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GALOIS THEORY OF FUCHSIAN
q-DIFFERENCE EQUATIONS

BY JACQUES SAULOY

ABSTRACT. – We propose an analytical approach to the Galois theory of singular regular
q-difference systems. We use Tannaka duality along with Birkhoff’s classification scheme wi
connection matrix to define and describe their Galois groups. Then we describefundamental subgroup
that give rise to a Riemann–Hilbert correspondence and to a density theorem of Schlesinger’s type

 2003 Elsevier SAS

RÉSUMÉ. – Nous proposons une approche analytique de la théorie de Galois des systèm
q-différences linéaires singuliers réguliers. Nous combinons la dualité de Tannaka avec la méth
classification de Birkhoff à l’aide de la matrice de connexion pour définir et décrire leurs groupes de
Puis nous décrivons dessous-groupes fondamentauxqui donnent lieu à une correspondance de Riema
Hilbert et à un théorème de densité de type Schlesinger.

 2003 Elsevier SAS

“Je suis convaincu que, tout comme pour les fonctions spéciales solutions d’équ
différentielles, les formules intéressantes dérivent de considérations “géométriques” si
(Jean-Pierre Ramis, [23]).

0. Introduction

0.1. Rational linear q-difference systems and rational equivalence

Let q be a fixed complex number such that|q|> 1. Let σq denote the dilatationz �→ qz of a
complex coordinatez on the Riemann sphereS=P1C, viewed as an operator on functions ofz.
In [27], we studied the classification ofrational linear q-difference systems

σqX =AX(0)

overS underrational equivalence. Here,A ∈ GLn(C(z)) is a given matrix and the unknow
X is a matrix withn rows and (possibly multivalued) holomorphic entries on someq-invariant
open subset ofS. The gauge groupGLn(C(z)) operates on the left on solutions of such syste
hence on the systems themselves. This gives rise to the rational equivalence relation:

A∼ (σqF )−1AF, F ∈GLn
(
C(z)

)
.

In this paper, we study the Galois theory of such systems.
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926 J. SAULOY

0.2. The classification theorem of Birkhoff

In analogy with Riemann’s classification scheme for complex fuchsian differential equations,
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by local data at the singularities and monodromy transformations arising from the an
continuation of local solutions (the so-called “connection formulae”), Birkhoff defined in
the “generalized Riemann problem” forq-difference equations. He solved it forfuchsian system
under innocuous (generically true) assumptions. We now describe his classification sch
slightly revised by us in [27].

We assume the system (0) to befuchsian overS. This condition is precisely defined in 1.2.
it is essentially equivalent to the existence of fundamental solutions with moderate grow0
and∞, as opposed to theta-like growth, likezlogz (see [22]). The idea of Birkhoff is to use loc
solutions at the two onlyq-invariant points ofS, 0 and∞, and to classify fuchsian systems us
linear data at0 and∞ andonematrix connecting a local solution at0 to one at∞. Here are the
main steps. Note the close similitude of steps 1 to 3 with the classical Frobenius–Fuchs
for ordinary differential equations.

1. Any fuchsian system is meromorphically equivalent (near0) to one with constan
coefficients. Here, meromorphic equivalence is defined by letting the gauge transfor
F ∈GLn(C({z})) (F will then automatically belong toGLn(M(C))).

2. Any constant coefficient system can be reduced by linear algebra to1-dimensional systems
σqf = cf (wherec is an exponent) and, if its matrix is not semi-simple,2-dimensiona
unipotent systems:σqg = g + 1. One can build solutions to such elementary systems
are meromorphic onC∗ and have moderate growth at0 and∞, relying on Jacobi’s thet
functionΘq. We thus obtain theq-characterseq,c and theq-logarithmlq. From this, we ge
a canonical fundamental solutioneq,A for each constant coefficient systemA ∈GLn(C).

3. Each fuchsian system is therefore endowed with a local solution at0:X(0) =M (0)eq,A(0) ,
whereM (0) ∈ GLn(M(C)) andA(0) ∈ GLn(C), and, symmetrically, a local solutio
at∞: X(∞) =M (∞)eq,A(∞) , the Jordan structures ofA(0) andA(∞) are the the require
“linear data”.

4. The connection matrix of Birkhoffis then defined to be:P = (X(∞))−1X(0). It has
coefficients in theq-invariant subfieldM(C∗)σq of M(C∗), that is, in the field of
meromorphic functions on the elliptic curveEq =C∗/qZ.

Now, Birkhoff’s theorem says that, given linear data at0 and at∞ and an invertible
elliptic matrix, one can recover a system(0) well defined up to rational equivalence. A prec
formulation can be found in [27].

Birkhoff’s method seems to lend itself easily to a reformulation in the style of Riem
Hilbert’s classification scheme, via local systems and representations of the fundamenta
The local linear data should allow one to compute local monodromy transformations aro0
and∞, so that agroupoid with two base pointsnaturally appears. Then these base points sh
be connected by paths from0 to ∞: here, the representation has a natural counterpart
connection matrix. But the latter has elliptic coefficients, so that one does not end u
algebraic matrices over the complex numbers, as in the classical case: the field of “con
of the theory,M(C∗)σq =M(Eq), is too big.

0.3. Adapting Picard–Vessiot theory

The first break through the difficulties caused by the big constant fieldM(Eq) was made by
Etingof in [14]. He adapted Picard–Vessiot theory to the case ofregular q-difference systems
those such thatA(0) = A(∞) = In. Etingof defines and builds Picard–Vessiot extens
and shows the relatedq-difference Galois group to be generated by thevalues(at authorized
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points)P (a)−1P (b) ∈ GLn(C), whereP is the connection matrix. However, in the case of
nonregular systems, elliptic functions spontaneously arise in yet another way: ifc, d ∈C∗, then,
along with the “legal” solutioneq,cd to the equationσqf = cdf , there is alsoeq,ceq,d, so that
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φ(c, d) = eq,ceq,d

eq,cd
is elliptic. Any field containing these basic solutions will containall elliptic

functions, and it is easy to prove that there is no way to trivialize the cocycleφ(c, d) while using
“true functions”, so that there seems to be no hope for a Picard–Vessiot theory with a
defined overC even in the fuchsian case. The second breakthrough was accomplished
der Put and Singer in [20], usingsymbolic solutions. They build a Picard–Vessiot theory wi
constant fieldC. They are then able to solve the problem in total generality, including the
of irregular (nonfuchsian) systems.

However, our work is part of a program that requires a function theoretic atta
these problems. First, there is the link ofq-difference equations to ordinary different
equations throughq-analogies. Whenq→ 1, q-analogs of special functions (like Heine’sbasic
hypergeometric series, see the “bible” [15]) “tend to” their classical counterpart. One m
wish to follow Galois groups along such aconfluence. Some results in this direction we
expounded in [27]. They receive here substantial extensions. This is of obvious inte
mathematical physics, with the present ubiquity ofq-deformations. Second, the appearance (
central importance) of Jacobi’s theta functions, elliptic functions and complex elliptic c
in the landscape unveil rich geometric structures. We build explicit galoisian automorp
and give them a geometric interpretation, which allows us to exhibit a reasonable candid
the role offundamental group, that is, a finitely generated and finitely presented Zariski-de
subgroup of the Galois group. This is in analogy with Schlesinger’s theorem (see [4,7
with the topological flavour of the classical Riemann–Hilbert correspondence, where fu
differential equations are classified by monodromy representations (see [10])1.

As noted before, the use of “true functions” asq-characters forces on us a big const
field M(Eq). Yet, in our version of the classification theorem of Birkhoff, automorphism
fuchsian objects are classified by complex matrices. The root of this fact is that we autho
unique “legal model” for the equationσqf = cf the one functioneq,c and nobody else, thereby
rigidifying a lot the situation. The corresponding drawback is that we cannot multiply solu
eq,ceq,d is not legal, onlyeq,cd is; we do not even have an algebra of solutions. Therefor
produce a Galois group, we turn to Tannaka duality (see [12,11]). This has already been
this context twice: by van der Put and Singer in [20] for one, then by Yves André in his wor
where deformation results are proved for difference and differential Galois groups.The goal of
this paper is therefore to give a tannakian formulation of the classification theorem of Bir
while using as basic objects uniform analytic functions.We now list our main results (they a
detailed in Section 0.4).

The local categoryE(0)
f of q-difference systems is naturally equivalent to theC-linear neutral

tannakian categoryFibp(Eq) of flat vector bundles over the elliptic curveEq . There is a naturally

defined local Galois groupoidG(0) of E(0)
f with base setC∗ and we compute it explicitly, as we

as the local Galois group, also calledG(0). We build explicit elements of the groupG(0), and we
want to see them asloops2; then, we single out two commuting loops with a nice topolog

1 To these arguments, one should add that the oldest historical motivation for theq-world lies in magic identities
by Gauss, Euler, Jacobi, Ramanujan . . . (see [21]). These involve classical analytical functions and one m
for a geometricunderstanding of them. One must also mention thatq-difference equations are a possible intermed
step to understand the mysterious analogy between irregular linear ordinary differential equations and wildly
phenomena in positive characteristic (see [24]).

2 By nicknaming “loop” a galoisian automorphism (i.e. a tensor automorphism of a fibre functor), we just go on
step beyond the terminology introduced by Katz in [18], 1.1.2.1.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



928 J. SAULOY

interpretation as “fundamental loops of an infinitesimal elliptic curve”. The group they generate
is Zariski-dense inG(0). We see it as thelocal fundamental group.

TheglobalcategoryEf of q-difference systems is equivalent to theC-linear neutral tannakian
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category of triples(A(0),M,A(∞)), made up of two flat vector bundles and a meromorp
isomorphism between. Evaluating such isomorphisms at non singular points provides u
galoisian isomorphisms (“paths”) in the global Galois groupoidG. The local groupoidsG(0) and
G(∞) together with these paths generate a Zariski-dense subgroupoid ofG. For regular abelian
objects with prescribed singular locus, the Galois group is Zariski-generated by the va
the connection matrix. Using methods from geometric class field theory, one can class
regular abelian representations with prescribed singular locusS of the global Galois group a
representations of an explicit affine group.

Last, we describe explicitly the confluence of the generators of the global Galois gro
elements of a differential Galois group whenq tends to1.

0.4. Contents of this paper

Let us now describe more precisely the organisation of this paper. In Section 1, we
some basic properties of linearq-difference systems with rational coefficients. In Section
we briefly recall general algebraic properties ofq-difference systems andq-difference modules
mostly adapted from [20]. In Section 1.2, we define the categoryEf of fuchsianq-difference
systems, a neutral tannakian category overC, and we summarize the first part of our previo
work [27], about local solutions and classification of such systems.

Sections 2 and 3 contain the core of this paper, the construction and tentative des
of the local and global Galois groups and groupoids of the category of fuchsianq-difference
systems. Section 2 deals with the local setting and Section 3 with the glueing of the
descriptions at0 and∞. In 2.1, we study thelocal categoryE(0)

f ; we consider here as localisatio
at 0 the action to allow for morphisms with coefficients definedlocally for the transcendan
topology. We find a particularly simple equivalent categoryP(0) of local models related with
the categoryR of complex representations ofZ. In Section 2.2, we exploit this link to exhibit
C∗-indexed family of fibre functorsω(0)

z0 extending the canonical fibre functorω onR, allowing
us to compute thelocal Galois groupoidG(0) of E(0)

f , with base setC∗ from the knowledge

of the proalgebraic hullZalg = Homgrp(C∗,C∗) ×C of Z: G(0) is thereby identified with a
subgroupoid ofZalg =Aut⊗(ω). We prove:

2.2.2.1. THEOREM(the local Galois groupoid). –With the previous identification ofAut⊗(ω)
with Zalg ,

Iso⊗(
ω(0)
z0 , ω

(0)
z1

)
=

{
(γ,λ) ∈ Zalg | γ(q)z0 = z1

}
.

The Galois group (also calledG(0)) is then immediately deduced in Corollary 2.2.2
Two commuting algebraically independent elements (“loops”)γ1 and γ2 in the semi-simple
component ofG(0) are built in 2.2.3. The following density theorem thus provides an an
to the local fundamental group:

2.2.3.5. THEOREM. – The subgroup ofHomgrp(C∗,C∗)×C whose unipotent component
Z⊂C and whose semi-simple component is generated byγ1 andγ2 is Zariski-dense in the loca
Galois group.

According to Weil’s correspondence between the degree0 vector bundles on a compa
Riemann surface and the representations of its fundamental group, our categoryP(0) of local
models is shown to be equivalent to the category of flat vector bundles over the elliptic cuEq

4e SÉRIE– TOME 36 – 2003 –N◦ 6
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in 2.3. Our solutions can be interpreted as sections of these bundles and the singling out of our
fundamental solutions is equivalent to a choice of frames.

In Section 3, we start global Galois theory. In 3.1, we define a categoryC of connection triples
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(A(0),M,A(∞)), made up of two local (flat) systems and an isomorphismM between them tha
is meromorphic overC∗. In Proposition 3.1.1.3, we prove thatEf andC are equivalent tenso
categories. The natural projections to the local categories at0 and∞ equip them with twoC∗-
indexed families of fibre functorsω(0)

z0 andω(∞)
z0 . This defines a Galois groupoidG of C with

base setC∗ �C∗. EvaluatingM at a pointz0 defines a galoisian isomorphismΓz0 between the

restrictions ofω(0)
z0 andω(∞)

z0 to the tannakian subcategoryCΣ of systems with singular locu
carried byΣ; we want to see such an element as a “path”. We then get another density res

3.1.2.3. THEOREM. – The local groupoids at0 and at∞ (defined and computed in Section2)
together with the pathsΓz0 , z0 /∈Σ generate a Zariski-dense subgroupoid of the Galois group
of CΣ.

In 3.2, we follow more literally Birkhoff and get stuck in many complications due to
bad multiplicative properties of solutions, precisely, the fact thateq,cd �= eq,ceq,d, leading us to
a twisted tensor structureand atwisted connection matrix. However, the grubby computation
of 3.2 give a more concrete approach and a simple structural description of the global
group. Moreover, it is better fitted for the important confluence results of Section 4. The re
with the point of view of 3.1 is explained in 3.2.3. In both approaches, we have exhibited
of “connecting” galoisian isomorphisms (from0 to∞), built from the values of the connectio
matrix, and we have proven a density lemma; but we want to reduce theuncountablefamily of
generators thus obtained and to make explicit the relations between them. We solve this
problem in 3.3 forregular abelianobjects. The Galois group is then reduced to its connec
component, which, after 3.1.2, is Zariski-generated by the values of the connection m
Relative to a prescribed singular locusS we explicitly define and compute in 3.3.2 (Eq. (
3.3.2.1 and 3.3.2.2) affine algebraic groupsLS,s, L′

S,s andLS,u and prove:

3.3.2.3. THEOREM. – The abelian regular objects with singularities inS are classified by the
representations of the following algebraic group:

π1
ab,S,reg =

LS,s
L′
S,s

×LS,u.

In Section 4, we study, along the lines of our previous work [27], the confluence ofq-difference
galoisian automorphisms to differential galoisian automorphisms whenq→ 1. This can be see
as an “internal”, maybe more explicit, illustration of results by Yves André in [1], relatin
family of q-difference Galois groups to a differential Galois group.

General facts and conventions

We fix for the whole paper a complex numberq ∈C such that|q| > 1 and a numberτ ∈ H
(Poincaré’s half plane) such thatq = e−2ıπτ . The only exception is Section 4.1, whereq andτ
will be allowed to vary. For anyc ∈C∗, there is a unique pair(m,d) ∈ Z ×C with c = qmd,
whered belongs to thefundamental annulus: 1 � |d|< |q|; we then putε(c) =m andc= d, so
thatε(c) is the integral part oflog |c|

log |q| andc= qε(c)c.
For any complex regular matrixA ∈ GLn(C), we write A = AsAu its (multiplicative)

Dunford decomposition: As is semi-simple,Au is unipotent and they commute. Such
decomposition is unique and both factors are polynomials inA. Let f be any map:C∗ →C∗.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



930 J. SAULOY

Write As = Qdiag(c1, . . . , cn)Q−1. Then, the matrixQdiag(f(c1), . . . , f(cn))Q−1 depends
on As only and we write itf(As). Except otherwise explicitly stated, we shall then write
f(A) = f(As). One exception to this last convention is thatA = AsAu, so thatA = qε(A)A.
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Another exception appears when we defineeq,A in 1.2.2. Also, note the following general fac
if SA = BS, then, for any mapf :C∗ →C∗ and anyλ ∈C, one hasSf(As) = f(Bs)S and
SAλu =B

λ
uS; here, of course,

Aλu =
∑
k�0

(
λ
k

)
(Au − In)k

(actually, a finite sum).

1. Preliminary results

1.1. Difference systems and difference modules

Most of the general formalism here is expounded in [20]3. Let (K,σ) be a difference field
K is a field andσ is an automorphism ofK . We shall also, without further notice, denote
σ the canonical extensions to the vector spaces of matrices, or of row or column vecto
q-difference equation of ordern:

σnf + a1σn−1f + · · ·+ anf = 0, a1, . . . , an ∈K, an �= 0(1)

can be put into system form as aq-difference system of rankn:

σX =AX, A ∈GLn(K).(2)

Conversely, any such system is equivalent to such an equation via the gauge equivalence
by: A ∼ (σF )−1AF , F ∈ GLn(K). This is a consequence ofBirkhoff ’s cyclic vector lemma
(see [27], Appendix B or [13]). As a consequence, from now on, we won’t distinguish bet
equations and systems.

1.1.1. The category of difference modules
The system (2) can in turn be modelled more intrinsically as adifference module(Kn,Φ)

by puttingΦ:Kn→Kn X �→ A−1σX , where a difference module over the difference fieldK
(more properly, over(K,σ)) is a finite dimensionalK-vector spaceM equipped with aσ-linear
automorphismΦM (that is, a group automorphism such thatΦM (xm) = σ(x)ΦM (m)). Then
ΦM is actually linear over theconstant subfield:

CK =Kσ =
{
x ∈K | σ(x) = x

}
.

A morphismf : (M,ΦM )→ (N,ΦN ) is aK-linear map such thatΦN ◦ f = f ◦ΦM . We shall
usually writeM , f :M →N , etc., the difference module structure being implicit. Also, we w
r(M) for the rank of the difference moduleM , that is, its dimension as aK-vector space. We
thus obtain the categoryDiffMod(K,σ) of difference modules over the difference field(K,σ).
According to [20], this is aCK -linear rigid abelian tensor category (see [12] and [11]). Clea

3 A different formalism is presented in [1], which introduces a notion ofnon commutative connection.
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forgetting the difference structure (i.e. the automorphismΦM ) provides us with a fibre functor
from DiffMod(K,σ) to the categoryVectfK of finite dimensionalK-vector spaces, thus making
DiffMod(K,σ) aCK -linear tannakian category neutralized byK (see [12]).
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1.1.2. The category of difference systems
Choosing an ordered basis for each finite dimensional vector space overK allows one to

replace the categoryVectfK by its essential full subcategory with objects theKn (n∈N); then
the morphismsKn→Kp can be identified with the matrices inMp,n(K). This subcategory i
equivalent, as an abelian category, toVectfK . To have an equivalencequatensor categories, it i
enough to consistently choose an order on the product of any two ordered bases. For in
choosing the lexicographic order gives bijections:

{{1, . . . , n1} × {1, . . . , n2}→ {1, . . . , n1n2},
(i1, i2) �→ i1 + n1(i2 − 1).

We thus obtain well defined isomorphisms:

Kn1⊗
K
Kn2 →Kn1n2 and Mp1,n1(K)⊗

K
Mp2,n2(K)→Mp1p2,n1n2(K).

The resulting tensor category has trivial (i.e. identity) associativity and unity constraints
is not so for the commutativity constraint).

In the same spirit, define thecategoryDiffEq(K,σ) of difference equations over the differen
field (K,σ): it has as objects the pairs(Kn,A) where n ∈ N and A ∈ Gln(K); and, as
morphisms from(Kn,A) to (Kp,B), the matricesF ∈Mp,n(K) such that(σF )A =BF (the
composition is the natural one). We shall often simply denote byA the object(Kn,A) and
identify it with the difference equationσX =AX ; the main reason to make the base spaceKn

explicit is to give a more natural notation to the forgetful functor(Kn,A) ❀ Kn. To obtain
DiffEq(K,σ) as atensormodel ofDiffMod(K,σ), we define the tensor product of two obje
by: (Kn1 ,A1)⊗ (Kn2 ,A2) = (Kn1n2 ,A1 ⊗ A2), with the previous identification ofA1 ⊗A2

to a matrix inMn1n2(K); and the tensor product of two morphismsFi : (Kni ,Ai)→ (Kpi ,Bi)
(i= 1,2) asF1 ⊗F2, similarly identified with a matrix inMp1p2,n1n2(K). From 1.1.1, we draw
thatthe above constructions makeDiffEq(K,σ) into a rigidCK -linear abelian tensor categor
equivalent toDiffMod(K,σ). It is tannakian and neutralized byK . The basic relevant linea
and tensor constructions are detailed in [26] and in [29]. In particular, the unit1 is (K,1).

1.1.3. Functors of solutions
Thefunctor of global sectionsonDiffMod(K,σ) is the functorΓ=Hom(1,−). The elements

of Γ(M) are precisely the fixed vectors ofΦM in M . We clearly get a left exact functor to th
category ofCK -vector spaces. From the inequalitydimCK Γ(M) � r(M) (which follows from
the “q-analogue of the Wronskian lemma”, see [13], I.1.2), follows that this functor act
goes to the categoryVectfCK

. Now let (K ′, σ′) be an extension of(K,σ), that is,K ′ is an
extension ofK andσ′|K = σ. The naturally defined base change functor fromDiffMod(K,σ)
to DiffMod(K ′, σ′) is exact and⊗-preserving. Combining these constructions yields a fun
M ❀ (M ⊗K ′)σ

′
.

In matrix terms, we associate to a system (2) theCK′ -spaceSK′(A) of solutions inK ′n. We
thereby obtain a functor fromDiffEq(K,σ) to VectfCK′ defined by:

{
A❀ SK′(A),
(F :A→B)❀ (

U �→ FU :SK′(A)→ SK′(B)
)
.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



932 J. SAULOY

Call fundamental(matrix) solutionof the system with matrixA ∈ GLn(K) over the extension
K ′ a matrix solutionX ∈Gln(K ′). The rank of theCK′ vector spaceSK′(A) is exactlyn if and
only if there is a fundamental solution. If all systems have a fundamental solution inK ′, then the
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functor of solutions is a fibre functor. However, in general, functors of solutions are neithe
exact, nor faithful, nor⊗-compatible.

1.2. Fuchsian equations

1.2.1. The category Ef of fuchsian equations
We shall define here the categoryE of linearq-difference equations with rational coefficien

and its subcategoryEf of fuchsian equations. We shall use the following fields of functio
C(z), the field of rational functions;M(C), the field of meromorphic functions overC;
M(C∞), the field of meromorphic functions overC∞ = S − {0}; andM(C∗), the field of
meromorphic functions overC∗. Each of these function fields, endowed with the automorph
σq :f(z) �→ f(qz), is a difference field. To any of them, we can specialize the prece
constructions.

We are particularly interested in the category of (linear) rationalq-difference equations
obtained by takingK = C(z) andσ = σq . We shall call itE = DiffEq(C(z), σq). Since the
constant field is, in this case,CK =C(z)σq =C, E is aC-linear tannakian category neutralis
by C(z).

We shall say that a system with matrixA ∈ Gln(C(z)) is strictly fuchsian at0 if A(0) ∈
Gln(C). We shall then callfuchsian at0 a system that is meromorphically (that is, throu
a gauge transformation with coefficients inM(C)) equivalent to a strictly fuchsian one.
was proved in [27], Annexe B, that this definition is equivalent to the classical one (usin
Newton polygon). ConsideringA(∞) and gauge transformations with coefficients inM(C∞),
we similarly define systems fuchsian (resp. strictly fuchsian) at∞. It was also proved inloc. cit.
that an equation fuchsian at0 and at the same time fuchsian at∞ is rationally (that is, through a
gauge transformation with coefficients inC(z)) equivalent to one that is strictly fuchsian overS
(i.e. at 0 and∞). Such equations we callfuchsian overS, or merely fuchsian. They form
strictly full subcategoryEf of E .

1.2.1.1. THEOREM. – The categoryEf is a tannakian subcategory ofE overC.

To see thatEf is closed under tensor operations (including unit, dual and internalHom) it
is plainly enough to consider the case ofstrictly fuchsianobjects, and then it is obvious. No
from the lemma herebelow, it follows that the kernel inE of any morphism between fuchsia
objects is itself fuchsian. Therefore, it is a kernel inEf . Since duality in the tannakian categoryE
exchanges kernels with cokernels (this follows from [12, p. 112]), we conclude thatEf is indeed
an abelian subcategory ofE . ✷

1.2.1.2. LEMMA. – In E , any subobject of an object that is fuchsian at0 is so.

This is an immediate consequence of the properties of the Newton polygon stud
[28,29,32]. For a more explicit analytic proof see [26] (see also [19]).✷
1.2.2. Local reduction and local solutions

We recall, here and in the following section, some results from [27] and [26]. First, d
Jacobi’s theta function:

Θq(z) =
∑
n∈Z

(−1)nq−n(n−1)/2zn.
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It is holomorphic overC∗ with simple zeros onqZ. It satisfies theq-difference equation
Θq(qz) = −qzΘq(z). It will be our main brick to build everything. First, one defines the
q-logarithm:

s,
lq(z) = z
Θ′
q(z)

Θq(z)
,

which is meromorphic overC∗ with simple poles onqZ and satisfies theq-difference equation
lq(qz) = lq(z) + 1. Then, for eachc ∈C∗, one defines theq-character with exponentc. First, if
c lies in thefundamental annulus{z ∈C | 1 � |z|< |q|}, one puts:

eq,c(z) =
Θq(z)

Θq(c−1z)
.

For c arbitrary, one writesc= qε(c)c, whereε(c) ∈ Z andc belongs to the fundamental annulu
and one puts4:

eq,c = zε(c)eq,c.

Theneq,qn = zn (if n ∈ Z) and each non trivialeq,c is meromorphic overC∗ with simple zeros
on qZ and simple poles oncqZ. It satisfies theq-difference equationeq,c(qz) = ceq,c(z), as well
as various relations as a family: for instance,eq,qc(z) = zeq,c(z), etc.

Now, letA ∈GLn(C) with Dunford decompositionA=AsAu. If

As =Qdiag(c1, . . . , cn)Q−1,

it makes sense to define:

eq,As =Qdiag(eq,c1 , . . . , eq,cn)Q
−1.

Similarly, defining:

eq,Au =Alqu =
∑
k�0

(
lq
k

)
(Au − In)k

makes sense, sinceAu is unipotent. One then has

σq(eq,As) =Aseq,As and σq(eq,Au) =Aueq,Au ,

and defining

eq,A = eq,Aseq,Au ,

one gets thecanonical fundamental solutionof the constant coefficients systemA. The above
equality, besides, is a Dunford decomposition. From the relationeq,qc(z) = zeq,c(z) stems the
equalityeq,A = zε(A)eq,A.

We shall build solutions with coefficients in the field:

K0 =M(C)
(
lq, (eq,c)c∈C∗

)
.

4 This is an innocuous modification with respect to [27].
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As noted in the introduction, the constant subfieldK0
σq is precisely equal toM(C∗)σq , the

fieldM(Eq) of elliptic functions: indeed, one inclusion is obvious and the other comes from the
classical fact that the family of the cocycle values:

a

ces

: see

tional

ion

nant
alising

nnulus)
φ(c, d) =
eq,ceq,d
eq,cd

=
Θq(z)Θq(c−1d−1z)
Θq(c−1z)Θq(d−1z)

generates the groupM(Eq)∗. Extending the cocycleφ to semi-simple matrices, one gets
cocycleΦ of invertible elliptic matrices such that, for any two semi-simple matricesC,C′, one
haseq,C ⊗ eq,C′ = eq,C⊗C′Φ(C,C′). On the other hand, it is clear that, for unipotent matri
U,U ′, one haseq,U ⊗ eq,U ′ = eq,U⊗U ′ . Thus, for any two invertible matricesA,A′, Φ(As,A′

s)
is exactly the defect of⊗-compatibility of the formation of our canonical solutionseq,−:

eq,A ⊗ eq,A′ = eq,A⊗A′Φ(As,A′
s).

To build explicit solutions, we follow closely the classical way for differential equations
[17,36]. We consider local reduction at0, the case of∞ being similar.

First, any fuchsian system reduces by definition to a strictly fuchsian one through a ra
gauge transformation. Any strictly fuchsian system reduces similarly to anonresonantone, that
is, such that no two distinctexponents(eigenvalues ofA(0)) are congruent moduloqZ. This
process involves some non canonical choices.

Second, any non resonant systemA is equivalent to the constant coefficients systemA(0).
This is obtained by solving the functional equation with initial condition:

{
F (0) = In,
(σqF )A(0) =AF

with F a convergent power series. The equivalent equationσqF = AF (A(0))−1 then entails
thatF is actually meromorphic overC (the polarity will be precised below). The transformat
matrixF is unique.

It follows that any systemA that is fuchsian at0 has a fundamental solution

X(0) =M (0)eq,A(0) ,

whereM (0) ∈GLn(M(C)) andA(0) ∈GLn(C); the latter can be assumed to be non reso
and have all its eigenvalues in the fundamental annulus. One can also add more rigid norm
conditions, like sorted eigenvalues (with respect to an arbitrary order on the fundamental a
and sorted sizes of the Jordan blocks (see [27]). Defining thesingular locus of a matrixM to be:

S(M) = {poles ofM} ∪ {poles ofM−1}= {poles ofM} ∪ {zeros ofdetM},

one finds the singular locus of the meromorphic part:

S(M (0)) = q−N∗
S(A).

The singular locus of the “log-car” parteq,A(0) is easily deduced from its definition.
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1.2.3. Connection matrix and global classification
We now assumeA to be fuchsian overS and attach to it local solutionsX(0) andX(∞) as

defined in 1.2.2. We then defineBirkhoff ’s connection matrixto be:

)
s, or

st have

hen a
nce and

. The

tal
a

a

ir for

s

P =
(
X(∞)

)−1
X(0).

It is clearly an elliptic invertible matrix. We attach to the systemA the (non uniquely defined
triple (A(0), P,A(∞)) (using the notations of 1.2.2). Changing the non unique choice
changingA to a rationally equivalent systemB may produce another triple(B(0),Q,B(∞)).
If, in addition, one assumes normalised log-car parts (as described above), one mu
(A(0),A(∞)) = (B(0),B(∞)) and there exist constant invertible matricesR,S such that
RQ= PS plus another commutation condition more precisely explained in [27]. There is t
bijective correspondence between classes of fuchsian systems modulo rational equivale
classes of triples. The surjectivity follows fromBirkhoff ’s lemma, originating in [5], a modern
version of which can be found in [2]. The way we use it is detailed in [27], 2.2 and 2.3
tannakian counterpart of this bijection will be the content of 3.1 and 3.2.

1.2.4. Functors of solutions
Specializing the constructions of 1.1.3 to the extensionK ′ =M(C∗) of K = C(z) provides

us with a functor of solutionsω∗ = SK′ from E to VectfM(Eq). In order to makeω∗ a fibre
functor, it would be enough to guarantee, for each equationA, the existence of a fundamen
matrix solutionX ∈Gln(M(C∗)). It follows from 1.2.3 that, forA in Ef , there is indeed such
fundamental matrix solution and the rank ofω∗(A) is equal to the order ofA. Thus, the restriction
of ω∗ to Ef is a fibre functor onEf over the fieldM(Eq). However, we are rather looking for
fibre functor onEf over the fieldC.

We shallnearlybuild such functors from the local solutions at0 and∞: X(0) =M (0)eq,A(0)

andX(∞) =M (∞)eq,A(∞). These solutions are not canonical, but, by choosing such a pa
every equation, one is led to the definition of two vector spaces of finite rankover the complex
numbers. We thus define thefunctors of solutions at0 and∞ onEf with values inVectfC as:

ω(0):
{
A❀X(0)Cn,

(F :A→B) ❀ (U �→ FU)
, ω(∞):

{
A❀X(∞)Cn,
(F :A→B) ❀ (U �→ FU).

LetF :A1 →A2 be a morphism inEf . Then, with obvious notations,FX(0)
1 is a solution ofA2,

hence of the formX(0)
2 S

(0) whereS(0) is elliptic; similarly at∞. That the above definition make
sense comes from the fact thatS(0) andS(∞) actually have coefficients inC. This follows from
the following lemma, which we formulate in a slightly more general guise for further use.

1.2.4.1. LEMMA. – Let A,A′ have constant coefficients andF,M,M ′ have coefficients in
M(C) and suppose that:

F (Meq,A) = (M ′eq,A′)S,

whereS is elliptic. ThenS has constant coefficients.

From the conjugacy properties of matriceseq,X (viz, eq,QXQ−1 = Qeq,XQ−1), one sees
thatA andB can be assumed to be upper triangular. We writeA = AsAu, A′ = A′

sA
′
u their

Dunford decompositions, so thateq,A = eq,Aseq,Au andeq,A′ = eq,A′
s
eq,A′

u
. From the formulae

eq,c = zε(c)eq,c, we see that we can assume all exponents (eigenvalues) ofA, A′ to lie in the
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fundamental annulus1 � |c|< |q|. We then write:

(M ′eq,A′
u
)−1F (Meq,Au) = eq,A′

s
S(eq,As)

−1.

nce
l

l

pend on

ll
ice of

3, we

as

l,

n
or

for
e thus

y

The (i, j) coefficient of the right hand side issi,j
eq,c′

i

eq,cj
, a chararacter (sincesi,j is elliptic)

with coefficients inM(C)[lq], because of the left hand side. It follows from the independe
properties ofq-characters ([27], appendix) and from the location ofc′j , ci in the fundamenta
annulus, that it must be trivial:si,j must be a constant.✷

Note thatsi,j must be null ifc′j �= ci, which amounts to say thatA′
sS = SAs. This being true

after reduction to the fundamental annulus, the more general equality is:

A′
sS = SAs.

We then have (
M ′−1

FM
)
eq,Au = eq,A′

u
S

expanding overM(C)[lq] and identifying corresponding powers oflq (which is transcendenta
overM(C), see loc. cit.) entails

(
M ′−1

FM
)
Au =A′

uS.

These formulae are not affected by the conjugacies we used at the beginning, but do de
the reduction to the fundamental annulus.

On the other hand, the functorsω(0), ω(∞) are not⊗-compatible. In Section 2, we sha
eventually build more easily fibre functors for fuchsian equations while avoiding the cho
particular solutions.

1.2.5. Singularities and exponents
In order to compute the “connection component” of the Galois groupoid in Section

shall need to evaluate the connection matrixP or its meromorphic componentM at various
points of C∗, avoiding their singularities. SinceP is elliptic andM satisfies a simpleq-
difference equation, these singularities are defined moduloqZ and may actually be seen
points inEq . They either come from the equationA at stake, or from its local linear data at0
and∞. Let (A(0), P,A(∞)) be a triple coming from an objectA of Ef and write, as usua
X(0) =M (0)eq,A(0) andX(∞) =M (∞)eq,A(∞) the local solutions used to computeP . Then,
the singularities ofP respectively come from:

1. S(A) for the meromorphic partM = (M (∞))−1M (0). Precisely,S(M)⊂ qZS(A).
2. Sp(A(0)),Sp(A(∞)) for the semi-simple components of theeq,A(−) parts. Since reductio

to a constant matrix is not unique, these exponents ofA are actually defined up to a fact
in qZ.

3. lq, theq-logarithm, in caseA(0) orA(∞) is not semi-simple.
On the other hand, we want to define⊗-stable categories only, so that we have to allow

multiplication of the exponents (and the inverse, to have stability under dualisation). W
define two categoriesEf,Σ andEf,Σ,C . Let Σ be a finite subset ofC∗. ThenEf,Σ is the full
subcategory ofEf whose objects have all singularities inqZΣ. Let moreoverC be a finitely
generated subgroup of the groupC∗. ThenEf,Σ,C is the full subcategory ofEf,Σ whose objects
have all exponents inqZC. They are obviously (strictly full) tannakian subcategories ofEf which
is their inductive limit. More precisely, the tannakian subcategory〈A〉 generated by an arbitrar
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objectA (see [12]) is contained in such aEf,Σ,C . We observe that, forA in Ef,Σ, S(M)⊂ qZΣ;
and forA in Ef,Σ,C , S(P )⊂ qZ(Σ∪C). Note that we impose (yet) no control on theq-logarithm
and unipotent parts. This will be done further below. Also note that we do not control separately

urse,

,

e

es of

ction
unts to

n

ct

s

the exponents at0 and∞, since we mainly seek to avoid the singularities ofP .

1.2.5.1. PROPOSITION. –A is in Ef,Σ,C if and only if its exponents are inC andS(M) ⊂
qZΣ.

This follows from a precise use of Birkhoff’s lemma (see [27], 2.3.1). Here, of co
M = eq,A(∞)P (eq,A(0))−1. ✷

We now consider regular equations at0, that is, such thatA(0) = In. For such an equation
the product formula: ∏

i�1

A
(
q−iz

) def
= A

(
q−1z

)
A

(
q−2z

)
· · ·

defines a solution holomorphic at0 and meromorphic onC. Thus, if A is regular at0 and
at∞, we obtain an explicit formula for the connection matrixP (rather similar to Jacobi’s tripl
product formula for the functionθ), showing it to have as a singular locus exactlyqZS(A). In
this case,M = P . Now, call more generally regular (at0) an equation that is equivalent to anA
such thatA(0) = In. We define the categoryEf,reg as the strictly full subcategory ofEf whose
objects are equations regular at0 and∞. It is clearly a tannakian subcategory ofEf , the one
studied by Etingof in [14].

2. Local theory

The usual method in differential Galois theory for building fibre functors is to use spac
solutions. But our solutions have bad multiplicative properties:anychoice of solutions uniform
over C∗ will lead to some complicated twisting of the tensor product and of the conne
matrix. We thus avoid to single out special fundamental solutions; in essence, this amo
use sections of vector bundles without expressing them in frames.

2.1. Localisation at 0 and at ∞

2.1.1. The categories E(0)
f and E(∞)

f

The categoryE(0)
f has the same objects asEf , but morphisms fromA (of rank n) to B

(of rank p) are all F ∈ Mp,n(C({z})) such that(σqF )A = BF . The functional equatio
σqF =BFA−1 entails that the coefficients ofF actually belong toM(C).

We define similarlyE(∞)
f (morphisms with coefficients inM(C∞)) andE(∗)

f (morphisms with

coefficients inM(C∗)). These are plainly abelian rigid tensor categories, butE(∗)
f is M(Eq)-

linear whileE(0)
f andE(∞)

f are onlyC-linear (since a solution ofσqf = f meromorphic at0

or at∞ has to be a constant). It is clear that the natural embeddingsEf → E(0)
f , Ef → E(∞)

f ,

E(0)
f →E(∗)

f andE(∞)
f →E(∗)

f areC-linear exact faithful⊗-functors. We intend to use this fa

in the following way: any fibre functorω on E(0)
f will restrict to a fibre functorω′ on Ef . This

realizesGal(E(0)
f ) = Aut⊗(ω′) as this subgroup ofGal (Ef ) = Aut⊗(ω) made up of element

natural with respect toall morphisms inE(0)
f (and not only inEf ).
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2.1.2. The categories P(0) and P(∞)

We callflat an object ofE(0)
f (resp.E(∞)

f , E(∗)
f ) if it is a matrix with coefficients inC. These

(0) (∞) (∗)

ories

orphic

is

ry

ore

d
y

o

7]).
will be identified with flat vector bundles onEq in 2.3. The categoryP (resp.P , P ) is

the full subcategory ofE(0)
f (resp.E(∞)

f , E(∗)
f ) whose objects are flat objects. These subcateg

are obviouslyC-linear and stable under tensor operations.

2.1.2.1. LEMMA. – They are essential subcategories, that is, the inclusion functors

P(0) ❀ E(0)
f , P(∞) ❀ E(∞)

f and P(∗) ❀ E(∗)
f

are essentially surjective.

Indeed, this is the content of the reduction to a constant coefficient system by a merom
gauge transformation (see 1.2.2).✷

The following is an immediate consequence:

2.1.2.2. PROPOSITION. –P(0) is a neutral tannakian category overC, equivalent toE(0)
f .

Similar statements hold forP(∞), P(∗). As a corollary,P(0) andP(∞) have the same Galo
group asE(0)

f andE(∞)
f respectively.

2.1.3. Flat objects and equivariant morphisms of representations of Z
We do everything at0, the case of∞ being similar. We callR the categoryRepC(Z) of

finite dimensional complex representations ofZ. These can be considered as pairs(Cn,A) (A
a regular complex matrix of rankn), and the morphismsF : (Cn,A)→ (Cp,B) as matrices
F ∈Mp,n(C) such thatFA = BF . The categoryR is a C-linear neutral tannakian catego
with the forgetful functorω as fibre functor and its Galois group:

Zalg =Aut⊗(ω)

is theproalgebraic hullof Z. Its structure and the way it operates are recalled in 2.2.1.

2.1.3.1. PROPOSITION. – The natural embeddingR → P(0) is a faithful (but not full),
essentially surjective exactC-linear⊗-functor.

The categories at stake have the same objects butR has onlyconstantmorphisms, while
P(0) has allequivariantmorphisms (the word will be justified in 2.3). The proof is theref
immediate. ✷

2.1.3.2. LEMMA. – Any morphismF :A→B in P(0) is a Laurent polynomial:

F =
∑
Fkz

k,

a finite sum where eachFk has coefficients inC.

Indeed, one hasσqF = BFA−1, so thatF has only a pole at0: otherwise, these woul
be propagated along aq-spiral and would accumulate at0, contradicting the meromorph
of F . Now, F has a LaurentseriesF =

∑
Fkz

k. Identifying thezk components of the tw
sides of the functional equation, we get:qkFkA = BFk. This is possible withFk �= 0 only if
Sp(qkA)∩Sp(B) �= ∅ (see, for instance, the lemma in 1.1.3 of [27], also proven in [36] or [3
Hence the finiteness of the sum.✷
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2.1.3.3. PROPOSITION. – (Cn,A) ❀ Cn, F ❀ F (z0) gives a fibre functorω(0)
z0 onP(0) for

anyz0 ∈C∗.

n

can be

ole”:
the

r
el
the
t:

r

The only nontrivial point is the faithfulness. SupposeF (z0) = 0. Then the functional equatio
implies∀k ∈ Z, F (qkz0) = 0, thusF = 0 (F being a Laurent polynomial).✷

2.1.3.4. COROLLARY. – The local Galois groupG(0) is a closed subgroup ofZalg .

Since the previous fibre functor restricts to the forgetful functor onR, it follows from [12],
Proposition 2.21 that we have realizedG(0) as a subgroup of the Galois groupZalg of R.
Precisely, restriction of the elements ofAut⊗(ω(0)

z0 ) to R gives a morphism of groupsG(0) →
Zalg and, according toloc. cit., this is a closed immersion of proalgebraic groups.✷
2.2. The local Galois groupoid and the local monodromy

2.2.1. The proalgebraic hull of Z
We summarize here the main results we shall need. More details and complete proofs

found in [26] and in [31].
Our basic tool for building a fundamental group with some topological meaning is the “h

Z = π1(C∗). Its proalgebraic hullZalg (see the beginning of 2.1.3) is commutative. It is
productZalg

s ×Zalg
u of its semi-simple part:

Zalg
s =Homgrp(C∗,C∗),

the group of characters of the abstract groupC∗, and of its unipotent part:

Zalg
u =C.

Thefundamental loop inπ1(C∗) is represented by1 ∈ Z; it is a Zariski-generator ofZalg , where
it splits into a semi-simple component:IdC∗ ∈ Zalg

s and a unipotent component1 ∈ Zalg
u . We

talk of fundamental semi-simple loopandfundamental unipotent loop.
A representation ofZ is the same thing as a pair(V, f) of a finite dimensional complex vecto

spaceV and an automorphismf ∈GL(V ). So let(Cn,A), A ∈GLn(C), be a (standard mod
of a) generic object ofR. Let A = AsAu be the Dunford decomposition (see the end of
introduction). Let(γ,λ) ∈Homgrp(C∗,C∗)×C be a Galoisian automorphism. Then we pu

A(γ,λ) = γ(As)Aλu =A
λ
uγ(As).

Here,γ acts onAs through its eigenvalues: ifAs =Qdiag(c1, . . . , cn)Q−1, one has

γ(As) =Qdiag
(
γ(c1), . . . , γ(cn)

)
Q−1.

SinceA(γ,λ) ∈GLn(C), it defines an automorphism ofCn = ω(Cn,A). This is precisely how
(γ,λ) is incarnated as an element ofAut⊗(ω).

2.2.2. The local Galois groupoid
Any fibre functorω(0)

z0 (as defined in 2.1.3.3) obviously restricts to the forgetful functoω
onR. Therefore,Aut⊗(ω(0)

z0 ) is a subgroup (andIso⊗(ω(0)
z0 , ω

(0)
z1 ) a subset) ofAut⊗(ω).

2.2.2.1. THEOREM(the local Galois groupoid). –With the previous identification ofAut⊗(ω)
with Zalg ,

Iso⊗(
ω(0)
z0 , ω

(0)
z1

)
=

{
(γ,λ) ∈ Zalg | γ(q)z0 = z1

}
.
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We thus obtain a local Galois groupoid at0, which we callG(0). Its base set isC∗, the arrow
setsG(0)(a, b) = Iso⊗(ω(0)

a , ω
(0)
b ) being described in the theorem. It is clearly connected on the

base, so that we can take as local Galois group any groupG(0)(a, a). The proalgebraic structure
ts.

:

ll
,

for is
on each of theG(0)(a, b) is then induced by that ofZalg , of which they are Zariski closed subse

2.2.2.2. COROLLARY (the local Galois group). –With the same identifications,

Aut⊗
(
ω(0)
z0

)
=

{
(γ,λ) ∈ Zalg | γ(q) = 1

}
.

Let us now proceed to prove the theorem. Let(γ,λ) be an element ofIso⊗(ω(0)
z0 , ω

(0)
z1 ).

Applied to the morphismz : (C,1)→ (C, q) in P(0), it gives rise to the commutative diagram

C
z0

γ(1)

C

γ(q)

C
z1

C

henceγ(q)z0 = z1.
Conversely, supposeΦ = (γ,λ) with γ(q)z0 = z1. We must check its compatibility with a

morphisms inP(0) (and not only inR). That is,F : (Cn,A)→ (Cp,B) being such a morphism
we want to show that the diagram:

Cn
F (z0)

Φ(A)

Cp

Φ(B)

Cn
F (z1)

Cp

is commutative, wherez0, z1 ∈C∗ andaz0 = z1, a= γ(q). But we have(σqF )A = BF thus,
as noticed before,∀k ∈ Z, Fk(qkA) =BFk so thatFk : qkA→ B is a morphism inR. For this
morphism we check the naturality ofΦ. Then:

FkΦ(qkA) = Φ(B)Fk

⇒ FkakΦ(A) = Φ(B)Fk

⇒ Fkakzk0Φ(A) = Φ(B)Fkzk0 .

Then, summing onk gives:

F (az0)Φ(A) = Φ(B)F (z0). ✷
2.2.2.3. Incarnation of the local Galois groupoid. To incarnateG(0), one must show how

its elements operate on an objectA of E(0)
f . So we take two base pointsa, b ∈ C∗ and an

element(γ,λ) ∈ G(0)(a, b). We must obtain an isomorphism fromω(0)
a (A) to ω(0)

b (A). Both
vector spaces are equal to the spaceCn underlying an objectA(0) of P(0) equivalent toA
(2.1.2.1). From 2.2.1, we see that the matrix describing the isomorphism we are looking

γ(A(0)
s )(A(0)

u )λ. Note that the semi-simple factor actually depends only onA
(0)
s , not onA(0)

s .

4e SÉRIE– TOME 36 – 2003 –N◦ 6



GALOIS THEORY OF FUCHSIANq-DIFFERENCE EQUATIONS 941

2.2.3. The local fundamental group
We stick to our overloaded notationG(0) for the local Galois groupoid at0 and at the same

time for any of the local Galois groups, realized as:

ense
mental
we
. As for

sm

act

ve)
h

2.8;
41,

ll

y

G(0)(a, a)�Homgrp

(
C∗/qZ,C∗)×C.

We shall now exhibit explicit elements in the local Galois group, aiming at a Zariski-d
finitely presented discrete group with a topological flavour. In the same way as the funda
loop 1 ∈ Z ⊂ Zalg = Homgrp(C∗,C∗) ×C splits into semi-simple and a unipotent parts,
shall consider separately the semi-simple and unipotent components of these elements
the latter, we shall take the obvious candidate:1 ∈C, which corresponds to the automorphi
X ❀ A

(0)
u of ω(0). It generates a Zariski-dense subgroup of the unipotent componentG

(0)
u . We

concentrate hereafter on the semi-simple componentG
(0)
s .

2.2.3.1. Explicit elements of G(0)
s . The topological groupC∗/qZ being compact, all the

elements ofG(0)
s built from continuousmorphisms have their image in the biggest comp

subgroup ofC∗, the unit circleU. We now proceed to describe them.
We writeq = e−2ıπτ , Im(τ)> 0, whence the splittingC∗ =U×qR, where we put, fory ∈R,

qy = e−2ıπτy andqR = {qy | y ∈R}. This comes (through the liftC→C∗, x �→ e2ıπx) from
the splittingC=R⊕Rτ . We then define:

γ1 :
{

C∗→C∗,

uqy �→ u,
γ2 :

{
C∗→C∗,

uqy �→ e2ıπy.

More generally, one can define, forb ∈ C, a group morphismγb2 :uqy �→ e2ıπby . This will be
used in 4.1.1.

2.2.3.2. LEMMA. – The subgroup of continuous elements ofG(0)
s (a, a) is generated byγ1

andγ2.

All continuous group morphisms fromC toC have the formx+yτ �→ αx+βy with α,β ∈C.
Continuous group morphisms fromC∗ to C∗ are obtained (through the same lifting as abo
from those that sendZ to itself, that is, those such thatα ∈ Z. Such a morphism factors throug
C∗/qZ (i.e., it mapsq to 1) if and only if β ∈ Z. ✷

2.2.3.3. LEMMA (a density criterion). –Let Γ be a subset ofG(0)
s = Homgrp(C∗/qZ,C∗).

ThenΓ generates a Zariski-dense subgroup ofG(0)
s if and only if

⋂
γ∈ΓKerγ = {1}.

By Chevalley’s criterion, used in a similar way in [12] (p. 129, proof of Proposition
the precise formulation is given inloc. cit., first lecture, p. 40, Proposition 3.1.b and p.
Remark 3.2.a), the density condition amounts to the following: for any objectA of E(0)

f , if a

line ofω(0)(A) is stabilised by allγ(A), γ ∈ Γ, it is stabilised by allγ(A), γ ∈G(0)
s . This means

that any common eigenvector of all theγ(A(0)
s ), γ ∈ Γ is actually a common eigenvector of a

theγ(A(0)
s ), γ ∈G(0)

s .
We now fix such an objectA and a non-zerox ∈ ω(0)(A) = Cn. Up to conjugacy, one ma

assume thatA(0)
s = diag(c1, . . . , cn). Then,x is an eigenvector ofγ(A(0)

s ) if and only if, for any
indicesi �= j such thatxixj �= 0 (let us say that such indices arelinked), one hasγ(ci) = γ(cj)
(recall from the introduction thatc denotes the image ofc in C∗/qZ). Thus, the elements ofG(0)

s

whose action onω(0)(A) fixes the lineCx are precisely those such thatci/cj ∈ Kerγ for any
pair of linked indices(i, j). The lemma follows immediately.✷
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2.2.3.4. Two generating loops. According to the previous lemma, we are to choose
elements ofHomgrp(C∗,C∗) sendingq to 1 and such that the intersection of their kernels isqZ.
This cannot be done with one element, sinceC∗/qZ does not embed inC∗ (for instance, because

e

is
l

e,
sical

ny one

m
other
the

e

flat

ce
an

nt
s:

p of
the former has4 elements of order2, while the latter has2). To have anything explicit, we hav
to select among the morphisms found in 2.3.1. Since it is clear thatKerγ1 ∩Kerγ2 = qZ, these
two elements fit our needs. Note thatγ1 andγ2 generate a free abelian group.

2.2.3.5. THEOREM. – The subgroup ofHomgrp(C∗,C∗)×C whose unipotent component
Z⊂C and whose semi-simple component is generated byγ1 andγ2 is Zariski-dense in the loca
Galois group.

This subgroup can therefore be considered as thelocal fundamental group. As a consequenc
all the semi-simple parts of our “monodromy matrices” will be unitary, in contrast to the clas
(differential) case.

Since continuous elements of the Galois groupoid form a torsor under the action of a
of the groups just determined, it is enough, to get them all, to findonesuch elementgb,c in each

G
(0)
s (b, c). To make it a groupoid, it is therefore enough to putΠ(a, b) = ga,bΠ(a, a), where

Π(a, a) is the group we just defined.

2.2.3.6. COROLLARY (the local fundamental groupoid). –Choose, for eacha ∈ C∗, a
logarithmα ∈ 1

2ıπ loga. Putga = γα2 . One can then takegb,c = g c
b
.

One cannot expectga to be a continuous function ofa, at the best, the choice of a logarith
involves a cut: the discontinuity at the cut will be interpreted in 2.2.4. There is also an
interpretation ofga as an automorphism of the “field of solutions”, corresponding to
translationz �→ az (in multiplicative notation) of the elliptic curveEq, see [31]. We postpon
the geometrical interpretation of the local fundamental group and groupoid to 2.4.

2.3. Flat vector bundles over the elliptic curve Eq

We give here a geometrical interpretation ofP(0), close to Weil’s correspondence between
vector bundles on a curve and representations of its fundamental group (see [37]).

Write Fib(X) the category of holomorphic vector bundles over a compact Riemann surfaX
andFibp(X) the full subcategory of those which areflat, i.e. those whose transition matrices c
be taken to be constant (vs holomorphic) for some adequate covering. Note that themorphisms
between such flat bundles arenot required to be constant.

2.3.1. Holomorphic sections of a flat bundle over Eq
LetA ∈Gln(C), thus an object ofP(0) as well as a linearq-difference system with consta

coefficients. One introduces the equivalence relation∼A onC∗×Cn generated by the relation

∀(z,X)∈C∗ ×Cn, (z,X)∼A (qz,AX).

The first projectionC∗ ×Cn →C∗ is compatible with the action ofqZ on C∗ and, factoring
out, we define a holomorphic vector bundle of rankn:

FA
def
=

C∗ ×Cn

∼A
→Eq =

C∗

qZ
.

This is a particular case of Weil’s correspondence alluded to above: the fundamental grouEq
is the lattice:

π1(Eq) = Λτ =Z+Zτ,
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whereq = e−2ıπτ and one takes the representationΛτ →Gln(C) sending1 to In andτ toA.

2.3.1.1. LEMMA. – There is a natural bijection between the solutions of the system with

f
nd

ave

t

stant

en

-
f
rjec-

e

ut
s,

dy

ce
matrixA meromorphic onC and the holomorphic sections ofFA.

There is an obvious bijection between the holomorphic sections ofFA and the solutions o
the system with matrixA holomorphic onC∗. We have to show that the latter uniquely exte
to meromorphic solutions onC (this, without having to prescribe growth conditions). We h
already seen (2.1.3.2) that a solution meromorphic onC has to be holomorphic onC∗ to prevent
the accumulation of poles at0. So, letF be holomorphic onC∗ and such thatF (qz) =AF (z).
CallM the maximum of‖F‖ on the compact fundamental annulus1 � |z| � |q| (this, for an
arbitrary norm‖ − ‖) and, forz ∈C∗, put k = #ln |z|/ln |q|$ (where#x$) denotes the bigges
integer less than or equal tox). One has:∥∥F (

q−kz
)∥∥ �M ⇒

∥∥F (z)∥∥ �M |||A|||k⇒
∥∥F (z)∥∥ � |z|

ln |||A|||
ln |q|

(||| − ||| the subordinate norm). This entails polynomial growth at0, hence a pole. ✷
2.3.1.2. Remark. – For aunitary bundle, one can prove that all sections are actually con

(see [37,34]).

2.3.2. Comparison of the categories P(0) and Fibp(Eq)
Since every morphism inP(0) is holomorphic onC∗, it defines a holomorphic map betwe

the corresponding vector bundles and we clearly have a⊗-functor fromP(0) to Fibp(Eq).

2.3.2.1. THEOREM. – This is a⊗-equivalence.

The full faithfulness comes from the existence of internalHom in both categories, imply
ing that the morphismsA→ B (resp.FA → FB) are in natural bijection with solutions o
Hom(A,B) (resp.Hom(FA, FB)) and from Lemma 2.3.1.1. Now, as regards essential su
tivity, let a vector bundle overEq correspond to a representation ofΛτ that maps1 to A andτ
to B, these being commuting elements ofGln(C). One writesA = e2ıπU and uses the gaug
transformatione2ıπxU to reduce this representation to one that sends1 to In (andτ to A−τB).
From the construction in 2.3.1, this comes from an object ofP(0). ✷
2.3.3. Fibre functors

The categoryFibp(Eq) is a thickening ofRepC(π1(Eq)) since it has the same objects b
more morphisms: ifφ :π1(Eq)→Gl(V ) andψ :π1(Eq)→Gl(W ) are two such representation
a morphism between the associated bundles gives rise to anequivariantmorphismφ→ ψ, that
is, a holomorphic mapF :C→L(V,W ) such that:

∀γ ∈ π1(Eq), ∀x ∈C, φ(γ) ◦ F (x) = F (γx) ◦ψ(γ).

This is a morphism inRepC(π1(Eq)) if and only if F is a constant map. Here,γ operates onx
via the action ofπ1(Eq) on the universal coveringC of Eq (that is, the translation action ofΛτ
onEq).

2.3.3.1. Punctual fibre functors. Therefore, any fibre functor onP(0) and Fibp(Eq)
naturally induces the usual fibre functor onRepC(π1(Eq)) and, by the very same trick we alrea
used in 2.1.3.4 and 2.2.2, we obtainGal (Fibp(Eq)) as a proalgebraic subgroup ofπ1(Eq)alg .
The latter is isomorphic toZalg ⊕ Zalg . Actually, only one factor is really involved here sin
every bundle has been shown in 2.3.2.1 to be isomorphic to one on which1 acts trivially (that is,
one which already trivializes on the quotient coveringC∗ of the universal coveringC).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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2.3.3.2. The global fibre functor. On the other hand, the equivalence ofP(0) with
Fibp(Eq) may itself be viewed as a fibre functor onE(0)

f in the following way. CallS the unique
curve (scheme) overC with underlying analytic spaceSan = Eq. Then, holomorphic vector

.

ta-

is
t

ite
of

larger

rdinary

set of
able

y in its
ian

rphic

n by
.2.2.

.
for
ed

l

bundles overEq “are” locally free sheaves and we get a fibre functor overS in the sense of [11]
The Theorem 1.12 ofloc. cit. then provides us with a groupoid structure overS:

2.3.3.3. THEOREM. – The tensor categoryE(0)
f is equivalent to the category of represen

tions of a groupoidG(0) that is faithfully flat overS × S.

In essence, this says thatG(0) acts transitively on the baseS and that composition of paths
a morphism with respect to the proalgebraic structure on eachG(0)(a, b), but also with respec
to the algebraic structure on the baseS.

2.3.4. The classification theorem of Baranovsky and Ginzburg
Let G denote a complex algebraic group and writeG((z)) for the group ofC((z)) rational

points ofG, whereC((z)) is the field of formal Laurent series, a kind of “loop group”. Wr
G[[z]] for its subgroup ofC[[z]] rational points. Then define a “twisted” conjugation action
G((z)) on itself by putting, fora(z), g(z)∈G((z)):

ga(z) = g(q.z).a(z).g(z)−1.

This twisted conjugation action can actually be seen as a plain conjugation action in some
group: puttinga(z) �→ a(t.z) defines aC∗-action on the loop groupG((z)) (the “rotation of
the loop”), hence a semi-direct product, and twisted conjugacy classes are actually o
conjugacy classes in a Kac–Moody group.

The following is stated and proved in [3]:

THEOREM. – If G is connected and semi-simple, there is a natural bijection between the
integral twisted conjugacy classes inG((z)) and the set of isomorphism classes of semi-st
holomorphic principalG-bundles on the elliptic curveE =C∗/qZ.

Here, integral twisted conjugacy classes are those which contain an element ofG[[z]]: they are
analogous to our fuchsian equations. One subtlety of this theorem (and the main difficult
proof) is that it provides ananalyticclassification offormalobjects. The authors give a tannak
extension of this theorem. They define a tensor categoryMq of formal integralq-difference
modules and prove:

THEOREM. – It is equivalent to the tensor category of degree zero semi-stable holomo
vector bundles onE.

In the electronic (IMRN) version of their paper, they moreover quote a computatio
Kontsevich of the corresponding Galois group: the result is the same as our Corollary 2.2

2.4. Heuristic topological interpretation and perspectives

2.4.1. A “local” elliptic curve
Recall that our constructions aim at ageometricunderstanding ofq-difference equations

Extending the class of morphisms of the categoryEf as we did in 2.1 amounts to a localisation
the transcendental topology. Accordingly, our vector bundles onEq can be considered as induc
by equivariant vector bundles on the germ of complex space(C∗,0) and the curveEq itself as the
quotient of the germ(C∗,0) by the action of the dilatationσq . We visualize this curve as “loca
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at0∈ S”, since it carries thelocal geometry of fuchsianq-difference equations. The loops found
in 2.2.3 can been interpreted as the two fundamental loops ofEq. They are algebraically free
and generate a free abelian group of rank2. However, they satisfy a “transcendental relation”, as

of
ination

op
arithm
ce

een
neric
f

oblem
uses a
nonical
retic
enrich
due to
in the

s
e
n
sible

easily be
odules.
al

tors.
predicted in [23]:

γ1γ
−τ
2 = IdC∗ ,

the semi-simple fundamental loop ofZalg . Suppose the logarithms involved in the definition
the ga have been chosen continuously, but for some cut: for instance, the main determ
(alternatively, see 3.2.2). Leta turn counterclockwise once around0. Thenga(uqy) = e−2ıπταy

is multiplied bye−2ıπy, that is, byγ2(uqy). This means thatγ2 represents the plain classical lo
around0 in C∗. This can be seen yet another way: suppose we change our choice of a log
of q, writing q = e−2ıπτ ′ , whereτ ′ = τ +m, m ∈ Z. Then, the formulas in 2.2.3.1 produ
modified loopsγ′1 andγ′2 and one checks thatγ′1 = γ1γm2 andγ′2 = γ2. To interpretγ1 as the
second generating loop ofEq is not so easy while staying in a strict local context. It will be s
in 3.2.2.2 to be the defect of ellipticity of the twisted connection matrix, which is the ge
Galois isomorphism linking0 to ∞. This suggests the interpretation ofγ1 as the beginning o
the movement from0 to∞ along aq-spiral, or even a precession.

2.4.2. Irregular equations and “infinitesimal” elliptic curves
The next step in our program is to tackle the irregular local theory. The classification pr

is solved in a common work with Jean-Pierre Ramis and Changgui Zhang (see [25]). It
new discrete summation method for divergent solutions (see [38]), the existence of a ca
filtration by the slopes forq-difference modules (see [28,29] and [32]) and sheaf theo
methods due to Malgrange, Martinet and Ramis. The latter allow us to extend and
the geometric setting of the present paper. In [25], we use a dynamical interpretation (
J.-L. Martins) of classical asymptotical developments. This version can be discretized
following sense. While the sheaf of Malgrange (see , for instance, [7]) is defined on thehorizon
S1 = C∗/Σ of the action of the semigroupΣ =]0; 1[, taking instead the semigroupΣq = q−N,
we get the horizonC∗/Σq, whence a sheaf defined on the elliptic curveEq. Our vector bundle
are related to this sheaf in the fuchsian case. The elliptic curveEq could also be viewed as th
quotient of an infinitesimal neighborhood of0, predicted by Ramis in [23]. Actually, as show
in [25], there is a whole family of such infinitesimal neighborhoods related to all the pos
slopes and the corresponding sheaves of functions). The results presented here can
extended to the category of “tamely irregular modules”; these are direct sums of pure m
One thus computes a Galois groupG(0)

mi . Then, the graded functorgr associated to the canonic

filtration being faithful, exact and⊗-preserving, one realizes the general local Galois groupG
(0)
i

as a semi-direct product ofG(0)
mi by a pro-unipotent group, generated by the Stokes opera

This will be detailed in [30].

3. Global theory

3.1. The global Galois groupoid

3.1.1. Birkhoff’s classification revisited
We shall give a galoisian meaning to Birkhoff’s classification theorem.

3.1.1.1. The category C of connection data. We introduce a categorical variantC of the set
of classifying data introduced in 1.3.3. The objects are triples(A(0),M,A(∞)) where, for some
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n ∈N∗, A(0),A(∞) ∈Gln(C),M ∈Gln(M(C∗)) and moreover:

(σqM)A(0) =A(∞)M.

ise)
s. The
2],

an

se of
and not

t

Said otherwise,M :A(0) →A(∞) is an isomorphism inE(∗)
f . Morphisms

(
A(0),M,A(∞)

)
→

(
B(0),N,B(∞)

)
are pairs(S(0), S(∞)) such that:



S(0) :A(0) →B(0) is a morphism inE(0)

f or, what amounts to the same, inP(0),

S(∞) :A(∞) →B(∞) is a morphism inE(∞)
f or, what amounts to the same, inP(∞)

and, moreover, the following square commutes:

A(0)
M

S(0)

A(∞)

S(∞)

B(0)
N

B(∞)

In the same vein as in 2.3, objects ofC can be interpreted as triples(F (0), f,F (∞)) where
(F (0), F (∞)) are holomorphic vector bundles overEq andf :F (0) → F (∞) is a meromorphic
map between them.

Then, we makeC a tensor category by endowing it with the natural (componentw
tensor product; here, we use the conventions of 1.1.2 for the tensor product of matrice
resulting category is plainly an abelianC-linear neutral tannakian category. Moreover, after [1
Proposition 2.21, the projections toE(0)

f andE(∞)
f induce closed embeddings ofG(0) andG(∞)

into the Galois group ofC. Our goal is to build an equivalence ofC with Ef .

3.1.1.2. The category S of solutions. In Birkhoff’s method, one encodes a fuchsi
equationσX =AX , by its local solutions at0 and∞:

X(0) =M (0)eq,A(0) and X(∞) =M (∞)eq,A(∞) .

In more intrinsic terms, we shall use the local flat formsA(0) and A(∞) together with
the meromorphic gauge transformationsM (0) (reducingA to A(0)) andM (∞) (reducingA
to A(∞)). Due to the non canonicity of all these local data (except from the generic ca
strictly fuchsian non resonant equations), we shall eventually map solutions to equations
the other way round.

We shall therefore consider local pairs at0 and at∞:(
A(0),M (0)

)
∈GLn

(
M(C)

)
×GLn(C),(

A(∞),M (∞)
)
∈GLn

(
M(C∞)

)
×GLn(C).

We shall say that two such pairs areconnectedif one of the following (obviously) equivalen
conditions is realized:
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1. The following two expressions are equal:

(
σM (∞)

)
A(∞)

(
M (∞)

)−1 =
(
σM (0)

)
A(0)

(
M (0)

)−1
.

first

t that

two

ned

ions

e

2. The matrixM = (M (∞))−1M (0) ∈GLn(M(C∗)) is such that(σM)A(0) =A(∞)M .
In this case, we shall callA the common value of the two expressions appearing in the
condition. Being meromorphic on bothC andC∞, it is meromorphic onS, that is, rational:
A ∈GLn(C(z)). Moreover,M (0) (resp.M (∞)) can be viewed as a morphism fromA(0) (resp.
fromA(∞)) toA.

We now define our category of solutions.
• Objects ofS. They are the quadruples:(

A(0),M (0),A(∞),M (∞)
)
∈Gln(C)×Gln

(
M(C)

)
×Gln(C)×Gln

(
M(C∞)

)
such that the two component pairs(A(0),M (0)) and(A(∞),M (∞)) are connected.

• Morphisms inS. The morphisms from(A(0),M (0),A(∞),M (∞)) to (B(0),N (0),B(∞),
N (∞)) in S are the triples(F,S(0), S(∞)) such that


S(0) :A(0) →B(0) is a morphism inE(0)

f ,

S(∞) :A(∞) →B(∞) is a morphism inE(∞)
f

and, moreover, the following squares commute:

A(0)
M(0)

S(0)

A

F

A(∞)
M(∞)

S(∞)

B(0)
N(0)

B B(∞)
N(∞)

Here,A andB are defined according to our previous convention. One then notes, firs

F =N (∞)S(∞)
(
M (∞)

)−1 =N (0)S(0)
(
M (0)

)−1

is meromorphic on bothC andC∞, therefore rational; second, that, by any of these
expressions forF , (σF )A=BF , that is,F is a morphismA→B in Ef .

• Tensor structure onS. The tensor product of objects (resp. morphisms) is defi
componentwise on the quadruples (resp. triples), using the usual identifications.

Again, one has obtained an abelianC-linear neutral tannakian category such that the project
to E(0)

f andE(∞)
f induce closed embeddings ofG(0) andG(∞) into the Galois group ofS.

3.1.1.3. PROPOSITION(equivalence of the tensor categoriesEf , S andC). – One keeps th
previous conventions forA andM . Then, taking:{

(A(0),M (0),A(∞),M (∞)) ❀A,

(F,S(0), S(∞))❀ F

and {
(A(0),M (0),A(∞),M (∞)) ❀ (A(0),M,A(∞)),
(F,S(0), S(∞)) ❀ (S(0), S(∞))

provides us withC-linear⊗-equivalences fromS to Ef and fromS to C.
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It is clear that one has defined two⊗-functors and that the first one is fully faithful. That it is
also essentially surjective stems from the existence of flat local reductions at0 and at∞ for any
fuchsian equation, as recalled in 1.2.

m

t of

tegory.
wn

s of
That the second functor is fully faithful comes from the fact that the equalities:

F =N (∞)S(∞)
(
M (∞)

)−1 =N (0)S(0)
(
M (0)

)−1

give a unique antecedent to a pair(S(0), S(∞)). For essential surjectivity, one starts fro
an object(A(0),M,A(∞)) of C. SinceM ∈ GLn(M(C∗)), Birkhoff’s lemma (see [27], 2.2
and 2.3) allows us to write:

M =
(
M (∞)

)−1
M (0), where

(
M (0),M (∞)

)
∈Gln

(
M(C)

)
×Gln

(
M(C∞)

)
.

It is then clear that(A(0),M (0),A(∞),M (∞)) is a connected quadruple and an anteceden
(A(0),M,A(∞)).

3.1.1.4. Singularities and exponents. Let Σ be a finite subset ofC∗. We shall have to
consider the full subcategoryCΣ of C whose objects are the triples(A(0),M,A(∞)) such that
S(M)⊂ qZΣ. It is stable by all tensor and abelian constructions, hence a tannakian subca
From 1.2.5 and from the remarks inloc. cit., 2.3.1, one draws that the equivalence sho
in 3.1.1.3 induces an equivalence of the tannakian categoriesEf,Σ andCΣ.

3.1.2. The global Galois groupoid and the global fundamental groupoid
Composing the above projections with fibre functorsω(0)

z0 , ω
(∞)
z0 provides us with two fibre

functors onC. We shall call these restrictions by the same names.

3.1.2.1. DEFINITION. – The Galois groupoid ofC is the groupoidG having as base set:{
ω(0)
a | a ∈C∗} ∪ {ω(∞)

a | a ∈C∗},
and such that, for any twoa, b ∈C∗:

G
(
ω(0)
a , ω

(0)
b

)
= Iso⊗(

ω(0)
a , ω

(0)
b

)
,

G
(
ω(∞)
a , ω

(∞)
b

)
= Iso⊗(

ω(∞)
a , ω

(∞)
b

)
,

G
(
ω(0)
a , ω

(∞)
b

)
=

{
if a= b : Iso⊗(ω(0)

a , ω
(∞)
b ),

if a �= b :∅.
The local groupoids computed in Section 2 embed in the corresponding subgroupoidG,

giving many elements in the groupsAut⊗(ω(0)
z0 ) andAut⊗(ω(∞)

z0 ) for all z0 ∈C∗ and in the sets

Iso⊗(ω(0)
z0 , ω

(0)
z1 ) and Iso⊗(ω(∞)

z0 , ω
(∞)
z1 ) for all z0, z1 ∈ C∗. To complete this and connectG,

we want to build sufficiently many elements in the setsIso⊗(ω(0)
z0 , ω

(∞)
z0 ) for all z0 ∈C∗. For

instance, one gets such a⊗-isomorphism fromω(0)
z0 to ω(∞)

z0 by taking(A(0),M,A(∞)) toM .
But this is not defined overC∗, so we change our way. This can be done by evaluatingM at
pointsz0 /∈ S(M). For that, we fix a finite subsetΣ of C∗ and restrict to the full subcategoryCΣ

of C.

3.1.2.2. PROPOSITION. – For any such pointz0, the natural transformation

Γz0 :
(
A(0),M,A(∞)

) ❀M(z0)

is an element ofIso⊗(ω(0)
z0 , ω

(∞)
z0 ).
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Here and in the following, we keep the same names for the restrictions toCΣ of the fibre
functorsω(0)

z0 , ω(∞)
z0 (z0 /∈ qZΣ). The proof of the proposition is then more or less tautological.

Tensor preservation comes from the definition of the tensor structure componentwise, plus the
g

oid

ily be

table

f

p

ial

ic

y
lois
obvious fact that(M ⊗M ′)(z0) =M(z0)⊗M ′(z0). Functoriality comes from the commutin
square in the definition of morphisms in 3.1.1.1 plus the obvious computation:

N(z0)S(0)(z0) =
(
NS(0)

)
(z0) =

(
S(∞)M

)
(z0) = S(∞)(z0)M(z0). ✷

We seeΓz0 as a path connecting the pointsω(0)
z0 , ω

(∞)
z0 of the groupoidG.

3.1.2.3. THEOREM. – The local groupoids at0 and at∞ (defined and computed in Section2)
together with the pathsΓz0 , z0 /∈Σ generate a Zariski-dense subgroupoid of the Galois group
of CΣ.

We appeal again to the criterion of Chevalley (see the proof of 2.2.3.3). It can eas
extended to the case of a groupoid in the following way. We choose an object

X =
(
A(0),M,A(∞)

)
,

and, for each basepointω(0)
a (resp.ω(∞)

a ), a /∈ qZΣ, a lineD(0)
a ⊂ ω(0)

a (X ) (resp.D(∞)
a ⊂

ω
(∞)
a (X )) and we assume that this family of lines is globally stable under the action ofG(0),
G(∞) and our special paths. It is then sufficient to check that this family of lines is actually s
under the action of the whole Galois groupoid.

By Tannaka duality for the categoryE(0)
f and for the groupoidG(0), we see that the family o

linesD(0)
a induces a subrepresentation of rank1 of the representation defined by the objectA(0),

hence comes from a subobject of rank1 of A(0). This subobject is an injectionx(0) :a(0) →A(0)

in E(0)
f and we may take it to lie inP(0). This means thata(0) ∈ C∗, thatx(0) is a function

holomorphic onC∗ and that, for alla /∈ qZΣ, the lineD(0)
a is the image of the linear ma

ω
(0)
a (x(0)), that is:D(0)

a =Cx(0)(a).
The same argument on the∞ side shows that there exists a subobjectx(∞) :a(∞) → A(∞)

such that, for alla /∈ qZΣ, D(∞)
a = Cx(∞)(a). The condition of stability under our spec

paths says that∀a /∈ qZΣ,M(a)D(0)
a =D(∞)

a , so that, out ofqZΣ, there exists a holomorph
functionm such thatM(a)x(0)(a) =m(a)x(∞)(a). This amounts to say thatφ= (x(0), x(∞))
is a morphism fromX ′ = (a(0),m, a(∞)) toX = (A(0),M,A(∞)) in C.

We now take an arbitrary galoisian isomorphism, that is, an elementh ∈ Iso⊗(ω(0)
a , ω

(∞)
a ).

The functoriality condition gives rise to a commutative diagram:

ω
(0)
a (X ′)

h(X ′)

ω(0)
a (φ)

ω
(∞)
a (X ′)

ω(∞)
a (φ)

ω
(0)
a (X )

h(X )

ω
(∞)
a (X )

Thenh(X )x(0)(a) = h(X ′)x(∞)(a); sinceh(X ′) ∈C∗, this shows the stability of our famil
of lines under the action ofIso⊗(ω(0), ω(∞)), hence also under the action of the whole Ga
groupoid. ✷
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3.1.3. The case of a regular equation
3.1.3.1. Regular triples. Let us now consider the case of aregular equation. Recall from

Section 1 thatA is said to be regular at0 (resp. at∞) if it is equivalent to the identity matrixIn
n

y

t
. The

values
ice of
ory

ils can

se
use an

ty, one
at
ality
ct:
at 0 (resp. at∞). ThenA has a local reduction at0,M (0) : In→A as well as a local reductio
at ∞, M (∞) : In → A. One can therefore associate toA the triple (In,M, In) in CΣ, with
Σ= S(A),M =M = (M (∞))−1M (0). Moreover, in this case,M is “the” connection matrixP
and it is elliptic.

3.1.3.2. COROLLARY (the Galois group of a regular equation). –The Galois group at an
point ω(0)

z0 is the Zariski closure of the subgroup generated by the values(P (a))−1P (b) for
a, b /∈ qZΣ.

Indeed, from the equalitiesA(0) = A(∞) = In, we draw that the local Galois groupoids a0
and at∞ of the equation are trivial (there are only identity arrows between any two points)
conclusion now follows from Theorem 3.1.2.3.✷

This is the case tackled by Etingof in [14], and this proposition is his main result.

3.2. Birkhoff’s method

We shall follow here Birkhoff’s method more closely, using the connection matrixP itself
(together with local linear data) to encode fuchsian equations, then, trying to interpret its
as monodromy data. However, the bad multiplicative properties of any canonical cho
solutions, hence of the matrixP itself, lead us to twist first the tensor product in the categ
of connection data, second the connection matrix itself into a matrixP̆ in order to get galoisian
properties. The relation with the point of view of 3.1 is explained in 3.2.3. Proofs and deta
be found in [26] and [31].

3.2.1. Equivalences of tannakian categories
We encode a fuchsian equationσX =AX by its local solutions at0 and∞:

X(0) =M (0)eq,A(0) and X(∞) =M (∞)eq,A(∞)

and its connection matrixP = (X(∞))−1X(0), as defined in 1.3.3. We shall consistently u
these notations herebelow, without further notice. These data are not unique, so that we
intermediate category of solutions to link equations and connection triples. By necessi
does not take the natural tensor productX

(0)
1 ⊗X(0)

2 on solutions. This comes from the fact th
eq,A⊗ eq,B �= eq,A⊗B , thereby destroying our normal forms for solutions. The defect of equ
has been analyzed in 1.2.2.3. We thus give a special notation for the twisted tensor produ

X
(0)
1 ⊗X(0)

2 =
(
M

(0)
1 ⊗M (0)

2

)
e
q,A

(0)
1 ⊗A(0)

2
,

and similarly at∞. This is related to the natural tensor product in the following way:

X
(0)
1 ⊗X(0)

2 =
(
X

(0)
1 ⊗X(0)

2

)
Φ

(
A

(0)
1 ,A

(0)
2

)
.

By necessity, one is thus led to twist the natural tensor product of connection matrices:

P1 ⊗ P2 =
(
X

(∞)
1 ⊗X(∞)

2

)−1(
X

(0)
1 ⊗X(0)

2

)
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in the following way:

P1⊗P2 =Φ
(
A

(∞)
,A

(∞))(P1 ⊗P2)
(
Φ

(
A

(0)
,A

(0)))−1
.

e

lar
nakian

])

te the

-
one is
1 2 1 2

This notation is slightly ambiguous, since the right hand side does not really depend onP1 and
P2 alone, but also involves the local linear dataA(0)

1 ,A
(0)
2 ,A

(∞)
1 ,A

(∞)
2 . Note that, in the cas

that one ofA(0)
1 ,A

(0)
2 is unipotent and the same holds at∞, we haveP1⊗P2 = P1 ⊗P2. This is

the case, e.g. forregular equations (i.e. such that the matrices at0 and∞ areIn).

3.2.1.1. The category S′ of solutions. Its objects are quadruples

(
A(0),M (0),A(∞),M (∞)

)
∈Gln(C)×Gln

(
M(C)

)
×Gln(C)×Gln

(
M(C∞)

)
such thatX(0) = M (0)eq,A(0) andX(∞) = M (∞)eq,A(∞) are connected in a sense simi
to 3.1.1.2. One can likewise adapt the definitions in such a way as to get a neutral tan
category.

3.2.1.2. The category C′ of connection data. Birkhoff’s classification theorem (see [5,27
amounts to saying that the data(A(0), P,A(∞)) are enough to recoverA up to rational
equivalence. We shall now give a categorical formulation of it.
• Objects ofC′. They are the triples:

(
A(0), P,A(∞)

)
∈Gln(C)×Gln

(
M(Eq)

)
×Gln(C).

• Morphisms inC′. The morphisms from the object(A(0), P,A(∞)) of ordern to the object
(B(0),Q,B(∞)) of orderp are the pairs

(
R(0),R(∞)

)
∈Mp,n(C)×Mp,n(C)

such that 

R(0)A(0) =B(0)R(0),

R(∞)P =QR(0),

R(∞)A(∞) =B(∞)R(∞).

This can be justified by the properties proved in 1.2.4 (for more details, see [26]). No
following consequences of the definition:

{
R(0)A

(0)
s =B(0)

s R(0),

R(∞)A
(∞)
s =B(∞)

s R(∞),

{
R(0)A

(0)
u =B(0)

u R(0),

R(∞)A
(∞)
u =B(∞)

u R(∞).

• Tensor structure onC′. The tensor product of two objects(A(0)
1 , P1,A

(∞)
1 ) and(A(0)

2 , P2,

A
(∞)
2 ) is defined to be

(
A

(0)
1 , P1,A

(∞)
1

)
⊗

(
A

(0)
2 , P2,A

(∞)
2

)
=

(
A

(0)
1 ⊗A(0)

2 , P1⊗P2,A
(∞)
1 ⊗A(∞)

2

)
.

The tensor product of two morphisms(R(0)
1 ,R

(∞)
1 ) and (R(0)

2 ,R
(∞)
2 ) is defined compo

nentwise, from the usual tensor product. That the tensor product of two objects is
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obvious; that the tensor product of two morphisms is one is not tautological, but follows
from the properties of morphisms inS′ andC′.

Defining as before two fibre functorsC′ → Vectf by sending(A(0), P,A(∞)) to the Cn

al

ne

ce is

t of
of
ints

f

n
or

for
s, for

n

d
e

ted
C

underlyingA(0) (resp.A(∞)) and(S(0), S(∞)) to S(0) (resp.S(∞)), one obtains again a neutr
tannakian category overC.

3.2.1.3. The equivalence of Ef , S′ and C′. As in 3.1, two functors can be defined; first, o
from solutions to equations:

{
(A(0),M (0),A(∞),M (∞)) ❀A,

(F,S(0), S(∞))❀ F.

Next, one from solutions to connection triples:

{
(A(0),M (0),A(∞),M (∞))❀ (A(0), P,A(∞)),
(F,S(0), S(∞)) ❀ (S(0), S(∞)).

Both are exact⊗-preservingC-linear equivalence of categories. Note that this equivalen
compatible with the fibre functors previously introduced.

3.2.1.4. Singularities and exponents. In order to compute the connection componen
the Galois groupoid we shall need to evaluate the connection matrix at various pointsC∗,
avoiding its singularities (sinceP is elliptic, these singularities may actually be seen as po
in Eq). For an object(A(0), P,A(∞)) of C′ coming from an objectA of Ef , the singularities o
P respectively come from:

1. S(A) for the meromorphic partM = (M (∞))−1M (0). Precisely,S(M)⊂ qZS(A).
2. Sp(A(0)), Sp(A(∞)) for the semi-simple components of theeq,A(−) parts. Since reductio

to a constant matrix is not unique, these exponents ofA are actually defined up to a fact
in qZ.

3. lq, theq-logarithm, in caseA(0) orA(∞) is not semi-simple.
On the other hand, we want to define⊗-stable categories only, so that we have to allow
multiplication of the exponents (and the inverse, to have stability under dual taking). Thu
Σ a finite subset of the open setC∗ andC be a finitely generated subgroup of the groupC∗, we
consider the full subcategoryEf,Σ,C of Ef whose objects have all singularities inqZΣ and all
exponents inqZC. From the precised version of Birkhoff’s lemma we draw that an equatioA
is in Ef,Σ,C if and only if its exponents are inC andS(M)⊂ qZΣ.

Write Σ, resp.C for the image inEq of a finite subsetΣ of C∗, resp. a finitely generate
subgroupC of C∗. We then consider the full subcategoryC′Σ,C of C′ whose objects are th

triples (A(0), P,A(∞)) such thatSp(A(0)),Sp(A(∞)) are subsets ofqZC andS(M) ⊂ qZΣ.
For such objects,S(P ) ⊂ Σ ∪ C. Moreover,C′Σ,C is a strictly full tannakian subcategory ofC′
and it is equivalent toEf,Σ,C .

For an objectX = (A(0), P,A(∞)) of C′, denote by〈X 〉 the tannakian subcategory genera
byX . If X actually belongs to the subcategoryC′Σ,C , this entails〈X 〉 ⊂ C′Σ,C . The object being
given, the minimal choice is to take forC the subgroup ofC∗ generated bySp(A(0)) and
Sp(A(∞)) and forΣ the singular locus ofM .
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3.2.2. The Galois groupoid
Sticking to the previous definitions, we consider a groupoidG with base points0 and∞ and

with corresponding arrow setsAut⊗(ω(0)), Aut⊗(ω(∞)), Iso⊗(ω(0), ω(∞)), Iso⊗(ω(∞), ω(0)).

f

he

at

utative

ps
tural

e

ory

ess
ing

orial
In this section, we shall build elements of the Galois groupoid, that is,⊗-automorphisms o
ω(0) and ofω(∞) and⊗-isomorphisms fromω(0) to ω(∞). We shall consistently denote byX =
(A(0), P,A(∞)) a generic object ofC′. We then writeA(0) = A(0)

s A
(0)
u andA(∞) = A(∞)

s A
(∞)
u

the Dunford decompositions.

3.2.2.1. Local automorphisms of the fibre functor. From the general facts recalled at t
end of the introduction, we easily deduce the following:

1. Letf be a map:C∗→C∗. ThenX ❀ f(A(0)
s ) (resp.X ❀ f(A(∞)

s )) is an automorphism
of ω(0) (resp. ofω(∞)). If we takef ∈ Homgrp(C∗,C∗) and (by necessity) such th
f(q) = 1, we get a⊗-compatible automorphism.

2. Letλ ∈C. ThenX ❀ (A(0)
u )λ (resp.X ❀ (A(∞)

u )λ) is a⊗-automorphism ofω(0) (resp.
of ω(∞)).

We thus obtain subgroupsG(0) ⊂ Aut⊗(ω(0)) andG(∞) ⊂ Aut⊗(ω(∞)). We recognize the
local Galois groups found in Section 2. They are isomorphic to each other and are comm
proalgebraic groups with unipotent componentC and semi-simple component:

G(0)
s �G(∞)

s �
{
f ∈Homgrp(C∗,C∗) | f(q) = 1

}
�Homgrp

(
C∗/qZ,C∗).

This is just the dualĚq of the abstract groupEq. In this description, our local Galois grou
are identified to a subgroup ofZalg but they are there embedded transversally to the na
monodromy groupZ: their intersection with the latter is the trivial subgroup.

3.2.2.2. Building elements of the connection component. We restrict here the fibr
functorsω(0), ω(∞) to some subcategoryC′Σ,C (see 3.2.1.4). We putΣ′ = qZ(Σ ∪ C) and
fix a ∈ C∗ − Σ′. It stems tautologically from our definition of morphisms in the categ
C′ that, for any sucha, X ❀ P (a) is a functorial isomorphismω(0) → ω(∞). However, it
is not, in general, atensor isomorphism, becauseP1(a) ⊗ P2(a) �= P1(a)⊗P2(a). There is
of course an exception ifC is trivial, e.g. for regular equations. The right and left exc
factors areΦ(A(0)

1,s,A
(0)
2,s) and Φ(A(∞)

1,s ,A
(∞)
2,s ). They can be exactly compensated by tak

e
q,A

(∞)
s
P (a)(e

q,A
(0)
s
)−1 instead ofP (a). However, this depends onA(0)

s andA(∞)
s and not only

onA(0)
s andA(∞)

s (see the first half of the first fact in 3.2.2.1), so that it is no longer a funct
isomorphism.

In order to twist the connection matrix, one chooses, for eacha ∈C∗, a group homomorphism
ga ∈ Homgrp(C∗,C∗) such thatga(q) = 1. We have exhibited such a family(ga)a∈C∗

in 2.2.3 and we shall make this choice more precise further below. One then puts, forc ∈C∗,
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ψa(c) =
ec(a)
ga(c) , so that:

{
ψ (c )ψ (c ) = ψ (c c )φ(c , c )(a),

isting
s from
cal
3.2.3.2

s not

ere

wo

e

n
e

a 1 a 2 a 1 2 1 2

ψa(c) depends only on c.

Now extendψa to matrices, so that:

{
ψa(A1)⊗ ψa(A2) = (ψa(A1)⊗ψa(A2))Φ(A1,A2)(a),
ψa(A) depends only onA (actually, onAs ).

We have built our twisting factor. It is made up of two ingredients: one is due to the tw
of the tensor product, itself due to the noncanonical choice of solutions. The other come
the artificial concentration of the local groupoid at0, in a unique base point (and a unique lo
group), as shown in the figure at the end of 3.2 and in Proposition 3.2.3.1 and Remark
(all the pointsω(0)

a are artificially concentrated at the unique pointω(0)). Leta ∈C∗ −Σ′. Then

X ❀ P̆ (a) =
(
ψa

(
A(∞)
s

))−1
P (a)

(
ψa

(
A(0)
s

))
is a⊗-isomorphism:ω(0) → ω(∞). Note that choosing another group homomorphismga changes
it by a factor in Ěq and therefore changes our twisted connection matrixP̆ by a left and a
right factor in the semi-simple component of the local Galois groups. Similarly, it doe
matter that we have taken the samega to twist on the0 and on the∞ side. We therefore
take a slightly different choice for this family. We first writeC∗ = U × qR, thereby meaning
that we have chosen a logarithm ofq: q = e−2ıπτ , Im(τ) > 0. We thus write everyz ∈ C∗:
z = uqy = ue−2ıπτy with |u|= 1 andy ∈R. This allows us to define, for anyα ∈C, a group
homomorphism:

δα:
{

C∗→C∗,

uqy �→ qαy = e−2ıπταy.

To definega, we now choose a logarithm ofa. We first define the functionlogq on the whole of
C∗ by the following conditions: it is to be holomorphic onC∗ − qR, one haslogq(qy) = y and
the discontinuity is justbeforethe cut when turning counterclockwise around0. Lastly, we put
ga = δα whereα = logq(a). This definition is consistent with that in 2.2.3.6, we just deal h
with continuity and cuts.

It is an important fact that̆P is not an elliptic function. Here are the effects of the t
fundamental loops ofπ1(Eq):
• Automorphy due to the monodromy of the logarithm. Let a turn counterclockwise onc

around0. Thenga(c) = δα(uqy) = e−2ıπταy is multiplied by e−2ıπy and, sinceeq,c is
uniform onC∗, ψa(c) is multiplied byγ2(c). This γ2 sendsq to 1, so that it defines a
elementγ(0)

2 of the local Galois group at0 (and the like at∞): clearly, it represents th
plain classical loop around0 in C∗.
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• Automorphy due to the defect of ellipticity ofP̆ . From the equalitylogq(qa) = logq(a) + 1,

we draw:gqa

ga
= δα+1

δα = δ1, whence

ctors

,
ct

previ-

o

l

ψqa(c)
ψa(c)

=
eq,c(qa)/gqa(c)
eq,c(a)/ga(c)

=
c

δ1(c)
= γ1(c).

This γ1 defines again an elementγ(0)
1 of the local Galois group at0, similarly at∞. We

thus have:

P̆ (qa) =
(
γ

(∞)
1

(
A(∞)

))
P (a)

(
γ

(0)
1

(
A(0)

))−1
.

While P̆ is not elliptic (except in the regular case), its left and right automorphy fa
under the action ofqZ are elements of the local Galois groups.

3.2.2.3. A density lemma. We again restrict ourselves to a categoryC′Σ,C , and, occasionally
to C′Σ,reg. The arguments apply as well to the tannakian subcategory〈X 〉 generated by an obje

X = (A(0), P,A(∞)). We consider a{0,∞}-subsetE of the Galois groupoidĞ, with base
{0,∞} (� Spec(C × C)), with arrow setsAut⊗(ω(0)), Aut⊗(ω(∞)), Iso⊗(ω(0), ω(∞)) and
Iso⊗(ω(∞), ω(0)) with the following constraints:
• The componentE(0) above0 contains the unipotent loopX ❀A

(0)
u , and a family of semi-

simple loopsX ❀ γi(A
(0)
s ) where theγi ∈Homgrp(C∗,C∗) are such that

⋂
i

kerγi = qZ.

Alternatively, if viewed as elements ofHomgrp(C∗/qZ,C∗), theγi are such that

⋂
i

kerγi = {1}.

The componentE(∞) above∞ contains the corresponding elements at∞.
• The componentE(0,∞) above0,∞ contains the pathsX ❀ P̆ (a) for all a ∈C∗ −Σ′.

Then, the{0,∞}-setE generates a Zariski dense subgroupoid ofĞ.

3.2.3. Relation to the results in 3.1
We now relate the fibre functors and Galois groupoid studied here with those described

ously. Let F :A → B be a morphism of flat objects, meromorphic onC′. Then,
Feq,A = eq,BS, whereS has constant coefficients andSA=BS. Thus,

F (z0)eq,A(z0) = eq,B(z0)S,

that is,X ❀ eq,A(z0) is a natural transformation fromω(0) (the fibre functor in Section 3) t

ω
(0)
z0 . It is however not⊗-compatible. On the other side, the relationSA = BS implies that,

for any mapψ :C∗ → C∗ such thatψ(c) depends only onc, X ❀ ψ(A(0)) provides a natura
isomorphism (not a⊗-isomorphism) fromω(0) to itself. Hence:

X ❀ (
ψ

(
A(0)

))−1
eq,A(z0)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



956 J. SAULOY

is again a natural transformation fromω(0) to ω(0)
z0 . For it to be⊗-preserving, it is necessary and

sufficient that the mapg : c �→ eq,c(z0)
ψ(c) be a group homomorphismC∗ → C∗. Otherwise said,

eq,c(z0) ∗ ∗

up

isms

nection

here,
more

e

ent

of both
hat the

ct
s

ψ(c) = g(c) , whereg is a group homomorphismC →C and the conditionψ(qc) = ψ(c)
says thatg(q) = z0. We have found again thega andψa of 3.2. We conclude that any such gro
homomorphismgz0 provides a⊗-isomorphism:

X ❀ gz0
(
A(0)

)
= gz0

(
A

(0)
s

)
from ω(0) to ω(0)

z0 . Of course, composition of such isomorphisms exactly gives the morph
ω

(0)
z0 → ω

(∞)
z0 already found.

Now, as regards the connection component, we have already seen that the con
matrix corresponding to(A(0),M,A(∞)) isP = (eq,A(∞))−1Meq,A(0) . Therefore, the morphism

X ❀ P̆ (z0) from ω(0) to ω(∞) provided by thetwisted connection matrixP̆ is but the
composition:

ω(0)
gz0(A(0))

ω
(0)
z0

M(z0)

ω
(∞)
z0 ω(∞).

gz∞ (A(∞))

To summarize the relationship between the description of the Galois groupoid given
in 3.2, and the previous descriptions, given in 2.2 and 3.1, we must introduce some
notations (which will not be used elsewhere). We shall callG the former groupoid (its bas
set is the disjoint unionC∗ � C∗) and Ğ the latter one (its base set is{0,∞}). Recall that

Γa ∈ Iso⊗(ω(0)
a , ω

(∞)
a ) was defined in Proposition 3.1.2.2. The corresponding “twisted” elem

of Iso⊗(ω(0), ω(∞)), defined in 3.2.2.2 asX ❀ P̆ (a), we denote by̆Γa. Similarly, for the local
groupoids, we define, fora ∈C∗:

Γ(0)
a ∈ Iso⊗(

ω(0), ω(0)
a

)
byX ❀ ga

(
A

(0)
s

)
and

Γ(∞)
a ∈ Iso⊗(

ω(∞)
a , ω(∞)

)
byX ❀ ga

(
A

(∞)
s

)
.

3.2.3.1. PROPOSITION. – For all a, Γ̆a =Γ(∞)
a ◦ Γa ◦ Γ(0)

a .

It is moreover clear that the correspondence thus obtained between the elements
Galois groupoids preserves the continuity of the underlying morphisms of groups, and t
fundamental groupoids are mapped to each other through this correspondance.

The following commutative diagram exhibits the relations linking elements ofG to elements
of Ğ. The leftmost and rightmost fibre functorsω(0) andω(∞) (here evaluated on an obje
X = (A(0),M,A(∞))) should be thought of as base points ofĞ, while the inner vertical triangle
respectively belong to the subgroupoidsG(0) andG(∞) of G.
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3.2.3.2. Remark. – The above diagram can also be understood as explicitly identifyingG with
the groupoid induced by̆G through the canonical projectionC∗ �C∗ → {0,∞}, in the sense
of [11], 1.6.

Note
requires

nent

n

s
d by the

ection
utative

h this
c

field
n
ts

product
3.3. The connection component for abelian regular equations

In 3.2, we have given a more concrete description of the “connection component”.
however that neither description can be considered as a result of topological nature, as it
uncountably many generating paths. A partial solution will be proposed here.

For a regular equationA, the Galois group at0 is Zariski-generated by theP (a)−1P (b),
wherea, b run overC∗ − qZS(A). Generally speaking, it is generated by the local compo

at 0, G(0), oneconjugate ˘P (a)
−1
G(∞)P̆ (a) of the local component at∞, and the connectio

component, that is, the group generated by theP̆ (a)−1P̆ (b) wherea, b run overC∗ −Σ′. In the
case of torsionless equations (see 3.3.3.1), the twisting factors ofP̆ belong to the local Galoi
groups and one can replace the true connection component by the fake one, generate
P (a)−1P (b).

We shall describe here the connection component (hence the Galois group) forregular abelian
equations; by this, we mean those regular systems such that all the values of the conn
matrix commute with each other, that is, such that the connection component is a comm
group.

3.3.1. Summary of some results in [33]
We here apply to our context results of Sections 3 and 4 of Serre’s book [33], on whic

section heavily relies. We identify the complex torusEq =C∗/qZ with the corresponding ellipti
curve and the latter with the set of its complex points. We also identify the rational function
k(Eq) of the algebraic curveEq with the fieldM(Eq) of elliptic functions. The connectio
matrixP defines a meromorphic function onEq and we callS its singular locus (made up of i
poles along with those ofP−1, see 1.2.2), a finite subset ofEq .

We fix once for all a base pointa0 ∈Eq − S. The meromorphic mapping:

{
Eq→Gln(C),
a �→ (P (a0))−1P (a),

can be seen as a rational mapf :Eq→Gln(C) and the holomorphy ofP onEq − S implies that
f is regular on the curveEq − S. Hence the Galois groupG⊂Gln(C) ofA is Zariski-generated
by the image of the regular mapf :Eq − S→Gln(C).

Being parameterized by a Zariski-dense subset of an irreductible projective curve,G is a
connected algebraic group and we have assumed it to be commutative. It is therefore the
of an algebraic torus5 and an affine space:

G�Gm
k ×Ga

l

(see [6], 3.8 and 4.8 and [35], 3.4).
According to [33], Theorem 1 of Chapter 3, amodule:

M =
∑
p∈S
np[p] (all np > 0)

5 To avoid any mishap, we shall systematically callcomplex torusan elliptic curve overC andalgebraic torusa torus
in the sense of the theory of linear algebraic groups.
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is associated tof , that is, an effective divisor onEq with support exactlyS. To this module is
associated ageneralized jacobian:

ion

ic
s that

le

n

a
e is

trized
roup:
ΦM :Eq→ JM,

whereJM is a commutative algebraic group andΦM is a rational map defined up to a translat
in JM; for instance, fixing a base pointa0 ∈Eq − S and requiring that it be mapped to0 ∈ JM

uniquely determinesΦM (see Chapter 5 of [33]). We shall henceforth do so.
The generalized jacobianJM has the following universal property: ifM is associated tof , then

f has a unique factorizationf = F ◦ JM with F :JM → G a (regular) morphism of algebra
groups. From the universality and the general properties of algebraic groups, it follow
Im(F ) =G.

As a matter of fact, the moduleM is not uniquely determined byf : any M′ � M will do.
There is then a corresponding mapJM′ → JM. Thus, we can factorf through the projective
limit of all JM with modules supported byS. This can be done with a fixed base point outsideS.
Call JS this projective limit. We shall not confuse it with theJM corresponding to the modu∑
p∈S [p].
According to [33], p. 99,JM is an extension of the jacobianJ of Eq by a linear groupLM,

the structure of which will be made explicit below:

0→ LM → JM → J → 0.

Taking the projective limits, there is a corresponding extension:

0→ LS→ JS → J → 0.

In our case,J = Eq. Moreover, the mapF :JM → G is totally determined by its restrictio
toLM: indeed, for two mapsF,F ′ :JM →G coinciding onLM, one would get

F−1F ′ :JM →G,

trivial on LM, thus factoring through a regular map from the projective curveJ to the affine
groupG, hence trivial.

To summarize, to every regular abelian object of rankn with singularities inS, we associate
regular map fromLS to Gln(C) the image of which is its Galois group. this correspondenc
one to one and we shall hereafter make it more explicit.

3.3.2. The abelianized of the regular fundamental group
Still following [33], we introduce, forp ∈ S andn ∈N∗, the following groups:



Up = {g ∈ k(Eq)∗ | vp(g) � 0},
U

(n)
p = {g ∈ k(Eq)∗ | vp(1− g)� n},
V

(n)
p = U (1)

p /U
(n)
p .

The latter is a(n − 1)-dimensional affine space. In characteristic zero, it can be parame
using the exponential of truncated power series, so that we can (and shall) see it as the g

V (n)
p �

{
exp

(
−a1t− · · · − an−1

tn−1

n− 1

)}
,
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with t a local parameter atp. This parametrization will make easier the description of morphisms
to Ga in 3.3.2.2. Also note that, writingg = (g/g(0))× g(0), one has:

rdan

d
r

33]


Up � U (1)

p ×Gm,
Up

U
(n)
p

� V (n)
p ×Gm.

We now define, forM =
∑
p∈S np[p] (all np > 0):



RM =

∏
p∈S

Up

U
(np)
p

�Gm
S ×

∏
p∈SGa

np−1,

∆= {(x, . . . , x) ∈Gm
S} (the diagonal),

LM = RM

∆ � Gm
S

∆ ×
∏
p∈SGa

np−1.

Then, going to the projective limit, we get:



LS = LS,s×LS,u, where

LS,s = Gm
S

∆ �Gm
|S|−1 and

LS,u �
∏
p∈S(1 + tpC[[tp]]).

(3)

The groupsLS,s andLS,u are respectively the semisimple and the unipotent factor of the Jo
decomposition of the commutative algebraic groupLS (see [6], I.4.5). Here, for eachp ∈ S we
have, selected a local parametertp at p and identified the projective limit of theGa

np−1 to

1 + tpC[[tp]] = exp
{
−a1t− · · · − an−1

tn−1

n− 1
− · · ·

}
.

To all our regular abelian objects of ordern with singular locus onS, we have associate
injectively a regular morphism of algebraic groups fromLS to Gln(C). To find precisely ou
candidate for theabelianized regular fundamental group with singularities inS:

π1
ab,S,reg =

π1
S,reg

[π1
S,reg, π

1
S,reg]

,

we have to check which morphisms:LS→Gln(C) actually arise from abelian objects inCΣ,reg.
Dealing with commutative groups, we just have to find all maps toGm and toGa, that is,
1-dimensional and unipotent2-dimensional objects. The following (again) comes from [
(paragraph 18 and the description of local symbols in Chapter 3).

3.3.2.1. The semi-simple component. Let f :Eq→Gm, which we identify with an elliptic
function with poles and zeros inS. The corresponding map onLS,u is trivial. On the p-
component (p ∈ S) of LS,s, it is given byx �→ xvp(f), the triviality on the diagonal∆ being
forced by the residue formula:

∑
p∈S vp(f) = 0.

Such an elliptic function is characterized, up to a factor inC∗, by its divisor
∑
vp(f)[p]. The

latter is bound by the following conditions:

{∑
p∈S vp(f) = 0,∑
p∈S vp(f)p= 0Eq .
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Conversely, these conditions characterize the divisors of elliptic functions. We want to get rid of
all elements ofLS,s that are killed by such divisors. Therefore, we put:

{

n,

us

s:

d,
e

RelEq (S) = {(np)p∈S ∈ZS |
∑
p∈S npp= 0Eq},

L′
S,s = image inLS,s of {(xp)p∈S | ∀(np)p∈S ∈RelEq(S),

∏
p∈S x

np
p = 1}.

And we can now put:

π1
ab,S,reg,s =

LS,s
L′
S,s

.

3.3.2.2. The unipotent component. We make it explicit by considering unipotent rank2
objects:

(
1 f
0 1

)
, wheref :Eq→Ga is rational with all poles onS (zeros do not matter here).

The corresponding effect onLS,s is trivial. The effect onLS,u is trivial only atp-components
such thatp is a pole:vp(f) =−k, k > 0. Then, using our previous “logarithmic” parametrizatio
it is given by:(an)n�1 �→ ak. Since we can prescribe arbitrarily the orders of the poles off just
by putting zeros elsewhere, we get the whole dual ofLs,u and may conclude:

π1
ab,S,reg,u = LS,u.

3.3.2.3. THEOREM. – The abelian regular objects with singularities inS are classified by the
representations of the following algebraic group(see Eq.(3)):

π1
ab,S,reg =

LS,s
L′
S,s

×LS,u.

This group can be seen as theabelianized regular fundamental group with singular loc
carried byS.

3.3.2.4. Example(dimension1). – Here is an explicit computation in dimension1. We consider
the equationσqy = ay, where:

a(z) = a0
r∏
i=1

1− u−1
i z

1− v−1
i z

= a∞
r∏
i=1

1− uiw
1− viw

.

One has usedw = 1/z; the above requires thata∞
∏
ui = a0

∏
vi. Then theconnection number:

p(z) =
eq,a0(z)
eq,a−1

∞
(w)

r∏
i=1

uiΘq(z/ui)
viΘq(z/vi)

is elliptic. In the regular case, one hasa0 = a∞ = 1,
∏
ui =

∏
vi and the connection number i

p(z) =
r∏
i=1

uiΘq(z/ui)
viΘq(z/vi)

.

The connection component is the subgroup ofC∗ generated by the valuesp(b)p(a) , wherea, b run
throughC∗ −{u1, . . . , ur, v1, . . . , vr}. One can of course fixa. This group is clearly connecte
so it has to beC∗ (the general case) or trivial. The latter occurs ifp(z) is constant, that is, if th
given equation is (equivalent to) the trivial equationσqf = f .

4e SÉRIE– TOME 36 – 2003 –N◦ 6



GALOIS THEORY OF FUCHSIANq-DIFFERENCE EQUATIONS 961

3.3.2.5. Example(dimension2, unipotent connection component). – One considers the system:(
1 a(z)

)

on-
l require

ues
erate
e fake
es

poid as
lated to
g. Our

story

matrix

t
e
e

A(z) = 0 1 ,

wherea(z) ∈C(z) is such thata(0) = a(∞) = 0. Then the connection matrix is:

P (z) =
(
1 p(z)
0 1

)
,

wherep(z) =
∑
n∈Z a(q

nz). The connection component is:

{(
1 α
0 1

)
| α ∈G

}
,

whereG is the subgroup ofC generated by thep(a)− p(b). It is generally equal toC and so is
the connection component. The only exceptional case is whenp is constant, which means thatA
is rationally equivalent to the trivial equationσqX =X .

3.3.2.6. Remark(torsionless equations). – We consider the case of equations with torsi
free local components. Various conditions on the exponents deserve that name; we shal
that the set of exponents at0 (resp. at∞) modulo qZ be a free subset ofEq. Then, for
each mapg :C∗/qZ → C∗, one can find agroup homomorphismf :C∗/qZ → C∗ such that

g(A(0)
s ) = f(A(0)

s ), so that the former belongs toG(0); similarly at∞. This implies that the
twisting factors in each particular̆P (a) belong to the local Galois groups, so that the val
P (a) of theuntwistedconnection matrix belong to the Galois groupoid, and moreover gen
it along with the local groups. So we can replace the true connection component by th
connection component generated by theP (a)−1P (b). To the latter, the content of 3.3.2 appli
word for word. For more details, see [26], second part, 3.1.2.2.

4. Additional results

4.1. Confluence of galoisian automorphisms

This paragraph extends to the Galois group (more precisely, to the fundamental grou
we have defined it) the confluence results obtained in [27]. These results are closely re
semicontinuity results obtained by Yves André, see [1], in an algebro-geometric settin
results are less general but more explicit, since we follow specified elements alongq-paths
in C∗. However, these results are not very complete since we do not know the whole
aboutrelations.

According to the general assumptions in [27], Chapters 3 and 4, we shall consider the
A of a fuchsianq-difference equation, depending onq in such a way that:

A− In
q− 1

→ B̃,

where the differential equation is fuchsian and non resonant at0 and∞, which entails tha
the q-difference equation also is forq close enough to1. Calling z̃1, . . . , z̃r, we assume th
convergence to be uniform on any compact subset ofC∗ −

⋃
1�j�r z̃jq

R
0 . Last, we assume th

Jordan structures at0 and∞ to vary “flatly” (seeloc. cit. for a precise formulation).
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We shall then attach toA the canonicaltriple (A(0), P,A(∞)) as defined inloc. cit. in the
non resonant case. Of course, we shall have this triple vary along withε andq.

r

level”
the

cal
4.1.1. General conventions
First, we shall slightly modify the choice ofq-characters andq-logarithm, so as to get simple

determinations of their limits asq→ 1. We take:

eq,c(z) = zε(c)

Θq(−z)
Θq,c(−z) ,

lq(z) =−z
Θ′

q(−z)
Θq(−z) .

Following the conventions of [27], we haveq tend to1 along a fixed logarithmic spiral. We fix
q0 = e−2ıπτ0 , with Im(τ0)> 0 and takeq = qε0 = e−2ıπτ , whereτ = τ0ε, ε > 0. We shall haveε
tend to0 alongR∗

+. The following assertions are proven inloc. cit.:
1. Forε→ 0+, let cε ∈C∗ be such thatcε−1

q−1 → γ ∈C. Theneq,cε(z)→ zγ .
2. In the same circumstances,(q− 1)lq(z)→ log z.

Here, we takelog z = 2ıπx andzγ = e2ıπγx, where we have writtenz = e2ıπx, x = u + vτ0,
u∈ ]− 1

2 ,
1
2 [. Said otherwise, we have taken a cut along−qR0 .

Then, we must choose loops in the local components. We start with the “fundamental
valueq = q0, ε= 1; afterwise, we shall need a calibration (or “renormalisation”) to handle
“level ε”. We split:

C=R⊕Rτ0

and, writingx= u+ vτ0, u, v ∈R, we define:{
x
p1�→ u,

x
λp2�→ λv.

These are group homomorphismsC→R sendingZ to Z, thereby defining:{
z
γ1�→ e2ıπu,

z
γλ
2�→ e2ıπλv

(we have writtenz = e2ıπx). These are group homomorphisms:C∗ →C∗, with images in the
unit circleU.

We want to relate these loops6 to our previous fundamental loops in the semi-simple lo
components at levelq = qε0 :

G(0)
q =Homgrp(C∗/qZ,C∗).

We see, writingx= u+ vτ0 = u+ v
ε τ that the latter are preciselyγ1 andγε2 .

In the same way, we have to “renormalize” the twisting factors inP̆ , mainly thega. This is
done writing, as before,a = e2ıπα and taking asga the group homomorphism fromC∗ to C∗

induced by {C→C,

u+ vτ0 �→ − vεα
(the latter clearly sendsZ to Z).

6 We shall concentrate on the component at0, the case of∞ being obviously the same.
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We must now choose galoisian automorphisms at the levelε = 0, that is, for the limit
differential equation. The latter has a pole at0, so that its local Galois group is an image in
GLn(C) of π1((C∗,0), .)alg = Zalg . We only take care here of the semi-simple component

of the

at
alois

ted
Zalg
s = Homgrp(C∗,C∗). Unhappily, we shall not arrive at the usual fundamental loop1 ∈ Z,

here identified withIdC∗ ∈Homgrp(C∗,C∗). To define specific elements, we split:

C=
1
τ0

R⊕R

and, writingx′ = u′

τ0
+ v′, u′, v′ ∈R, we define:

{
x′
wp̃1�→ wu′,

x′
p̃2�→ v′.

These group homomorphismsC→C sendZ to Z and, writingz′ = e2ıπx
′
, we can define:

{
z′
γ̃w
1�→ e2ıπwu′ ,

z′
γ̃2�→ e2ıπv′ .

These loops at0 define elements of the semi-simple component of the local Galois group
equation

δX̃
def
= z

d

dz
X̃ = B̃X̃

through the matricesγi(e2ıπB̃(0)). Here, the differential equation is assumed to be fuchsian0,
so thatB̃(0) ∈Mn(C). These matrices generate a Zariski-dense subgroup of the local G
group, though not the monodromy group: the latter is generated bye2ıπB̃(0), which comes from
γ̃

1/τ0
1 γ̃2.

4.1.2. Confluence of the connection component
From [27], we know thatP tends toP̃ , a matrix that is locally constant on the nonconnec

open subset

Ω̃ =C∗ −
⋃

0�j�r
z̃jq

R
0

of S, where we have put, for simplicity,̃z0 = 1. Of course,qR0 = e−2ıπτ0R.

The boundary of̃Ω is made up of theq-spirals generated by1 and the singularities̃zi of B̃.
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The matrixP̃ takes a finite number of values̃P (ai), 0 � i� r, and the(P̃ (ai))−1P̃ (ai−1),
1 � i � r, are the monodromy operators at singularities other than0,∞. But we have built
our Galois isomorphisms with̆P instead ofP , so we have to study the fate ofψa(A

(0)
s ) and

t

that

f

es
d

ion

celerate

he
ψa(A
(∞)
s ) asq→ 1.

Under the confluence assumptions, the exponentsc of A at 0, resp. at∞ are such tha
c−1
q−1 → c̃, the exponents of̃B at 0, resp. at∞. We shall do the computation withc = qc̃,
which, according to the lemma of [27], 3.1, does not matter. Following 4.1.1, we find
eq,c(a)→ e2ıπc̃a then ga(c)→ e2ıπv

′
, where we have writteñc = u′

τ0
+ v′, u′, v′ ∈ R. Last,

we obtainψa(c)→ e2ıπαu
′/τ0 : the twisting factor tends tõγα/τ01 . To be precise:

P̆ (a)→ γ̃
α
τ0
1

(
e2ıπB̃(∞)

)
P̃ (a)

(
γ̃

α
τ0
1

(
e2ıπB̃(0)

))−1
.

Therefore, up to factors from the local Galois groups at0 and∞, we get the whole system o
monodromy factors at other singularities.

4.1.3. Confluence of the local components
4.1.3.1. Unipotent part. The unipotent loop at0 defined at the beginning of 2.2.3 giv

rise to a continuous family of Galois automorphismsA(0)
u . We renormalize and follow instea

the (A(0)
u )−1/τ : the limit is plainly the unipotent Galois automorphism at level0, e2ıπB̃n(0),

obtained from the nilpotent component in the additive Dunford decomposition ofB̃(0).

4.1.3.2. Semi-simple part: generators. As noticed before, the exponentsc of A at 0 are
such thatc−1

q−1 → c̃, the exponents of̃B at 0. Again, we compute with the innocuous assumpt

thatc= qc̃ and we writẽc= u′

τ0
+ v′, u′, v′ ∈R. Then:

{
γ1(c) = e2ıπu

′ε→ 1,
γ2(c) = e2ıπv

′ → γ̃2(c̃).

We obtain eventually: {
γ1(A

(0)
s )→ In,

γ2(A
(0)
s ) = γ̃2(e2ıπB̃(0)).

The loopγ2 (which we interpreted as the plain loop around0 in C∗) turns infinitely fast, thus
compensating the trivialization of the exponents (which tend to1). The loopγ1 (which we
interpreted as the start of the move to infinity) turns at constant speed, so that we must ac
it to compensate for the trivialization. We therefore considerγ

E(1/ε)
1 and find that this will do:

γ1
(
A(0)
s

)[1/ε] → γ̃1
(
e2ıπB̃(0)

)
.

The trip is not so smooth, involving jumps at1/m, m ∈N∗. In the end, we have reached t
whole subgroup generated byγ̃1 andγ̃2.

4.1.3.3. Semi-simple part: relations. Again, we consider exponents that vary alongq-
spirals:qγ1 , . . . , qγn . One must compare the multiplicative relations of theqγi with the additive
relations of theγi moduloZ. We therefore introduce the module of relations:

L=
{
(m1, . . . ,mn) ∈ Zn |m1γ1 + · · ·+mnγn ∈Z

}
.
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Writing γi = ai

τ0
+ bi, with ai, bi ∈R, the above condition is equivalent to:

{
m1a1 + · · ·+mnan = 0,

t

;

e
oisian
amental

e

xt of
ation
],

define,
d

m1b1 + · · ·+mnbn ∈Z.

Now define the “exceptional set”:

E = {ε > 0 | 1/ε∈Qa1 + · · ·+Qan}.

This is an enumerable set and it is clear that, forε /∈ E, the localq-difference Galois group a
levelε has no more relations than the local differential Galois group at level0.

4.1.4. Description of the monodromy action with a fixed base point
Consider a fixed base pointa0 ∈ Ũ0 such that|a0|< |z̃i| for 0 � i� r. In each slicẽUi, choose

ai such that|ai| = |a0|. Then, fori = 1, . . . , r, we can define a loop with base pointa0 in the
following way: it goes froma0 to ai−1 along a simple circle arc with center0, counterclockwise
it turns once counterclockwise aroundz̃i, crossingqR0 z̃i exactly twice; it comes back fromai−1

to a0 through the same circle arc. Thus, we get well defined elements:

Γi ∈ π1

(
C∗ − {z̃1, . . . , z̃r};a0

)
, i= 1, . . . , r.

Together withΓ0, the class of the simple positive circle around0, they form a family of free
generators ofπ1(C∗ − {z̃1, . . . , z̃r};a0).

The monodromy action ofΓ0 on the space of solutions of the differential equationδX̃ = B̃X̃
as well as the action of the simple loop around∞, (Γ0Γ1 · · ·Γr)−1, are obtained by confluenc
of the localq-difference Galois groups, as seen in 4.1.3. To be precise, only differential gal
automorphisms were reached this way, but with the same Zariski closures as these fund
loops.

The monodromy action ofΓi for 1 � i� r has matrix:

(
P̃ (ai)

)−1
P̃ (ai−1) = lim

q→1

(
P (ai)

)−1
P (ai−1).

To compare it with the galoisian automorphisms(P̆ (ai))−1P̆ (ai−1), one just has to insert th
twisting factors shown in 4.1.2.

4.2. Extension to the p-adic case

We indicate here briefly how most of the previous results can be extended to the contep-
adicq-difference equations. The possibility to do this rests on Tate’s theory of the uniformiz
of rigid elliptic curves; it was suggested by Yves André7. More details are to be found in [26,31
along with detailed references to the literature.

4.2.1. Classification
We take as a base field the completionCp of the algebraic closureQp of the fieldQp of p-adic

numbers. It is an algebraically closed complete non archimedian valued field. One can
for q ∈C∗

p such that|q|< 1, an analytic curveEq = C∗
p/q

Z whose meromorphic function fiel
M(Eq) is an elliptic field (i.e. algebraic function field of genus1, see [8]), so thatEq can be

7 Marius van der Put told us that the results in [20] could be similarly extended.
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identified to an elliptic curve overCp. One gets in this way exactly those elliptic curves whose
modular invariantj(Eq) is not an integer. The uniformization of such an elliptic curve is obtained
with the help of thep-adic theta function:

fficient
ll
, as

n

d under
ced by
Θ(z) =
∏
n�0

(
1− qnz

) ∏
n�1

(
1− qnz−1

)
.

This has all the properties we used to define our fundamental solutions of constant coe
systems. Hence our abelianCp-linear rigid tensor categoriesEf , S andC can be defined, as we
as the exactCp-linear⊗-functorsSE andSC , our equivalence theorems remain valid here
well as the choice for the fibre functors.

4.2.2. The connection component
To build as in 3.2 the matrix̆P , we needed a morphismga :C∗

p→C∗
p sendingq to a. Here,

for lack of an exponential, we shall resort to a more Zornian construction.

4.2.2.1. LEMMA. – Let K be an algebraically closed field of characteristic0 and letx ∈
K∗ − µ∞(K∗), whereµ∞(K∗) is the torsion subgroup(roots of unity) of K∗. ThenK∗ and
K∗/xZ are respectively isomorphic to(Q/Z)×Q× V and to(Q/Z)× (Q/Z)× V , whereV
is aQ-vector space and wherex ∈K∗ corresponds to the element(0,1,0) of (Q/Z)×Q× V .

This lemma guarantees the existence of the group homomorphismsga. Thus, our constructio
of P̆ and our density lemma in 3.2 remain valid.

4.2.3. The local components
We now make more precise our choice of thega. Let a ∈ C∗

p correspond to(α,β, ξ) ∈
(Q/Z)×Q× V and choose a lifting (a logarithm!)α of α in Q. Then the morphism:

{
(Q/Z)×Q× V → (Q/Z)×Q× V,
(α′, β′, ξ′) �→ (β′α,β′β,β′ξ)

is well defined and corresponds to a group homomorphismC∗
p→C∗

p sendingq to a. We now
obtain naturally our fundamental semi-simple loopsγ1 andγ2:

1. If we change the “logarithm”α to α + 1, ga is changed tog′a in such a way thatg′a/ga
corresponds to:

(α′, β′, ξ′) �→ (β′,0,0).

This morphism we take asγ1 :C∗
p→C∗

p. It does sendq to 1.
2. If we computeψqa/ψa, we getc �→ c

gqa(c)/ga(c) , corresponding to:

(α′, β′, ξ′) �→ (α′,0, ξ′).

This morphism we take asγ2 :C∗
p→C∗

p. It also sendsq to 1.
It is obvious from the description with(α′, β′, ξ′) that Kerγ1 ∩ Kerγ2 = qZ. Thus, our

description of the local monodromy groups in 3.2 is still valid herealmost naturally, that is,
up to the choice of a logarithm.
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