
statement is a consequence of the construction of the rigid complexes inj2].

To obtain the modified syntomic complex, suppose we have ajmap— X whose reduction
is a Frobenius endomorphism fixidg,. The ideal/ considered above is tliedeal in this case.
We thus get a quasi-isomorphism

Cone(tm D (Uy, 97") =255 i D (Uy, 97) ) (1) 2 R (X, ).
A A

We formally writeU for the system of spacd#/, } and define
(4.3) QY(U) :=1mI(Uy, Q).
A

It follows that

{(w,e): we F*QHU), e € Q1U), dw=0, de = (1 — ¢*/q")w}

(4.4) Hi(X,n)= {(dw, (1 — ¢* /q™)w — de), w € F*QI-1(U), e e Q=2(U)}

with FQJ(U) =0 if n < j andQ’ (U) otherwise.
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As mentioned in the introduction, in many cases syntomic cohomology becomes isomorphic
to rigid cohomology. The normalization of this isomorphism is perhaps not the obvious one
and since the computation of the regulator depends on the particular normalization, we describe
this here at least in a special case (see [2] for a fuller discussion). Supposé izt relative
dimensioni — 1 over R. Suppose in the description above thate) € H: (X, n). We see that
w =0so0de = 0. Thuse defines a class iﬁ[figl(XN/K) which is easily seen to be well defined
up to an element ofl — ¢*/q")F"H}; ' (X,./K). Whenn > i > relative dimension o\, as
will be the case for us, the map

(4.5) (1—¢*/q"): H (X /K)/F"H};, (X0 /K)
— Hi N (Xe/K)/(1— ¢ /q") F"H] (X /K)

is an isomorphism by [2, Proposition 8.6.3].

DEFINITION 4.6.— Whenn > i > relative dimension ofX, we have a canonical isomor-
phism,

H(X,n) 2= H N (X, /F™, (0,6)— (1—¢"/q") " (class of).

The justification for this normalization requires a longer tour into the general theory of syn-
tomic cohomology than we would like to present. The reader may refer to [2, Proposition 10.1.3]
for example. In any case, note that this choice is functorial. We will make this definition in rela-
tive situations as well.

We now describe the regulator in this special case. First of all, congiderd*. If f is the
reduction off one finds thato* f = f¢ and therefore thaf, := f?/¢* f is congruent td. mod
the maximal ideal of?. One can deduce from this that the functlog( fo) is analytic on some
Us.

LEMMA 4.7 [2, Proposition 10.3]. The syntomic Chern charactel} sends the class gfin
K1 (X) to the cohomology class édlog f,log(fo)/q) in the representatiofd.4)of H! (X, 1).

The value of the regulator on a cup prodyetJ --- U f,. in K,,(X) is the cup product of the
regulators of thef;’s, so it is enough to describe the cup product on syntomic cohomology. This
is given, in the notation of (4.4), by any of the formulas, depending on the parameter

(48) (wl,sl) U (wg,&'g)

= <w1 Aws,e1 A (7+ (1 —ﬂ%)m + (—1)deswn <<(1 -) +7§>w1> /\62).

We need to describe the pullback map in syntomic cohomology in certain special situations.
Suppose thatX is an affine scheme and:Y — X is a closed embedding on an affine
subscheme, and choose the same auxiliary datafas before. We may compactify by
embedding it into its closur® in X. The difficulty in describing the pullback map froi to
Y is that the lift of a Frobenius morphisgwill not preserveY” in general. Note however that
we may and do assume thatpreserves’,;. The way to overcome this difficulty is to use the
embedding ofY” into X to compute the syntomic complex &f. This gives us the following
model for@“ms(Y, n),

VN

RV o0 )1

RT5(Y, 1) 2 Cone(RT' (Y [%jTF,?Q]'?K[%) Vilz

(% is thep-adic completion ofX) and the pullback map is now simply obtained by restriction to
the tube]YN[% HereJ is the ideal ofY  in X i .
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Suppose now that” is of relative dimension — 1 over R and that we are given an element
of ﬁi <(X,n) represented by the pair of forms,¢) as in (4.4). We would like to study
the puIIback of this element td”, identified with an element oHﬁlgl( Y,./K)/F" as in
Definition 4.6. Note that this pullback does not factor throunggg X./K)/F™ becauseX
is of higher dimension thal in general. Recalling the sets, we see that for each the set

UsN]Y . [§ is a strict neighborhood QY,{[% in]Y, [% It follows that we may factor the map
RTig (X, /K) — R, (Y, /K), respectivelyF "Ry, (X /K) — F"RIig (Y, /K), as

m [ (Ux, Q%) = m D (U N] Yk [2.Q%) = RU([Y . [2.5'Q% ),
A A x

respectlvely with2® replaced by} 2®. We may therefore factor the map of syntomic complexes
RFmb(X n) — RFmE(Y n) via

(49)  Cone(lmD(Ux ]V [z, F70%) 2L lim T (U3 0]V [2,97) ) [ 1.
A A

LEMMA 4.10. - In the situation described above, I¢tc lim T'(Uy N ]7ﬁ[§,F§Qi*1) be
A
such thatdf = w|> . Then the image of*(w, ¢) in
X

Hi (Ve /K) /(1= " /q") FPH (Ve K)

is the same as the image ed]‘?ﬁ[ —(1—9¢*/q")0 € lim F(Uk ny [ Q=1 in the same
group. .

Proof. —Subtract the boundaxy(6, 0) = (d¢, (1 — ¢*/¢")0) from (w,n)|5_ & in(4.9). O

Finally we specialize even further and show how to compute the difference of the pullbacks
at two nearby points. We assume that n. Consider a situation where we are given an affine
X together with a smooth affine map: X — B to another affine schemB smooth overR.
Suppose that extends tar: X — B. Letz’ € B(x) and letD be the rigid analytic space of all
points of B reducing toz’ (this is the residue disc af in the terminology of Coleman). For any
2z € D(K) let f, be the embedding df, := 7~1(z) in X. TheY, for z € D(K) have acommon
reduction which we denote by,,, and ther—!(z) have a common reductioxi,;, which is a
compactification of. Finally, the tubgY . [% is simply7—1(D).

PROPOSITION 4.11. — In the situation described above Iél,c) represent a class in
Hl (X,i). Let z1,z, € D(K), let J; be the ideal defining’., and letd; in lim T'(Ux N
A

7=1(D), F7 Q') be such thatdd; = w|z-1(p). Then, the images il 1Y, /K) of the

rig
pullbacksf}, (w,s) minus the image in the same group ff (w, <) is the image of); — 6, €

lim T'(UyxNn7 1(D),Q1).
A

Proof. —As seen in Lemma 4.10, the imagefiff, ;' (V.. /K)/(1 — ¢* /q")F' H}, ;' (Y /K ) i

rig
the image of(1 — ¢*/¢")(#2 — 61) and the result thus follows from Definition 4.6 of the image
in H:-Y(Y,,/K). O

rig
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In the situation as above the following immediate corollary will also be useful. For any point
x € D(K) the fibert—1(z) is a lift of Y, and therefore the rigid cohomology &f. can be
computed as the cohomologyld)m LUy N7~1(x),00).
A

COROLLARY 4.12.—In Hﬁlgl(Yn/K) the image of the differencg’ (w,¢) — 7, (w,¢) is the

image of(f2 — 01)|v, nr—1(x) €lim T(Ux N7~ 1 (), Q71).
A

All of our considerations are also valid for the cohomology of diagrams of schemes, and in
particular for the relative and multi-relative cohomologies that will be considered in sections to
come.

5. Theintegration down process

A key ingredient in the computation of the regulator will be a functional on rigid cohomology
obtained by repeated integration, which we now go on to describe.

Let x be a field of characteristig. SetX™ = (P \ {t = 1})". Let B be an affines-variety.
Let Y be an open affine subset &f" x B. Let (1" be the subset of” where at least one of
the coordinates is eithéror oo. We write cohomology relative tal” to mean the multi-relative
cohomology taken in exactly the same way as was done in Section8-theory. We would
like to write an explicit complex computing the multi-relative rigid conomologyof

We first choose the rigid dat&™ — (Py.)" — (P§ ()" andB — B — Pp whereB and
Pg are projective spaces of some degree ovemnd Spf(R) respectively. We thus obtain a
rigid datum forY as well. As in Section 4 we obtain for < 1 a certain inverse system of
rigid spaced’/ = {UY }. We know that there exists a canonical quasi-isomorplisi/ ) :=
hm Q' oy RT.ig (Y/K). Similarly, the complexes of rigid forms on the subspac& ptut

out by equauons of the form = 0 or t; = oo are quasi-isomorphic to the rigid complexes of the
various components in™.

As discussed (at length) in Appendix A, we can now write a complex quasi-isomorphic to the
multi-relativeRT i, (X"; 0"/ K) by taking iterated cones on the complexes above with respect
to the restriction maps th € {0, co}. We want to do the “battle of signs” correctly to write this
iterated cone as a simple complex. This can be done as follow&:gr < n consider all strictly
increasing functiong : [1 ...,jl—[1,...,n]. To such a functiorf we associate the subspace

={(z1,...,2,) €Y: x; € {0,00}, i ¢ im f }.

We can similarly define rigid spac(‘él{A forming an inverse system}V, and like in (4.3) we can

formally define complexes of differential fornﬂs‘(U}/). Let us calln — j the degree of (this
includes the empty functiofywith degreen), which is the same as the codimensior¥pf The
complex computing our multi-relative cohomology can then be writte@as i ;—. QZ(UY)

in degreek. Let us write an element in thg component of this complex gs, f). Then the
differential is given by

(5.1) d(w, f) = (dw, f) = (=D)* Y " x(f,9)(@lvy9)

where

X(f:9) = { (~1)/O+ i im f = img U {/(r)},

0 otherwise,
with U denoting disjoint union.
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DEFINITION 5.2.— The complex above is denot@d(UY ; (1"). We let F7Q*(UY;00") be
the subcomplex having, , ., s i>; 2 (U} ) in degreek.

Remark5.3. — Let us write this explicitly fon = 1 andn = 2. Forn = 1 we haveX! =
P. —{t=1} andY C X' is an open subset, which is the complemenftot a;, j =1,...,1},
with @; the reduction of some; in R’. In this case the spadé is defined by the inequalities
|z—a;| > Xand|z—1| > A andUY is the inverse limit of these. We have two possible functions
¢ and1 — 1 of degreesl and0 respectively. We havé/}” = {0,c0} and U}, = U". This
gives
O(UY) = (UY) & (K)o @ (K)x),

in degree$ and1, where the index o’ corresponds to being the functionstos 0 andt = co
respectively. The term of degréand the first summand in degréeorrespond td — 1. Work-
ing out the signs the differential is

d(h) = (dh, — (h(0), h(c0))).

In the casen = 2, Y C X? will typically be defined as the complement of the hyperplanes
t1 =aj, ta =a;, t; = 1 andty = 1 andU}" is similarly defined by the conditior}s; — a;| > A
and|z; — 1| > A\. The complex now becomes

oUwY) - (U e .@ O(UY N {t; € {0,00}})

-2 (UY) e @ Q1 (UY n{tie{0,00}})

D ((K)O,O 2] (K)O,OO S (K)oo,O SY (K)oooo)

and the differentials are given by

d(h’) = (dha _h|t1€{0,oo}7 _h|t26{0,oo})
in degree 0 and
d(w7 01 O) = (dwa w|t1€{0,oo} ) w|t2€{0,oo})
d(O, hl, hg) = (O,dhl,dhg, (hl — hg)((o, 0), (O, OO)7 (OO7 0), (OO, OO)))
in degree 1.
The following lemma is mostly an exercise in sign fixing.

LEMMA 5.4.— The complexe$’Q®(UY;0") and F/RT i, (Y;00"/K) are quasi-isomor-
phic.

Proof. —We prove this without the filtrations. The result for the filtered part is then clear. First
we note that by Proposition 4.2 this complex is quasi-isomorphic to the corresponding complex
with Qi(U}/) replaced by the degreepart of R, (Y;/K) which we now denote by for
simplicity. Consider now the double complex introduced in Appendix A (compare (A.18) and
(A.15)). For3:[1,k] — [1,n] an increasing function, defing; = {(z1,...,2,) in Y: x5 €
{0,00}}. Then the complex in degreds D, 5, I'*(Y}3). We can again write elements there
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as pairdw, 3) and the differential is defined by

d(w, B) = (dw, B) + (=) (=) X' (8, ) (wly,, . #)
T

where
/ n_ J(=1)" ifimp =impBu {F(r)},

X(8,8) = {O otherwise.
Now we want to switch to a dual point of view. The relation is as follows: foa strictly
increasing function as before, we defiggf) to be the increasing function enumerating
[1,...,n]\ im f. Then we haves(f)| = deg f andY; = Yj(s). The key thing to check is the
following: if ¢ is obtained fromf by deletingf(r), thens = 3(f) is obtained from3’ = 3(g)
by deletings’(f(r) — r 4+ 1). This easily gives the result.0

Consider now the case wheBe= Spec(x) andY = X™. Then the relative rigid cohomology
H, (X" 0"/ K) is well known to be isomorphic t&, cf. (3.1). We can explicitly describe this
isomorphism. The basic idea (compare [18]) is of iterated integration betvaedoo. We can
takeU) to beU} whereU, denotes the spad; \ {|t — 1| < A} andU? is thenth power of

Uy. Let (w, f) be inQ™(U™; ") and suppose that

w=Gtsay, - trij) dbpy A= Adigy)

(here the ordering is critical). Define

0 0
m(w, f) :/ /G(tf(l)v'"’tf(j))dtf(l)"'dtf(j)'

Notice that now the order is not critical and we can integrate in whatever order we want. Let
Har (U™;00") be the homology of2* (U™; 0™). We have the following.

LEMMA 5.5.— There is a unique isomorphisiiij, (U";0") — K normalized by the
condition that on the class of a closed fofm, f) with deg f = 0 it is given byr(w, f). This
functional is given as followsconsider a form(n), g) where g has degreen and of them
coordinates orU; which are fixed; are fixed to bex. Set

TI((n,9)) = (~1)"+F 260+ r(y g).

Then the functional is given by the restriction of thielinear extension ofI to closed forms.

Proof. -We can find a formw, f), with deg f = 0, whose cohomology class is non-trivial.
The required isomorphism is determined by its value on such a form and is therefore unique.
To show thatll provides the required map, we only need to show, in view of the fact that
(w, f) = m(w, f) whendeg(f) = 0, that it kills exact forms. The exact forms are spanned
by forms

A(F(tgqys - tg()) - dtgay A Adtgy A Adtggj, 9)

_ 0
= (- (8tq(/€) gy Ao A dtg(j)vg)

+ (_1)j+g(k)+k (F

tomyf0,00} gy Ao Adtgy A~ Adtggj), h)
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with h obtained fromy by removing the:th value andt” a function on a component &f" with
1 coordinates forced too. Notice that

0
T F-dt Ao Adt -,g)
((%g(k) g(1) g(5)

=1 (Fle, =0 - dtgay Ao Adtggy A= Adty(), h)
= 7 (F iy =o0 - dtgay A== Adtgaey A==+ Adiggjy, h)

because in the computation sfwe can begin the integration on thé€k) coordinate. Now call
the two terms on the right-hand side of the last equatipand o, respectively, and write the
sign in the definition ofI asSign(g, ). We therefore obtain

TL(d(F(tg(r):-- - to()  dlgy A Adtgy Ao- Adtg(y), g))
= (—1)¥"" Sign(g, i) (a0 — aoe) + (=1)7 IR ¥ (Sign(h, i)ag + Sign(h,i + 1)an ).

Thus, clearly, to make this cancel, we need to chdtige(g,i) = (—1)%&"(9)+ with sign(g)
satisfying the relation

sign(g) + k — 1 =sign(h) 4+ j + g(k) + £+ 1 (mod 2)

(the lastl is there to make this alternating) wheéris obtained fromy by deletingg(k). After
cancellations this becomes

sign(g) =sign(h) 4+ g(k) + j (mod 2).

It is easily seen thasign(g) = > (g(k) + k) satisfies this condition, which completes the
proof. O

Like in K -theory (see the discussion around (3.1)), the isomorplgp(X™; 00" /K) = K
can be obtained by a repeated application of boundary maps. At each stage there is a choice of
signs. Here we have taken the approach of writing down the isomorghistinectly and we
would now like to know how it can be obtained using boundary maps.
We have a short exact sequence
0— H (X0 YK) — Hi H(O% 0 K) — H

rig rig rig

(X”;D”/K) —0,

and an isomorphisndf} ' (X™; 0"~ /K) = H} ' (X"~*;0""!/K) under pullback. It fol-
lows from this that we can get two isomorphisms as the composition of the maps
H@—I(anl;anl/K) _}Hn—l(Dn;anl/K) —~ H"

rig rig rig

(X”;D"/K),
where there are two choices for the first map, corresponding to the two embeddings of
(Xm=LOn=1) in (O™;0" 1) as eithert,, = 0 or ¢, = co. The two different isomorphisms

differ by a minus sign. Iterating this we get an isomorphism

(5.6) K =HJ,(pt/K) > H, (X50YK) S - S HE (X™0M/K).

rig rig rig
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PROPOSITION 5.7. — The composed mafi &8, Hi, (X" 0" /K) I K is the identity

provided at each stage we choose the embeddirig-a$.

Proof. —From the proof of Proposition A.16 it is not difficult to get the following explicit
description of the ma@*® (00"; 0" ~1) — Q°*T1(X™;O") (dual to the mapl(C,) — O(Ys)[—1]
in the notation of the proof of Proposition A.16): it is simply given @y, f) — (w, f) where
f:1,...,4]—1[1,...,n—1] is considered on the right as a functién(1, ..., j] — [1,...,n]. It
follows that the map (5.6) with the choice of signs as in the proposition corresponds to the map
sendingx in K to («, ) on the component with, = 0 for all .. ApplyingII to this we getv. O

Now comes a crucial point. In applications we will want to consider the cohomology not of
(X™;0O0™) but rather of an open subskt obtained fromX™ by removing subsets of the form
{t; =u} with win x* (e.g., sets of the fornX]? . as in Section 3). That means that it is no longer
possible to perform the integrals needed to constrLi¢and of course the isomorphism tHat
represents does not exist). It is sometimes possible, however, to replace the integral by a Coleman
integral. We want to show that when this is possible it corresponds to an operation which can be
made sense out of in general.

LEMMA 5.8.-There is a short exact sequence

0— H

rig

(X";D”/K) — H"

rig

(V;YnO"/K)— E—0,

where Frobenius acts off};, (X"; ") trivially and on £ with strictly positive weights.

Proof. —Write H'(x) for H};, (/K ). From the diagram of pairs
(X" \Y;D"\Y) — (X";Dn) — (Y;Yﬂ D")
we get the standard long exact sequence

o= HY(X™O) = HY (Y, Y NO") = HiEL ooy (X07) — -

The action of Frobenius oA}, (X™; 00"/ K) is trivial because the isomorphism

HE (X" 0"/ K) = HY, (pt /K)
is Frobenius equivariant. To prove the lemma we need to show that the first arrow indicated in
the diagram is nob while the last term has strictly positive weights. The first assertion follows
because it is easy to see that the same integration process described in Lemma 5.5 also vanishes
on exact relative forms on the p&if’; Y N O"). It remains to show the statement about the
weights. To do that we “peel off” the relativity step by step: we have a long exact sequence

= H{ly (0,000 van-1y) ({tn € {0,00} ;0771

- H(n;nlr\y;un\y) (Xn§ Dn) - H(”;j\y;m,l\y) (Xn; Dn_l) o

and the two terms on the sides fit into similar sequences. The key observation is that the degree of
the cohomology is always one more than the dimension of the space. The final “building blocks”
are of the formH;;:.{Y(Xi). By [10] such a term has weights betwees 1 and2i (because

X%\ Y is always of codimensioh by our assumptions) except that the term with 0 clearly
vanishes. Thus all terms have positive weightsi
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COROLLARY 5.9.— Let M C H}},(Y;Y N["/K) be any Frobenius invariant subspace
containingH 3, (X™; 0"/ K). Then there exists a unique-linear functional

ﬁ]\,{:M—>K

thatis fixed under Frobenius and coincides with the functional inducétiday 77 (X ™; 0" / K).

Of course the conclusion is also true withh = Hr’gg(Y; Y nO"/K) in which case we will
denotell simply byﬁ. We will need the uniqueness statement, however, for possibly different
subspaces.

The mapll gives a splitting oft” = H} (Y; Y NO"/K) into a direct sumi = K @ F as a
¢-module, wheréy has nog-fixed vectors. We will need a certain result abguinodules with
such a structure.

LEMMA 5.10.- Let V; = K @ E; for i = 1,2,3 be three¢-modules such thap has no
invariant vectors onF; for eachi and onFE; ® Es. LetIl;: V; — K be the natural projection.
Suppose there is@-equivariant pairing(, ) : V1 ® Vo — V3 which gives the usual multiplication
when restricted td{ ® K. Then we haveéls((z1,z2)) =11 (1) - [a(z2).

Proof. —The conditions of the lemma imply that the algebraic multiplicity lofas an
eigenvalue ofp on V; ® V4 is 1. It follows that the space af-invariant functionals oV, ® V5
is 1-dimensional. Therefore the statement of the lemma has to be true up to a multiplicative
constant. This constant has to bbecause the statementis truefoe=1. 0O

By assumption all components a&f are affine. We can therefore compute relative rigid
cohomology using the compléx® (UY'; (0") of Definition 5.2.

DEFINITION 5.11.— A relative form i2"(UY ;[0") is called Coleman integrable if for each
of its componenfw, f) the expression defining(w, /) makes sense when we replace ordinary
integration with Coleman integration. 4f is such a form we denote B¥c.(z) the expression
derived from ther(w, f) as in Lemma 5.5.

LEMMA 5.12. —Coleman integrable relative forms form a subspac®®fUY ; [1") which is
closed under. Exact forms and forms extendinglid* are Coleman integrable. The functional
Il is ¢-invariant.

Proof. —The only thing which possibly requires proof is the fact that is a relative form
which is Coleman integrable, then sod$(x) and g (¢* (z)) = e (x). This is an easy
explicit computation. We may assume that

x=(Gltsays - tp) - dtpay A Adtgey, f)-
Then

* — q q q q
(@) = G(t7a),- - ) - dtf ) Ao ().
The assumption that is Coleman integrable means the following: there is a function
Fi(ts(1),---,ts(;)) Which is a Coleman function in the first variable and such that

B
Ot (1)
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SettingG1(tp(a),---tg(j) = F1|§;g;j; we can find a functioFy (¢4 (2), ..., ts(;)) which is
again Coleman in the first variable such that
0
F2 == Gl
Ot f(2)

and we continue like this until we reach; which is just a number equalifigci (x). Now we
start with

~ -1 -1
Gltray, .- tp)) = G(t?c(l), ottty e at )
The functoriality of the Coleman integral implies that we may take

~ -1 -1
Fi(tray,--te)) =Fu (tj.(l), . t‘}(j))qt‘}@) iy .qtj.(j).

Then, ag®)? = 0 andoc? = oo we get

~ —1 —1
Gl(tf(g), .. .,tf(j)) =Gy (t?@), ceny t?(j))qt;@) - -qt;(j)

and we can continue this process until we flfig, (¢* (z)) = Hco(z). O

We call a cohomology class ifi};, (Y;Y N"/K) Coleman integrable if it is represented
by a Coleman integrable form. Lét/, denote the space of Coleman integrable cohomology
classes. It is an immediate consequence of the abovélthatinduces a functionallc, — K
which is Frobenius invariant. By the construction it is also clearkhaj is justII on forms that
extend toU™. By Corollary 5.9 this functional must coincide with the restriction\t,,; of II.

We therefore obtain

PrROPOSITION 5.13. —For any Coleman integrable form representing a cohomology class
[z] we havdlc, (z) = TI([z]).
6. Regulatorsfor special elements
Recall that we have universal symbols (3.10)
[Sln € K3 (XG0 0"7)

whereG = Spec(Z[S, 571, (1—5)"!]). Now let B = Spec(R[S, S~ 1, (1—5)~1]). Pulling back
via the canonical map — G we obtain elements, for which we retain the notation,

[S]n € KSV (X007,
In this section we obtain some information on the regulators
reg([S]n) € Hyjo (X5 000" 7" ).

We embeng,_l(}C in P = (PL)"! x P, (B is mapped to the last coordinate). Taking
the special fiber corresponds to the compactification discussed at the beginning of Section 5.
Therefore, we obtain certain rigid subspatigsf Py . We denote the inverse system of these by

Up o @nd we have complexé® (U ) ;0" 1) and F*Q* (U ;0" 1) as in Definition 5.2.
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A map ¢ whose reduction is a Frobenius endomorphism and which is compatible with all
boundaries is given by raising tgh power for a sufficiently largg. One checks easily that

the sign convention for cones (4.1) is such that it commutes with taking the complex computing
multi-relative cohomology. From Lemma 5.4 we therefore have a canonical quasi-isomorphism:

Cone(FIQ* (Ug 107 Azete, QO (Up e 071) 5 R (X e 0771 5).

From degree considerations it is very easy to see that
FrQ"(Up a0 ) = (Q*(Ugao), [1,. .. on— 1] —[1,...,n — 1]).

We can identify this space with" (U7 . ). On the other handi™ Q" (U ) ;0" 1) = 0.

Thus we obtain (compare (4.4)) the following expression, with the identification made above.

(6.1) Hpo(Xpe 0" n)

{(w,e): we Q"(Ug;jc), g€ Q"_l(Ungolc; 01, dw=0, de = (1 —¢*/q")w}
{(0,de), e € Q2(UR 100 1)} '

We take this opportunity to consider two other situations that will be needed later. In these

cases we compute the syntomic cohomology ®f? ;(0") and so there is n@& present. The

corresponding rigid spaces were already considered in previous sections. We delifjietbg
spacel/ Xr.1oc. We then have

(6.2) Hpy(XRjoe:07n)
A{w,e): weQ™(U,), c € QHUp 0", dw=0, de = (1 — ¢* /q")w}
N {(0,de), e € Qn=2(U ;O™ }

loc?

Note that this abuses the notation somewhat since the differentialisfits differential as a
relative form. Also, since there are mot+ 1 relative forms on(U}? ;") we have

{(0,¢): e € Q™(U;0"), de =0}
{(Oada)a g€ anl(UITZ‘C;Dn)}

(6.3) HE (XR o0 n+1) =

This is simply thenth rigid cohomology of X!, .;[J™) but note the twisted identification that
we have by Definition 4.6. Also note that in some of the computations we will be using an
altogether different model of this syntomic cohomology group.

Let
- S th_1— S

t
A---Adlog

Pyp— —_ 1 7 1
(6.4) wn = dlog(1 — ) A dlog —— tno1—1°

Our main result in this section gives the following partial data about the regulafst,of

PROPOSITION 6.5. — The regulator of[S], in ﬁgs(Xg,‘k}C;D”*,n) is given, in the

representatior(6.1), by (wy, e, ), with somes,, in Q"= (U5~ ;0" 1).

Forgetting the relativity gives a mag." (ngjc; gr1)— K (ngjc). Let us denote the
image of{S],, by (S),. The corresponding map in syntomic cohomology,

He (X g Omtn) — HE (X p0kn),
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simply takes the paifw,e) of (6.1) to (w,e’) in the representation (4.4), wheeé is the
component ot corresponding to the index functidh, ..., n — 1] — [1,...,n — 1]. Thus, our
proposition follows immediately from the following proposition.

PROPOSITION 6.6. —The regulator of(S),, in ﬁgs(Xg,_l(}C,n) is given, in the representation
(4.4), by (wn,e},), with some/, in Q"= (UL ).

Using the formulas for the regulator map for functions, and the cup-product in syntomic
cohomology given by Lemma 4.7 and (4.8) respectively, this last proposition follows easily by
pullback toB = Spec(R[S, S~1, (1 — S)~!]) from the following purelyK -theoretic result.

PROPOSITION 6.7. — Let G = Spec(Z[S,S~1, (1 — S)~1]). Write (S),, also for the image
in Kfl")(Xg,_l(}C) of [S],, in K,(]I)(ngljc; 0"~1) under the map corresponding to forgetting the
relativity. Then

t1—S tn1—5S
! U...yu2r—t—*
t1—1 th—1—1

Proof. —Forgetting the relativity is compatible with the construction of the spectral sequence
used in (3.7), so in the map

KM(xek) — T &MY (e, s

i=1,...,n—1

(S)n=(1-5)U

the element(S), will be mapped under the differential in the spectral sequence to
S (—1)1(S)n—1]t,—s- (Recall that in this casefi ) is obtained fromX /" by remov-

ing all t; = S.) From this we can determing),, very easily by induction using Lemma 6.8
below, ag(S); = (1 — 5).

LEMMA 6.8.—For m >n > 0, the map

K (X = [T B (Xas)

t;=S

is injective.
Proof. —Induction onn. Forn = 1, this is clear from the localization sequence

o KM (X ) = KU (X h0e) — Ko@) — -,

as K,(nm)(XG) = K,(nm)(G) =0 if m > 1. For the induction step, consider the commutative
diagram

m—1 n—
K,(nm)(nggc xa Xa) " a I K7(n—1 )(XG,IC?C xa Xa)lt,=s

1=1,..., n—2
P1 \Ld&%
(m—1) -2
Kgnm)(nggC Xa XG loc) & - 1Km—l (Xg,loc xXa XG,loc)|t11:S
) ’ 1=1,..., n—
P2

m—1 n—
K( 1 )(XG,IC:JLC)

m—
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Here the first vertical column is part of an exact localization sequehgces injective because
K(m_l)(Xg,_lfC X @ X¢) is isomorphic toK(m_ll)(Xg,_lfc) under pullback from the base, and

m—1 m—
we can restrict the image iﬁg’:l)(ngfc X @ X ¢ 10c) t0t,—1 = 0in order to find the element
back.¢; is injective because again us’ing puIIbaék from the base this reduces to the €alse
where it is true by induction. In particular, ¢f; (o)) = 0 for someq;, 12(a)) = 0, anda = 91 (3)
for somes. Thenys(é1(8)) = ¢2(a) = 0, which impliesg = 0 as bothy, and«; are injective.
Thereforen =0. O

By Lemma 6.8(5),, is determined by its image under the boundary. Bec&fige= (1 — 5)
and(S), has boundary-[S]; = —(S); = (1 — S)~!, one checks by induction that

t1—S tno1— S
L U...ut—°

(S)u=(1-85)u L= —

(We use normalizations so that thé&theory acts on the right in localization sequences))
To end this section, we give the following lemma.

LEMMA 6.9.—Let F(t) be an elementdfl + 1)*(R) = K" (X & 10c;01). Theniits regulator
in ﬁéls(Xﬁ,loc§ 01!, 1) is given, in the representatiq.2), by

(6.10) (dlog F'(t),log(Fo(t))/q).
Proof. —Note that forn = 1, (6.2) reduces to
(6.11)  Hpo(Xpio:0h1)
={(w,e): we Q' (Up,), e€ Q°(Uph,), dw =0, de = (1 — ¢*/q)w}.

In this way of writing it looks exactly the same aﬂiﬁlns(XR_rloc, 1). As remarked after (6.2) this

is slightly misleading since the differentials are different and take relativity into account. Here
this means that the mali} . (X g 10c; 0, 1) — H} . (XR 10c, 1) given simply by(w,e) — (w,¢)
embedsﬁrlns(XmOC; 0,1) as the subspace of paifs, ) wheree vanishes af andoco. Thus,

our lemma is an immediate consequence of Lemma 4.7

7. End of the proof

We denote the composed map

Kr(ln) (anl _Dn—l) gﬁ;s(xnfl _Dn—l’n) o~ anl(anl_Dn—l/K) EK

R,loc? R,loc? rig K,loc?

by R. Here, the isomorphism is normalized according to Definition 4.6 and thd:hia;iefined
immediately following Corollary 5.9.

PROPOSITION 7.1. — We have the following commutative diagréup to sigr)

K (Xpl0n ) =—— kW (xp Lo = K (R)

K K
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Proof. —The vertical maps factor through the regulator maps. By the functoriality of the
regulator map the commutativity of the diagram follows if we show the commutativity of the
diagram

n—1 n—1, n— n—1 n—1. n— ~
H (X 0" !'/K)<— Hy '(Xp~10" ! K) —== HJ,(Spec(k)/K)

rig K,loc? rig

| |

K K

But as explained in Proposition 5.7 the composed nﬁﬁgl(XQ*H On~1/K)— K is simply
the mapll and therefore the commutativity follows from Corollary 5.9

PROPOSITION 7.2. — The composition

Symb,, (R) c KM (X5 k0" ) B K

factors through the quotieltymb,, (R)/(1 + I)* U Symb,, ,(R) = M, (R).

Proof. —In fact, we can show thak vanishes on1 + I)* OK,(ffll)(Xngc;D"—Q). This

will follow by symmetry for all possible products involved i if we show that the
composition

Hpyo (X koo 0'31) x Hid (X o 0" 2 n = 1)

iﬁgls(Xn—l _anlvn) lHn—l(Xn—l_anl/K) EK

R,loc? rig K,loc?

vanishes on pairs where the first coordinate is usedifer 7)*. Let F(t) be in (1 + I)*. By
(6.10), its regulator is given, in the representation (6.2)dlyg F'(t),?), where the first coor-
dinate belongs t&2! (U ) and the precise form of the second coordinate does not matter as we
will see in a second. On the other hand, elementéggl(X}’{,IfC; 07~2n—1) are, by (6.3),

always of the form(0,4), with § in Q"~2(U}"_?;0"~2). Choosingy = 0 in (4.8), we see that
(dlog F'(t),7) U (0,6), will be of the form(0, dlog F'(t) A §) whereA here means the product
in complexes of relative differential forms as defined in Remark A.19 in Appendix A. By Def-
inition 4.6 the image ofdlog F(),?) U (0,6) in H}, (X .L; 0" /K) is the inverse of the
operatorl — ¢*/q"~! applied to the cohomology clagdlog F(t) A §]. Since the operatdi is

Frobenius equivariant we see that applied to this image it divesq'~")II([dlog F(t) A 6])
and so our goal is to show that

I1([dlog F(t) A 8]) = I1([dlog F ()] U [4])

vanishes, where the cup product on the right is a cup product in multi-relative rigid cohomology.
By Lemma 5.10 it equalH([dlog F'(¢)]) - II([0]) and the result follows since

T1([dlog F(1)]) = Heol (dlog F (1)) = log(F(c0)) —log(F(0)) =0. O
We continue to denote the induced mapy
(7.3) R:M,(R) = K.
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Recall that in Definition 3.11 we defined for aayn R” a symbolz],, in K(")(Xg_"lolc; an-1)

by pullback of the universal symbg$],, in KM (Xg,ljc; 0n~1) along the map sendingj to z,
whereG = Spec(Z[S, S, (1 — S)~1]). We now computéR([z],,). We begin this by exploring
some auxiliary functions.

DEFINITION 7.4.— Whenz and S belong to the same residue disc we define a sequence of
functionsf(z,.S) inductively as follows:

S

S
(7.5) oS =g fen8)= [ A odogt

Note that there is no Coleman integration here because of the assumptoamhs. It is
immediately noticed thafy(z, S) vanishes to ordek atz = S.

LEMMA 7.6.—We have

|
_

= -

n

fn(2,8) =Lin(S) — (logS log 2)F Li, 1 (2).

>
Il

0

Proof. —The proof is by induction on. Forn = 1 it is immediately verified that
fi1(z,8) =log(1l — z) —log(1l — S) =Li1 (S) — Liy (2).

Suppose that the statement is truerdiohen forn + 1 we get
S

fn+1(zas):/<Lln ;ki IOgt_Ing)kLin—k(z)>%

z

S

) n—1 1 -
= <L1n+1( ) — ];) m(logt— log z)k ™+ Llnk(z)>

n—1

. . 1 .
=Lin41(S) = Ling1(2) = ) T (log S —log z)* ! Li,, ()
k=0 ’

z

, " .
= Liyp41(S Z E logS—logz)kLmH,k(z). O
k=0

PROPOSITION 7.7. — Letzy, 2o € R belong to the same residue disc. Then we have
R([z1]n) — R([z2]n) = (=1)"(n — )!(Ln(21) — Ln(22)).

Proof. —For anyz € R* we may factor the mafpec(R) — G defined by sending to z via
the mapSpec(R) — B = G ®z R defined in the same way. By functoriality of the regulator
map it follows thatreg([z],,) equals? reg([S],), wherei, : (Xg loei ™) = (X3 1o;07) is the
embedding i X3 ,..;83") of the fiber atz. Thus we are in posmon to apply Corollary 4.12,
but in the relative case, which, as mentioned after its statement, also applies. To carry out the
computation we also shift the index fromto » + 1 as the computation seems to come out a bit
cleaner this way.
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We begin wnhH"“(Xg 1oe; 0™, n+ 1) in the representation (6.1) (with shifted ton + 1).
In there we have the regulator pﬂ']nﬂ, given, according to Proposition 6.5, by the pair, ¢),
where

-5 t, — S
A Adl
—1 Ogt —

n

is the form defined in (6.4), while is unknown. Note that) should really be thought of as the
relative form& = (w, [1,...,n] = [1,...,n]) € Q" (Ug ,.; O").

We have the projection: (X%, .;0") — B, which we can compactify ta: (PL)" — B,
where the power is taken ovét. By assumptionz; andz, belong to the same residue disc,
which we callD.

The recipe for computing

t
w=wp41 =dlog(l —5) Adlog tl

reg([21]nt1) — reg([22)nt1) = i, reg([Slnt1) — i%, reg([STn+1),
according to Corollary 4.12, calls for computing, fo z; andz = 29, a formé, such that
(7.8) 0. € FyH'Q" (U o N7 (D);0") and df. =&|z-1(p),

whereJ is the ideal defining-—1(z). Such a form is given in the following lemma.

LEMMA 7.9.—Let

—Zn:(—l)kk! > (( 12O+ £ (2, 8) /\dl LS h).

k=0 degh=k thi) — I

Thend, satisfie7.8). Here, f}, is the function introduced in Definitioh4and the form indicated
only for the component in which all the constant coordinatedamtherwise the form is.

Proof. —Recall that the condition for being iF’T}“rl is that the sum of the degree of the form
and its order of vanishing & = z is n + 1, and this is clear fof,. Now we prove that the
differential is correct. We will show that(—6,) = —w. Consider first the differential of a single
term in—0,.

)
(-1 )k+z h(i)+1) k.| (fk-H (2,9) /\ dlog th(i) h),

th(z) — 1
with h of degreek. Using (5.1) the differential is

(—1)kF2o (D) (fk(z S)dlog(S /\ dlog h“ — h)

z)_l

minus (except when = k) a sum of terms obtained by restricting one of the coordingtesto
be0 (when we restrict any coordinatedo we get0 and there is no need to keep track of that). In
the wedge product gtwe getdlog(S) and moving it to the front gives a sign 6f1)7~!. This
form is then associated with a functigrior which x (h, g) = (—1)"9)+J . In addition there is an
overall sign of(—1)"~* on the entire sum. Thus, the sign on the component with the fungtion
obtained from by deletingh(j) has a sign of—1) to the power

4€ SERIE— TOME 36 — 2003 -N° 6



THE SYNTOMIC REGULATOR FOR THEK-THEORY OF FIELDS 907

n—k+k+Y (h(i)+1i)+h(j) -

=n+1+) g +Zz—k+1+z ) (mod 2).

Thus we find
i E e =S
A(=1)F+ 20O+ (fkﬂ(z,S) N dlog t}:())i_lh>
=1 4
thi
= (1) 2O+ gy (fk(z S)dlog(S /\ dlog 20—~ o h)
the) —
N n—k—1 t oy — 8
_ Z (_1)k+1+2(9(z)+1)k!<fk+1(z,5’)dlog(5)/\ /\ dlog%,g).
x(h,9)#0 i=1 9(%)

Now we consider the coefficient ih(—6.) in the g component whedeg g = m. If m > 0 then

it gets contributions from both lines in the right-hand side of the last equation. The contributions
from the second line correspondike=m — 1. There are exacthy differenth’s that would give

g and the contributions are identical. Thusi it is visibly seen that the contributions from the second
line cancel the ones from the first line. The only term that survives is the onemwit). Here

there is only a contribution from the first line. So we find

d(—6.) = <f0(zSdlog /\/\dlo

(dlog (1- /\ dlog

Now, again according to Corollary 4.12, reg([S],) — i, reg([S]n) = 0., — 0., restricted
to the fiber above any in D(K). On this difference we need to apdic,. We will in fact
computellc (6,) for anyz. We integrate with respect to this keeping$ fixed. We see that all

the terms we need to successively integrate are produdisg§, which the integration process

converts into logs. The extra sign coming from the formulalids (—1)2-"()*+) pecause we
are always in the component where all the fixed coordinate8.&8e using Lemma 7.6 and the
definition of L,, 11 (S) as in (1.3), we findIc. (6,) equals

e (Z) i (28) log"¥(5)

k=0

Z—H'Z fk-l—l(z S)log™ ¥ ()
= —nl! Z L1k+1 (S)log™ % (S)

k
nlz . [Z% log(S log(z))lLikH_l(z) log" " (S)
= (=1)"""nl Ln11(S)
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n k
+n! Z(—l)k n _1 B [Z G _1 Bl (log(S) — log(z))k# Liy11(2) | log" 7% (9)

k=0 r=0
— (1)l Lo (5)

= (=1)"n! (Ln41(2) = Lny1(9)).
Thus we find
R((21]ns1) = R(22ns1) = (~1)™n!((Los1(22) = Lusa(S)) = (Luga(21) = Lusa (S)))
= (=1)"'n(Ln(21) = Ln(22)). D
PROPOSITION 7.10. —For z in R* we have

(7.11) R([z]n) = (=1)"(n — 1)1 Ly (2).

Proof. —Let F,,(z) be the difference of the two sides of the equation. By Proposition 7.7
E,(z) is constant on each residue disc. The functifyiz) satisfies the distribution relation

E,(z™)

mn

(7.12) L Bulca) =

¢m=1

for each positive integem. The left-hand side of (7.11) satisfies the relation because by [12,
Proposition 6.1] we have the relation

=3 [l = B

¢m=1

in K\ (X7L ;071 (modulo terms involving 1 + 7)*) and we then applfR. (Note, in loc.
cit., the relation is stated for elements in a field contair{g). But the proof of the statement
shows there is a corresponding universal relation &é¢, X —!] which can be pulled back.
Alternatively, it can be deduced from the relation@j.X, X ~!] becauséF,[X, X ~!] has no
low weight K-theory, and the localization map (in the limit) correspondindZte~ Q will
induce an injection (up to torsion) on the level of symbols, cf. Proposition 3.18.) The right-
hand side satisfies the relation because it is trud.fgrby (2.4) and for the remaining terms
by a straightforward standard computation. Multiplication by*¢h root of unity preserves the
residue discs, as does raising to theh power for sufficiently divisiblé: (here we need to extend
R to include these roots of unity). Therefore, it is immediately seen that the funEtjamust
be0. O

Remark7.13. — The following comparison with the work of De Jeu is perhaps interesting. In
the complex case one again relies only on the explicit description of the dotonobtain the
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corresponding formula for the regulator. A similar constant must be fixed in that computation as
well. There however, one relies on the fact that the final result should be single valued. One then
derives the distribution relation from the corresponding formula for the complex polylogarithm
and Borel's theorem. Here we have used this distribution relation so our proof relies on the
proof in the complex case. It may be interesting to mention that in the work of Wojtkowiak on
functional equations for polylogarithms [27] a similar phenomenon occurs: to obtain a functional
equation forp-adic polylogs one starts with a functional equation for the complex polylog and
uses the multivaluedness to show that a certain “motivic” functional equation is satisfied, which
then translates into g-adic functional equation.

PROPOSITION 7.14. — Let F' be a field of characteristic zero for which the Beilinson—Soulé
conjecture holdsQ C F' a discrete valuation ring. Let : ¥ — K be an embedding, such that
c(0) C R (so that in particular the Beilinson—Soulé conjecture holds for the residueield
0). Then the map

reg

H'(M?,,(0)) S K5 (0) S K (R) X5 K

3

where the mag@ is part of(3.17) is induced by the map/,,(O) — K sending the symbdt]|,,
to +(n—1)! L,(o(x)).

Proof. —Suppos&_ a;[x;], is in H' (M, (O)). Let
a= @(Z ai [:ci]n) e KV (0) = KM (X0 1.

By definition, the image ofx in Kfl")(Xg];C;D"*) is equal 0" a;[z;], modulo (1 +
I)*U Symb,,_,(0). By functoriality, the image ofs(«) in K,(ln)(X}’{,fljc;anl) equals
> ailo(z;)]n modulo (1 + I)*U Symb,,_;(R). By Propositions 7.1 and 7.2 we therefore
have

reg(o(a)) = :I:R(Z a; [a(xi)}n) ==+ Zaﬂ%( lo(x:)],)
=+ Zai(n — 1)L, (o(xz;)) by Proposition7.10. O

Proof of Theorem4.6and1.10 — Part (1) of each theorem was already proved in Section 3.
To prove part (2), note that any of the functiofg,q,.(z) differs from L,,(z) by a linear
combination of the functions — log"(z)L,_1(z) for k > 1. Any function in this combination,
when composed with, factors through the composed differential

M, (0) = My 1(0) @ O — - - — M,,_1(0) ® (03)*"
which mapgz],, t0 [z],—r ®  ® - - - ® . Therefore the function,,(c(z)) and Lyed,»(c(x))
(and in fact, alsd i, (o(z))), coincide onH *( Zn)(O)). But any functionL .4, () satisfies

Liodn(2) + (=1)"Limoan(1l/z) = 0. Therefore the magz], — £(n — 1)! Lod,n(o(z))
factors through the mapf,,(O) — M,,(O). But the composition

Hl( Zn)(o)) _’Hl(wzn)(o)) — K

is still given by [z], — +(n — 1)!L,(c(z)). Thus, the theorems follow from Proposi-
tion7.14. O
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Proof of Theorenl.12 —Let F' be a number field. Note that roots of unity will not be special
units in general, so we have to work in the complex forather than for®. Namely, let¢ in
F be a root of unity of ordern > 1. If (m,p) =1, then( is a special unit, and we have the
result already. Ifn = pl with s > 1 and(p,1) = 1, write { = (32 with {; of orderp® and(,
of order!l. As the reduction of is the same as the reduction &f, we see that is special
unlessm = p°. If m = p®, letr > 1 be an integer congruent tomodulop®. Then(” = ¢, and
from the distribution relations Proposition 2.11 and (2.4) we find ftlat=r""1>"_._,[Ca]
in M, (F") with F" = F(u,.). According to [2, Lemma 8.8] the modified syntomic regulator
commutes with finite base change. This means in the case we are considerindths@finite
extension ofR there is a commutative diagram

K (R)——K

]

KG) () — K
where the mag’ — K’ is the natural inclusion. We can therefore do our computations for the
regulator just as well id{’ = K(u,.). As all « in the sum are special units except whes: 1,

we can solve foreg([¢],) asr™ ! # 1. As reg([z],) = £(n — 1)! Limoa,n(z) if z is a special
unit, and L4, Satisfies the corresponding distribution relation by [11, Proposition 6.1], our
result follows form > 1. For{ = 1 one uses the distribution relation similarlyc

Remark7.15. — Although not needed for the purposes of this paper, we would like to sketch
a somewhat less explicit method of doing the computations of this section. This was in fact our
original method. The idea is quite easy to explain: out of our regulator computations, we obtained
the fact that for certain constants the function

P(z,8)=) awfr(z,5)log" "5

k=0

is a sum of a function of and a function o5 (first line of final computation). In other words, its
mixed derivatives vanish. We get this relation initially only foand.S which belong to the same
residue disc, even though we know that using Coleman integration the fungtiaghemselves
extend to allz andS. What we did was to write explicitly,,(z, S) in terms of logarithms and
polylogarithms inz andS separately and then show thtz, S) can indeed be written as a sum
of a function ofS and a function ot, the latter being our sought after regulator function. Note
that the separation of variables now holds for argnd S.

The alternative approach is to deduce the “global” separation of variables from the same result
for z and.S in the same residue disc using Coleman theo3+uariables. The theory developed
in [4] defines a notion of a Coleman function in several variables. One then shows that iterated
integrals of the kind used to defing (z,S) make it a Coleman function in both variables (in
particular for fixedS it is a Coleman function ir, but note that the notion of being Coleman in
two variables is stronger than the notion of begin Coleman in each variable separately). Coleman
functions form a ring, which shows thd(z,S) is also a Coleman function, and so are its
mixed derivatives. The theory then shows that the fact that the mixed derivatives vanish on
some residue disc imply that they vanish identically which in turn implies a global separation
of variables.
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Knowing a global separation of variables is very convenient, fd?(if, S) = P(z) + g(95),
and all we need to know i®(z) up to a constant, then this is supplied Byz, Sy) for any Sy
we take. In our particular situation, if one substitutgs= —1, whoselog is 0, in the first line of
the final computation we find that up to a constatz) = —(—1)"n! - f,+1(2,—1). So one is
then left with computing this function.
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Appendix A. Chern classesin relative conomology

In this appendix we give the necessary constructions for the main paper as far as relative
K-theory and Chern classes in syntomic cohomology are concerned. Most of this material
is rather standard and has to be modified in a rather minor way in order to fit the current
context, so we are sketchy in places. One thing that we work out in glorious detail is the
description of a complex that computes the multi-relative syntomic cohomology encountered
in Section 5.

In [2] the first named author described a theory of rigid syntomic regulators. This is not
sufficient in all applications, for example those described in the present work, since one
often needs to extend the regulatots Chern classes) to the relative situation. Our goal in
this appendix is to explain how the construction extends to more general “spaces”, yielding
in particular Chern classes from relativé-theory to relative syntomic cohomology. The
construction is completely formal, and we follow known sources. The primary source is the
preprint version of [17]. As the final version uses unpointed spaces as opposed to the preprint
using pointed spaces, we actually follow mostly treatments based on loc. cit., namely [20,
Appendix B] and [12].

We consider the category of Noetherian finite-dimensional schemes o¥®and the topos
T of sheaves on it with respect to the Zariski topology. Following [20, B.1] we call a pointed
simplicial object ofT" a space. IfX € S, Y — hom(Y, X) gives us an element df, which
we still denote byX. With X, we will denote the space consisting of the disjoint union of the
constant simplicial sheaf and the constant simplicial basepoint

Following [12, Section 2.2] we make the following definition.

DEFINITION A.1l.— A spaceX, is called a smooth pointed simplicial scheme if it is
represented in each degree by a smad@tbcheme of finite type (interpreted as sheaf) together
with a disjoint base point and if it is furthermore degenerate above a finite simplicial degree.

Clearly, if X is smooth of finite type oveRR, then X, is a pointed simplicial scheme.
According to [12, Lemma 2.1] a smooth pointed simplicial schem& isoherent in the sense
of [20, Definition B.2.1] (this notion is also defined in [12, top of p. 201]).

When X, andY, are spaces,X,,Y,| denotes the set of homotopy classes of base point
preserving maps betweex, andY;~, whereY)” is a fibrant resolution o¥, in the category
of spaces, as described in [20, Definition B.1.2]. The point is that there is a $pasech
that if X is of finite type (hence Noetherian and of finite Krull dimension) ov&rthen
[S™ A X, K= K, (X) (loc. cit. Proposition B.2.3.a).

Gillet and Soulé therefore make the following definition.
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DEFINITION A.2[20, Definition B.2.1]. — IfX, is a space, we define
Kpn(Xe)=H ™(Xe,K)=[S" A Xo,K]

form > 0.

In the body of the paper we have systematically usedifhiaeoretic notation for this, but in
this appendix we shall also use the notatidn™ (X,, K).

If X, is K-coherent, one can defineoperations ond ™ (X,), see [20, Theorem B.2.10].
From these one constructs Adams operatigtis In particular, whenX, is K-coherent of
cohomological dimension at most then according to [17, Proposition 8 of Section 4.4],
Kn(Xd)o = @ KO (X,), with K5 (X.) = H-™(X,, K)® the Q subvector space of
Kn(Xe)g = H ™(X,, K)g of elementsr such that)*(z) = kiz for all k > 2, anda = 2 if
m>=2,a=1if m=1anda =0 if m =0. This will certainly apply to a pointed simplicial
spaceX, which is degenerate above simplicial deg@eand where the maximum relative
dimension of scheme components of#is M, withd = M + N + 1, cf. loc. cit. Lemma 1.2.2.2
or3.2.4.

For two K-coherent spaceX, and Y, we get a product mag<,,(X.) x K,(Ys) —
Koin(Xe AYs) from the composition of

STFUA XgAYy > STAXAS"ANY, - KANK - K

becauses™ A S™ = S™*" and K comes equipped with a maig A K — K, see [20, p. 103].
Under this product mam(,? (Xa) x Kflj)(Y.) maps toKféIzl) (Xe AY,), cf. [17, top of p. 136].

If X, andY, are spaces with a base pointed preserving Map- X,, then the reduced
mapping cong’, = C(Y,, X,.), whose definition will be recalled later, see (A.13), is also a

pointed space, and one gets an exact sequence
M m+1(Xo) - m+1(Yo) - Km(co) - Km(Xo) e

The most important applications of these ar¥,ifis a pointed closed simplicial subscheme of
X, (i.e., the map corresponds to a closed embedding of schemes on all the scheme components
of X,), in which case one gets th&€-theory of X, relative toY,: K,,(Cs) = K;,(Xe; Ye).
Iterating this one gets multi-relativE -groups as in the body of the paper. E.g.Yif, and
Y2, are closed simplicial subschemesX§, andYi2e = Y14 N Yoo, With C14 = C (Y14, Xo),
C2e = C(Y12e, Y2o) andC3e = C(C24, C1e) We get an exact sequence

s m+1(X-§Ylo) - m—i—l(YYQO;Y'lEo) — Km(X;Ylo;Yé-) - Km(XOQYlo) e

where we writeK,,, (X ; Y1q; Yae) fOr K,,,(Cse).

The other application i& -theory with support, in which cag4 is an open pointed subscheme
of X,. Let Z, be the closed pointed simplicial scheme complemenfah X, (i.e., the closed
complementin every scheme component, together with the basexpaamd assume all scheme
components o¥, are regular. If also conditions (TC1) and (TC2) of [12, p. 202] hold for the
embeddings iz, — X,, thenK,,,(Z,) = K,,,(C(Ys — X,)). The sequence then becomes a
localization sequence

T m-l—l(X.)_) m+1(K)_’Km(Zo)_’Km(Xo)_>
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Under very restrictive hypotheses whefg is of codimensiond in all scheme components
(see [12, Proposition 2.3]) one can prove a Gysin exact sequence

o KU (X)) = KD () = KO(Z4) —» KD (X)) — - -

In order to be able to define regulators with values in the cohomology of a complex of Abelian
groups, we briefly review how this is put into the context of spaces.

When A, is a homological chain complex of Abelian objectslin X, is a space, and > 0,
we write H " (X,, 4,) := [S™ A X., K(A.)], where K is the Dold—Puppe functor, see [23,
I14.11].

LetS’ C S be the subcategory of schemes which are in addition smooth and separaté& over
again equipped with the Zariski topology. In [2] the different versions of syntomic cohomology
are constructed as cohomologies of bounded below complexes of preshi¢ayemn S’, where
? could stand for any of the versions of syntomic cohomology considered. By [2, Proposition 6.2]
these presheaves are pseudo-flasque in the sense that there is a Mayer—Vietoris exact sequence
involvingU, V, X =U NV andU UV for two open subsets andV of X.

We will give a simpler name to what could be called a smooth separated pointed simplicial
scheme:

DEFINITION A.3.— A pointed simplicialS’-scheme is a smooth pointed simplicial scheme
where in addition all scheme components are separated (hence&je in

We want to define Chern classes fraifittheory landing in syntomic cohomology. For this
we would like to use the theory developed in [17]. However, this theory demands that we
work with sheaves o$. To do this, we will produce out of$(:i) a complex of sheaves on
S. We caution the reader not to regard the cohomology groups of these complexes as extending
syntomic cohomology to non-smooth schemes. They should merely be viewed as a technical tool
to allow us to use [17]. What we will need to verify is that as long as we st&y,ine., work with
pointed simplicialS’-schemes, the cohomology is the same as syntomic cohomology defined in
terms of the syntomic presheaves.

DEFINITION A.4.— LetP(S) andP(S’) be the categories of presheaves of Abelian groups
onS andS’ respectively. Let: S’ — S be the obvious inclusion. Let: P(S’) — P(S) be the
functor defined in [25, I, Proposition 5.1] (a left adjoint to the obvious functhrLeth“;(z') be
the complex of sheaves @ associated to the complex of presheam&$ (:). For a spaceX,
we define

f2in (X.,Fr.;(l)) = [Sn A X.,K(2’L,fr.z(l))]

where, for any cohomological complex® in nonnegative degreds (2i, A®) is the Dold—
Puppe construction applied to the homological comptéx— A — ... — A%~1 — ker(A? —
A%+1) in degree®i through 0.

The remainder of this appendix mainly consists of getting an explicit complex that computes
H~™(X,,I'$(i)), specifically for the pointed simpliciab’-schemes underlying the multi-
relative K -theory. Together with the construction of Chern classes in Proposition A.22 below,
this provides the reference for the regulator and the complexes used in the explicit calculations
in the body of the paper.

If we write D for the derived category of Abelian chain complexe'in

(A.5) HY (X, T3(1) = [S™ A Xo, K (20,T%(4))]
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is also isomorphic tdN,. (S™ A X,),T3(i)] b, cf. [12, (24) on p. 213], wherd, (-) denotes the
reduced chain complex associated to the pointed simplicial objects involved. As in loc. cit., the
Alexander—Whitney map, in degreegiven by

(A.6) Xn Ay digy - dp1dn X, @ dyYy,
1=0

induces a quasi-isomorphism 8f. (X, A Y,) with N.(X,) ® N.(Y,). As N.(S™) is quasi-
isomorphic to N, (S!) @ -+ ® N,(S') (n times) andN.(S') = Z[-1] (a copy ofZ in
homological degree 1), we find that we have to comqm;e(X.)[—n],f;(z‘)]DT. Note that
we have not changed the differential M.(X,). As we want to multiply it by(—1)™ to view
it as a shifted chain complex, we identify the two complexes via multiplicatiof-bh)*~! in
(shifted) degreé. If I'$(i) — I* is an injective resolution, this equdl’, (X,)[—n], I*] (maps
up to chain homotopy), cf. [17, Lemma 2].

Using the Yoneda lemma, we can compute this as in [12, pp. 214-216] d&ithen)th
cohomology of the comple&®(X,, I*) given by

(A7) CU(X,,I*) = €P hom(X,,I')= P I'(X.,1")

t+s=q s+t=q

with d(&H) = (—1)q(dﬁv*(x‘))* + dI*, where of course we ignore the degenerate part of
the scheme component oX; as well as the basepoint as we are working with the
complexNV.(X,).

Now we can show that for pointed simplici&l-schemes we can use our syntomic presheaves.

PROPOSITION A.8. — Let X, be a pointed simpliciab’-scheme. Thefl % ~"(X,,T'%(i)) is
functorially the(2¢ — n)th cohomology of the complé€R(X,,I'$(¢)) given by

(A.9) C!(X..T3(i)) = € T(X.,Th(5))

s+t=q

with d(s9) = (_1)q(d§V*(X-))* n df;(i).
Proof. —By definition we have, for any" € P(S’) and anyU € S,

T(U,nF)= lim FU),
U—-U'eS’

where the limit is over the category of objectsShunderU. If U € &’ there is an adjunction
mapIT'(U, F) — I'(U,r F) and since the category of objects undehas the initial objectd,
the adjunction map is an isomorphism. We have the functorial maps

(A.10) I(X,,T3(i)) = T'(X,,nI3(i) — F(Xs,f;(i)) — (X, I1°),

where the maps from left to right are adjunction, sheafification and resolution, giving the
functorial mapC?(X,,I'3 (7)) — C?(X.,I*). We want to show that this induces an isomorphism
on cohomology forX,. By using the spectral sequence

HY(X,,T3(0)) = H*H(C* (X4, T3(i))),
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and similarly with /*, we are immediately reduced to proving that the map (A.10) induces
an isomorphismH*(T'(X,,T'3(4))) = H'(X,,T'$(i)). We note thatX, is in S’. By [22,
Proposition 11.1.10 and Remark [11.3.2] the last cohomology group, as well as the map in
guestion, can be computed on the small Zariski sit& pflt easily follows from the description

of sheafification on p. 62 of [22] that we can commute sheafification and restriction to the
small site of X;. Therefore, the restriction df$(i) to the small site ofX, is the same as

the sheafification of the restriction ofI'$(:) to this site. This last presheaf is the same as
the restriction ofl'$(¢) since any operUU in the small site ofX; is again smooth and the
adjunction map is an isomorphism on these objects. Therefore, the following lemma finishes
the proof. O

LEMMA A.11.- Let P* be a bounded below complex of pseudo-flasque presheaves of
Abelian groups on the small Zariski site of a finite-dimensional Noetherian scheme, and let
be an injective resolution of the associated complex of sheaves. Then the natural map on global
sections

N'X,P*) —T(X,I%
is a quasi-isomorphism of complexes of Abelian groups.

Proof. —The proof follows the proofs of Theorems 4 aridof [6] extremely closely, but it is
easier as it is in the context of complexes of Abelian groups rather than simplicial sets. Namely,
for every open seU of X, let F*(U) = Cone(P*(U) — I*(U)). Then it follows that the
cohomology off™*(U) satisfies a Mayer—Vietoris exact sequence associated to two open subsets
U andV, hence is pseudo-flasque. If we Bt(U) be theqth cohomology group of the complex
F*(U), then the proof of Theorem Bpplies verbatim if we replacewith 0 everywhere, and
take into account that our indexing is cohomological rather than homological.

RemarkA.12. — Note that we are not using the fact th%§ is degenerate above a certain
degree. Therefore, the description of cohomology as the cohomology of (A.9) is valid for such
spaces as well, provided the components belorfj tén particular, it is valid for the classifying
spacesBGL,, overR.

In the paper, we have to use the complex (A.9) for specific pointed simpli¢iathemes
arising as iterated simplicial reduced mapping cafigsWe recall the definition of the reduced
mapping cone:

For f:Y, — X, a map of pointed simplicial schemes, define the reduced mapping cghe of
by

(A.13) C(Ye,Xe) =X 1IY, x I/ ~,

where I is the simplicial version of the unit interval, given in degreeby all sequences
{0,...,0,1...,1} oflengths + 1, and pointed by{1, ..., 1}, and~ are the usual identifications
to obtain the reduced mapping cone.

Let X be a scheme, and I&t,...,Y,,, be subschemes. Denote Ay, the pointed simplicial
scheme consisting oK in every degree, together with a disjoint basepaintConsider the
iterated mapping con€ (X, {Y1,...,Ys}) inductively defined by

C(X,{V1}) =C(Y14, Xy),

C(Xa {Y17 = '7YS+1}) = C(C(Ys+17{}/i,s+la .. -aYS,s+1})7C(X1 {Yla .. aYS}))
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where Y; ; = Y; N Y;. Using induction, one sees easily that the spageone finds for
X,Y1,...,Y, is as follows, writing the elements corresponding tas indices.

(A.14) Co=+II J] Yar..

m—+1

—_——~

with o; € {{0,...,0},{0,...,0,1},....{0,1,...,1}}, Yo, ..o = (a,2q0,..0y ¥ and
(M Y: = X. The boundary and degeneracy maps are the natural maps coming from the inclu-
sions and the identity, which we get by deleting or doublingitheplace in the zeros and ones,
with the convention that we identify,,, . ., with = if at least one of thex's consists of only
1's. Clearly,C, is a pointed simplicial scheme, smoothJf, all Y; and all of their possible
intersections are smooth, and it is a pointed simpliStascheme |fX all Y; and all of their
possible intersections are &I. Due to our definition of the mapping cone, the reduced chain
complexN.(C,) no longer looks like an iterated mapping cone of reduced chain complexes as
there are too many nondegenerate copies of intersections@, and neither does the complex
in (A.9).

So we also defin€l(C,) to be the sheaf of homological chain complexes given in degree
k by ]_.[w:kZ[Yﬁ], with 3 a subset of{1,...,n}, Y = MNicp Yi, and Yy = X. (This has
to be interpreted as the sheaf that to evéfyassociates the homological chain complex
HIB\:k Z[Y3(U)].) The boundary is given on generators&fC, ) b

(A.15) d(Ys) =

H'Mw

—1)/Yp\ (5,

if 8={01,...,0k} with 31 < B2 <--- < 0. (Just as in the complexé$, (-), the maps here are
the ones induced from the maps in the pointed spaces, which means they correspond to the maps
of sheaves that the scheme component represents in ourfopos

PrRoPOSITION A.16. — N, (C,) andJ(C, ) are quasi-isomorphic.
Proof. —Define a map
U :0(C,) — N«(Ch)
via
Yo D (-1)7Y(5.0)
geSy

in degreék, where(—1) is the sign otr, and(3,0) = a4, .. ., a,, is an index defined as follows.
We makex; = {0,...,0} unless;j is an element off. The remaining: «; are indexed bys. We
consider thek standardx + 1)-tuples{0, ...,0,1},...,{0,1,...,1}, and putag, , equalto the
jth (k + 1)-tuple in this list.

We have to check thalt defines a map of complexes. Thisis clear# 0. Fork > 1, Uy_; od
is given by mapping’s (with | 5] = k) to

k k
( Z %\{@) D DTN (1) Y g (s,0.m)-

j=1 TESk—_1
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On the other handy, mapsY to >~ g (—1)7Y(s o), whichd maps to

k

DD (1YY 5.0

oc€ESy j=0

whered; is thejth simplicial face. Now notice that the= 0 term here is zero, as it introduces
{1,...,1} among the indices so this correspondstm C,, which maps to zero iV, (C,).
Also, forj=1,...,k— 1, thejth and(j + 1)st standard tuples become the same after applying
d;, so thair ando o (j j + 1) give the same contributions, which cancel dué-td)?. Therefore
only one term survives, correspondingjte- &, i.e.,dy, which eliminates the last element of all
the indices. So we are left with

k
(=1F D DYoo =D Y (DD Yo s,
j=17€8K_1

oESk

because ifr(1) = j, the first standardk + 1)-tuple (corresponding tes,) gives only zeros
after applyingdy, and therefore thel; applied to the remaining — 1 standard(k + 1)-

tuples give the standard-tuples. This means thatiag, -, dkag,,, are the standard
k-tuples (in the standard order). With = {y1,...,7%-1} = 8\ {8;}, we can also write
this asa,_,,..., a4 _,, as long as we can find in Sx_; with, for e =1,....k — 1,

(i) =0(@+1)if o(i+1) <jandr(i)=0(i+ 1) —1if o(i+ 1) > j. This holds only for
7=(k...j)ooo(l...k).

In order to check tha¥ defines a quasi isomorphism, we proceed by induction on the degree
of relativity n, and investigate how behaves with respect to taking iterated cones as described
explicitly in and preceding (A.14).

So letY, — X, correspond to taking the lastith) relativity into account, withC, the
corresponding reduced mapping cone, i@, is the reduced mapping cone as in (A.13) for
the mapY, — X,, where, with notation as in (A.14),,, =« LT[, . |
X =+1,, o, Yoi,..an_1, andCp, exactly asin (A.14). The mag, — X, corresponds
to the obvious inclusions on the scheme components. In terms of (A.13), a contribution
o1 NYy X X+ X ap—1 X a, wWith a in the mth simplicial degree off, maps to
_____ 1.0 X 01 X -+ X ap_1 X ain Cp, unlessy = {1,...,1}, in which case it is identified
with . Note that ifa = {0,...,0}, then this takes into account the identification required in
the reduced mapping coné&,, is a pointed simplicial subscheme 6%, corresponding to all
an, =10,...,0} (together with« of course).

Let us first note thafl(C,) is the cone of the map(Y,) — O(X. ). Namely, any component
Cy of O(C,) comes fronT](X,) if and only if 5 does not contaim, and that the components
containingn correspond toY (,,}'s, i.e., toJ(Y,)[—1]. So(C,) is the mapping cone of
O(Y.) — O(X,) provided the differential is the one on the cone[AsX, ) is a subcomplex, we
only need to check what the differential does@nwith n in 3. Letk = |3]. Applying d we get

.....

.....

E

-1

k
(D)"Y (=1 Cosy = —Covimy — (DM 2D (=1 Cp g3,
Jj=1 1

<.
Il

which is exactly what we want.
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We shall verify that we have a map of triangles

O(Ye) D(Xe) O(¢) O )[-1] ——

(A.17) @l \pl wi W[—ul

e No(Ya) —> Nu(Xs) —= No(Ca) — N.(Ya)[-1] —

with the maps as follows. The manY, ) — (X, ) comes directly fronY, — X,, and similarly
for N.(Ys) — N.(X,). The mapd(X,) — O(C,) just views (3, a subset of1,...,n — 1},
as a subset of1,...,n}. The mapN.(X,) — N.(C,) is the natural map from the map
Xo — C,. The map(C,) — O(Ys)[—1] mapsYp to O if n is notin 3, and toYg, ¢,y if n

is in 8. The mapN,(C.) — N.(Y,)[—1] is the composition of the natural may,(C.) —
N.(S* A'Y,) corresponding to contracting, to *, and the Alexander—Whitney mag, (S* A
Y,) — N.(Ys)[—1], a quasi-isomorphism (see (A.6)) 5 (S*) is isomorphic tdZ[—1] via the
projection to the{0, 1}-componentin degree 1.

We shall check below that those maps give a map of triangles. It is well known (and using
Mayer-Vietoris for an open cover U V' for nonreduced mapping cones of the realization
of simplicial sets easily seen) that the bottom triangle gives rise to a long exact sequence in
homology. As the top triangle also gives a long exact sequence, we know by induction that
U :[(C,) — N.(C,) is a quasi isomorphism, as is clearly an isomorphism it = 0.

Inthe diagram, the first square commutes because of the naturalityrair the second square,
we note that applyin@’ ¢, on the image ofJ(X,) inside[J(C,) is the same as applying x,
and tagging on an indef0, . .., 0} to the indices already used M, (X,). (The extra{0,...,0}
corresponds ta € {1,...,n}.) This is exactly the result as going around the second square
counterclockwise, aX, is the simplicial subscheme 6f,, given by the components 6f, that
acquire a copy of0,...,0} from the simplicial interval involved in constructing the mapping
cone.

For the third square, the mdp(C,) — O(Y,)[—1] corresponds to mappings to zero if
B C {1,...,n - 1} C {1,...,n}, and tOYB\{n} if 5 g {1,...,n — 1}. If n ¢ 0, \IJ(YQ) will
_____ «,, equal to{0,...,0}, which already goes to zero in
N.(S' AY,). If we have a termY with n € 3, let k = |3] > 1. Going clockwise, we get
Vi1 [=1(Ya\{n}) = 2 ves,, (=1)7Y(5\{n},0) IN Nu(Ys)[—1]. Going in the other direction,
we get

Yo Y (=1)7Ys.0)
o€Sk

in N.(C,). The Alexander—Whitney map (A.6) maps this to

k
S (-1)%djrr0dipa 00 drY (500 ((Bi0)n} @ B (B, 0)n-
j=0 o€Sy

After the projection to{0,1} in N.(S'), we only get a nonzero contribution {f3,0),, =
{0,...,0,1} andj = k — 1. Considering the definition f, o), this means that(1) = k. So
we find

> (—1)7dkY 5.0y @ {0,1}.

€Sk
o(1)=k
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Considering thatd;, removes the last coordinate in all the first— 1 tuples, we see from
the definition of(3,0) that drY(s,,) = Y(3\(n},r), With B\ {n} = {B1,...,Bk—1}, andT =
o(1...k) in Sx_1 C Sk. Projecting to the{0, 1}-component inN,.(S!) = Z[—1] we therefore
find

=DM D (1) Y fnyo)-

TESK-1

Because of the way we identify. (Y, ) shifted by one degree witN..(Y, )[—1] (with the original
d replaced by-d) this shows the diagram commutesa

We now return to our original problem of computing the cohomology groups using explicit
complexes. For’, = C(X,{Y1,...,Y,}) as above, if all scheme components are smooth and
separated of finite type over the base riRgwe can replaceV,(C,) by the quasi-isomorphic
complext(C,) by Proposition A.16 from the very beginning, so instead of (A.7) or (A.9), we
can also use the compl€g(C,,I'3(i)) with

(A.18) CE(Co.T3() = P @ T'(X5.Ih(i)

t+s=q |B|=s

andd(t) = (—1)a(dF )y 4 q) 7,

RemarkA.19. — In order to get products i -theory taking the relativity into account, we
define maps

C(X,{M,....Ye4}) = C(X,{Y1,.. .. Vi) AC(X, {Yeg1,- -, Yage})

by the diagonal embeddﬂg11 _____ Crts wat1, s, @ndidentifying anything of
the form--- x % or x x --- with x in the right-hand side. Taking reduced chain complexes, and
using the AIexander—Whitney map gives us a map

N*(C(Xa {YlaaYS-i-t})) _’N*(C(Xv{}/iaaYS})) ®N*(C(Xa {Ys-l-laaY;f}))

which we want to compare with a similar map using fie) complexes. Namely, Iet; be a
componentind(C(X,{Y1,...,Ysie})),andlets; = {1,...,s}NG, Ba={s+1,...,s+t}NS.
Then we define the map

O(C(X,{Y1,...,Yspe})) = O(C(X,{Y1,...,Ys})) @ O(C(X, {Yoq15- -, Yere}))

via the mapYj +— (—1)IP111521Y; ® Y5,. (Again this has to be interpreted at the level of
simplicial Abelian groups that are associated to those sheaves for every Epdtee maps
are induced from the scheme embeddiligs— Y3, andYs — Yj,.) We have to check that this
defines a map of complexes, but because the ¥nagefined in Proposition A.16 is an injection
of freeZ-modules, the same holds fér® ¥, and therefore it follows from the commutatitivity

of the following diagram (which we will show below), as all other maps in it are maps of
complexes.
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SuppressingX andY from the notation for typographical reasons, we have a commutative
diagram

O(C({1,...,s+1t})) O(CH1L,...,s}) @OC{s+1,...,s+1}))

s |vo

N.(C({1L,...,s+1}) —= N (C({L,...,s})) @ No(C({s+1,...,5+1})).

Namely, writek = |5|, k1 = |01] and ks = |52]|. Starting in the top left corner of the diagram,
going to the bottom left corner, and then to the bottom right corner (using also the Alexander—
Whitney map), we get ofs:

Yg— Z (=1)7Y(5,0)

oESk

= > (DY Eoy 800 X YB.0)er1r o (Br0)ese

=Y (=1)%djadisa Y g0y, (B @ BY (B0 (B
j=00€S

Now observe that the nonzero indices involved(jfyo) are k in total, of lengthk + 1,
ie.,

{0,0,...,0,0,0,...,0,1}

{0,0,...,0,0,1,...,1,1}

(A.20) {0,0,...,0,1,1,...,1,1}

{0,0,...,1,1,1,...,1,1}

{0,1,...,1,1,1,...,1,1}.
——— ———

0...j—1 Gk

dj11djto...d; deletes the lask — j columns,dé deletes the firsj columns of all tuples
involved. For fixed;, if any of the lastj-tuples end up among the lastuples of(3, o), then one

of the tuples becomefd., ..., 1} underd}, and the corresponding component is mapped to zero
in N,. So for a nonzero contribution, the lgstuples must end up amon@,o)1,...,(3,0)s.

If any more tuples end up if3,0)1,...,(5,0)s, then among(5,0)st1,---,(8,0)s+¢ the
nonzero ones will be fewer than the firkt— j standard tuples in (A.20). The same will
hold for all tuples in the index inl)Y{35,).,,,..(3,0)... @ the other ones are zero anyway,
S0 déy(ﬁ,a)sﬂ,...,(ﬁ,a)w is degenerate fok > 0, and goes to zero inV,. (For k = 0,

k1 = ko = 0, and there is only one term, see below.) As tuples must end up among
(8,0)1,...,(B,0)s, this shows that for a nonzero contribution we must hgve &, the
nonzero tuples amon@3,o),...,(8,0)s are the last; rows above, and the nonzero tuples
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among(83,0)s+1,---,(8,0)s+t are the first — k1 = ko rows above. The sum then simplifies
to

o k
D (1) drys1diy v Ak Y g0y (Bi0). @ A6 V(B0 r (B0
o€Sk

—(—1)’“'”( > (—U”Y(ﬁl,n))@( > (—1)T2Y<ﬁz,rz>>

T1E€Sk, T2ESk,

because the permutatienmust map{1,...,k — k1 } to {k1 + 1,...,k} as well as{k — k1 +
1,...,k}to{1,..., k1 }, so we must have

(1...k) ™ Mo=r(lke4+1)... (ki k)i (Thka 4+ 1)...(k1 k)

for some (uniquey; in Sy, andr, in Si,. As this equalg —1)1%111%21W(Yy ) @ (V3,) the
diagram commutes as required.

Now suppose thatt and B are homological chain complexes of sheaves, with a bilinear map
AxB— C.Thereisamap: K(A)ANK(B) — K(A® B) (with K the Dold—Puppe construc-
tion as before), which gives rise to a map

[S"AXe, K(A)] x [S™AYe,K(B)] = [S"T" AXe AYe, K(A® B)]
=[S A X ANYe — K(C)].
It is shown as on [12, p. 215] that under our identificatioffs® A X,, K(A)] with
[N.(X.)[—n], A] p, etc., this corresponds to the composition

N (Xe ANYQ)[=n —m] = Ny(Xo)[-n] @ Ny(Ye)[-m]| = A® B—C

with the first map the Alexander—-Whitney map and the last map the given product. In the cases we
are interested in this becomes a cup product of sections in (pre)sheaves, and it follows from these
formulas that the product on components corresponds to cup prddu€ts A) x I'(Y;, B) —

(X, x Y, C) up to signs. In particular, for the explicit map at the very beginning of this
remark, the diagram tells us that the product in the complex (A.18) is up to a sign given by
the map

F(YﬁlvA) X F(YﬁwB) - F(Yﬁlﬁzac)a

which is the composition of

F(YﬁlvA) X F(YﬁwB) - F(Yﬁl X Y527 C) - F(Y5152,O),
the last map being the pullback corresponding to the “diagohals, — Ys, % Y3s,. This is
clearly the same, since the products are functorial, as the map

(A21) F(YﬁlvA) X F(YﬁwB) - F(YﬁlﬁzaA) X F(Yﬁlﬁw B) - F(Y5152, C)

Let now ™ denote the composition ef and sheafification, as in Definition A.4. L&t G and
H be three presheaves of vector spacesowith a bilinear mapF x G — H. Applying™~ we
obtain, sincé clearly sends products to products, an induced fiapG — H which is easily
seen to be bilinear. Fdv in S’ there are natural vertical maps making the following diagram
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commute:

I'(U,F)xT(U,G) ——=I(U, H)

l |

(U, F) xT(U,G) —=T (U, H).

The syntomic complexes come with produ€t(i) x I'$(j) — I'$(i + j) (see, for example,

[2, Definition 6.5] where products are constructed on cohomology but it clearly comes from a
product on complexes). Taking injective resolutions and using Proposition A.8 it is quite easy to
see now that the product on multi-relative syntomic cohomology is induced from a map on the
complexes (A.18) given by maps like (A.21). The precise signs turn out to be unimportant for
us.

The previous constructions are applied in the body of the paper with the schemes
= (P \{t=1})" and Y;={t;=0,00},

with ¢ the standard affine coordinate Bn, andt; the ith coordinate in thex-fold product, or
localizations of those schemes.

After this rather explicit exercise, we now turn our attention to the theory of Chern classes.
The theory of syntomic Chern classes of [2] can be extended from schemes to arbitrary spaces
as follows. In loc. cit. before Theorem 7.5 universal Chern classes

€ H*(BGL,T%(i))

were constructed. Again this was explicitly done in some of the theories but it can easily be done
in all the others. Further, this was done with the cohomology defined as the cohomology of the
complex (A.9), but since the components®¢/L,, belong toS’ it follows from Remark A.12

that this is the same as the definition we have been using here. Now a standard procedure [17,
6.1] produces, for each € H "™ (X,, K) a Chern class

ci(a) € H* ™ (X,,T3(i)).

More precisely, ifK = Z x Z., BG L is the sheaf used to define algebraietheory of spaces as
K,(Xe) =[5" A X., K], then each; defines a magf’ — K (2i,I'3(7)). If o is an element
in K,,(X,.), then by composition we get the elementa) in [S™ A X.,K(2i,f;(i))] =
H?=m(X,,T3(i)).

For aK-coherent spac#,, both

H™(X,,T%) = H(X,,Z) x <{1} (EBIH(X-ﬂ(i))))

and,,~, H " (X., K) haveA-ring with involution structures described in loc. cit. 6.1 and
there is a total Chern class

c: @@ H™(Xe, K) > H(X,,T3).

m=0

PROPOSITION A.22. — When X, is K-coherent the total Chern class is a morphism of
A-rings with involutions.
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Proof. —Everything is reduced to the properties of the universal Chern classes (see, for
example, the proof of [17, Theorem 5] for thestructure). These properties are deduced
in the following way. There is a map of complexes of presheaves (in the derived category)
I'3(n) — I'§x, where the latter complex is the complex of differential forms on the generic
fiber. We get an induced map of cohomology theories which is compatible with cup products and
therefore also with\-operations. By [2, (7.4)] this map gives an injection

(A.23) B H* (BGLy T3(i)) — @D Hix(BGLy /K)

on the part of the cohomology @G L  containing the Chern classes for ay The syntomic
universal Chern classes are defined to map to the corresponding de Rham Chern classes. Since
both sides of (A.23) are closed under products, all required properties of syntomic universal
Chern classes follow from the corresponding results for the universal de Rham classes.

As all the cohomology groups afg-vector spaces, one gets a Chern character from this in the
usual way (cf. [24, 84] or [16, Definition 2.34]), which gives a ring homomorphism

reg: K. (Xo) = H *(Xo, K) — H* (X4, T3(%))

with the property thateg( K (X,, K)) C H2=™(X,, I'3(5)), cf. [24, Corollary on p. 28].
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