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GALOIS THEORY OF FUCHSIAN
¢-DIFFERENCE EQUATIONS

By JACQUES SAULOY

ABSTRACT. — We propose an analytical approach to the Galois theory of singular regular linear
g-difference systems. We use Tannaka duality along with Birkhoff's classification scheme with the
connection matrix to define and describe their Galois groups. Then we defanittemental subgroups
that give rise to a Riemann—Hilbert correspondence and to a density theorem of Schlesinger’s type.
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RESUME. — Nous proposons une approche analytique de la théorie de Galois des systemes aux
g-différences linéaires singuliers réguliers. Nous combinons la dualité de Tannaka avec la méthode de
classification de Birkhoff a I'aide de la matrice de connexion pour définir et décrire leurs groupes de Galois.
Puis nous décrivons desus-groupes fondamentagyi donnent lieu a une correspondance de Riemann—
Hilbert et & un théoreme de densité de type Schlesinger.
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“Je suis convaincu que, tout comme pour les fonctions spéciales solutions d’équations
différentielles, les formules intéressantes dérivent de considérations “géométriques” simples”
(Jean-Pierre Ramis, [23]).

0. Introduction
0.1. Rational linear ¢-difference systems and rational equivalence
Let ¢ be a fixed complex number such that > 1. Let 5, denote the dilatation — ¢z of a

complex coordinate on the Riemann sphefe= P'C, viewed as an operator on functions:of
In [27], we studied the classification ddtional linear ¢-difference systems

(0) 0, X = AX

over S underrational equivalenceHere, A € GL,(C(z)) is a given matrix and the unknown
X is a matrix withn rows and (possibly multivalued) holomorphic entries on sgrirevariant
open subset d8. The gauge grourL,,(C(z)) operates on the left on solutions of such systems,
hence on the systems themselves. This gives rise to the rational equivalence relation:

A~ (0,F)'AF, FeGL,(C(2)).

In this paper, we study the Galois theory of such systems.
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926 J. SAULOY

0.2. The classification theorem of Birkhoff

In analogy with Riemann’s classification scheme for complex fuchsian differential equations,
by local data at the singularities and monodromy transformations arising from the analytic
continuation of local solutions (the so-called “connection formulae”), Birkhoff defined in [5]
the “generalized Riemann problem” fgrdifference equations. He solved it fimichsian systems
under innocuous (generically true) assumptions. We now describe his classification scheme, as
slightly revised by us in [27].

We assume the system (0) to faehsian ovelS. This condition is precisely defined in 1.2.1;
it is essentially equivalent to the existence of fundamental solutions with moderate grawth at
andoo, as opposed to theta-like growth, lik&2 (see [22]). The idea of Birkhoff is to use local
solutions at the two only-invariant points o8, 0 andoo, and to classify fuchsian systems using
linear data ab andoo andonematrix connecting a local solution &tto one at>c. Here are the
main steps. Note the close similitude of steps 1 to 3 with the classical Frobenius—Fuchs method
for ordinary differential equations.

1. Any fuchsian system is meromorphically equivalent (néarto one with constant

coefficients. Here, meromorphic equivalence is defined by letting the gauge transformation
F € GL,(C({z})) (F will then automatically belong ta:L,,(M(C))).

2. Any constant coefficient system can be reduced by linear algebrditnensional systems:
oqf = cf (wherec is an exponent) and, if its matrix is not semi-simpedimensional
unipotent systemst,g = ¢g + 1. One can build solutions to such elementary systems that
are meromorphic oil©* and have moderate growth @andoo, relying on Jacobi’s theta
function©,. We thus obtain the-characters:, . and theg-logarithmi,. From this, we get
a canonical fundamental solutiep 4 for each constant coefficient systetre GL,,(C).

3. Each fuchsian system is therefore endowed with a local solutionat” = M e, ),
where M(©) ¢ GL,(M(C)) and A®) ¢ GL,(C), and, symmetrically, a local solution
atoo: X () = M(*)e, (), the Jordan structures af®) and A>) are the the required
“linear data”. '

4. The connection matrix of Birkhofiis then defined to beP = (X()~1X () |t has
coefficients in theg-invariant subfieldM(C*)?« of M(C*), that is, in the field of
meromorphic functions on the elliptic cur#&, = C*/¢Z.

Now, Birkhoff's theorem says that, given linear data(atand atoo and an invertible
elliptic matrix, one can recover a systei) well defined up to rational equivalence. A precise
formulation can be found in [27].

Birkhoff’s method seems to lend itself easily to a reformulation in the style of Riemann—
Hilbert's classification scheme, via local systems and representations of the fundamental group.
The local linear data should allow one to compute local monodromy transformations d@round
andoo, so that groupoid with two base pointsaturally appears. Then these base points should
be connected by paths frothto oo: here, the representation has a natural counterpart, the
connection matrix. But the latter has elliptic coefficients, so that one does not end up with
algebraic matrices over the complex numbers, as in the classical case: the field of “constants
of the theory M (C*)%« = M(E,), is too big.

0.3. Adapting Picard-Vessiot theory

The first break through the difficulties caused by the big constant fi¢({&,) was made by
Etingof in [14]. He adapted Picard—Vessiot theory to the casegilar ¢-difference systems,
those such thatd(0) = A(c0) = I,,. Etingof defines and builds Picard—Vessiot extensions
and shows the relategtdifference Galois group to be generated by Wadéues(at authorized
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points) P(a) "' P(b) € GL,(C), where P is the connection matrix. However, in the case of
nonregular systems, elliptic functions spontaneously arise in yet another way afC*, then,

along with the “legal” solutiore, .4 to the equatiorr, f = cdf, there is alse, .eq 4, SO that
o(c,d) = % is elliptic. Any field containing these basic solutions will contaih elliptic
functions, and it is easy to prove that there is no way to trivialize the cogyelel) while using

“true functions”, so that there seems to be no hope for a Picard—\Vessiot theory with a group
defined overC even in the fuchsian case. The second breakthrough was accomplished by van
der Put and Singer in [20], usireymbolic solutionsThey build a Picard—Vessiot theory with
constant fieldC. They are then able to solve the problem in total generality, including the case
of irregular (nonfuchsian) systems.

However, our work is part of a program that requires a function theoretic attack at
these problems. First, there is the link gfdifference equations to ordinary differential
equations through-analogies. Wheg — 1, g-analogs of special functions (like Heindigsic
hypergeometric seriessee the “bible” [15]) “tend to” their classical counterpart. One may
wish to follow Galois groups along such anfluence Some results in this direction were
expounded in [27]. They receive here substantial extensions. This is of obvious interest in
mathematical physics, with the present ubiquityafeformations. Second, the appearance (and
central importance) of Jacobi’'s theta functions, elliptic functions and complex elliptic curves
in the landscape unveil rich geometric structures. We build explicit galoisian automorphisms
and give them a geometric interpretation, which allows us to exhibit a reasonable candidate for
the role offundamental groupthat is, a finitely generated and finitely presented Zariski-dense
subgroup of the Galois group. This is in analogy with Schlesinger’s theorem (see [4,7]) and
with the topological flavour of the classical Riemann—Hilbert correspondence, where fuchsian
differential equations are classified by monodromy representations (seé [10])

As noted before, the use of “true functions” gsharacters forces on us a big constant
field M(E,). Yet, in our version of the classification theorem of Birkhoff, automorphisms of
fuchsian objects are classified by complex matrices. The root of this fact is that we authorize as
unique “legal model” for the equation, f = cf the one functior, . and nobody elsehereby
rigidifying a lot the situation. The corresponding drawback is that we cannot multiply solutions:
eq,c€q,4 1S NOt legal, onlye, .q is; we do not even have an algebra of solutions. Therefore, to
produce a Galois group, we turn to Tannaka duality (see [12,11]). This has already been used in
this context twice: by van der Put and Singer in [20] for one, then by Yves André in his work [1],
where deformation results are proved for difference and differential Galois grobpgyoal of
this paper is therefore to give a tannakian formulation of the classification theorem of Birkhoff,
while using as basic objects uniform analytic functio& now list our main results (they are
detailed in Section 0.4).

Thelocal categoryf}o) of ¢-difference systems is naturally equivalent to @dinear neutral
tannakian categor¥ib, (E,) of flat vector bundles over the elliptic curl,. There is a naturally

defined local Galois groupoid(©) of 5}0) with base se€* and we compute it explicitly, as well

as the local Galois group, also calléd®). We build explicit elements of the grodg®, and we
want to see them dsops?; then, we single out two commuting loops with a nice topological

1To these arguments, one should add that the oldest historical motivation fqevileld lies in magic identities
by Gauss, Euler, Jacobi, Ramanujan ... (see [21]). These involve classical analytical functions and one may hope
for a geometricunderstanding of them. One must also mention thdifference equations are a possible intermediate
step to understand the mysterious analogy between irregular linear ordinary differential equations and wildly ramified
phenomena in positive characteristic (see [24]).

2By nicknaming “loop” a galoisian automorphism (i.e. a tensor automorphism of a fibre functor), we just go one little
step beyond the terminology introduced by Katz in [18], 1.1.2.1.
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928 J. SAULOY

interpretation as “fundamental loops of an infinitesimal elliptic curve”. The group they generate
is Zariski-dense irG(?). We see it as thivcal fundamental group

Theglobalcategory€; of g-difference systems is equivalent to @elinear neutral tannakian
category of triples A(®), M, A(>)), made up of two flat vector bundles and a meromorphic
isomorphism between. Evaluating such isomorphisms at non singular points provides us with
galoisian isomorphisms (“paths”) in the global Galois group@id he local groupoid&'(®) and
G(>) together with these paths generate a Zariski-dense subgroupGidrafr regular abelian
objects with prescribed singular locus, the Galois group is Zariski-generated by the values of
the connection matrix. Using methods from geometric class field theory, one can classify all
regular abelian representations with prescribed singular I6cokthe global Galois group as
representations of an explicit affine group.

Last, we describe explicitly the confluence of the generators of the global Galois group to
elements of a differential Galois group whetends tol.

0.4. Contentsof thispaper

Let us now describe more precisely the organisation of this paper. In Section 1, we review
some basic properties of lineardifference systems with rational coefficients. In Section 1.1,
we briefly recall general algebraic propertiesjadifference systems angdifference modules,
mostly adapted from [20]. In Section 1.2, we define the categorgf fuchsiang-difference
systems, a neutral tannakian category deiand we summarize the first part of our previous
work [27], about local solutions and classification of such systems.

Sections 2 and 3 contain the core of this paper, the construction and tentative description
of the local and global Galois groups and groupoids of the category of fuchsi#fference
systems. Section 2 deals with the local setting and Section 3 with the glueing of the local
descriptions al andoo. In 2.1, we study théocal categor)EJﬁo); we consider here as localisation
at 0 the action to allow for morphisms with coefficients defirledally for the transcendant
topology We find a particularly simple equivalent categd®?) of local models related with
the categoryR of complex representations &f In Section 2.2, we exploit this link to exhibit a
C*-indexed family of fibre functor&gg) extending the canonical fibre functoron R, allowing
us to compute théocal Galois groupoidG(®) of 57(00), with base seC* from the knowledge
of the proalgebraic hulZ.® = Hom,,,(C*,C*) x C of Z: G() is thereby identified with a
subgroupoid oZ*9 = Aut®(w). We prove:

2.2.2.1. HEOREM(the local Galois groupoid). With the previous identification ofut® (w)
with Z9,

Iso® (WD), WD) = {(7:X) € 2 | y(g)z0 = =1 }.

zo *¥z1

The Galois group (also called©) is then immediately deduced in Corollary 2.2.2.2.
Two commuting algebraically independent elements (“loopg”)and . in the semi-simple
component ofG(®) are built in 2.2.3. The following density theorem thus provides an analog
to the local fundamental group:

2.2.3.5. HEOREM. — The subgroup offom 4, (C*, C*) x C whose unipotent component is
Z c C and whose semi-simple component is generated layd~, is Zariski-dense in the local
Galois group.

According to Weil's correspondence between the dedgreector bundles on a compact
Riemann surface and the representations of its fundamental group, our caR§oof local
models is shown to be equivalent to the category of flat vector bundles over the elliptid€urve

4€ SERIE— TOME 36 — 2003 -N° 6



GALOIS THEORY OF FUCHSIANg-DIFFERENCE EQUATIONS 929

in 2.3. Our solutions can be interpreted as sections of these bundles and the singling out of our
fundamental solutions is equivalent to a choice of frames.

In Section 3, we start global Galois theory. In 3.1, we define a cat&yofgonnection triples
(A© M, A)), made up of two local (flat) systems and an isomorphigrbetween them that
is meromorphic oveC*. In Proposition 3.1.1.3, we prove th&f andC are equivalent tensor
categories. The natural projections to the local categori@satioo equip them with twoC*-
indexed families of fibre functonsig) and w§§°). This defines a Galois groupo@ of C with
base seC* II C*. EvaluatingM at a pointz, defines a galoisian isomorphidi, between the

restrictions ofwig) and w§§°) to the tannakian subcategafy; of systems with singular locus
carried byX; we want to see such an element as a “path”. We then get another density result:

3.1.2.3. HEOREM. — The local groupoids at and atoo (defined and computed in Sectidn
together with the pathB., zo ¢ X generate a Zariski-dense subgroupoid of the Galois groupoid
of Cs.

In 3.2, we follow more literally Birkhoff and get stuck in many complications due to the
bad multiplicative properties of solutions, precisely, the fact that; # e, .e4.4, leading us to
atwisted tensor structurand atwisted connection matrixdowever, the grubby computations
of 3.2 give a more concrete approach and a simple structural description of the global Galois
group. Moreover, it is better fitted for the important confluence results of Section 4. The relation
with the point of view of 3.1 is explained in 3.2.3. In both approaches, we have exhibited a lot
of “connecting” galoisian isomorphisms (frofnto oo), built from the values of the connection
matrix, and we have proven a density lemma; but we want to reduaentt@mintabldamily of
generators thus obtained and to make explicit the relations between them. We solve this difficult
problem in 3.3 forregular abelianobjects. The Galois group is then reduced to its connection
component, which, after 3.1.2, is Zariski-generated by the values of the connection matrix.
Relative to a prescribed singular locdswe explicitly define and compute in 3.3.2 (Eq. (3),
3.3.2.1and 3.3.2.2) affine algebraic groups,, L , and L5, and prove:

3.3.2.3. HEOREM. — The abelian regular objects with singularities $hare classified by the
representations of the following algebraic graup

1 _ 5
7-‘-ab,S,rcg - § X LS,u-
S,s

In Section 4, we study, along the lines of our previous work [27], the confluengdifference
galoisian automorphisms to differential galoisian automorphisms wheri. This can be seen
as an “internal”, maybe more explicit, illustration of results by Yves André in [1], relating a
family of ¢-difference Galois groups to a differential Galois group.

Gener al facts and conventions

We fix for the whole paper a complex numhge C such thatq| > 1 and a number € H
(Poincaré’s half plane) such that= e=2"". The only exception is Section 4.1, wherendr
will be allowed to vary. For any € C*, there is a unique paim, d) € Z x C with ¢ = ¢™d,
whered belongs to théundamental annulud < |d| < |g|; we then put(c) =m ande =d, so
thate(c) is the integral part o Zgl‘g‘l andc = ¢°(“)z.

For any complex regular matrid € GL,,(C), we write A = A A, its (multiplicative
Dunford decompositianA is semi-simple, A, is unipotent and they commute. Such a
decomposition is unique and both factors are polynomiald.ihet f be any mapC* — C*.
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Write A, = Qdiag(ci,...,c,)Q 1. Then, the matrixQ diag(f(c1),..., f(c,))Q~! depends
on A only and we write itf(A;). Except otherwise explicitly stated, we shall then write
f(A) = f(A). One exception to this last convention is that= A, A, so thatAd = ¢°(4)A.
Another exception appears when we defigg in 1.2.2. Also, note the following general fact:
if SA= BS, then, for any mag : C* — C* and any\ € C, one hasSf(A) = f(Bs)S and

S A2 = B;S; here, of course,

(actually, a finite sum).

1. Preliminary results
1.1. Difference systemsand difference modules

Most of the general formalism here is expounded in 20kt (K, o) be a difference field:
K is a field ands is an automorphism ok'. We shall also, without further notice, denote by
o the canonical extensions to the vector spaces of matrices, or of row or column vectors. The
g-difference equation of ordet:

(1) Unf+alan_lf+"'+anf:01 ala"'aa’GEK’ an#o
can be putinto system form agyaifference system of rank
2 cX=AX, Ae(GL,(K).

Conversely, any such system is equivalent to such an equation via the gauge equivalence defined
by: A~ (cF)"'AF, F € GL,(K). This is a consequence 8irkhoff’s cyclic vector lemma

(see [27], Appendix B or [13]). As a consequence, from now on, we won't distinguish between
equations and systems.

1.1.1. The category of difference modules

The system (2) can in turn be modelled more intrinsically aifference modulé K™, ®)
by putting®: K" — K™ X — A~ !0 X, where a difference module over the difference fi&ld
(more properly, ove(K, o)) is a finite dimensionak’-vector spacé// equipped with a-linear
automorphismb,, (that is, a group automorphism such tlat; (zm) = o(2)®;(m)). Then
®, is actually linear over theonstant subfield

Ck=K°={z€K|o(z)=2z}.
A morphismf: (M, ®y;) — (N, ®y) is aK-linear map such thaby o f = f o ®,,. We shall
usually writeM, f: M — N, etc., the difference module structure being implicit. Also, we write
r(M) for therank of the difference modulé/, that is, its dimension as K-vector space. We

thus obtain the catego®iff Mod (K, o) of difference modules over the difference fig¢li, o).
According to [20], this is &’k -linear rigid abelian tensor category (see [12] and [11]). Clearly,

3 A different formalism is presented in [1], which introduces a notionaf commutative connection
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forgetting the difference structure (i.e. the automorphisg) provides us with a fibre functor
from DiffMod (K, o) to the category[/ect{( of finite dimensional-vector spaces, thus making
DiffMod (K, o) aCk-linear tannakian category neutralized Ry(see [12]).

1.1.2. The category of difference systems

Choosing an ordered basis for each finite dimensional vector spaceksoedows one to
replace the category’ectﬂ by its essential full subcategory with objects thHé (n € N); then
the morphismg{™ — K can be identified with the matrices M,, ,,(K). This subcategory is
equivalent, as an abelian category,vfa:t{(. To have an equivalenepiatensor categories, it is
enough to consistently choose an order on the product of any two ordered bases. For instance,
choosing the lexicographic order gives bijections:

{{1,...,n1} ><{1,...,n2}—>{1,...,n1n2},

(il,ig) — il + nl(iQ — 1)
We thus obtain well defined isomorphisms:

Knl %Kﬂ2 - Kn1n2 and Mplﬂll (K) (I%Mpmnz (K) - Mplpz-,nl?m (K)

The resulting tensor category has trivial (i.e. identity) associativity and unity constraints (but it
is not so for the commutativity constraint).

In the same spirit, define tteategoryDiffEq( K, o) of difference equations over the difference
field (K,0): it has as objects the paifg{™, A) wheren € N and A € GI,,(K); and, as
morphisms from( K™, A) to (K7, B), the matriced” € M,, ,,(K) such thatcF')A = BF (the
composition is the natural one). We shall often simply denotedbihe object(K™, A) and
identify it with the difference equation X = AX; the main reason to make the base sp&te
explicit is to give a more natural notation to the forgetful funcéf™, A) ~» K™. To obtain
DiffEq(K, o) as atensormodel of DiffMod (K, o), we define the tensor product of two objects
by: (K™ Ay) ® (K™, Ay) = (K™, A; ® As), with the previous identification afl; ® As
to a matrix inM,,, », (K); and the tensor product of two morphisiis (K", A;) — (K?i, B;)
(t=1,2) asF; ® Fy, similarly identified with a matrix imZ,, p, nyn, (K). From 1.1.1, we draw
thatthe above constructions makeffEq( K, o) into a rigid Ck -linear abelian tensor category
equivalent toDiffMod(K, o). It is tannakian and neutralized hi . The basic relevant linear
and tensor constructions are detailed in [26] and in [29]. In particular, thd is{tK, 1).

1.1.3. Functorsof solutions

Thefunctor of global sectionsn DiffMod (K, o) is the functod® = Hom(1, —). The elements
of I'(M) are precisely the fixed vectors &, in M. We clearly get a left exact functor to the
category ofC'x-vector spaces. From the inequalitimc, T'(M) < r(M) (which follows from
the “g-analogue of the Wronskian lemma”, see [13], I.1.2), follows that this functor actually
goes to the category/ectéK. Now let (K’,0’) be an extension of K, o), that is, K’ is an
extension of and 0"K = o. The naturally defined base change functor fro%ffMod (K, o)
to Diff Mod(K',c") is exact andz-preserving. Combining these constructions yields a functor
M~ (M@K,

In matrix terms, we associate to a system (2)dhe-spaceSx (A) of solutions inK’"". We
thereby obtain a functor fromiffEq(K, o) to VectéK, defined by:

A~ SK/(A),
{(F:A—»B)M (UHFU:SK/(A)—MS’K/(B)).
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Call fundamenta(matrix) solutionof the system with matrid € GL,,(K) over the extension

K’ amatrix solutionX € Gi,,(K'). The rank of the”x vector spac&x- (A) is exactlyn if and

only if there is a fundamental solution. If all systems have a fundamental solutigh imen the
functor of solutions is a fibre functor. However, in general, functors of solutions are neither right
exact, nor faithful, no-compatible.

1.2. Fuchsian equations

1.2.1. Thecategory &; of fuchsian equations

We shall define here the categdof linear ¢-difference equations with rational coefficients
and its subcategory; of fuchsian equations. We shall use the following fields of functions:
C(z), the field of rational functionsM(C), the field of meromorphic functions ovet;
M(Cy), the field of meromorphic functions ové€ ., = S — {0}; and M(C*), the field of
meromorphic functions ovee*. Each of these function fields, endowed with the automorphism
aq: f(2) — f(gz), is a difference field. To any of them, we can specialize the preceding
constructions.

We are particularly interested in the category of (linear) ratiopdifference equations,
obtained by takingk = C(z) ando = o,. We shall call it€ = DiffEq(C(z),0,). Since the
constant field is, in this cas€jx = C(z)?* = C, £ is aC-linear tannakian category neutralised
by C(z2).

We shall say that a system with matrike GI,,(C(z)) is strictly fuchsian at0 if A(0)
Gl,(C). We shall then calfuchsian at0 a system that is meromorphically (that is, through
a gauge transformation with coefficients it (C)) equivalent to a strictly fuchsian one. It
was proved in [27], Annexe B, that this definition is equivalent to the classical one (using the
Newton polygon). Considering (co) and gauge transformations with coefficients\if(C. ),
we similarly define systems fuchsian (resp. strictly fuchsianpatt was also proved itoc. cit.
that an equation fuchsian @and at the same time fuchsianaatis rationally (that is, through a
gauge transformation with coefficients@x z)) equivalent to one that is strictly fuchsian or
(i.e. at0 and c0). Such equations we cdilichsian overS, or merely fuchsian. They form a
strictly full subcategor¥; of £.

1.2.1.1. HEOREM. —The categor¥; is a tannakian subcategory éfoverC.

To see that’y is closed under tensor operations (including unit, dual and inteifah) it
is plainly enough to consider the casestrfictly fuchsianobjects, and then it is obvious. Now,
from the lemma herebelow, it follows that the kernel&irof any morphism between fuchsian
objects is itself fuchsian. Therefore, it is a kernefin Since duality in the tannakian categdry
exchanges kernels with cokernels (this follows from [12, p. 112]), we conclud€ thaindeed
an abelian subcategory 6f O

1.2.1.2. IEMMA. —In &, any subobject of an object that is fuchsiarbas so.

This is an immediate consequence of the properties of the Newton polygon studied in
[28,29,32]. For a more explicit analytic proof see [26] (see also [19]).

1.2.2. Local reduction and local solutions
We recall, here and in the following section, some results from [27] and [26]. First, define
Jacobi’s theta function:

O,(2) = 3 (~1)"g V2,

nez
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It is holomorphic overC* with simple zeros ory?. It satisfies theg-difference equation
O4(gz) = —qzO4(2). It will be our main brick to build everything. First, one defines the
g-logarithm

0! (z)
lo(2) = 2—L—=,
(%) Oq4(2)
which is meromorphic ove€* with simple poles o? and satisfies the-difference equation

l4(qz) =14(2) + 1. Then, for eacle € C*, one defines the-character with exponent First, if
¢ lies in thefundamental annuluéz € C | 1 < |z| < |¢|}, one puts:

_ Oy(2)
ol =g ety

For c arbitrary, one writeg = ¢°(°)¢, wherez(c) € Z andc belongs to the fundamental annulus,
and one puté:

_ ele), _
€qc=2""€qz.

Theney o = 2" (if n € Z) and each non triviad, . is meromorphic ove€* with simple zeros
ong?% and simple poles orgZ. It satisfies the-difference equation, .(¢z) = ce, .(2), as well
as various relations as a family: for instaneg,.(z) = ze,..(2), etc.

Now, let A € GL,(C) with Dunford decompositiod = A, A,,. If

As = Qdiag(cy,. . ., cn)Q_l,

it makes sense to define:

eq,4, = Qdiag(egc,- -, €q7cn)Q71-

Similarly, defining:

l
€q, Ay = Aff = Z (]g) (A — In)k

k>0
makes sense, sinck, is unipotent. One then has
oq(eqa,) =Aseqa, and ogleqa,)=Auega,,

and defining

€q,A = €q,A;€q,Au>

one gets theanonical fundamental solutioof the constant coefficients systesn The above
equality, besides, is a Dunford decomposition. From the relatjgn(z) = zeq () stems the
equalitye, 4 = z*We .

We shall build solutions with coefficients in the field:

KO = M(C) (lq, (eq,C)CEC* ) .
4This is an innocuous modification with respect to [27].
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As noted in the introduction, the constant subfi&lg°< is precisely equal to\{(C*)?e, the
field M(E,) of elliptic functions: indeed, one inclusion is obvious and the other comes from the
classical fact that the family of the cocycle values:

eqcCqd _ Oq(2)Og(ctd'2)

o) = T By 120, 1z

generates the groupt(E,)*. Extending the cocycle to semi-simple matrices, one gets a
cocycle® of invertible elliptic matrices such that, for any two semi-simple matri€es’, one
hasegc ® eq,cr = eq,coc'®(C,C"). On the other hand, it is clear that, for unipotent matrices
U,U’, one hag, iy ® equr = eq,ugu:. Thus, for any two invertible matrices, A’, ®(A,, A})

is exactly the defect of-compatibility of the formation of our canonical solutiofs_:

I
€q,A ® eqar = eq apa P(As, AY).

To build explicit solutions, we follow closely the classical way for differential equations: see
[17,36]. We consider local reduction@tthe case ofo being similar.

First, any fuchsian system reduces by definition to a strictly fuchsian one through a rational
gauge transformation. Any strictly fuchsian system reduces similarlyntmeesonanbne, that
is, such that no two distinaxponentgeigenvalues of4(0)) are congruent modulgZ. This
process involves some non canonical choices.

Second, any non resonant systelnis equivalent to the constant coefficients systégd).
This is obtained by solving the functional equation with initial condition:

F(O) = Inv
{ (0,F)A(0) = AF

with F a convergent power series. The equivalent equatigfi = AF(A(0))~! then entails
that F' is actually meromorphic ove (the polarity will be precised below). The transformation
matrix I’ is unique.
It follows that any systeral that is fuchsian a has a fundamental solution

X0 = M(O)eq,Am),
whereM () € GL,(M(C)) andA®) € GL,(C); the latter can be assumed to be non resonant
and have all its eigenvalues in the fundamental annulus. One can also add more rigid normalising
conditions, like sorted eigenvalues (with respect to an arbitrary order on the fundamental annulus)
and sorted sizes of the Jordan blocks (see [27]). Definingittggular locus of a matrix\// to be:

S(M) = {poles ofM } U {poles of M ~'} = {poles ofM } U {zeros ofdet M},
one finds the singular locus of the meromorphic part:
S(M©) =g N"S(A).

The singular locus of the “log-car” pat}, 4« is easily deduced from its definition.
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1.2.3. Connection matrix and global classification
We now assumel to be fuchsian ove® and attach to it local solution¥ (9 and X (*°) as
defined in 1.2.2. We then defifrkhoff’s connection matrixo be:

P= (X)) xO)

It is clearly an elliptic invertible matrix. We attach to the systdnthe (non uniquely defined)

triple (A(®), P, A(>)) (using the notations of 1.2.2). Changing the non unique choices, or
changingA to a rationally equivalent syste® may produce another tripleB(®), Q, B(>)).

If, in addition, one assumes normalised log-car parts (as described above), one must have
(A® A=)y = (B B(=)) and there exist constant invertible matric& S such that

RQ = PS plus another commutation condition more precisely explained in [27]. There is then a
bijective correspondence between classes of fuchsian systems modulo rational equivalence and
classes of triples. The surjectivity follows froBirkhoff’s lemmaoriginating in [5], a modern
version of which can be found in [2]. The way we use it is detailed in [27], 2.2 and 2.3. The
tannakian counterpart of this bijection will be the content of 3.1 and 3.2.

1.2.4. Functorsof solutions

Specializing the constructions of 1.1.3 to the extendidn= M (C*) of K = C(z) provides
us with a functor of solutions/* = Sk from £ to Vectﬁ/[(Eq)- In order to makev* a fibre
functor, it would be enough to guarantee, for each equatipthe existence of a fundamental
matrix solutionX e Gi,,(M(C*)). It follows from 1.2.3 that, ford in &, there is indeed such a
fundamental matrix solution and the rankof( A) is equal to the order od. Thus, the restriction
of w* to & is a fibre functor orf s over the fieldM(E,). However, we are rather looking for a
fibre functor ong; over the fieldC.

We shallnearlybuild such functors from the local solutionstandoo: X (0 = M e, 4o
and X (=) = M (e, 4. These solutions are not canonical, but, by choosing such a pair for
every equation, one is led to the definition of two vector spaces of finitecaekthe complex
numbersWe thus define theunctors of solutions & andoo on £y with values inVectf; as:

"\ (F:A—B)~ (U~ FU)’ (F:A— B)~ (U FU).

Let F': Ay — Ay be amorphismigy. Then, with obvious notationEX{o) is a solution ofA,,

hence of the fornk (" $(® wheres(©) is elliptic; similarly atco. That the above definition makes
sense comes from the fact th#lf) andS(°>*) actually have coefficients i@. This follows from
the following lemma, which we formulate in a slightly more general guise for further use.

1.2.4.1. IEMMA. —Let A, A’ have constant coefficients add M, M’ have coefficients in
M(C) and suppose that

F(Mega) = (M'eq,ar)S,
whereS is elliptic. ThenS has constant coefficients.

From the conjugacy properties of matricesy (viz, e, oxg-1 = Qeq,x@ '), One sees
that A and B can be assumed to be upper triangular. We wiite A A, A’ = AL Al their
Dunford decompositions, so thaf 4 = e, a.€4,.4, andey ar = eq a1 eq ;. From the formulae
€q.c = Za(c)eq‘z, we see that we can assume all exponents (eigenvalues) 4f to lie in the
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fundamental annulus< || < |¢|. We then write:

(M'eqa,) " F(Mega,) =e€q,4,5(eqn,)”"

The (i, ) coefficient of the right hand side IQJ:Z—/ a chararacter (since; ; is elliptic)
with coefficients inM(C)[l,], because of the left hand side. It follows from the independence
properties ofg-characters ([27], appendix) and from the locationchfc; in the fundamental

annulus, that it must be trivial; ; must be a constant.o

Note thats,; ; must be null ifc} # ¢;, which amounts to say that.S = S A;. This being true
after reduction to the fundamental annulus, the more general equality is:

ATS =S4,

We then have
(M'"'FM)eg a, =eq a8

expanding overM (C)[l,] and identifying corresponding powers igf(which is transcendental
over M (C), see loc. cit.) entails

(M FM)A, = A,S.

These formulae are not affected by the conjugacies we used at the beginning, but do depend on
the reduction to the fundamental annulus.

On the other hand, the functorg®, w(>) are not®-compatible. In Section 2, we shall
eventually build more easily fibre functors for fuchsian equations while avoiding the choice of
particular solutions.

1.2.5. Singularitiesand exponents

In order to compute the “connection component” of the Galois groupoid in Section 3, we
shall need to evaluate the connection maffixor its meromorphic componerdt/ at various
points of C*, avoiding their singularities. Sinc® is elliptic and M satisfies a simpley-
difference equation, these singularities are defined mogfiland may actually be seen as
points inE,. They either come from the equatiehat stake, or from its local linear data @t
andoco. Let (A, P, A(>)) be a triple coming from an object of £; and write, as usual,
X0 =MO®e, 40 and X () = M(><)e, ,(, the local solutions used to compufe Then,
the singularities of” respectively come from:

1. S(A) for the meromorphic pait/ = (M)~ M (), PreciselyS(M) c ¢%2S(A).

2. Sp(A(0)), Sp(A(co)) for the semi-simple components of the 4 parts. Since reduction
to a constant matrix is not unique, these exponent$ afe actually defined up to a factor
in g2.

3. Iy, theg-logarithm, in cased(0) or A(co) is not semi-simple.

On the other hand, we want to defigestable categories only, so that we have to allow for
multiplication of the exponents (and the inverse, to have stability under dualisation). We thus
define two categorie§s s and&s s ¢. Let ¥ be a finite subset o€*. Then&y s, is the full
subcategory of; whose objects have all singularities §&3. Let moreoverC' be a finitely
generated subgroup of the groGp. Then&; s ¢ is the full subcategory of ; - whose objects
have all exponents ig? C. They are obviously (strictly full) tannakian subcategories§ pivhich
is their inductive limit. More precisely, the tannakian subcatedarygenerated by an arbitrary
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objectA (see [12]) is contained in suchég s . We observe that, fad in £;.5, S(M) C ¢2%;
andfordin & 5 ¢, S(P) C ¢?(XUC). Note that we impose (yet) no control on tpogarithm

and unipotent parts. This will be done further below. Also note that we do not control separately
the exponents dt andoo, since we mainly seek to avoid the singularitiegof

1.2.5.1. RoPOSITION — A is in & 5 ¢ if and only if its exponents are i@ and S(M) C
¢Z3.

This follows from a precise use of Birkhoff's lemma (see [27], 2.3.1). Here, of course,
M = eq,A(oo)P(eq,A(m)fl. O

We now consider regular equationstatthat is, such thatl(0) = I,,. For such an equation,
the product formula:

H A(q_iz) = A(q_lz)A(q_Qz) e

defines a solution holomorphic 8tand meromorphic orC. Thus, if A is regular at0 and
at oo, we obtain an explicit formula for the connection matfixrather similar to Jacobi’s triple
product formula for the functiol), showing it to have as a singular locus exagtfyS(A). In
this case M = P. Now, call more generally regular (&) an equation that is equivalent to @n
such that4(0) = I,,. We define the categod .., as the strictly full subcategory & whose
objects are equations regulartaand co. It is clearly a tannakian subcategory &f, the one
studied by Etingof in [14].

2. Local theory

The usual method in differential Galois theory for building fibre functors is to use spaces of
solutions. But our solutions have bad multiplicative properies.choice of solutions uniform
over C* will lead to some complicated twisting of the tensor product and of the connection
matrix. We thus avoid to single out special fundamental solutions; in essence, this amounts to
use sections of vector bundles without expressing them in frames.

2.1. Localisation at 0 and at co

2.1.1. The categoriesﬁj(co) and E}O")

The categoryS}o) has the same objects &3, but morphisms fromA (of rank n) to B
(of rank p) are all F € M, ,,(C({z})) such that(c,F)A = BF'. The functional equation
o,F = BF A~! entails that the coefficients df actually belong toM (C).

We define similarl;EJ(coo) (morphisms with coefficients iM(C)) andE](c*) (morphisms with
coefficients inM(C*)). These are plainly abelian rigid tensor categories,&}im is M(E,)-
linear while E](CO) and 5}"0) are onlyC-linear (since a solution of, f = f meromorphic ab
or atoo has to be a constant). It is clear that the natural embeddipgs El(o), Er — E](coo),
5}0) — 5}*) anngﬁoo) — 5}*) are C-linear exact faithfulz-functors. We intend to use this fact
in the following way: any fibre functox on E](CO) will restrict to a fibre functorv’ on £;. This
realizesGal(E](cO)) = Aut®(w') as this subgroup ofial(£y) = Aut®(w) made up of elements

natural with respect tall morphisms irf}o) (and not only infy).
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2.1.2. ThecategoriesP(?) and P(>)
We callflat an object ofE}O) (resp.E}m), 5}*)) if it is a matrix with coefficients inC. These
will be identified with flat vector bundles dB, in 2.3. The categor(©) (resp.P(>), P*)) is

the full subcategory o:f}o) (resp.ﬁ}o"), 5}*)) whose objects are flat objects. These subcategories
are obviouslyC-linear and stable under tensor operations.

2.1.2.1. IEMMA. — They are essential subcategories, that is, the inclusion functors
PO~ P gl and PO~ gl

are essentially surjective.

Indeed, this is the content of the reduction to a constant coefficient system by a meromorphic
gauge transformation (see 1.2.2)3

The following is an immediate consequence:

2.1.2.2. RoposITION —P(©) is a neutral tannakian category oveE, equivalent toE}O).
Similar statements hold faP(>), P(*) As a corollary,P(®) and P(>) have the same Galois
group asé‘}o) andé‘}"o) respectively.

2.1.3. Flat objectsand equivariant morphisms of representations of Z

We do everything a0, the case obo being similar. We callR the categoryRepc(Z) of
finite dimensional complex representationsZofThese can be considered as pats', A) (A
a regular complex matrix of rank), and the morphism#’: (C", A) — (C?, B) as matrices
F e M, ,(C) such thatF A = BF'. The categoryR is a C-linear neutral tannakian category
with the forgetful functorw as fibre functor and its Galois group:

799 = Aut® (w)

is theproalgebraic hullof Z. Its structure and the way it operates are recalled in 2.2.1.

2.1.3.1. ROPOSITION —The natural embeddingR — P is a faithful (but not full),
essentially surjective exa€l-linear ®-functor.

The categories at stake have the same objectsRbbas onlyconstantmorphisms, while
P has allequivariantmorphisms (the word will be justified in 2.3). The proof is therefore
immediate. O

2.1.3.2. IEMMA. —Any morphismF : A — B in P is a Laurent polynomial

F=Y" Fz*

a finite sum where each, has coefficients ifC.

Indeed, one has,F = BFA™!, so thatF' has only a pole ab: otherwise, these would
be propagated along @spiral and would accumulate & contradicting the meromorphy
of F. Now, F has a LaurenseriesF' = Y Fy,z*. Identifying thez* components of the two
sides of the functional equation, we get:Fi, A = BF;.. This is possible withF), # 0 only if
Sp(¢®A) N Sp(B) # () (see, for instance, the lemma in 1.1.3 of [27], also proven in [36] or [37]).
Hence the finiteness of the suma
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2.1.3.3. ROPOSITION — (C", A) ~» C", F ~ F(z) gives a fibre functow'>) on P for
anyzp € C*.

The only nontrivial point is the faithfulness. Suppdsé,) = 0. Then the functional equation
impliesVk € Z, F(q*2y) =0, thusF = 0 (F being a Laurent polynomial). O

2.1.3.4. ®ROLLARY. —The local Galois groufz(?) is a closed subgroup &9,

Since the previous fibre functor restricts to the forgetful functofrit follows from [12],
Proposition 2.21 that we have realizéd®) as a subgroup of the Galois gro@#¢ of R.
Precisely, restriction of the eIementsA)ftt‘@(wgg)) to R gives a morphism of groups(®) —
Z'9 and, according ttoc. cit,, this is a closed immersion of proalgebraic groups.

2.2. Thelocal Galoisgroupoid and the local monodromy

2.2.1. Theproalgebraic hull of Z

We summarize here the main results we shall need. More details and complete proofs can be
found in [26] and in [31].

Our basic tool for building a fundamental group with some topological meaning is the “hole”:
Z = 1 (C*). Its proalgebraic hulZ*¥ (see the beginning of 2.1.3) is commutative. It is the
productZ®9 x 72 of its semi-simple part:

Z%9 = Hom g, (C*,C*),
the group of characters of the abstract grétify and of its unipotent part:
739 = C.

Thefundamental loop inr; (C*) is represented by € Z; it is a Zariski-generator %9, where
it splits into a semi-simple componenidc- € Z%9 and a unipotent componehte Z29. We
talk of fundamental semi-simple logmdfundamental unipotent loop

A representation oZ is the same thing as a pdW, f) of a finite dimensional complex vector
spaceV and an automorphisgfie GL(V). So let(C", A), A€ GL,(C), be a (standard model
of a) generic object ofR. Let A = A, A, be the Dunford decomposition (see the end of the
introduction). Let(y, A\) € Hom 4, (C*, C*) x C be a Galoisian automorphism. Then we put:

AN = (A,) A = Ajy(4y).
Here,y acts onA, through its eigenvalues: il, = Q diag(c1, . ..,c,)Q !, one has
Y(45) = Qdiag(v(c1), .., 7(en)) Q7

SinceA0Y € GL,(C), it defines an automorphism @" = w(C", A). This is precisely how
(7, ) is incarnated as an elementfit® (w).

2.2.2. Thelocal Galois groupoid
Any fibre functorwig) (as defined in 2.1.3.3) obviously restricts to the forgetful funcior

onR. Therefore Aut® (w”)) is a subgroup (andso® (w'”, w!") a subset) ofdut® (w).

2.2.2.1. HEOREM(the local Galois groupoid). With the previous identification ofut® (w)
with Z9

Iso® (w(o) w(o)) = {('y,)\) € 7% [ v(q)z0 = zl}.

zo YT z1
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We thus obtain a local Galois groupoidtatwhich we callG(?). Its base set i€*, the arrow
setsG(®) (a,b) = Iso®(w¢(10),w£0)) being described in the theorem. It is clearly connected on the
base, so that we can take as local Galois group any gid¥ga, «). The proalgebraic structure
on each of th&'(*) (a, b) is then induced by that &9, of which they are Zariski closed subsets.

2.2.2.2. ®ROLLARY (the local Galois group). With the same identifications,

Aut® (wgg)) = {(7, A€ AL [~v(q) = 1}.

Let us now proceed to prove the theorem. Iget\) be an element ofso®(w§2),w§?)).

Applied to the morphism : (C, 1) — (C, q) in P9, it gives rise to the commutative diagram:

C C
v(l)l l’Y(Q)
C C

Z0
—_—
1

z
R

hencey(q)zo = #1.

Conversely, supposé = (v, A) with v(¢)zo = z1. We must check its compatibility with all
morphisms iP(®) (and not only inR). That is,F': (C", A) — (CP, B) being such a morphism,
we want to show that the diagram:

cn 2L

@(A)J/ l@(B)
F(z1)
Ccnh——Cp

is commutative, wherey, z; € C* andazo = 21, a = y(¢). But we have(o,F')A = BF thus,
as noticed beforerk € Z, Fr.(¢"A) = BF}, so thatF}, : ¢* A — B is a morphism irR. For this
morphism we check the naturality &. Then:
F,®(¢"A) = ®(B)F,
= Fpa"®(A) = ®(B)F,
= Fra"2b®(A) = ®(B)F.2f.

Then, summing ot gives:
F(azg)®(A) =®(B)F(20). O

2.2.2.3. Incarnation of the local Galoisgroupoid. To incarnate5(?), one must show how
its elements operate on an objettof 5}0). So we take two base pointsb € C* and an

element(vy,\) € G (a,b). We must obtain an isomorphism frocnzﬁo)(A) to wgo)(A). Both
vector spaces are equal to the sp&&e underlying an objectd®) of P() equivalent toA
(2.1.2.1). From 2.2.1, we see that the matrix describing the isomorphism we are looking for is

V(A (AP Note that the semi-simple factor actually depends onlyl§h, not onA'”.
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2.2.3. Thelocal fundamental group
We stick to our overloaded notatia#® for the local Galois groupoid 4t and at the same
time for any of the local Galois groups, realized as:

G (a,a) ~ Hom g (C*/q*,C*) x C.

We shall now exhibit explicit elements in the local Galois group, aiming at a Zariski-dense
finitely presented discrete group with a topological flavour. In the same way as the fundamental
loop 1 € Z C Z% = Hom,,,,(C*,C*) x C splits into semi-simple and a unipotent parts, we
shall consider separately the semi-simple and unipotent components of these elements. As for
the latter, we shall take the obvious candidate: C, which corresponds to the automorphism
X~ A&O) of w(®. It generates a Zariski-dense subgroup of the unipotent compGi@mWe
concentrate hereafter on the semi-simple compo@é(ﬁt

2.2.3.1. Explicit elements of G The topological groupgC* /¢% being compact, all the

elements ofG\"” built from continuousmorphisms have their image in the biggest compact
subgroup ofC*, the unit circleU. We now proceed to describe them.
We writeq = e~2"7, Im(7) > 0, whence the splittin€* = U x ¢®, where we put, foy € R,
¢V = e 277 andg® = {¢¥ | y € R}. This comes (through the lif€ — C*, x — ¢*7) from
the splittingC = R @ R7. We then define:

C*— C*, C*— C*,
Y1t Y2

uq¥ — u, uqy — e,

More generally, one can define, forc C, a group morphismy : ug? — 2", This will be
usedin4.1.1.

2.2.3.2. IEMMA. —The subgroup of continuous elementsaﬁf)) (a,a) is generated byy;
and~s,.

All continuous group morphisms frofd to C have the fornx +y7 — ax + By with «, 5 € C.
Continuous group morphisms frof* to C* are obtained (through the same lifting as above)
from those that sent to itself, that is, those such thate Z. Such a morphism factors through
C*/q% (i.e.,itmapsyto 1) ifand only if 3 € Z. O

2.2.3.3. IEMMA (a density criterion). tetI" be a subset ofs(” = Hom g, (C*/q%,C*).
ThenI" generates a Zariski-dense subgroupﬂi?) if and only if(), . Kery = {1}.

By Chevalley’s criterion, used in a similar way in [12] (p. 129, proof of Proposition 2.8;
the precise formulation is given iloc. cit, first lecture, p. 40, Proposition 3.1.b and p. 41,
Remark 3.2.a), the density condition amounts to the following: for any objeat 5}0), if a
line of w(®) (A) is stabilised by ally(A), v € T, it is stabilised by alty(A), v € G(SO). This means
that any common eigenvector of all théAgo)), ~ € I" is actually a common eigenvector of all
they(A), vy e G1°.

We now fix such an objectt and a non-zera € w(®)(4) = C". Up to conjugacy, one may
assume thaﬂgo) = diag(ey, ..., c,). Then,z is an eigenvector of(Ago)) if and only if, for any
indicesi # j such thatr;z; # 0 (let us say that such indices direked), one hasy(c;) = v(¢;)
(recall from the introduction thatdenotes the image ofin C*/q%). Thus, the elements Gﬁo)

whose action o () (A) fixes the lineCx are precisely those such thay'c; € Ker~y for any
pair of linked indiceqi, j). The lemma follows immediately. 0
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2.2.3.4. Two generating loops. According to the previous lemma, we are to choose
elements offom ., (C*, C*) sendingg to 1 and such that the intersection of their kernelg4s
This cannot be done with one element, sifite'¢Z does not embed i@* (for instance, because
the former had elements of orde2, while the latter hag). To have anything explicit, we have
to select among the morphisms found in 2.3.1. Since it is cleakdhad, N Ker~, = ¢Z, these
two elements fit our needs. Note thatand~, generate a free abelian group.

2.2.3.5. HEOREM. — The subgroup offom 4, (C*, C*) x C whose unipotent component is
Z c C and whose semi-simple component is generated layd~, is Zariski-dense in the local
Galois group.

This subgroup can therefore be considered atoited fundamental groupAs a consequence,
all the semi-simple parts of our “monodromy matrices” will be unitary, in contrast to the classical
(differential) case.

Since continuous elements of the Galois groupoid form a torsor under the action of any one
of the groups just determined, it is enough, to get them all, todimekuch elemeng; . in each
Ggo)(b,c). To make it a groupoid, it is therefore enough to pL(z, b) = g4 »I1(a, a), where
II(a, a) is the group we just defined.

2.2.3.6. ®ROLLARY (the local fundamental groupoid).Ghoose, for eactu € C*, a
logarithma € ﬁ loga. Putg, =~5. One can then take, . = g<.

One cannot expegt, to be a continuous function aef, at the best, the choice of a logarithm
involves a cut: the discontinuity at the cut will be interpreted in 2.2.4. There is also another
interpretation ofg, as an automorphism of the “field of solutions”, corresponding to the
translationz — az (in multiplicative notation) of the elliptic curv&,, see [31]. We postpone
the geometrical interpretation of the local fundamental group and groupoid to 2.4.

2.3. Flat vector bundles over the élliptic curve E,

We give here a geometrical interpretatiorif), close to Weil's correspondence between flat
vector bundles on a curve and representations of its fundamental group (see [37]).

Write Fiib(X) the category of holomorphic vector bundles over a compact Riemann sufface
andF'ib,(X) the full subcategory of those which dtat, i.e. those whose transition matrices can
be taken to be constant (vs holomorphic) for some adequate covering. Note thairftesms
between such flat bundles aret required to be constant.

2.3.1. Holomorphic sections of aflat bundle over E,
Let A € GI,,(C), thus an object o) as well as a lineag-difference system with constant
coefficients. One introduces the equivalence relationron C* x C™ generated by the relations:

V(z,X)eC*xC", (z,X)~a(qz,AX).

The first projectionC* x C™ — C* is compatible with the action af? on C* and, factoring
out, we define a holomorphic vector bundle of rank

wCxC oy C

Fa .
~A q%

This is a particular case of Weil’'s correspondence alluded to above: the fundamental giyup of
is the lattice:

m(Ey) =Ar =Z+Zr,
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whereq = =277 and one takes the representation— G1,,(C) sendingl to I,, andr to A.

2.3.1.1. IEMMA. —There is a natural bijection between the solutions of the system with
matrix A meromorphic orC and the holomorphic sections 6%, .

There is an obvious bijection between the holomorphic sectiorfs,ofind the solutions of
the system with matrixd holomorphic onC*. We have to show that the latter uniquely extend
to meromorphic solutions o€ (this, without having to prescribe growth conditions). We have
already seen (2.1.3.2) that a solution meromorphi€dras to be holomorphic o&* to prevent
the accumulation of poles &t So, letF' be holomorphic orC* and such that'(¢z) = AF(z).
Call M the maximum ofj| F'|| on the compact fundamental annulust |z| < |¢| (this, for an
arbitrary norm|| — ||) and, forz € C*, putk = |In|z|/In|q|] (where|z|) denotes the biggest
integer less than or equal 19. One has:

In|[[A]]]

||F(q7kz)H <M= ||F(z)|| < M|||A|||k = ||F(z)|| <z T

(Il = ||| the subordinate norm). This entails polynomial growth,dtence a pole. O

2.3.1.2 Remark— For aunitary bundle, one can prove that all sections are actually constant
(see [37,34]).

2.3.2. Comparison of the categories P(®) and F'ib,(E,)
Since every morphism i®(®) is holomorphic orC*, it defines a holomorphic map between
the corresponding vector bundles and we clearly hagefanctor fromP () to Fib,(E,).

2.3.2.1. HEOREM. —This is a®-equivalence.

The full faithfulness comes from the existence of interfabn in both categories, imply-
ing that the morphismsl — B (resp.F4 — Fp) are in natural bijection with solutions of
Hom(A, B) (resp.Hom(F4, Fg)) and from Lemma 2.3.1.1. Now, as regards essential surjec-
tivity, let a vector bundle oveE, correspond to a representation/of that mapsl to A andr
to B, these being commuting elements @f,,(C). One writesA = ¢V and uses the gauge
transformatiore>*U to reduce this representation to one that seintis,, (andr to A~"B).
From the construction in 2.3.1, this comes from an obje@®i. O

2.3.3. Fibrefunctors

The categoryFib,(E,) is a thickening ofReps (71 (E,)) since it has the same objects but
more morphisms: if: 11 (E,) — GI(V) andy: 11 (E,) — GI(W) are two such representations,
a morphism between the associated bundles gives risegg@mariantmorphism¢ — 1, that
is, @ holomorphic mag: C — £(V, W) such that:

Vyem(Ey), VYreC, ¢(y)oF(x)=F(yx)oi(y).

This is a morphism iRep (71 (Eq)) if and only if F' is a constant map. Herg,operates o
via the action ofr, (E,) on the universal covering of E, (that is, the translation action of;
onE,).

2.3.3.1. Punctual fibre functors. Therefore, any fibre functor oP(®) and Fib,(E,)
naturally induces the usual fibre functor Bap - (71 (E,)) and, by the very same trick we already
used in 2.1.3.4 and 2.2.2, we obtaihl(Fib,(E,)) as a proalgebraic subgroup of (E,) 9.
The latter is isomorphic t&*9 @ Z*9. Actually, only one factor is really involved here since
every bundle has been shown in 2.3.2.1 to be isomorphic to one on Wwhidts trivially (that is,
one which already trivializes on the quotient coventig of the universal coverin@).
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2.3.3.2. The global fibre functor. On the other hand, the equivalence Bf%) with
Fib,(E4) may itself be viewed as a fibre functor 6550) in the following way. CallS the unique
curve (scheme) ove€ with underlying analytic spac§*” = E,. Then, holomorphic vector
bundles oveE, “are” locally free sheaves and we get a fibre functor avém the sense of [11].
The Theorem 1.12 dbc. cit. then provides us with a groupoid structure oger

2.3.3.3. HEOREM. —The tensor categorﬁj(co) is equivalent to the category of representa-
tions of a groupoid7(©) that is faithfully flat overS x S.

In essence, this says that®) acts transitively on the basgand that composition of paths is
a morphism with respect to the proalgebraic structure on €é4¢Ha, b), but also with respect
to the algebraic structure on the base

2.3.4. Theclassification theorem of Baranovsky and Ginzburg

Let G denote a complex algebraic group and wii§z)) for the group ofC((z)) rational
points of G, whereC((z)) is the field of formal Laurent series, a kind of “loop group”. Write
G[z] for its subgroup ofC[z] rational points. Then define a “twisted” conjugation action of
G((z)) on itself by putting, fora(z2), g(z) € G((2)):

a(z) = g(g-2).a(2).9(2) .

This twisted conjugation action can actually be seen as a plain conjugation action in some larger
group: puttinga(z) — a(t.z) defines aC*-action on the loop groug:((z)) (the “rotation of
the loop”), hence a semi-direct product, and twisted conjugacy classes are actually ordinary
conjugacy classes in a Kac—Moody group.

The following is stated and proved in [3]:

THEOREM. —If G is connected and semi-simple, there is a natural bijection between the set of
integral twisted conjugacy classes@(z)) and the set of isomorphism classes of semi-stable
holomorphic principalG-bundles on the elliptic curv& = C*/¢Z.

Here, integral twisted conjugacy classes are those which contain an elendgnf othey are
analogous to our fuchsian equations. One subtlety of this theorem (and the main difficulty in its
proof) is that it provides aanalyticclassification oformal objects. The authors give a tannakian
extension of this theorem. They define a tensor categdry of formal integralg-difference
modules and prove:

THEOREM. —It is equivalent to the tensor category of degree zero semi-stable holomorphic
vector bundles oi.

In the electronic (IMRN) version of their paper, they moreover quote a computation by
Kontsevich of the corresponding Galois group: the result is the same as our Corollary 2.2.2.2.

2.4. Heuristictopological interpretation and per spectives

2.4.1. A “local” eliptic curve

Recall that our constructions aim atgeometricunderstanding ofj-difference equations.
Extending the class of morphisms of the categfyras we did in 2.1 amounts to a localisation for
the transcendental topology. Accordingly, our vector bundlel poan be considered as induced
by equivariant vector bundles on the germ of complex sg@te0) and the curvé, itself as the
quotient of the gernfC*,0) by the action of the dilatatios,. We visualize this curve as “local
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at0 € S”, since it carries théocal geometry of fuchsiagdifference equation§ he loops found

in 2.2.3 can been interpreted as the two fundamental loofi,0fThey are algebraically free
and generate a free abelian group of ranklowever, they satisfy a “transcendental relation”, as
predicted in [23]:

7172_7— = Idc*a

the semi-simple fundamental loop Bf9. Suppose the logarithms involved in the definition of

the g, have been chosen continuously, but for some cut: for instance, the main determination
(alternatively, see 3.2.2). Latturn counterclockwise once aroufdTheng, (ug¥) = e=277Y

is multiplied bye =27, that is, byy2(ug¥). This means that, represents the plain classical loop
around) in C*. This can be seen yet another way: suppose we change our choice of a logarithm
of ¢, writing ¢ = e=2"", where’ = 7 + m, m € Z. Then, the formulas in 2.2.3.1 produce
modified loopsy; and~} and one checks that = 173" and~} = ~». To interprety; as the
second generating loop &, is not so easy while staying in a strict local context. It will be seen

in 3.2.2.2 to be the defect of ellipticity of the twisted connection matrix, which is the generic
Galois isomorphism linkin@ to co. This suggests the interpretationnf as the beginning of

the movement frond to co along ag-spiral, or even a precession.

2.4.2. Irregular equationsand “infinitesimal” eliptic curves

The next step in our program is to tackle the irregular local theory. The classification problem
is solved in a common work with Jean-Pierre Ramis and Changgui Zhang (see [25]). It uses a
new discrete summation method for divergent solutions (see [38]), the existence of a canonical
filtration by the slopes fog-difference modules (see [28,29] and [32]) and sheaf theoretic
methods due to Malgrange, Martinet and Ramis. The latter allow us to extend and enrich
the geometric setting of the present paper. In [25], we use a dynamical interpretation (due to
J.-L. Martins) of classical asymptotical developments. This version can be discretized in the
following sense. While the sheaf of Malgrange (see , for instance, [7]) is defined botizen
S! = C* /X of the action of the semigroup = ]0; 1], taking instead the semigrodp, = ¢~ N,
we get the horizolC* /%, whence a sheaf defined on the elliptic cuRig Our vector bundles
are related to this sheaf in the fuchsian case. The elliptic cHifveould also be viewed as the
quotient of an infinitesimal neighborhood @fpredicted by Ramis in [23]. Actually, as shown
in [25], there is a whole family of such infinitesimal neighborhoods related to all the possible
slopes and the corresponding sheaves of functions). The results presented here can easily be
extended to the category of “tamely irregular modules”; these are direct sums of pure modules.
One thus computes a Galois gro@&. Then, the graded functgr associated to the canonical
filtration being faithful, exact an@-preserving, one realizes the general local Galois g(éﬁf)

as a semi-direct product aifﬁgg by a pro-unipotent group, generated by the Stokes operators.
This will be detailed in [30].

3. Global theory
3.1. Theglobal Galoisgroupoid

3.1.1. Birkhoff’sclassification revisited
We shall give a galoisian meaning to Birkhoff’s classification theorem.

3.1.1.1. Thecategory C of connection data. We introduce a categorical variahof the set
of classifying data introduced in 1.3.3. The objects are trip8), M1, A(>)) where, for some
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neN*, A A ¢ GI,,(C), M € GI,,(M(C*)) and moreover:
(o, M)A© = A pp,
Said otherwise) : A(®) — A(>) is an isomorphism ir&?}*). Morphisms
(A A1, AC9) s (B, N, B9
are pairgS(®), §(=)) such that:

50 A©) — BO) is a morphism irf’}o) or, what amounts to the same,i\®),

S(): A(>) _, B() is a morphism irEJ(coo) or, what amounts to the same,iti>°)

and, moreover, the following square commutes:

A0 Mo (o)

S(U)l \Ls(w)

BO) — Yo p(oo)

In the same vein as in 2.3, objects @fcan be interpreted as tripldg(?)| f, F(>)) where
(F(© F(>)) are holomorphic vector bundles ovEf, and f: F(*) — F(*) is ameromorphic
map between them.

Then, we makeC a tensor category by endowing it with the natural (componentwise)
tensor product; here, we use the conventions of 1.1.2 for the tensor product of matrices. The
resulting category is plainly an abeli&ilinear neutral tannakian category. Moreover, after [12],
Proposition 2.21, the projectionsféo) and&!> induce closed embeddings 6f®) andG(>)
into the Galois group of . Our goal is to build an equivalence &fwith £;.

3.1.1.2. The category S of solutions. In Birkhoff's method, one encodes a fuchsian
equationc X = AX, by its local solutions & andoo:

X(O) = M(O)eq’A(o) and X(OO) = M(Oo)eq,A(oo).

In more intrinsic terms, we shall use the local flat forM& and A(>) together with
the meromorphic gauge transformatioh&® (reducingA to A(®) and M(>) (reducing A
to A(>)). Due to the non canonicity of all these local data (except from the generic case of
strictly fuchsian non resonant equations), we shall eventually map solutions to equations and not
the other way round.

We shall therefore consider local paird)aand atoo:

(A9, M) € GL,(M(C)) x GL,(C),
(A M) € GL,(M(Cx)) x GL,(C).

We shall say that two such pairs arennectedf one of the following (obviously) equivalent
conditions is realized:
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1. The following two expressions are equal:
(o M) A (M) -1 (o M) A© (1)) -1

2. The matrixM = (M)~ M) ¢ GL,(M(C*)) is such thato M) A©) = A=) pr,
In this case, we shall callt the common value of the two expressions appearing in the first
condition. Being meromorphic on bofd and C.., it is meromorphic orS, that is, rational:
A€ GL,(C(z)). Moreover,M () (resp.M(>)) can be viewed as a morphism frati® (resp.
from A()) to A.

We now define our category of solutions.

e Objects ofS. They are the quadruples:

(A MO A A1) € G1,,(C) x Gl,, (M(C)) x Gl (C) x Gl (M(Coo))
such that the two component pai4(®), M (9)) and(A(>), M1(>)) are connected.
e Morphisms inS. The morphisms from{A(®), A1) A() pr()) to (B, N(©) B(e)
N(®))in S are the tripleg F, 5(©), §(>)) such that
SO 40 _ BO) js a morphism irf’}o),
S5(20): A(>0) _, B(>) is a morphism irf}oo)

and, moreover, the following squares commute:

1 (0) (o0)
Qo — Mg M ne)
S(O)l Fl lswo)
B(O) N B N () B(oo)

Here, A and B are defined according to our previous convention. One then notes, first that
F = N(®)g(0) (M(OO))_l = NO 5O (p1) -1

is meromorphic on botlC and C,, therefore rational; second, that, by any of these two
expressions foF, (0 F')A = BF, that is,F' is a morphismd — B in &;.
e Tensor structure onS. The tensor product of objects (resp. morphisms) is defined
componentwise on the quadruples (resp. triples), using the usual identifications.
Again, one has obtained an abeli@dinear neutral tannakian category such that the projections

to 5;.0) andEJ(cOO) induce closed embeddings 6f?) andG(>) into the Galois group af.
3.1.1.3. RoposITION(equivalence of the tensor categorgs S andC). —One keeps the
previous conventions fod and M. Then, taking
{ (A A1) A() ()~ A,
(F,50) §(=))~ F

and

{ (A© MO A Np()) s (A M, A,

(F, 50, §(>))~, (§(0) §())

provides us witfC-linear ®-equivalences frons to £; and fromS to C.
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It is clear that one has defined twofunctors and that the first one is fully faithful. That it is
also essentially surjective stems from the existence of flat local reductiOrenat atoo for any
fuchsian equation, as recalled in 1.2.

That the second functor is fully faithful comes from the fact that the equalities:

F = N(®) g(0) (]V[(OO))_l — N© g0 (]V[(O))_l
give a unique antecedent to a pa$(?), S(>)). For essential surjectivity, one starts from

an object(A(®), M, A(>)) of C. Since M € GL,(M(C*)), Birkhoff’s lemma (see [27], 2.2
and 2.3) allows us to write:

M= (MOENT'MO where(M©, M) e Gl (M(C)) x Gl,(M(Cy)).

It is then clear that A(®), M (9 A(>) A7(=)) is a connected quadruple and an antecedent of
(A©) M, A,

3.1.1.4. Singularities and exponents. Let X be a finite subset o€*. We shall have to
consider the full subcategot: of C whose objects are the tripl¢si(?), M1, A(>)) such that
S(M) C ¢%3. Itis stable by all tensor and abelian constructions, hence a tannakian subcategory.
From 1.2.5 and from the remarks lac. cit, 2.3.1, one draws that the equivalence shown
in 3.1.1.3 induces an equivalence of the tannakian categdriesaindCs.

3.1.2. Theglobal Galoisgroupoid and the global fundamental groupoid
Composing the above projections with fibre functmég),wiﬁo) provides us with two fibre
functors onC. We shall call these restrictions by the same names.

3.1.2.1 DEFINITION. — The Galois groupoid df is the groupoid> having as base set:
{w((lo) lae C*IU{w™ |ae Cc*},

and such that, for any twe, b € C*:
G(w((lo) , wéo)) = Iso® (w(o) , wéo)) ,
®

a

G, w™) = Iso® (i), 0),

Gl = { 0= biloo (i)
if a£b:0.

The local groupoids computed in Section 2 embed in the corresponding subgroup6ids of
giving many elements in the grou;zimt@(wig)) andAut®(w§§°)) for all zp € C* and in the sets
I50% (w2, W) and Iso® (W, w ) for all 2o, 21 € C*. To complete this and conneét,
we want to build sufficiently many elements in the sﬁs®(w§8),w§§°)) for all zp € C*. For
instance, one gets suchzaisomorphism fromv{”) to w{>®) by taking(A©®, M, A=) to M
But this is not defined ove€*, so we change our way. This can be done by evaluatihgt
pointszy ¢ S(M). For that, we fix a finite subs&t of C* and restrict to the full subcategafy,
of C.

3.1.2.2. ROPOSITION —For any such pointg, the natural transformation
ot (A9, M, AR o M (20)

is an element ofso® (W'Y, w ).
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Here and in the following, we keep the same names for the restrictioig tf the fibre
functorSwig), Waoo o) (20 ¢ ¢2%). The proof of the proposition is then more or less tautological.
Tensor preservation comes from the definition of the tensor structure componentwise, plus the
obvious fact that M ® M')(z9) = M (z0) ® M’(zo). Functoriality comes from the commuting

square in the definition of morphisms in 3.1.1.1 plus the obvious computation:
N(20)8 (20) = (NS) (20) = (S M) (20) = S (20) M (20). D
We sed,, as a path connecting the poiratéh) wiﬁo) of the groupoids.

3.1.2.3. HEOREM. — The local groupoids ab and atoo (defined and computed in Sectidn
together with the pathB., zo ¢ X generate a Zariski-dense subgroupoid of the Galois groupoid
of Cs.

We appeal again to the criterion of Chevalley (see the proof of 2.2.3.3). It can easily be
extended to the case of a groupoid in the following way. We choose an object

X = (A, M, A,

and, for each basepointl” (resp.w(™), a ¢ ¢2%, a line D” c Wl (X) (resp. DS ¢
wé"o)()()) and we assume that this family of lines is globally stable under the acticH%f
G(>) and our special paths. It is then sufficient to check that this family of lines is actually stable
under the action of the whole Galois groupoid.

By Tannaka duality for the categof)fo) and for the groupoid?(©), we see that the family of
lines DY induces a subrepresentation of ranf the representation defined by the objdét),
hence comes from a subobject of ran&f A(?). This subobject is an injectiarl? : a(©) — A©)

in E](CO) and we may take it to lie ifP(®). This means that(*) € C*, thatz(®) is a function

holomorphic onC* and that, for alla ¢ ¢%%, the line DI is the image of the linear map
wl(zo)(:v(o)) thatis:D” = Cz(©) (a).

The same argument on the side shows that there exists a subobje®) : a(>) — A(>)
such that, for alla ¢ ¢%2%, D = C2(>)(a). The condition of stability under our special
paths says thata ¢ ¢%%, M(a)D{” = D™, so that, out 0ZY, there exists a holomorphic
functionm such thatM (a)z( (a) = m(a )a:(°°>( ). This amounts to say that= (z(©), z(>))
is @ morphism fromt” = (a(®), m,a(*)) to X = (A©) M, A>))inC.

We now take an arbitrary galoisian isomorphism, that is, an elefnenfso® (wfz ), f{’o)).
The functoriality condition gives rise to a commutative diagram:

() S )
wfﬁ(a»l lwfﬁ‘”w)

hX)
Wi (X) —= Wi (X)

Thenh(X)z©) (a) = h(X’)x( )(a); sinceh(X’) € C*, this shows the stability of our family
of lines under the action afso® (w(®),w(>)), hence also under the action of the whole Galois
groupoid. O
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3.1.3. Thecaseof aregular equation

3.1.3.1. Regular triples. Let us now consider the case ofegular equation. Recall from
Section 1 thatd is said to be regular @t (resp. ato) if it is equivalent to the identity matrix,,
at0 (resp. ato). ThenA has a local reduction & M (9 : T, — A as well as a local reduction
at oo, M(>):I, — A. One can therefore associate fothe triple (1,,, M, I,,) in Cs, with
Y =8(A), M =M = (M)~ M) Moreover, in this casel/ is “the” connection matrix?
and it is elliptic.

3.1.3.2. WROLLARY (the Galois group of a regular equation)The Galois group at any

point w§2> is the Zariski closure of the subgroup generated by the valigs)) ! P(b) for
a,bd ¢?3.

Indeed, from the equalitied(® = A(>) = J,,, we draw that the local Galois groupoids(at
and atoo of the equation are trivial (there are only identity arrows between any two points). The
conclusion now follows from Theorem 3.1.2.30

This is the case tackled by Etingof in [14], and this proposition is his main result.
3.2. Birkhoff’smethod

We shall follow here Birkhoff’s method more closely, using the connection matritself
(together with local linear data) to encode fuchsian equations, then, trying to interpret its values
as monodromy data. However, the bad multiplicative properties of any canonical choice of
solutions, hence of the matrik itself, lead us to twist first the tensor product in the category
of connection data, second the connection matrix itself into a m&tiix order to get galoisian
properties. The relation with the point of view of 3.1 is explained in 3.2.3. Proofs and details can
be found in [26] and [31].

3.2.1. Equivalences of tannakian categories
We encode a fuchsian equatietX = AX by its local solutions af andoc:

XO=MPe, 40y and X =M, 4
and its connection matri® = (X(>))~1x ) as defined in 1.3.3. We shall consistently use

these notations herebelow, without further notice. These data are not unique, so that we use an
intermediate category of solutions to link equations and connection triples. By necessity, one
does not take the natural tensor prodﬁép ® XQ(O) on solutions. This comes from the fact that

eq,A ® €q.B # €4, 42 B, thereby destroying our normal forms for solutions. The defect of equality
has been analyzed in 1.2.2.3. We thus give a special notation for the twisted tensor product:

x{"ex" = (M @ M{7)e, 40440,

and similarly at>o. This is related to the natural tensor product in the following way:
XOex0 - (X0 & X{)2(AP, AP).

By necessity, one is thus led to twist the natural tensor product of connection matrices:
PoP=(X>™ex{) 7 (x” e x”)
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in the following way:
PP, = <I>(A§°°), Aéoo)) (P ® P) ((I)(Ag()) , A§O)))7l

This notation is slightly ambiguous, since the right hand side does not really dep&?daom
P, alone, but also involves the local linear dai%”,AéO),Agoo),Aém). Note that, in the case

that one ongo), AS” is unipotent and the same holds-at we haveP, @ P, = P, ® P». This is
the case, e.g. faegular equations (i.e. such that the matrice® andoc arel,).

3.2.1.1. Thecategory S’ of solutions. Its objects are quadruples
(A MO A 1)) € G1,,(C) x Gl (M(C)) x Gl (C) x Gl (M(Coo))

such thatX® = M©e¢, 4, and X (=) = M(®)e, 4, are connected in a sense similar
to 3.1.1.2. One can likewise adapt the definitions in such a way as to get a neutral tannakian
category.

3.2.1.2. Thecategory C’ of connection data. Birkhoff’s classification theorem (see [5,27])
amounts to saying that the datal(®), P, A(>®)) are enough to recover up to rational
equivalence. We shall now give a categorical formulation of it.

e Objects ofC’. They are the triples:

(A, P, A € GI,(C) x Gl,,(M(Ey)) x Gl,(C).

¢ Morphisms inC’. The morphisms from the object(?), P, A(>)) of ordern to the object
(B @, B(>)) of orderp are the pairs

(R, R)) € M, ,,(C) x M, ,(C)

such that
ROA(0) = BO)RO),
R(®)P=QR®©),
R(%0) A(0) = B(e0) R(o),

This can be justified by the properties proved in 1.2.4 (for more details, see [26]). Note the
following consequences of the definition:

o)A(O) O)R(o) R(°>A7§0) _ B&O)R(O)
R( R(

20) A0®) — B> Roe) ) A = B p(o)

e Tensor structure od’. The tensor product of two objec([slgo), Py, A§°°>) and (AS”, P,
ALY is defined to be

(AD, P, A @ (AD), P, AT) = (ALY © AY, PLg Py, AT @ A®)).

The tensor product of two morphisnﬁﬁgo),R( ) and (Réo),R(oo)) is defined compo-
nentwise, from the usual tensor product. That the tensor product of two objects is one is
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obvious; that the tensor product of two morphisms is one is not tautological, but follows
from the properties of morphisms & andC’.
Defining as before two fibre functor® — Vectl, by sending(A(®, P, A(*)) to the C"
underlyingA® (resp.A(>)) and(S®, 5(>)) to S©) (resp.S(>)), one obtains again a neutral
tannakian category over.

3.2.1.3. Theequivalenceof £¢, S"and C’. Asin 3.1, two functors can be defined; first, one
from solutions to equations:

{ (A©), M) A0) Nf(0)) s A,
(F,8© sy~ F.

Next, one from solutions to connection triples:

(A©), 110), A(0) | 11(5)) s (A©), P, A2,
{ (F, 50,560~ (5, 52)),

Both are exac-preservingC-linear equivalence of categories. Note that this equivalence is
compatible with the fibre functors previously introduced.

3.2.1.4. Singularities and exponents. In order to compute the connection component of
the Galois groupoid we shall need to evaluate the connection matrix at various poftts of
avoiding its singularities (sinc® is elliptic, these singularities may actually be seen as points
in E,). For an objec{ A(”), P, A(>)) of ¢’ coming from an object! of &;, the singularities of
P respectively come from:

1. S(A) for the meromorphic pait/ = (M)~ M (), PreciselyS(M) C ¢%2S(A).

2. Sp(A(0)), Sp(A(oco)) for the semi-simple components of thg, ) parts. Since reduction
to a constant matrix is not unique, these exponent$ afe actually defined up to a factor
in g2.

3. 14, theg-logarithm, in case4(0) or A(oco) is not semi-simple.

On the other hand, we want to definestable categories only, so that we have to allow for
multiplication of the exponents (and the inverse, to have stability under dual taking). Thus, for
3 a finite subset of the open s€t andC be a finitely generated subgroup of the grdtify we
consider the full subcategody;,s;  of £ whose objects have all singularitiesgé% and all
exponents inyZC. From the precised version of Birkhoff’s lemma we draw that an equation
isin & s ¢ if and only if its exponents are i andS(M) C ¢4%.

Write 32, resp.C for the image inE, of a finite subset of C*, resp. a finitely generated
subgroupC' of C*. We then consider the full subcategaty . of C’ whose objects are the
triples (A, P, A(>)) such thatSp(A(0)), Sp(A(c0)) are subsets of2C andS(M) C ¢%%.

For such objects$(P) c XU C. MoreoverCs, . is a strictly full tannakian subcategory 6f
and it is equivalent tdf,gc.

For an objectt’ = (A, P, A(>)) of ¢’, denote by(X') the tannakian subcategory generated
by X. If X actually beIongs to the subcategaly ., this entails(X') C Cy, . The object being
given, the minimal choice is to take f@r the subgroup ofC* generated bySp(A(0)) and
Sp(A(oc)) and forX the singular locus of\f.
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3.2.2. The Galoisgroupoid
Sticking to the previous definitions, we consider a grougigiith base point$ andoco and
with corresponding arrow setsut® (w(?), Aut®(w(>)), Iso® (W), W), Is0® (W(*), W),

I50® (w(® W %))
Aut®(w(©)) C w(© = (00 D Aut® (W)

Iso®(w<°°),w(0))

In this section, we shall build elements of the Galois groupoid, thabiautomorphisms of
w(©® and ofw(*) and®-isomorphisms fronu(?) to w(>). We shall consistently denote by =
(A P, A>)) a generic object of’. We then writeA© = A A and A®) = A 4
the Dunford decompositions.

3.2.2.1. Local automorphismsof the fibre functor. From the general facts recalled at the
end of the introduction, we easily deduce the following:

1. Letf be amapC* — C*. ThenX ~ f(A(O)) (resp.X ~» f( )) is an automorphism
of w(® (resp. ofw(*). If we take f € Hom,,(C*,C*) and (by necessity) such that
f(q) =1, we get an-compatible automorphism.
2. Let) € C. ThenX ~ (AV)* (resp.X ~ (A™))*) is a@-automorphism ofs(©) (resp.
of w(®)),
We thus obtain subgroups® c Aut®(w®) and G ¢ Aut®(w(>)). We recognize the
local Galois groups found in Section 2. They are isomorphic to each other and are commutative
proalgebraic groups with unipotent compon€hand semi-simple component:

G =~ G ~ { f € Homy,, (C*,C%) | f(q) = 1} ~ Homg,, (C* /g%, C").

This is just the duaEq of the abstract groufi,. In this description, our local Galois groups
are identified to a subgroup @&®“ but they are there embedded transversally to the natural
monodromy groufZ: their intersection with the latter is the trivial subgroup.

3.2.2.2. Building elements of the connection component. We restrict here the fibre
functorsw®,w(*) to some subcategorgy, - (see 3.2.1.4). We puE’ = ¢%(X U C) and
fix « € C* — 3. It stems tautologically from our definition of morphisms in the category
C’ that, for any suchi, X ~ P(a) is a functorial isomorphisnu(®) — w (). However, it
is not, in general, daensorisomorphism, becaus® (a) ® Px(a) # Pi(a)®Pz(a). There is
of course an exception i€’ is trivial e.g. for regular equations. The right and left excess
factors are@(Ag?g,Aé?g) and <I>( 1s ,A(Oo)) They can be exactly compensated by taking

eq_A<‘oo)P(a)(eq‘A@)—1 instead ofP(a). However, this depends of(”’ and A{>* and not only

on Aﬁo) andAgoo) (see the first half of the first fact in 3.2.2.1), so that it is no longer a functorial
isomorphism.
In order to twist the connection matrix, one chooses, for @a€lC*, a group homomorphism
ga € Hom g, (C*,C*) such thatg,(q) = 1. We have exhibited such a familyg,)acc+
in 2.2.3 and we shall make this choice more precise further below. One then puts; 10f,
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ha(c) = f}a((‘g , So that:

{ Ya(c1)a(c2) = Yalcrc2)o(cr1,c2)(a),
14(c) depends only on €.

Now extendy, to matrices, so that:

{ Va(A1) @ Ya(A2) = (Ya(A1)2%a(A2))P(Ar, A2)(a),
14 (A) depends only onl (actually, onA, ).

We have built our twisting factor. It is made up of two ingredients: one is due to the twisting
of the tensor product, itself due to the noncanonical choice of solutions. The other comes from
the artificial concentration of the local groupoidiatin a unique base point (and a unique local
group), as shown in the figure at the end of 3.2 and in Proposition 3.2.3.1 and Remark 3.2.3.2

(all the pointsw,(lo) are artificially concentrated at the unique paift)). Leta € C* — ¥'. Then

X~ Pla) = (a(AP))

P(a)(Ya(AL))

is a®-isomorphismw(® — () Note that choosing another group homomorphjsrohanges

it by a factor inE, and therefore changes our twisted connection matiky a left and a
right factor in the semi-simple component of the local Galois groups. Similarly, it does not
matter that we have taken the samgto twist on the0 and on theco side. We therefore
take a slightly different choice for this family. We first wri@* = U x ¢®, thereby meaning
that we have chosen a logarithm @f ¢ = e=2""", Im(7) > 0. We thus write every € C*:
z=wuq¥ =ue ?""Y with |u| = 1 andy € R. This allows us to define, for any € C, a group

homomorphism:
{ C* = C*,
Oa:

uqy — qocy — 672171'7'0@'

To defineg,, we now choose a logarithm ef We first define the functiolog, on the whole of

C* by the following conditions: it is to be holomorphic @ — ¢®, one hadog,(¢¥) =y and

the discontinuity is jusbeforethe cut when turning counterclockwise arounhd.astly, we put

ga = 0o Wherea = log,(a). This definition is consistent with that in 2.2.3.6, we just deal here
with continuity and cuts.

(0P e ()
(AELO))A Cw(o) = w() D (Aifc))A

It is an important fact tha® is not an elliptic function. Here are the effects of the two
fundamental loops of (E,):

e Automorphy due to the monodromy of the logarithrat a turn counterclockwise once
around0. Theng,(c) = d,(ug?) = e~2""*¥ is multiplied by e=*7 and, sincee,,. is
uniform on C*, v, (c) is multiplied by~>(c). This v, sendsq to 1, so that it defines an
element'yéo) of the local Galois group &t (and the like ato): clearly, it represents the
plain classical loop aroun@in C*.
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e Automorphy due to the defect of ellipticity Bf From the equalityog, (qa) = log,(a) + 1,

we draw:gqq—“ = 5‘5";1 =01, whence

Yqa (c) . eq,C(qa)/gqa(C) _ ¢ _ c
(0~ coc@glo a(@ 1

This v, defines again an eIememe) of the local Galois group at, similarly atoco. We
thus have:

Plga) = (v (AC))) P(a) (4" (A©)) ",

While P is not elliptic (except in the regular case), its left and right automorphy factors
under the action of? are elements of the local Galois groups.

3.2.2.3. Adensitylemma. We again restrict ourselves to a categ@fy,., and, occasionally,

to Cy, .- The arguments apply as well to the tannakian subcategorgenerated by an object
X = (A0, P, A>)). We consider a0, cc}-subsetE of the Galois groupoid>, with base
{0,00} (= Spec(C x C)), with arrow setsAut® (w(®), Aut®(w(>)), Iso® (W), w(>)) and
Iso® (w(*) w(®)) with the following constraints:

e The componenk(0) abovel contains the unipotent loofy ~ A&O), and a family of semi-
simple loopsY ~» %-(Ago)) where they; € Hom,,(C*, C*) are such that

ﬂ ker~y; = ¢Z.
A
Alternatively, if viewed as elements dfom ., (C*/¢%, C*), the~; are such that

mker% ={1}.

The componenE(oo) aboveco contains the corresponding elementsat
e The componenk(0, oo) above, oo contains the pathd’ ~ P(a) foralla € C* — X',
Then, the{0, oo }-setE generates a Zariski dense subgroupoidrof

3.2.3. Relationtotheresultsin 3.1

We now relate the fibre functors and Galois groupoid studied here with those described previ-
ously. Let F:A — B be a morphism of flat objects, meromorphic dH. Then,
Fe, 2= e, 5S, WwhereS has constant coefficients asdl = BS. Thus,

F(20)eq,4(20) = €q,5(20)5,

that is, X ~ e, 4(20) is a natural transformation from®) (the fibre functor in Section 3) to
wig). It is however notz-compatible. On the other side, the relatisnl = B.S implies that,
for any mapy : C* — C* such thaty)(c) depends only o, X ~ 1)(A©)) provides a natural

isomorphism (not &-isomorphism) fromu(? to itself. Hence:

X~ (W (A©)) g a(z0)
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is again a natural transformation fram®) to wig). For it to be®-preserving, it is necessary and

sufficient that the mag:c — %T(CZ)U) be a group homomorphis@* — C*. Otherwise said,

Y(c) = %T(cz)“) whereg is a group homomorphisi@* — C* and the condition)(qc) = ¥(c)

says thay(q) = zo. We have found again thg, andv, of 3.2. We conclude that any such group
homomorphisny., provides az-isomorphism:

X~ g, (A0) = g, (AD)

from w(© to wig). Of course, composition of such isomorphisms exactly gives the morphisms

w® — W already found.

Now, as regards the connection component, we have already seen that the connection
matrix corresponding toA(®), M, A))is P = (e, 4~)) "' Me, 4. Therefore, the morphism
X ~ P(z) from w©® to w(>) provided by thetwisted connection matrixP is but the
composition:

920 (A)

0) w,§8> 9200 (A1)

iﬁ") w(®),

M (z0)

w

To summarize the relationship between the description of the Galois groupoid given here,
in 3.2, and the previous descriptions, given in 2.2 and 3.1, we must introduce some more
notations (which will not be used elsewhere). We shall ¢althe former groupoid (its base

set is the disjoint uniorC* II C*) and (7 the latter one (its base set {9, 0}). Recall that

I'ye Iso®(wf10),w§°°)) was defined in Proposition 3.1.2.2. The corresponding “twisted” element
of Is0® (w(®),w(>)), defined in 3.2.2.2 a& ~ P(a), we denote by,,. Similarly, for the local
groupoids, we define, far € C*:

O ¢ I50® (w(o),w((lo)) by X ~ g, (Ago)) and
I € Iso® (W), w™)) by X~ g, (A§°°>).
3.2.3.1. RopPoOSITION —Forall a, T, =T o T, o TV,

It is moreover clear that the correspondence thus obtained between the elements of both
Galois groupoids preserves the continuity of the underlying morphisms of groups, and that the
fundamental groupoids are mapped to each other through this correspondance.

The following commutative diagram exhibits the relations linking elements tf elements
of G. The leftmost and rightmost fibre functoes® andw(* (here evaluated on an object
X = (A M, A>))) should be thought of as base pointghfwhile the inner vertical triangles
respectively belong to the subgroupo@®) andG(>) of G.

M(a)
w0 (x) w(®) (x)

ok
=
!

e
M(e PR
2 W™ (x) — () (x)

ap (A5
¢

ge(
b

M (b)

(o)
w, % ()
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3.2.3.2Remark— The above diagram can also be understood as explicitly identifyiwgh
the groupoid induced bys through the canonical projectidd* II C* — {0, 00}, in the sense
of [11], 1.6.

3.3. Theconnection component for abelian regular equations

In 3.2, we have given a more concrete description of the “connection component”. Note
however that neither description can be considered as a result of topological nature, as it requires
uncountably many generating paths. A partial solution will be proposed here.

For a regular equation, the Galois group ab is Zariski-generated by th&(a) = P(b),
wherea, b run overC* — ¢2S(A). Generally speaking, it is generated by the local component

ato, G, oneconjugateP(a)_lG(“)P(a) of the local component ato, and the connection
component, that is, the group generated byfﬂ@e)—lp(b) wherea, b run overC* — X', In the
case of torsionless equations (see 3.3.3.1), the twisting factdPsbeflong to the local Galois
groups and one can replace the true connection component by the fake one, generated by the
P(a)~1P(b).

We shall describe here the connection component (hence the Galois grorggjuilar abelian
equations by this, we mean those regular systems such that all the values of the connection
matrix commute with each other, that is, such that the connection component is a commutative

group.

3.3.1. Summary of someresultsin [33]

We here apply to our context results of Sections 3 and 4 of Serre’s book [33], on which this
section heavily relies. We identify the complex tolis= C* /¢Z with the corresponding elliptic
curve and the latter with the set of its complex points. We also identify the rational function field
k(E,) of the algebraic curv&, with the field M(E,) of elliptic functions. The connection
matrix P defines a meromorphic function @), and we callS its singular locus (made up of its
poles along with those adP~!, see 1.2.2), a finite subset Bf.

We fix once for all a base poiat € E, — S. The meromorphic mapping:

{Eq — Gl,,(C),
a— (P(ao))~' P(a),

can be seen as a rational mapE, — GI,,(C) and the holomorphy aP onE, — S implies that
f isregular on the curvE, — S. Hence the Galois groufi C Gi,,(C) of A is Zariski-generated
by the image of the regular magfr E; — S — GI,,(C).

Being parameterized by a Zariski-dense subset of an irreductible projective curgea
connected algebraic group and we have assumed it to be commutative. It is therefore the product
of an algebraic torus and an affine space:

G~Gpnt x Gyl

(see [6], 3.8 and 4.8 and [35], 3.4).
According to [33], Theorem 1 of Chapter 3nadule

M=> "nylp] (alln,>0)

pES

5To avoid any mishap, we shall systematically calinplex torusan elliptic curve ovelC andalgebraic torusa torus
in the sense of the theory of linear algebraic groups.
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is associated t¢f, that is, an effective divisor ol, with support exactlyS. To this module is
associated generalized jacobian

(I)gm:Eq—>ng,

whereJyy is a commutative algebraic group afgy, is a rational map defined up to a translation
in Jay; for instance, fixing a base poing € E, — S and requiring that it be mapped @io= Joy
uniquely determine®sy (see Chapter 5 of [33]). We shall henceforth do so.

The generalized jacobiafy has the following universal property it is associated t@, then
f has a unique factorizatiofi= F o Joyy with F': Joy — G a (regular) morphism of algebraic
groups. From the universality and the general properties of algebraic groups, it follows that
Im(F)=G.

As a matter of fact, the modul®t is not uniquely determined by: any 2" > Mt will do.
There is then a corresponding mdgy — Jox. Thus, we can factof through the projective
limit of all Jgy with modules supported by. This can be done with a fixed base point outside
Call Jg this projective limit. We shall not confuse it with thiy corresponding to the module
Zpes[p]-

According to [33], p. 99,J9x is an extension of the jacobiahof E, by a linear groupLsn,
the structure of which will be made explicit below:

0— Lyp — Jogp — J — 0.
Taking the projective limits, there is a corresponding extension:
0—Lg—Jg—J—0.

In our case,] = E,. Moreover, the mag”: Joy — G is totally determined by its restriction
to Loy: indeed, for two map#’, I’ : Jon — G coinciding onLgy, one would get

F7YF': Jon — G,

trivial on Lgy, thus factoring through a regular map from the projective curve the affine
groupG, hence trivial.

To summarize, to every regular abelian object of rankith singularities inS, we associate a
regular map fromLg to GI,,(C) the image of which is its Galois group. this correspondence is
one to one and we shall hereafter make it more explicit.

3.3.2. Theabelianized of theregular fundamental group
Still following [33], we introduce, fop € S andn € N*, the following groups:

UP = {9 € k(Eq)* | Up(g) = 0},
U™ = {g € k(Ey)* | vp(1 — g) = n},
v\ =ulV o

The latter is a'n — 1)-dimensional affine space. In characteristic zero, it can be parametrized
using the exponential of truncated power series, so that we can (and shall) see it as the group:

t’n.fl
Vp(”) ~ {exp(—alt— ~-~—an,1n_ 1) },
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with ¢ a local parameter at This parametrization will make easier the description of morphisms
to G, in 3.3.2.2. Also note that, writing = (¢/¢g(0)) x ¢(0), one has:

We now define, foft =3 s n,[p] (@ll ny > 0):

Up ~ np—
Rfmznpesw ~ G x [lpes Ga E
A={(z,...,2) e Gy} (the diagonal)

S —
Lon = % = GZ X Hpes Ga"
Then, going to the projective limit, we get:

Lg= LS,s X L57u, where

3 Ls, =827~ G,/°I"! and
Lsu~Tl,es(1+t,Cltp]).

The group<.s s andLg , are respectively the semisimple and the unipotent factor of the Jordan
decomposition of the commutative algebraic grdup(see [6], 1.4.5). Here, for eaghe S we
have, selected a local parametgat p and identified the projective limit of the," ! to

tn—l
S e B

n—1

To all our regular abelian objects of orderwith singular locus onS, we have associated
injectively a regular morphism of algebraic groups frdm to Gi,,(C). To find precisely our
candidate for thabelianized regular fundamental group with singularitiesSin

Tré’,reg

1
ﬂ- =
ab,S,reg 1 1 )
[TrS,rcg7 TrS,rcg]

we have to check which morphismsg — Gi,,(C) actually arise from abelian objects@# ,cg.
Dealing with commutative groups, we just have to find all map&tg and toG,, that is,
1-dimensional and unipoter-dimensional objects. The following (again) comes from [33]
(paragraph 18 and the description of local symbols in Chapter 3).

3.3.2.1. Thesemi-simplecomponent. Let f:E, — G, which we identify with an elliptic
function with poles and zeros il§. The corresponding map ohs ,, is trivial. On the p-
componentg € S) of Lg , it is given byz — 2v»(f)| the triviality on the diagonal\ being
forced by the residue formuldZ g v,(f) = 0.

Such an elliptic function is characterized, up to a facto€in by its divisord_ v, (f)[p]. The
latter is bound by the following conditions:

Zpes Up(f) =0,
Zpes vp(f)p = OEq-
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Conversely, these conditions characterize the divisors of elliptic functions. We want to get rid of
all elements ofLs ; that are killed by such divisors. Therefore, we put:

Relg, (S) ={(np)pes € Z° | Epes nyp =0g, },
Lf.is =image inLg  of {(xp)pes | V(np)pes € Relg, (S), Hpes z,” =1}.

And we can now put:

7T1 o LS,S
ab,S,reg,s — 1/
LS,S

3.3.2.2. The unipotent component. We make it explicit by considering unipotent rapk
objects:((lJ {) wheref :E, — G, is rational with all poles ot (zeros do not matter here).

The corresponding effect alis ; is trivial. The effect onLg ,, is trivial only atp-components
suchthapis a polew,(f) = —k, k > 0. Then, using our previous “logarithmic” parametrization,
it is given by:(an)n>1 — ax. Since we can prescribe arbitrarily the orders of the polesjabt
by putting zeros elsewhere, we get the whole dudl of and may conclude:

1 _
Trab,S,reg,u - LS,U'

3.3.2.3. HEOREM. — The abelian regular objects with singularities $hare classified by the
representations of the following algebraic gro(gee Eq(3)):

1 5
s = —_—
ab,S,reg /

Ly,

This group can be seen as thbelianized regular fundamental group with singular locus
carried byS.

3.3.2.4Examplgdimensiorl). — Here is an explicit computation in dimensiarWWe consider
the equatiow,y = ay, where:

One has used = 1/z; the above requires that, [ [ u; = ag [ | v;- Then theconnection number

T

€q,a0(2) 11 uiOq(2/ui)

€qaz! (w) =1 0;04(2/vi)

p(2) =
is elliptic. In the regular case, one has= a., = 1, [[ u; = [ ] v; and the connection number is:

- u;Og(2/u;
p(z)= lj[l vi@quﬁvi))'

The connection component is the subgrougsfgenerated by the valueg%, wherea, b run

throughC* — {uy,...,u,,v1,...,v,.}. One can of course fix. This group is clearly connected,
so it has to beC* (the general case) or trivial. The latter occursg(if) is constant, that is, if the
given equation is (equivalent to) the trivial equatiayy = f.
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3.3.2.5 Examplgdimensior2, unipotent connection compongnt One considers the system:

ae= (4 7).

wherea(z) € C(z) is such that(0) = a(co) = 0. Then the connection matrix is:

ro=(y 7).

wherep(z) =}, . a(q"z). The connection component is:

(G 2w

wheredG is the subgroup o€ generated by the(a) — p(b). It is generally equal t& and so is
the connection component. The only exceptional case is whenonstant, which means that
is rationally equivalent to the trivial equatien X = X.

3.3.2.6 Remark(torsionless equations— We consider the case of equations with torsion-
free local components. Various conditions on the exponents deserve that name; we shall require
that the set of exponents at (resp. atoo) modulo ¢ be a free subset oE,. Then, for
each mapy: C*/q% — C*, one can find aroup homomorphisnf : C*/¢% — C* such that

g(AéO)) = f(Ago)), so that the former belongs ©(?; similarly at co. This implies that the
twisting factors in each particula’?(a) belong to the local Galois groups, so that the values
P(a) of theuntwistedconnection matrix belong to the Galois groupoid, and moreover generate
it along with the local groups. So we can replace the true connection component by the fake
connection component generated by fh@) ! P(b). To the latter, the content of 3.3.2 applies
word for word. For more details, see [26], second part, 3.1.2.2.

4. Additional results
4.1. Confluence of galoisian automor phisms

This paragraph extends to the Galois group (more precisely, to the fundamental groupoid as
we have defined it) the confluence results obtained in [27]. These results are closely related to
semicontinuity results obtained by Yves André, see [1], in an algebro-geometric setting. Our
results are less general but more explicit, since we follow specified elements @joaits
in C*. However, these results are not very complete since we do not know the whole story
aboutrelations

According to the general assumptions in [27], Chapters 3 and 4, we shall consider the matrix
A of a fuchsiang-difference equation, depending giin such a way that:

A_I”HB,
qg—1

where the differential equation is fuchsian and non resonaftaatd oo, which entails that

the ¢-difference equation also is far close enough td. Calling %4, ..., 2., we assume the
convergence to be uniform on any compact subs€tof- Ulgjgr zZ;qtt. Last, we assume the
Jordan structures itandoo to vary “flatly” (seeloc. cit. for a precise formulation).

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



962 J. SAULOY

We shall then attach ta@l the canonicaltriple (A(0), P, A(c0)) as defined idoc. cit. in the
non resonant case. Of course, we shall have this triple vary along \aitldg.

4.1.1. General conventions
First, we shall slightly modify the choice gfcharacters ang-logarithm, so as to get simpler
determinations of their limits ag— 1. We take:

eqc(2) = 25(©) 7@@"_((_jz))a
9y(=2)
l(z)= —255=

Following the conventions of [27], we haydend tol along a fixed logarithmic spiralWVe fix
qo = e~ 2770 with Im(79) > 0 and takey = ¢g§ = e~2""", wherer = 7y¢, £ > 0. We shall have
tend to0 alongR? . The following assertions are provenlot. cit..

1. Fore — 0", letc. € C* be such that=—} — v € C. Thene,,. () — 27.

2. Inthe same circumstancég,— 1)i,(z) — log z.
Here, we takdog z = 2irx andz” = 2™, where we have written = ™ 2 = u + v7o,
u€]—1, 1[. Said otherwise, we have taken a cut aleng?.

Then, we must choose loops in the local components. We start with the “fundamental level”
valueq = qo,c = 1, afterwise, we shall need a calibration (or “renormalisation”) to handle the
“level e”. We split:

C=R2oRq
and, writingz = u + v7y, u,v € R, we define:

Pp1
T —u,
{ Ap2
T .
These are group homomorphis@s— R sendingZ to Z, thereby defining:
P |’ﬁ> 6217ru’
- ?/_% 6217r)\v
(we have writterz = ¢2*"®). These are group homomorphisn@: — C*, with images in the
unit circleU.

We want to relate these loopsto our previous fundamental loops in the semi-simple local
components at level = ¢§:

Gflo) = Homgrp(C*/qZ, C").

We see, writingr = u + v1o = u + 27 that the latter are precisety and~s.

In the same way, we have to “renormalize” the twisting factor®jmainly theg,. This is
done writing, as before, = ¢2*™ and taking agj, the group homomorphism fro@* to C*
induced by

C—-C,
u+vTo = —Za

(the latter clearly sendé to Z).

6 We shall concentrate on the componend ahe case ofo being obviously the same.
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We must now choose galoisian automorphisms at the level0, that is, for the limit
differential equation. The latter has a poleGatso that its local Galois group is an image in
GL,(C) of 71 ((C*,0),.)* = Z%9. We only take care here of the semi-simple component
Z39 = Hom,,,(C*,C*). Unhappily, we shall not arrive at the usual fundamental lb@pZ,
here identified with/dc+~ € Homg,, (C*, C*). To define specific elements, we split:

C:iRQBR

70

and, writingz’ = % + ', «/,v' € R, we define:

These group homomorphisris— C sendZ to Z and, writingz’ = 2%’ we can define:

~w
71 4
{Z’ AN eQMrwu ,

P ’E 627,71'1)/.
These loops &t define elements of the semi-simple component of the local Galois group of the
equation
5% . L% px
dz
through the matrices»t-(em”é(o)). Here, the differential equation is assumed to be fuchsién at
so thatB(0) € M,,(C). These matrices generate a Zariski-dense subgroup of the local Galois

group, though not the monodromy group: the latter is generate:albﬁ(o), which comes from
~1/70~
1 .

Y
4.1.2. Confluence of the connection component

From [27], we know thaf” tends toP, a matrix that is locally constant on the nonconnected
open subset

AN 4

of S, where we have put, for simplicitgy = 1. Of coursegft = e~ 27 R,

The boundary of2 is made up of the-spirals generated byand the singularities; of B.
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The matrix P takes a finite number of valug(a;), 0 < i < r, and the(P(a;)) "' P(a;_1),
1 < ¢ < r, are the monodromy operators at singularities other than. But we have built
our Galois isomorphisms witl instead ofP, so we have to study the fate %(Ago)) and
Y (AP)) asq — 1.

Under the confluence assumptions, the exponera$ A at 0, resp. atoo are such that
gj — ¢, the exponents o3 at 0, resp. atco. We shall do the computation with = ¢,
which, according to the lemma of [27], 3.1, does not matter. Following 4.1.1, we find that
eq.c(a) — €27 then g,(c) — e, where we have writted = Z—O +', u/,v € R. Last,

we obtainy, (¢) — e2mu'/7: the twisting factor tends t@lo‘/”’. To be precise:

v

Pla) — ,%% (621ﬂB(oo))P(a) (%% (e2mé(o)))*1'

Therefore, up to factors from the local Galois group$ aind oo, we get the whole system of
monodromy factors at other singularities.

4.1.3. Confluence of the local components
4.1.3.1. Unipotent part. The unipotent loop ab defined at the beginning of 2.2.3 gives

rise to a continuous family of Galois automorphismg). We renormalize and follow instead
the (A{”))=1/7: the limit is plainly the unipotent Galois automorphism at leggle? ™5 (0),
obtained from the nilpotent component in the additive Dunford decompositi&{®f.

4.1.3.2. Semi-smple part: generators. As noticed before, the exponentof A at0 are
such that;j — ¢, the exponents oB at0. Again, we compute with the innocuous assumption

thatc = ¢° and we write = £ +o',u/,v" € R. Then:

" (C) — 6217ru/8 s 17
ya(e) = 2™ — 3, (@).

We obtain eventually:
1 (A”) = I,
'}/2(14.(90)) _ ,}2(62171'@(0)).

The loop~: (which we interpreted as the plain loop arounth C*) turns infinitely fast, thus
compensating the trivialization of the exponents (which tend)toThe loop~; (which we
interpreted as the start of the move to infinity) turns at constant speed, so that we must accelerate

it to compensate for the trivialization. We therefore consiq%(il/g) and find that this will do:
" (A§0))[1/s] — A (ezmé(o))'

The trip is not so smooth, involving jumps atm, m € N*. In the end, we have reached the
whole subgroup generated By and4s.

4.1.3.3. Semi-simple part: relations. Again, we consider exponents that vary alopg
spirals:¢g™,...,¢"™. One must compare the multiplicative relations of gfiewith the additive
relations of they; moduloZ. We therefore introduce the module of relations:
L={(m1,...,my) €Z" [y + -+ +mnym € Z}.
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Writing ~; = Z—O + b;, with a;, b; € R, the above condition is equivalent to:

miay + -+ mpay =0,
miby + - +mpb, €Z.

Now define the “exceptional set”:
E={c>0|1/e€ Qa1+ + Qay,}.

This is an enumerable set and it is clear that,sfgr £, the localg-difference Galois group at
level e has no more relations than the local differential Galois group at (evel

4.1.4. Description of the monodromy action with a fixed base point

Consider a fixed base poiag € Uy such thatag| < |Z;| for0 <i <r.Ineach slicd7;, choose
a; such thafa;| = |ao|. Then, fori =1,...,r, we can define a loop with base point in the
following way: it goes fronug to a;_; along a simple circle arc with centercounterclockwise;
it turns once counterclockwise arougd crossingg,-z; exactly twice; it comes back from_,
to ag through the same circle arc. Thus, we get well defined elements:

I‘iem(C*—{él,...,ZT};ao), i=1,...,7

Together withl'y, the class of the simple positive circle aroundthey form a family of free
generators ofr1 (C* — {Z1,...,2,}; ao).

The monodromy action df,, on the space of solutions of the differential equatidh= BX
as well as the action of the simple loop arourd (I'oI'; - --T',.) !, are obtained by confluence
of the localg-difference Galois groups, as seen in 4.1.3. To be precise, only differential galoisian
automorphisms were reached this way, but with the same Zariski closures as these fundamental
loops.

The monodromy action df; for 1 < ¢ < r has matrix:

~ —1 -1

(P(al)) P(ai_l) ZgLII%(P(al)) P(ai_l).

To compare it with the galoisian automorphisti#(a;)) ' P(a;_1), one just has to insert the
twisting factors shown in 4.1.2.

4.2. Extension tothe p-adic case

We indicate here briefly how most of the previous results can be extended to the context of
adicq-difference equations. The possibility to do this rests on Tate’s theory of the uniformization
of rigid elliptic curves; it was suggested by Yves Andr&lore details are to be found in [26,31],
along with detailed references to the literature.

4.2.1. Classification

We take as a base field the complet@p of the algebraic closur@),, of the fieldQ,, of p-adic
numbers. It is an algebraically closed complete non archimedian valued field. One can define,
for ¢ € C; such thatq| < 1, an analytic curvée, = C;;/qZ whose meromorphic function field
M(E,) is an elliptic field (i.e. algebraic function field of genuissee [8]), so thakE, can be

7 Marius van der Put told us that the results in [20] could be similarly extended.
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identified to an elliptic curve ove€,. One gets in this way exactly those elliptic curves whose
modular invarian§ (E,) is not an integer. The uniformization of such an elliptic curve is obtained
with the help of thep-adic theta function:

O(z) = H (1—q"z2) H (1- q”zil).

n=0 n>1

This has all the properties we used to define our fundamental solutions of constant coefficient
systems. Hence our abeli&),-linear rigid tensor categorie%, S andC can be defined, as well

as the exacC,-linear ®-functorsSE and SC, our equivalence theorems remain valid here, as
well as the choice for the fibre functors.

4.2.2. The connection component
To build as in 3.2 the matri¥x’, we needed a morphism : C;, — C;, sendingg to a. Here,
for lack of an exponential, we shall resort to a more Zornian construction.

4.2.2.1. IEMMA. —Let K be an algebraically closed field of characteristicand letz €
K* — poo(K™*), wherep, (K*) is the torsion subgrougroots of unity of K*. ThenK* and
K* /2% are respectively isomorphic 1®/Z) x Q x V andto(Q/Z) x (Q/Z) x V, whereV/
is a Q-vector space and wheree K* corresponds to the elemeftt, 1,0) of (Q/Z) x Q x V.

This lemma guarantees the existence of the group homomorpbhisifisus, our construction
of P and our density lemma in 3.2 remain valid.

4.2.3. Thelocal components
We now make more precise our choice of the Let a € C;, correspond to(@, 3,§) €
(Q/Z) x Q x V and choose a lifting (a logarithm) of @ in Q. Then the morphism:

{(Q/Z) xQxV —(Q/Z)xQxYV,
(o, 3, &) = (F'a, '8, B€)
is well defined and corresponds to a group homomorpligm- C; sendingg to a. We now
obtain naturally our fundamental semi-simple loepsand-.:
1. If we change the “logarithmé to « + 1, g, is changed tgy, in such a way thay’, /g,
corresponds to:
(a? /6/7 6/) = (F? 07 O)
This morphism we take ag : C; — C;. It does send to 1.
2. If we compute)y, /1., we getc — m corresponding to:

(o, 8,€") = (o/,0,¢").

This morphism we take ag : C;, — C;. It also sendg to 1.

It is obvious from the description witlia’, 3,¢’) that Kervy; N Kervye = ¢%. Thus, our
description of the local monodromy groups in 3.2 is still valid halmost naturally that is,
up to the choice of a logarithm.
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