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Abstract

We consider the KdV–Burgers equation ut + uxxx − uxx + λu + uux = 0 and its linearized version ut + uxxx − uxx + λu = 0
on the whole real line. We investigate their well-posedness their exponential stability when λ is an indefinite damping.
© 2013 Elsevier Masson SAS. All rights reserved.

MSC: primary 35Q53; secondary 93D15

Keywords: KdV–Burgers equation; Well-posedness; Stabilization by feedback; Decay rate

1. Introduction

The goal of this work is to prove the exponential stability of the Cauchy problem{
ut + uxxx − uxx + λu + αuux = 0 in R× (0,∞),

u(0) = u0 in R,
(1.1)

where λ ∈ L∞(R) is a function which is allowed to change sign and α is a constant which assumes α = 0 or α = 1.
These assumptions made on α imply that we are considering both the linear and the nonlinear problem.

In this work we were inspired by the equation

ut + uxxx − uxx + uux = 0 in R× (0,∞). (1.2)

This equation gained some popularity when the necessity to attach dissipation to nonlinearity and dispersion arises in
modelling unidirectional propagation of planar waves.
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Here u = u(x, t) is a real-valued function of two real variables x and t , which in applications corresponds to the
distance in the direction of propagation and to passed time, respectively. The dependent variable may represent a dis-
placement of the underlying medium or a velocity, for example. Eq. (1.2) is referred to as Korteweg–de Vries–Burgers
equation (KdVB equation) because it represents the union of the Korteweg–de Vries equation

ut + uxxx + uux = 0 (1.3)

and the Burgers equation

ut − uxx + uux = 0. (1.4)

Solutions of (1.2) should approach zero as t goes to infinity. A natural question which arises is about the rate at
which ‖u(t)‖ approaches zero, where ‖ · ‖ is some norm for real-valued functions of a real variable. In [1] the authors
prove that the solution of (1.2) corresponding to the initial data u0 ∈ L1(R) ∩ H 2(R) satisfies the inequality∥∥u(·, t)∥∥

L2(R)
� Ct−

1
4

for all t > 0 with some positive constant C. Moreover, this estimate is optimal because
∫
R

u0(x) dx �= 0.
The study of decay of the energy associated with dispersive nonlinear equations is very interesting and a consider-

able number of researchers have determined significant advances to the development of this subject. In [4] the authors
gave a new contribution with respect to the decay of the energy related to mild solutions for the damped Korteweg–de
Vries (KdV) type equation given by

ut + bux + uxxx + uux + a(x)u = 0, (1.5)

where u = u(x, t) is a real-valued function, b is a real constant and a = a(x) is a non-negative function. In this paper,
they consider the initial value problem (IVP){

ut + bux + uxxx + uux + a(x)u = 0 in R× (0,∞),

u(x,0) = u0(x) for x ∈ R,
(1.6)

and the initial boundary value problem (IBVP)⎧⎨
⎩

ut + bux + uxxx + uux + a(x)u = 0 in R× (0,∞),

u(0, t) = 0 for t � 0,

u(x,0) = u0(x) for x � 0,

(1.7)

where R+ = (0,∞).
In both cases, the non-negative function a(x) is responsible for the dissipative effect.
Eq. (1.5) is a generalization of the well-known KdV equation,

ut + bux + uxxx + uux = 0. (1.8)

In the case of the initial value problem related to (1.8), the value ‖u(·, t)‖2
L2(R)

can be interpreted as the energy. It is
obvious that for a smooth and decaying at infinity solution u(x, t) to (1.8), the energy is a constant of motion, that is∫

R

u2(x, t) dx =
∫
R

u2
0(x) dx, (1.9)

so there is no decay of the energy as t → ∞. On the other hand, if we consider a(x) � α0 > 0, ∀x ∈ R, then the
solution to Eq. (1.6) satisfies∫

R

u2(x, t) dx � e−2α0t

∫
R

u2
0(x) dx. (1.10)

The main goal of this article was to establish the decay of the energy in the cases when a(x) �≡ 0 but it is not assumed
the existence of a positive constant α0 such that a(x) � α0. It was the main novelty of this paper since in the previous
results in the related literature, the function a(x) was considered strictly positive at ∞.
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A first result on exponential decay of the energy for the IBVP (1.7) considering a localized damping was established
in [16]. In this paper a(x) � α0 > 0 in (0, δ) ∪ (R,∞) for some 0 < δ < R. In [19] it was pointed out that the interval
(0, δ) can be dropped and it was proved the exponential decay of the energy in weighted spaces with exponential and
power weights. The decay of spatial derivatives of solutions was also derived.

We remark that in [2] for the non-homogeneous IBVP (1.7), considering a constant damping a(x) = α0 > 0 and
small but not decaying boundary data, the exponential decay at the Hk-level for k = 1,3 or 4 is obtained (without
restrictions on the size of initial data).

Taking into account the KdV equation posed on a finite interval with localized damping, the exponential decay
of the energy was established in [17] and [18]. Considering KdV type equations with more general nonlinearities,
these results were extended in [15] and [22] while periodic problems were studied in [10,11,14,24]. A good review
regarding these topics is given in [23].

Note that for small initial and boundary data, exponential decay of the energy is obtained for KdV equation posed
on a finite interval, without any damping. In addition, the internal dissipation is responsible for the validity of such
result even for small anti-damping (see [6,7,12,13,3]). In [8] nontrivial stationary smooth solution to the KdV equation
posed on a finite interval with zero boundary data is constructed.

In [9] the solutions to problem (1.8) with initial boundary conditions as in (1.7) and small initial data are considered
and, the pointwise decay as t → ∞ is established.

In spite of having many works dealing with the KdV equation in the existing literature, the same cannot be asserted
to the KdV–Burgers equation. This lack of results becomes more evident when we are interested in the asymptotic
behaviour of its solutions. In this context, we can cite the article [5], where the author used global attractors the-
ory in order to study the asymptotic behaviour at the H 2(R)-level of the semigroup associated to the generalized
KdV–Burgers equation

ut + (
δuxx + g(u)

)
x

− νuxx + γ u = f (x), t > 0, x ∈ R,

where δ, ν > 0 and γ � 0 are constants, f ∈ H 2(R), and g is a Lipschitz function of class C2(R).
The solutions to the considered problems, regarded in the distributional sense, are called weak solutions. Weak solu-

tions on a time interval (0, T ) are called mild solutions if u(·, t) ∈ C([0, T ];H 1(I )) and uux + au ∈ L2(0, T ;L2(I )),
where either I = R or I = R+. The main reason to select such a class of solutions from the set of weak solutions is
that they can be regarded as solutions to the corresponding linear problems

ut + bux + uxxx = f (x, t), (1.11)

where f ∈ L2(0, T ;L2(I )).
This article is organized as follows. In Sections 2 and 3 we investigate the well-posedness and stability of the

corresponding linear problem. Sections 4, 5 and 6 are dedicated to the nonlinear problem. Under the effect of an
indefinite damping mechanism, global well-posedness and exponential stability results are established.

2. Well-posedness for the linear problem

In this section we consider the following problem:

{
ut + uxxx − uxx = 0 in R× (0,∞),

u(x,0) = u0(x) for x ∈ R.
(2.1)

The next result ensures that this problem is well posed in L2(R).

Proposition 2.1. The operator A := −∂3
x + ∂2

x defined on D(A) := H 3(R) generates a semigroup in the Hilbert space
H := L2(R).
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Proof. According to the Lumer–Phillips theorem it is sufficient to check that A is dissipative and that I − A is onto.
The dissipativity follows by a direct computation: if u0 ∈ H 3(R) is real-valued, then u is also real-valued and

(Au,u)H =
∞∫

−∞
(−uxxx + uxx)udx

=
∞∫

−∞
uxxux − u2

x dx

= 1

2

∞∫
−∞

d

dx
u2

x dx −
∞∫

−∞
u2

x dx

= −
∞∫

−∞
u2

x dx

� 0.

Since �Av = A(�v) for all v ∈ H 3(R), it follows that

�(Au,u)H = −
∞∫

−∞
|ux |2 dx � 0 (2.2)

for all u0 ∈ H 3(R).
It remains to show that for every f ∈ L2(R) there exists u ∈ H 3(R) satisfying the equality

u − uxxx + uxx = f.

Taking the Fourier transform it is equivalent to

û(ξ)
(
1 − (iξ)3 + (iξ)2) = f̂ (ξ)

or to

û(ξ) = f̂ (ξ)

1 − (iξ)3 + (iξ)2
. (2.3)

In the last step we have used the fact that the denominator

h(ξ) := 1 − (iξ)3 + (iξ)2

never vanishes. Since, moreover, h(ξ) is a continuous function satisfying |h(ξ)| → ∞ as |ξ | → ∞, 1/h is bounded,
and therefore the last equation has a unique solution û ∈ L2(R).

Finally, since the function

1 + |ξ | + |ξ |2 + |ξ |3
|1 − (iξ)3 + (iξ)2|

tends to 1 as |ξ | → ∞ and hence it is bounded by some constant M on R, we conclude that∣∣(iξ)j û(ξ)
∣∣ �M

∣∣f̂ (ξ)
∣∣, j = 0,1,2,3.

Since f̂ ∈ L2(R), this implies the regularity property u ∈ H 3(R). �
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3. Exponential decay rates for the linear problem

The proof of the dissipativity in the preceding section shows that the strong solutions of (2.1) (for which
u0 ∈ H 3(R)) satisfy the relation

d

dt

∞∫
−∞

∣∣u(x, t)
∣∣2

dx = −2

∞∫
−∞

∣∣ux(x, t)
∣∣2

dx � 0. (3.1)

This is, however, not sufficient for the exponential stability because the nonzero constant functions solve (2.1).
In order to ensure the exponential stability of the KdV–Burgers equation in H := L2(R), we thus need some

additional damping mechanism. Inspecting the proof of Proposition 2.1, it is natural to consider the following modified
problem:{

ut + uxxx − uxx + λu = 0 in R× (0,∞),

u(x,0) = u0(x) for x ∈R,
(3.2)

where λ is some given non-negative function.

Proposition 3.1. If λ ∈ L∞(R), then the operator Aλ defined by the formula Aλu := −uxxx + uxx − λu on D(Aλ) :=
H 3(R) generates a semigroup in the Hilbert space H := L2(R).

Proof. It suffices to observe that Aλ is a bounded perturbation of the operator A of Proposition 2.1 and therefore it is
also the infinitesimal generator of a semigroup. �

Next we prove the following

Proposition 3.2. If λ ∈ L∞(R) has a positive lower bound λ′, then the problem (3.2) is exponentially stable and its
solutions satisfy the decay estimates∥∥u(t)

∥∥
L2(R)

� e−λ′t‖u0‖L2(R) for all t � 0. (3.3)

Proof. If u0 ∈ H 3(R), then repeating the proof of (2.2) and (3.1) with A replaced by Aλ we obtain that

d

dt

∞∫
−∞

|u|2 dx = −2

∞∫
−∞

|ux |2 dx − 2

∞∫
−∞

λ|u|2 dx

� −2λ′
∞∫

−∞
|u|2 dx (3.4)

in (0,∞); this yields (3.3).
The estimate (3.3) remains valid for mild solutions, too. Indeed, for any given u0 ∈ L2(R) we may choose a

sequence (u0,n) ⊂ H 3(R), converging to u0 in L2(R). Then the corresponding strong solutions un satisfy the estimates∥∥un(t)
∥∥

L2(R)
� e−λ0t‖u0,n‖L2(R)

for each n and t � 0. Letting n → ∞ this yields (3.3) because un(t) → u(t) in L2(R) for each fixed t � 0. �
The preceding proposition ensures the exponential stability only for dampings which are effective on the whole

real line. Our next result allows us to weaken this assumption. Set

cp :=
(

1 − 1

2p

)(
2

p

) 1
2p−1

for 1 � p < ∞.
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Proposition 3.3. Let λ ∈ L∞(R). If there exist a positive number λ0 and a function λ1 ∈ Lp(R) for some 1 � p < ∞
such that

λ� λ0 + λ1 almost everywhere

and

‖λ1‖Lp(R) <

(
λ0

cp

)1− 1
2p

,

then the problem (3.2) is exponentially stable and its solutions satisfy the decay estimates

∥∥u(t)
∥∥

L2(R)
� e−λ′t‖u0‖L2(R) for all t � 0

with

λ′ := λ0 − cp‖λ1‖1+ 1
2p−1

Lp(R)
> 0.

In the sequel we often write ‖ · ‖p instead of ‖ · ‖Lp(R).

Proof of Proposition 3.3. For λ1 = 0 the proposition reduces to the preceding one. Henceforth we assume that
‖λ1‖Lp(R) > 0. In the sequel all integrations take place on R. Hence we omit the integration limits ±∞ and we write
‖ · ‖p instead of ‖ · ‖Lp(R) for brevity.

It suffices to establish the following estimate:

d

dt
‖u‖2

2 � −2λ′‖u‖2
2. (3.5)

Taking the real parts and applying a density argument it suffices to consider real-valued smooth solutions. We recall
from the preceding proof the following identity:

d

dt

(∫
u2 dx

)
= −2

(∫
u2

x dx +
∫

λu2 dx

)
. (3.6)

Using elementary estimates, Hölder and interpolation inequalities we have

−
∫

u2
x dx −

∫
λu2 dx = −

∫
u2

x dx −
∫

(λ − λ1)u
2 dx −

∫
λ1u

2 dx

� −‖ux‖2
2 − λ0‖u‖2

2 + ‖λ1‖p‖u‖2
2q

� −‖ux‖2
2 − λ0‖u‖2

2 + ‖λ1‖p‖u‖
2
q

2 ‖u‖
2
p∞,

where q satisfy 1
p

+ 1
q

= 1.
Next we observe that

‖v‖2∞ � 2‖v‖2‖vx‖2 (3.7)

for all v ∈ H 1(R). Indeed, if v ∈ C∞
c (R) and y ∈ R, then we have the following inequality:

∣∣v(y)2
∣∣ =

∣∣∣∣∣
y∫

−∞
2vvx dx

∣∣∣∣∣� 2

∞∫
−∞

|v| · |vx |dx � 2‖v‖2‖vx‖2,

proving our estimate for smooth functions. The general case follows by density.
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Using (3.7) and applying the Young inequality we deduce from the preceding inequality for any fixed ε > 0 that

−
∫

u2
x dx −

∫
λu2 dx � −‖ux‖2

2 − λ0‖u‖2
2 + 2

1
p ‖λ1‖p‖u‖

2p−1
p

2 ‖ux‖
1
p

2

= −‖ux‖2
2 − λ0‖u‖2

2 +
(

1

ε
‖λ1‖p‖u‖

2p−1
p

2

)(
ε2

1
p ‖ux‖

1
p

2

)

� −‖ux‖2
2 − λ0‖u‖2

2 + ( 1
ε
‖λ1‖p‖u‖

2p−1
p

2 )
2p

2p−1

2p
2p−1

+ (ε2
1
p ‖ux‖

1
p

2 )2p

2p
.

Choosing ε such that 4ε2p = 2p, the terms ‖ux‖2
2 eliminate each other and we obtain that

−
(∫

u2
x dx +

∫
λu2 dx

)
� ‖u‖2

2

(
−λ0 + 2p − 1

2p

(
2

p

) 1
2p−1 ‖λ1‖

2p
2p−1
p

)
= −λ′‖u‖2

2.

Combining this with (3.6) we obtain (3.5). �
Remarks 3.4.

• We observe that the function λ in Proposition 3.3 may have negative values.
• The proposition and its proof remains valid in the limiting case p = ∞ under the condition ‖λ1‖L∞(R) < λ0 with

λ′ := λ0 − ‖λ1‖L∞(R) > 0 This is equivalent to Proposition 3.2 above.

4. Well-posedness for the nonlinear problem

Since the global well-posedness of the problem{
ut + uxxx − uxx + λu + uux = 0 in R× (0,∞),

u(0) = u0 in R,
(4.1)

when u0 ∈ L2(R), may be proved in a standard way, we only give a brief sketch.
First we consider the corresponding linear inhomogeneous initial value problem{

ut + uxxx − uxx + λu = f in R× (0, T ),

u(0) = u0 in R,
(4.2)

for some given 0 < T < ∞. Setting

A := −∂3
x + ∂2

x − λI, D(A) = H 3(R),

it can be written in the form

ut = Au + f, u(0) = u0.

According to Section 2, A generates a strongly continuous semigroup {S(t)}t�0 of contractions in L2(R). Hence
for any given u0 ∈ L2(R), T > 0 and f ∈ L1(0, T ;L2(R)), (4.2) has a unique mild solution u ∈ C([0, T ];L2(R)),
given by the formula

u(t) = S(t)u0 +
t∫

0

S(t − s)f (s) ds, t ∈ [0, T ],

and depending continuously on the data:

‖u‖C([0,T ];L2(R)) := sup
t∈[0,T ]

‖u‖L2(R) � ‖u0‖L2(R) + ‖f ‖L1(0,T ;L2(R)).

In fact, the solution of (4.2) has an additional space regularity. Let us introduce the Banach space

B = BT := C
([0, T ];L2(R)

) ∩ L2(0, T ;H 1(R)
)



1086 M.M. Cavalcanti et al. / Ann. I. H. Poincaré – AN 31 (2014) 1079–1100
with the norm

‖u‖B = ‖u‖C([0,T ];L2(R)) + ‖∂xu‖L2(0,T ;L2(R)).

We have the following

Proposition 4.1. If u0 ∈ L2(R) and f ∈ L1(0, T ;L2(R)), then the solution u of (4.2) belongs to B, and

‖u‖B � cT

(‖u0‖L2(R) + ‖f ‖L1(0,T ;L2(R))

)
with cT = 2eT ‖λ‖∞ .

Furthermore, the following energy identity holds for all t ∈ [0, T ]:

1

2

∥∥u(t)
∥∥2

L2(R)
+

t∫
0

∥∥∂xu(s)
∥∥2

L2(R)
ds +

t∫
0

∫
R

λ(x)
∣∣u(x, s)

∣∣2
dx ds

= 1

2
‖u0‖2

L2(R)
+

t∫
0

∫
R

f (x, s)u(x, s) dx ds.

Now we turn to the nonlinear problem. Let u0 ∈ L2(R). Motivated by the preceding considerations, by a mild
solution of (4.1) we mean a function u ∈ BT , T > 0, satisfying

u(t) = S(t)u0 −
t∫

0

S(t − s)u(s)∂xu(s) ds, t ∈ [0, T ].

By a global mild solution of (4.1) we mean a function u : [0,∞) → H 1(R) whose restriction to every bounded interval
[0, T ] is a mild solution of (4.1).

We have the following

Theorem 4.2. For any given u0 ∈ L2(R) the problem (4.1) has a unique global mild solution.
Furthermore, the following energy identity holds for all t � 0:

1

2

∥∥u(t)
∥∥2

L2(R)
+

t∫
0

∥∥∂xu(s)
∥∥2

L2(R)
ds +

t∫
0

∫
R

λ(x)
∣∣u(x, s)

∣∣2
dx ds = 1

2
‖u0‖2

L2(R)
. (4.3)

For the proof we need a lemma (see [20, Proposition 4.1]):

Lemma 4.3.

(a) If u ∈ L2(0, T ;H 1(R)), then Mu := u∂xu ∈ L1(0, T ;L2(R)).
(b) If, moreover, u,v ∈ B, then

‖Mu − Mv‖L1(0,T ;L2(R)) �
√

2T 1/4(‖u‖B + ‖v‖B
)‖u − v‖B.

Following the ideas contained in [21], using this lemma we may establish the local well posedness using a fixed
point argument:

Lemma 4.4. Given u0 ∈ L2(R), the problem (4.1) has a unique mild solution for every sufficiently small T > 0.
Furthermore, the solution satisfies the identity (4.3) for all t ∈ [0, T ].
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Now the proof of Theorem 4.2 may be completed as follows. The uniqueness follows from the local uniqueness in
Lemma 4.4. For the global existence we only have to show that the solution cannot blow up at any finite time T .

It follows from Theorem 4.2 that, for each fixed T > 0, the solution map

A : L2(R) → B, u0 �→ u, (4.4)

where u =Au0 is the corresponding solution of the problem (4.1), is well defined.
Next we investigate the well-posedness of the nonlinear problem for more regular data. We define for each any

fixed s ∈ [0,3] and T > 0 the space

Bs,T := C
([0, T ];Hs(R)

) ∩ L2(0, T ;Hs+1(R)
)

endowed with norm

‖u‖Bs,T
:= sup

t∈[0,T ]
∥∥u(t)

∥∥
Hs(R)

+ ‖u‖L2(0,T ;Hs+1(R)).

In fact, using a method first introduced by Tartar [25] and adapted by Bona and Scott [26], we prove the following
result

Theorem 4.5. Let T > 0 and λ ∈ H 1(R). For every u0 ∈ Hs(R), 0 � s � 3, the nonlinear problem (4.1) admits a
unique solution u, which belongs to the class Bs,T . Also, there exists a continuous function C : R+ × (0,∞) → R

+,
nondecreasing in its first variable, such that

‖u‖Bs,T
� C

(‖u0‖2, T
)‖u0‖Hs(R).

To prove the above theorem we need first to present the cited method and we also need to prove some auxiliary
results.

Let B0 and B1 be two Banach spaces such that B1 ⊂ B0 with the inclusion map continuous. Let f ∈ B0 and, for
t � 0, define

K(f, t) = inf
g∈B1

{‖f − g‖B0 + t‖g‖B1

}
.

For 0 < θ < 1 and 1 � p � ∞, define

[B0,B1]θ,p = Bθ,p =
{

f ∈ B0: ‖f ‖θ,p :=
( ∞∫

0

K(f, t)pt−θp−1 dt

) 1
p

< ∞
}

with the usual modification for the case p = ∞. Then Bθ,p is a Banach space with norm ‖ · ‖θ,p . Given two pairs
(θ1,p1) and (θ2,p2) as above, then (θ1,p1) ≺ (θ2,p2) means{

θ1 < θ2, or

θ1 = θ2 and p1 > p2.

If (θ1,p1) ≺ (θ2,p2) then Bθ2,p2 ⊂ Bθ1,p1 with the inclusion map continuous.
The interpolation result is the following.

Theorem 4.6. (See Bona and Scott [26, Theorem 4.3].) Let B
j

0 and B
j

1 be Banach spaces such that B
j

1 ⊂ B
j

0 with
continuous inclusion mappings, j = 1,2. Let α and q lie in the ranges 0 < α < 1 and 1 � q � ∞. Suppose A is a
mapping such that

(i) A : B1
α,q → B2

0 and for f,g ∈ B1
α,q ,

‖Af − Ag‖B2
0
� C0

(‖f ‖B1
α,q

+ ‖g‖B1
α,q

)‖f − g‖B1
0

and
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(ii) A : B1
1 → B2

1 and for h ∈ B1
1 ,

‖Ah‖B2
1
� C1

(‖h‖B1
α,q

)‖h‖B1
1
,

where Cj :R+ → R
+ are continuous nondecreasing functions, j = 0,1.

Then if (θ,p)� (α, q), A maps B1
θ,p into B2

θ,q and for f ∈ B1
θ,p we have

‖Af ‖B2
θ,p

� C
(‖f ‖B1

α,q

)‖f ‖B1
θ,p

,

where r > 0, C(r) = 4C0(4r)1−θC1(3r)θ .

Using classical theory of linear semigroup and a contraction map theorem argument as presented in [26] we estab-
lish the following existence theorem for the problem (4.1).

Theorem 4.7. Let T > 0 and λ ∈ H 1(R). For any u0 ∈ H 3(R) there exists a unique solution u of (4.1) in the class
B3,T with ut ∈ B0,T . Also, there exists a continuous function β3 : R+ × (0,∞) → R

+, nondecreasing in its first
variable, such that

‖u‖B3,T
� β3

(‖u0‖2, T
)‖u0‖H 3(R).

The proof of the previous result also requires an adaptation of Lemma 4.3 as follows.

Lemma 4.8. Let T > 0. For any u,v ∈ B3,T such that ut , vt ∈ B0,T we have

1

2
(uv)x ∈ W 1,1(0, T ;L2(R)

)
and

1

2
(uv)xx ∈ L2(0, T ;L2(R)

)
.

In addition, the following estimates hold∥∥∥∥1

2
(uv)x

∥∥∥∥
W 1,1(0,T ;L2(R))

�
√

2T
1
4
(‖u‖B3,T

‖v‖B3,T
+ ‖u‖B3,T

‖vt‖B0,T
+ ‖ut‖B0,T

‖v‖B3,T

)
and ∥∥∥∥1

2
(uv)xx

∥∥∥∥
L2(0,T ;L2(R))

� 2
3
2 T

1
2 ‖u‖B3,T

‖v‖B3,T
.

Proof of Theorem 4.7. Let T > 0 be fixed, λ ∈ H 1(R) and u0 ∈ H 3(R). For 0 < θ � T and R > 0 define

Sθ,R := {
u ∈ B3,θ such that ut ∈ B0,θ and ‖u‖B3,θ

+ ‖ut‖B0,θ
� R

}
.

It follows from Lemma 4.8 that 1
2 (v2)x ∈ W 1,1(0, θ;L2(R)) and 1

2 (v2)xx ∈ L2(0, θ;L2(R)). Therefore, using
classical linear semigroup results, it follows that the linear inhomogeneous problem⎧⎨

⎩ut + uxxx − uxx + λu = 1

2

(
v2)

x
in R× (0, θ),

u(0) = u0 in R,

has a unique solution u in the class B3,θ such that ut is the solution of⎧⎨
⎩wt + wxxx − wxx + λw = 1

2

(
v2)

xt
in R× (0, θ),

w(0) = w0 in R,
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with w0 := −u0xxx + u0xx − λu0 + 1
2 (v(0)2)x ∈ L2(R) and ut ∈ B0,θ . Also, there exists a positive constant c3,θ

verifying

‖u‖B3,θ
+ ‖ut‖B0,θ

� c3,θ

(
‖u0‖H 3(R) +

∥∥∥∥1

2

(
v2)

x

∥∥∥∥
W 1,1(0,θ;L2(R))

+
∥∥∥∥1

2

(
v2)

xx

∥∥∥∥
L2(0,θ;L2(R))

)
.

Therefore, the application Γ defined by

v ∈ Sθ,R �→ Γ v = (u,ut ) ∈ B3,θ ×B0,θ ,

which associates to each v ∈ Sθ,R the corresponding solutions u and ut , respectively. Also, using Lemma 4.8 and the
fact that c3,θ � c3,T for every θ � T , we prove

‖Γ v‖B3,θ×B0,θ
� c3,T ‖u0‖H 3(R) + c3,T 2

3
2
(
θ

1
4 + θ

1
2
)
R2.

Defining R = 2c3,T ‖u0‖H 3(R) and choosing 0 < θ � T such that

c3,T 2
5
2
(
θ

1
4 + θ

1
2
)
R � 1

2

we conclude that ‖Γ v‖B3,θ×B0,θ
�R. For this choice of R and θ , if u,v ∈ Sθ,R we have

‖Γ u − Γ v‖B3,θ×B0,θ
� c3,θ

(∥∥∥∥1

2

(
(u − v)(u + v)

)
x

∥∥∥∥
W 1,1(0,θ;L2(R))

+
∥∥∥∥1

2

(
(u − v)(u + v)

)
xx

∥∥∥∥
L2(0,θ;L2(R))

)

� c3,T 2
3
2
(
θ

1
4 + θ

1
2
)(‖�u‖B3,θ×B0,θ

+ ‖�v‖B3,θ×B0,θ

)‖�u − �v‖B3,θ×B0,θ

� c3,T 2
5
2
(
θ

1
4 + θ

1
2
)
R‖�u − �v‖B3,θ×B0,θ

� 1

2
‖�u − �v‖B3,θ×B0,θ

,

where �u = (u,ut ), which proves that Γ is a contraction. So, Γ admits a unique fixed point in Sθ,R .
In particular, we have

sup
t∈[0,θ]

∥∥u(t)
∥∥

H 3(R)
+ sup

t∈[0,θ]
∥∥ut (t)

∥∥
L2(R)

� 2c3,T ‖u0‖H 3(R).

So, using standards arguments, we may extend θ to T . Finally, the proof is completed defining β3(s) = 2c3,T for every
s ∈R

+. �
To prove Theorem 4.5 we need a last result.

Proposition 4.9. The solution map (4.4) is locally Lipschitz continuous, i.e., there exists a continuous function β0 :
R

+ × (0,∞) → R
+, nondecreasing in its first variable, such that for any u0, v0 ∈ L2(R) we have

‖Au0 −Av0‖B � β0
(‖u0‖2 + ‖v0‖2, T

)‖u0 − v0‖2.

Proof. Let 0 � θ � T to be determined later. For u0, v0 ∈ L2(R) let Au0 = u and Av0 = v be the corresponding
solutions of (4.1) on [0, T ]. We denote

Bθ := C
([0, θ ];L2(R)

) ∩ L2(0, θ;H 1(R)
)
.

The restriction of u and v to [0, θ ] belong to Bθ . Also, u − v is the solution of the linear inhomogeneous problem
(4.2) with f = vvx − uux and initial data u0 − v0. So, combining Proposition 4.1 with Lemma 4.3 and applying
Gronwall’s inequality to (4.3) we get

‖u − v‖Bθ
� cθ‖u0 − v0‖2 + c2

θ

√
2θ

1
4
(‖u0‖2 + ‖v0‖2

)‖u − v‖Bθ
,

where cθ = 2eθ‖λ‖∞ .
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Since 0 < θ � T , we have cθ � cT and choosing θ verifying

c3
T

√
2θ

1
4
(‖u0‖2 + ‖v0‖2

)
� 1

2
,

we obtain

‖u − v‖Bθ
� 2cT ‖u0 − v0‖2.

Suppose that 2θ < T and set

B2θ := C
([θ,2θ ];L2(R)

) ∩ L2(θ,2θ;H 1(R)
)
.

The restrictions of u and v on [θ,2θ ] are the solutions of (4.1) on [θ,2θ ] with respect to the initial data u(θ) and v(θ),
respectively. Also, proceeding as before we have

‖u − v‖B2θ
� cT

∥∥u(θ) − v(θ)
∥∥

2 + c2
T

√
2θ

1
4
(∥∥u(θ)

∥∥
2 + ∥∥v(θ)

∥∥
2

)‖u − v‖B2θ
.

Since ‖u(θ) − v(θ)‖2 � ‖u − v‖Bθ
, we have∥∥u(θ) − v(θ)

∥∥
2 � 2cT ‖u0 − v0‖2,

while applying Gronwall’s inequality to (4.3) provides∥∥u(θ)
∥∥

2 + ∥∥v(θ)
∥∥

2 � cθ

(‖u0‖2 + ‖v0‖2
)
.

Gathering these inequalities and observing that cθ � cT we conclude

‖u − v‖B2θ
� 2c2

T ‖u0 − v0‖2 + c3
T

√
2θ

1
4
(‖u0‖2 + ‖v0‖2

)‖u − v‖B2θ

and for the choice of θ we finally have

‖u − v‖B2θ
� 4c2

T ‖u0 − v0‖2.

Proceeding similarly, using the number of steps needed to cover the interval [0, T ], we conclude the desired re-
sult. �
Sketch of the proof of Theorem 4.5. Let T > 0 and λ ∈ H 1(R). We define

B1
0 = L2(R), B2

0 = BT , B1
1 = H 3(R), B2

1 = BT ,3

and let A be the solution map for the nonlinear problem (4.1). Choosing p = 2 we have, for 0 < s < 3 and θ = s
3 ,

B2
θ,p = Bs,T , B1

θ,p = Hs(R).

Theorem 4.2 together with Proposition 4.9 provide assumption (i) in the interpolation theorem, while Theorem 4.7
provides assumption (ii). So, if we apply Theorem 4.6, we conclude the proof. �

As a consequence, we have the following result which shows that every mild solution of (4.1) is a regular solution
when not considering the origin.

Corollary 4.10. Under the assumptions of Theorem 4.5, for any u0 ∈ L2(R), the corresponding solution u of (4.1)
belongs to

B3,[ε,T ] = C
([ε,T ],H 3(R)

) ∩ L2(ε,T ;H 4(R)
)

for every T > 0 and 0 < ε < T .
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Proof. Let T > 0 and 0 < ε < T . So, for u0 ∈ L2(R), it follows from Theorem 4.5 that the problem (4.1) has a
unique solution u in the class B0,T . So, we have u(t) ∈ H 1(R) for almost every t ∈ [0, T ]. Let t0 ∈ (0, ε) such that
u(t0) ∈ H 1(R). Applying Theorem 4.5 with u0 = u(t0), we conclude that the restriction of u to [t0, T ] is the solution
of (4.1), with respect to the initial data u(t0), in the class B1,[t0,T ]. So, we have that u(t) ∈ H 2(R) for almost every
t ∈ [t0, T ]. Let t1 ∈ (t0, ε) such that u(t1) ∈ H 2(R). It follows from Theorem 4.5 that the restriction of u to [t1, T ]
is the solution of (4.1), with respect to the initial data u(t1), in the class B2,[t1,T ]. Finally, since u(t) ∈ H 3(R) for
almost every t ∈ [t1, T ], it follows from Theorem 4.5 that for t2 ∈ (t1, ε) such that u(t2) ∈ H 3(R), the restriction of u

to [t2, T ] is the solution of (4.1), with respect to the initial data u(t2), in the class B3,[t2,T ] and the result follows. �
5. Exponential decay for the nonlinear problem

The result established in this section is similar to Proposition 3.3. Hence we only sketch the proof.
We recall the notation

cp :=
(

1 − 1

2p

)(
2

p

) 1
2p−1

for 1 � p < ∞.

Theorem 5.1. Let λ ∈ L∞(R). If there exist a positive number λ0 and a function λ1 ∈ Lp(R) for some 1 � p < ∞
such that

λ� λ0 + λ1 almost everywhere

and

‖λ1‖Lp(R) <

(
λ0

cp

)1− 1
2p

,

then the problem (4.1) is exponentially stable and its solutions satisfy the decay estimates∥∥u(t)
∥∥

L2(R)
� e−λ′t‖u0‖L2(R) for all t � 0

with

λ′ := λ0 − cp‖λ1‖1+ 1
2p−1

Lp(R)
> 0.

Remark 5.2. The result and its proof are also valid for p = ∞ with λ′ := λ0 − ‖λ1‖L∞(R), under the assumption that
this value λ′ is positive.

Proof. We omit the variables as well as the integration limits of the spatial variable. We are going to prove the estimate
for smooth solutions, the general case follows by density. It suffices to establish the inequality

d

dt

∫
|u|2 dx � −2λ′‖u‖2

2. (5.1)

From the energy identity we have

d

dt

∫
|u|2 dx = −2

∫
|∂xu|2 dx − 2

∫
λ|u|2 dx (5.2)

� −2
∫

|∂xu|2 dx − 2λ0

∫
|u|2 dx + 2

∫
λ1|u|2 dx.

Using Hölder’s inequality and interpolation we obtain the following estimate:∫
λ1|u|2 dx � 2

1
p ‖λ1‖p‖u‖

2p−1
2

2 ‖∂xu‖
2

2p

2

� cp‖λ1‖
2p

2p−1
p ‖u‖2

2 + ‖∂xu‖2
2. (5.3)

Inequalities (5.3) and (5.2) imply (5.1) as desired. �
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Fig. 1. Graph of λ.

Corollary 5.3. Let u0 ∈ L2(R) and λ ∈ L∞(R) satisfying the assumptions of Theorem 5.1. There exists a non-negative
continuous function α0 : R+ × (0,∞) → R

+ such that the corresponding solution u of (4.1), given by Theorem 4.2,
satisfies the inequality

‖u‖B0,[t,t+T ] � α0
(‖u0‖2, T

)
e−λ′t

for all t � 0, where we use the notation

‖u‖B0,[t,t+T ] := sup
r∈[t,t+T ]

∥∥u(r)
∥∥

2 +
( t+T∫

t

∥∥ux(r)
∥∥2

2 dr

) 1
2

.

Proof. We observe that for every t � 0, the restriction of u to the interval [t, t + T ], after a change of variable, is
a solution of (4.1) on [0, T ], with respect to the initial data u(t). So, applying Theorem 4.5 with s = 0 and then
Theorem 5.1 we conclude that

‖u‖B0,[t,t+T ] � C
(∥∥u(t)

∥∥
2

)∥∥u(t)
∥∥

2 � C
(‖u0‖2e

−λ′t)‖u0‖2e
−λ′t

� C
(‖u0‖2

)‖u0‖2e
−λ′t . �

Example 5.4. Let us consider λ0,R > 0 and λ ∈ L∞(R) given by

λ(x) =
{

λ0, |x| � R,

−λ0, |x| < R;
according to Fig. 1.

Let us try to apply Theorem 5.1 with the function λ1 : R→R given by

λ1(x) =
{

0, |x| � R,

−α, |x| < R,

where α > 0.
We have λ1 ∈ Lp(R) with ‖λ1‖p = α(2R)

1
p for every p ∈ [1,∞).

In order to apply the theorem we must choose α appropriately. We need

λ(x) � λ0 + λ1(x) a.e. in R ⇐⇒ 2λ0 � α

and

‖λ1‖p <

(
λ0

cp

)1− 1
2p ⇐⇒ αp <

1

2R

(
λ0

cp

)p− 1
2

.
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Hence Theorem 5.1 applies with λ0 = α/2 if

2p+1(cp)p− 1
2 λ

1
2
0 R < 1.

This example shows that we may consider indefinite damping mechanisms assuming negative values in arbitrarily
big intervals.

6. Exponential decay for the nonlinear problem in Hs(RRR)

In Section 5 we present an exponential decay result for the solutions of (4.1) in the L2(R) space. Our objective
here is to extend this result to any solution of (4.1) in Hs(R), with 0 � s � 3.

The main result of this section is the following.

Theorem 6.1. Let 0 � s � 3 and λ ∈ H 1(R) satisfying the assumptions of Theorem 5.1. Then there exist a time T0 > 0
and a positive constant ν > 0 such that for every u0 ∈ Hs(R) the corresponding solution u of (4.1) satisfies∥∥u(t)

∥∥
Hs(R)

� β
(
T0,‖u0‖2

)
e−νt‖u0‖Hs(R), for t � T0,

where β : (0,∞) ×R
+ → R

+ is a continuous function, nondecreasing in its second variable.

Before proving our main result, let us consider first the linear problem given by{
vt + uxxx − vxx + λv + (vu)x = 0 in R× (0,∞),

v(0) = v0 in R.
(6.1)

For this problem we establish the following proposition:

Proposition 6.2. Let T > 0 and λ ∈ L∞(R). For each u ∈ B0,T and v0 ∈ L2(R), the problem (6.1) admits a unique
solution v in the class B0,T . Also, there exist a time T0 > 0 and a continuous function σ : (0,∞) × R

+ → R
+,

nondecreasing in its second variable, such that

‖v‖B0,T
� σ

(
T ,‖u‖B0,T

)‖v0‖2. (6.2)

Proof. The proof of the existence follows the steps of Theorem 4.2. Let us prove inequality (6.2). We start by mul-
tiplying Eq. (6.1) by v and perform integration by parts. Then, we have (we are going to omit the variables for
simplicity)

d

dt
‖v‖2

2 + 2‖vx‖2
2 = −2

∫
R

λv2 dx −
∫
R

(vu)xv dx � ‖λ‖∞‖v‖2
2 +

∫
R

u
1

2

(
v2)

x
dx

� ‖λ‖∞‖v‖2
2 + ‖u‖2

∥∥∥∥1

2

(
v2)

x

∥∥∥∥
2
.

Now, integrating over [0, t] for t � T we will find

∥∥v(t)
∥∥2

2 + 2

t∫
0

∥∥vx(s)
∥∥2

2 ds � 2‖λ‖∞
t∫

0

∥∥v(s)
∥∥2

2 ds + ‖v0‖2
2 + 2‖u‖B0,T

t∫
0

∥∥∥∥1

2

(
v(s)2)

x

∥∥∥∥dx.

Since
t∫

0

∥∥∥∥1

2

(
v(s)2)

x

∥∥∥∥
2
dt =

t∫
0

∥∥v(s)vx(s)
∥∥

2 ds

�
t∫ ∥∥v(s)

∥∥∞
∥∥vx(s)

∥∥
2 ds
0
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�
√

2

t∫
0

∥∥v(t)
∥∥ 1

2
2

∥∥vx(s)
∥∥ 3

2
2 ds

�
√

2

( t∫
0

∥∥v(s)
∥∥2

2 ds

) 1
4
( t∫

0

∥∥vx(s)
∥∥2

2 ds

) 3
4

�
√

2

4η4

t∫
0

∥∥v(s)
∥∥2

2 ds + 3
√

2η
4
3

4

t∫
0

∥∥vx(s)
∥∥2

2 ds

where η = (
√

2
3‖u‖B0,T

)
3
4 , we arrive at

∥∥v(t)
∥∥2

2 +
t∫

0

∥∥vx(s)
∥∥2

2 ds �
[

2‖λ‖∞ +
33‖u‖4

B0,T

4

] t∫
0

{∥∥v(s)
∥∥2

2 +
s∫

0

∥∥vx(r)
∥∥2

2dr

}
ds + ‖v0‖2

2.

Finally, employing Gronwall’s inequality we conclude

∥∥v(t)
∥∥2

2 +
t∫

0

∥∥vx(s)
∥∥2

2 ds � ‖v0‖2
2e

(2‖λ‖∞+
33‖u‖4

B0,T
4 )t ,

for every t ∈ [0, T ]. Estimate (6.2) follows directly from the above inequality. �
We also need a lemma.

Lemma 6.3. There exists a positive constant c such that the following estimate holds in H 3(R):

1

c
‖f ‖H 3(R) � ‖f ‖2 + ∥∥∂3

xf
∥∥

2.

Proof. It is sufficient to show that∥∥∂i
xf

∥∥
2 � ci

(‖f ‖2 + ∥∥∂3
xf

∥∥
2

)
for i = 1,2 with suitable constants ci . Since we have∥∥∂1

xf
∥∥

2 � c1
∥∥∂3

xf
∥∥ 1

3
2 ‖f ‖

2
3
2 and

∥∥∂2
xf

∥∥
2 � c2

∥∥∂3
xf

∥∥ 2
3
2 ‖f ‖

1
3
2

by the Gagliardo–Nirenberg inequality (see Ponce and Linares [28], p. 50), the required estimates follow by applying
Young’s inequality:∥∥∂1

xf
∥∥

2 �
c1

3

∥∥∂3
xf

∥∥
2 + 2c1

3
‖f ‖2 and

∥∥∂2
xf

∥∥
2 �

2c1

3

∥∥∂3
xf

∥∥
2 + c2

3
‖f ‖2. �

We may now proceed the proof of the main result.

Proof of Theorem 6.1. Case s = 0 was proved in Theorem 5.1. Let us assume for a while that the result holds
for s = 3, i.e. there exist a time T0 > 0, a constant λ′′ > 0 and a continuous function α3 : (0,∞) × R

+ → R
+,

nondecreasing in its second variable, such that for every u0 ∈ H 3(R) the corresponding solution u satisfy the estimate∥∥u(t)
∥∥

H 3(R)
� α3

(
T0,‖u0‖2

)
e−λ′′t‖u0‖H 3(R) (6.3)

for every t � T0.
Therefore, for 0 < s < 3 and u0 ∈ Hs(R), it follows from Theorem 4.5 that there exists a unique solution u of (4.1)

in the class Bs,T for every T > 0. Also, if 0 < ε < T then it follows from Corollary 4.10 that u belongs to B3,[ε,T ]. On
the other hand, using the interpolation inequality (see [27], Eq. (2.43), p. 19) we have
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∥∥u(t)
∥∥

Hs(R)
� C

∥∥u(t)
∥∥1− s

3
2

∥∥u(t)
∥∥ s

3
H 3(R)

, t � ε,

where C > 0 is a constant which comes from interpolation. Combining this estimate with (6.3) and Theorem 5.1 we
conclude that∥∥u(t)

∥∥
Hs(R)

� β
(
T ,‖u0‖2

)
e−νt‖u0‖Hs(R), t � T0,

where

β
(
T0,‖u0‖2

) = Cα3
(
T0,

∥∥u(ε)
∥∥

2

) s
3 ‖u0‖− s

3
2

∥∥u(ε)
∥∥ s

3
H 3(R)

and ν = λ′(1 − s
3 ) + λ′′s

3 .
So, it only remains to prove (6.3). We start by considering u0 ∈ H 3(R) and u the corresponding solution of (4.1).

Therefore, it follows from Lemma 6.3 and Theorem 5.1 that

1

c

∥∥u(t)
∥∥

H 3(R)
�

∥∥u(t)
∥∥

2 + ∥∥∂3
xu(t)

∥∥
2

� e−λ′t‖u0‖2 + ∥∥∂3
xu(t)

∥∥
2, for all t � 0. (6.4)

Inequality (6.4) above shows that we just need to establish an exponential estimate for the third derivative in space
of u(t). In order to do that, we consider Eq. (4.1) and observe that

∥∥∂3
xu(t)

∥∥
H 3(R)

�
∥∥ut (t)

∥∥
2 + ∥∥∂2

xu(t)
∥∥

2 + ∥∥λu(t)
∥∥

2 +
∥∥∥∥1

2

(
u(t)2)

x

∥∥∥∥
2
, t � 0.

First, it is easy to see that∥∥λu(t)
∥∥

2 � ‖λ‖∞
∥∥u(t)

∥∥
2, for all t � 0,

since λ ∈ H 1(R).
The nonlinear term is estimated using (3.7) and Young’s inequality as described below∥∥∥∥1

2

(
u(t)2)

x

∥∥∥∥
2
= ∥∥u(t)ux(t)

∥∥
2

�
∥∥u(t)

∥∥∞
∥∥ux(t)

∥∥
2

� 2
1
2
∥∥u(t)

∥∥ 1
2
2

∥∥∂1
xu(t)

∥∥ 1
2
2

∥∥∂1
xu(t)

∥∥
2

� 2− 1
2
∥∥u(t)

∥∥
2

∥∥∂1
xu(t)

∥∥
2 + 2− 1

2
∥∥∂1

xu(t)
∥∥2

2

� 2− 3
2
∥∥u(t)

∥∥2
2 + (

2− 3
2 + 2− 1

2
)∥∥∂1

xu(t)
∥∥2

2.

Therefore∥∥∂3
xu(t)

∥∥
2 �

∥∥ut (t)
∥∥

2 + ∥∥∂2
xu(t)

∥∥
2 + ‖λ‖∞

∥∥u(t)
∥∥

2 + 2− 3
2
∥∥u(t)

∥∥2
2

+ (
2− 3

2 + 2− 1
2
)∥∥∂1

xu(t)
∥∥2

2, t � 0.

The first and second space-derivatives of u(t) are estimated as in the proof of Lemma 6.3 by using an appropriate
Young’s inequality

∥∥∂1
xu(t)

∥∥2
2 �

2c2
1γ

3
2

3

∥∥∂3
xu(t)

∥∥
2 + c2

1

3γ 3

∥∥u(t)
∥∥4

2,

∥∥∂2
xu(t)

∥∥
2 �

2c2γ
3
2

3

∥∥∂3
xu(t)

∥∥
2 + c2

3γ 3

∥∥u(t)
∥∥

2,

where γ is a positive real number that will be determinated later.
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Using this estimates we arrive at

∥∥∂3
xu(t)

∥∥
2 �

∥∥ut (t)
∥∥

2 +
(

‖λ‖∞ + c2

3γ 3

)∥∥u(t)
∥∥

2 + c2
1

3γ 3

∥∥u(t)
∥∥4

2

+
(

(2− 1
2 + 2

1
2 )c2

1

3
+ 2c2

3

)
γ

3
2
∥∥∂3

xu(t)
∥∥

2,

from which follows that

c(γ )
∥∥∂3

xu(t)
∥∥

2 �
∥∥ut (t)

∥∥
2 +

(
‖λ‖∞ + c2

3γ 3

)∥∥u(t)
∥∥

2 + c2
1

3γ 3

∥∥u(t)
∥∥4

2

where

c(γ ) = 1 − γ
3
2
(2− 1

2 + 2
1
2 )c2

1 + 2c2

3
.

So, choosing γ = ( 3

(2− 1
2 +2

1
2 )c2

1+2c2

)
2
3 we have c(γ ) = 1

2 and then

∥∥∂3
xu(t)

∥∥
2 � 2

∥∥ut (t)
∥∥

2 +
(

2‖λ‖∞ + 2c2

3γ 3

)∥∥u(t)
∥∥

2 + 2c2
1

3γ 3

∥∥u(t)
∥∥4

2, t � 0. (6.5)

At this point, we turn our attention to the first time-derivative of u. Since Theorem 5.1 can be applied to u, the
previous inequality shows that we just need to show an exponential estimate for the first time derivative. In order to
do that, inspired by the ideas of Proposition 3.9 in Rosier and Zhang’s [22], we proceed as follows.

Let T > 0 be fixed. Since u is given by Theorem 4.5, it follows from Proposition 6.2 that v = ut is the solution of
the problem (6.1), with v0 = −u0xxx + u0xx − λu0 − u0u0x ∈ L2(R). Furthermore, for every t � 0, it follows from
the semigroup property that vt (s) = v(t + s) is the solution of (6.1) with vt (0) = v(t). So, observing that∥∥vt

∥∥
B0,T

= sup
s∈[0,T ]

∥∥vt (s)
∥∥

2 + ∥∥vt
x

∥∥
L2(0,T ;L2(R))

= sup
s∈[0,T ]

∥∥v(t + s)
∥∥

2 +
( T∫

0

∥∥vx(t + s)
∥∥2

2 ds

) 1
2

= sup
r∈[t,t+T ]

∥∥v(r)
∥∥

2 +
( t+T∫

t

∥∥vx(r)
∥∥2

2dr

) 1
2

:= ‖v‖B0,[t,t+T ] , t � 0,

we apply inequality (6.2) and conclude

‖v‖B0,[t,t+T ] � σ
(
T ,‖u‖B0,[t,t+T ]

)∥∥v(t)
∥∥

2, t � 0. (6.6)

Let us now denote v1(t) = S(t)v0, t � 0, where {S(t)}t�0 is the semigroup generated by the linear operator A from
Section 4. Then, v1 is the solution of{

v1t + v1xxx − v1xx + λv1 = 0 in R× (0,∞),

v1(0) = v0 in R.

Since λ satisfies the assumptions of Proposition 3.3, we have the following exponential estimate for v1∥∥v1(t)
∥∥

2 � e−λ′t‖v0‖2, t � 0.

Now, let us define v2(t) = ∫ t

0 S(t − s)[v(s)u(s)]x ds, for t � 0. Since {S(t)}t�0 is a semigroup of contractions, we
estimate v2(T ) in L2(R) using (3.7) and Hölder inequality as follows
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∥∥v2(T )
∥∥

2 �
T∫

0

∥∥vx(t)u(t)
∥∥

2 + ∥∥v(t)ux(t)
∥∥

2 dt

� 2
1
2

T∫
0

∥∥vx(t)
∥∥

2

∥∥u(t)
∥∥ 1

2
2

∥∥ux(t)
∥∥ 1

2
2 dt + 2

1
2

T∫
0

∥∥ux(t)
∥∥

2

∥∥v(t)
∥∥ 1

2
2

∥∥vx(t)
∥∥ 1

2
2 dt

� 2
3
2 T

1
4 ‖v‖B0,T

‖u‖B0,T
.

In the last step we have used the estimate

T∫
0

∥∥vx(t)
∥∥

2

∥∥u(t)
∥∥ 1

2
2

∥∥ux(t)
∥∥ 1

2
2 dt

�
( T∫

0

∥∥vx(t)
∥∥2

2 dt

)1/2( T∫
0

∥∥u(t)
∥∥2

2 dt

)1/4( T∫
0

∥∥ux(t)
∥∥2

2 dt

)1/4

� ‖v‖B0,T
T 1/4‖u‖1/2

B0,T
‖u‖1/2

B0,T

and the analogous estimate for the second integral.
Therefore, this two estimates combined with the expression of v

v(t) = S(t)v0 −
t∫

0

S(t − s)
[
u(s)v(s)

]
x
ds, t � 0,

leads to the following estimate for v(T )∥∥v(T )
∥∥

2 �
∥∥v1(T )

∥∥
2 + ∥∥v2(T )

∥∥
2

� e−λ′T ‖v0‖2 + 2
3
2 T

1
4 ‖v‖B0,T

‖u‖B0,T

�
[
e−λ′T + 2

3
2 T

1
4 ‖u‖B0,T

σT

(‖u‖B0,T

)]‖v0‖2.

For each n ∈N, let us define yn = v(·, nT ). If wn is the solution of the problem{
wnt + wnxxx − wnxx + λwn + [

unT wn

]
x

= 0 in R× (0,∞),

wn(0) = yn in R,

where unT (x, t) = u(x, t + nT ), for all t � 0 and x ∈ R, then wn(t) = vnT (t) = v(t + nT ), for every t ∈ [0, T ] and
any n ∈N. In particular, we have wn(t) = vnT (T ) = v((n + 1)T ) = yn+1, for each n ∈N, and proceeding as we have
done for v1 and v2 we have

‖yn+1‖2 = ∥∥wn(T )
∥∥

2

�
∥∥S(T )yn

∥∥
2 +

∥∥∥∥∥
T∫

0

S(T − s)
[
unT (s)wn(s)

]
x
ds

∥∥∥∥∥
2

� e−λ′T ‖yn‖2 + 2
3
2 T

1
4
∥∥unT

∥∥
B0,T

∥∥vnT
∥∥
B0,T

= e−λ′T ‖yn‖2 + 2
3
2 T

1
4 ‖u‖B0,[nT ,(n+1)T ]‖v‖B0,[nT ,(n+1)T ]

� e−λ′T ‖yn‖2 + 2
3
2 T

1
4 ‖u‖B0,[nT ,(n+1)T ]σ

(
T ,‖u‖B0,[nT ,(n+1)T ]

)∥∥v(nT )
∥∥

2

�
[
e−λ′T + 2

3
2 T

1
4 ‖u‖B0,[nT ,(n+1)T ]σ

(
T ,‖u‖B0,[nT ,(n+1)T ]

)]‖yn‖2

for n = 0,1,2, . . . and T > 0.
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Choosing T > 0 such that

αT = e−λT < 1,

we may determine β > 0 for what

0 < r := αT + 2
3
2 T

1
4 βσ(T ,β) < 1.

Indeed, it is possible since 0 < αT < 1 and βσ(T ,β) → 0 as long β → 0. Note that r depends only on T , once β

depends only on T .
Now, using Corollary 5.3 we have

‖u‖B0,[t,t+T ] � α0
(
T ,‖u0‖2

)
e−λ′t , t � 0,

where the function α0 is given by α0(x, y) = 2e‖λ‖∞xy for every x, y � 0. Then, for N > 0 sufficiently large we have

α0
(
T ,‖u0‖2

)
e−λ′NT � β.

So, for such value of N we have

‖u‖B0,[nT ,(n+1)T ] � α0
(
T ,‖u0‖2

)
e−λ′NT � β,

for every n ∈ N such that n� N .
Therefore, for T > 0 and N > 0 obtained as before we conclude

‖yn+1‖2 � r‖yn‖,
for n� N , with 0 < r < 1.

Now, using (6.6) and the previous inequality we arrive at

‖v‖B0,[(N+k)T ,(N+k+1)T ] � σ
(
T ,α0

(
T ,‖u0‖2

)
e−λ′NT

)
rk

∥∥v(NT )
∥∥

2.

Let us denote T0 := NT . So, if t � T0 then there exists k ∈ N such that t = (N + k)T + θ with 0 � θ < T . From
this, we can write

k = t − T0 − θ

T
,

and then∥∥v(t)
∥∥

2 � ‖v‖B0,[(N+k)T ,(N+k+1)T ]

� σ
(
T ,α0

(
T ,‖u0‖2

)
e−λ′T0

)
rk

∥∥v(T0)
∥∥

2

= σ
(
T ,α0

(
T ,‖u0‖2

)
e−λ′T0

)
r

t−T0−θ

T

∥∥v(T0)
∥∥

2.

Since θ < T and r < 1 we have r
−θ
T < r−1 and then

∥∥v(t)
∥∥

2 � σ
(
T ,α0

(
T ,‖u0‖2

)
e−λ′T0

)(1

r

)−t
T

r−(N+1)
∥∥v(T0)

∥∥
2

= σ
(
T ,α0

(
T ,‖u0‖2

)
e−λ′T0

)
e−ν∗t∥∥v(T0)

∥∥
2, t � T0,

where ν∗ = T −1 ln( 1
r
).

Now, having in mind that u satisfies the last estimate in the proof of Theorem 4.2, we apply (6.2) to conclude∥∥v(T0)
∥∥

2 � σ
(
T0,2eT0‖λ‖∞‖u0‖2

)‖v0‖2.
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Noting that

‖v0‖2 � ‖u0xxx‖2 + ‖u0xx‖2 + ‖λu0‖2 + ‖u0u0x‖2

� ‖u0xxx‖2 + ‖u0xx‖2 + ‖λ‖∞‖u0‖2 + ‖u0‖2‖u0x‖∞
�

(
2 + ‖λ‖∞

)[‖u0xxx‖2 + ‖u0xx‖2 + ‖u0‖2
] + 2− 1

2 ‖u0‖3
2 + 2− 1

2 ‖u0x‖
�

(
2 + ‖λ‖∞ + 2− 1

2
)[‖u0xxx‖2 + ‖u0xx‖2 + ‖u0x‖ + ‖u0‖2

] + 2− 1
2 ‖u0‖3

2

�
[
4
(
2 + ‖λ‖∞ + 2− 1

2
) + 2− 1

2 ‖u0‖2]‖u0‖H 3(R)

and having in mind that v(t) = ut (t) we conclude that∥∥ut (t)
∥∥

2 � α1
(
T0,‖u0‖2

)
e−ν∗t‖u0‖H 3(R), for t � T0, (6.7)

where

α1
(
T0,‖u0‖2

) = σ
(
T0/N,α0

(
T0/N,‖u0‖2

)
e−λ′T0

)
σ
(
T0,2eT0‖λ‖∞)

× (
4
(
2 + ‖λ‖∞ + 2− 1

2
) + 2− 1

2 ‖u0‖2).
Finally, since u is also a solution of (4.1) in L2(R), it follows from Theorem 5.1 that∥∥u(t)

∥∥
2 � ‖u0‖2e

−λ′t , t � 0. (6.8)

Therefore, combining (6.5), (6.7) and (6.8) we conclude that

∥∥∂3
xu(t)

∥∥
2 � 2α1

(
T0,‖u0‖2

)
e−ν∗t‖u0‖H 3(R) +

[
2‖λ‖∞ + 2c2

3γ 3

]
e−λ′t‖u0‖2 + 2c2

1

3γ 3
e−4λ′t‖u0‖4

2

� α2
(
T0,‖u0‖2

)
e−λ′′t‖u0‖H 3(R), t � T0,

where

α2
(
T0,‖u0‖2

) = 2α1
(
T0,‖u0‖2

) +
[

2‖λ‖∞ + 2c2

3γ 3

]
+ 2c2

1

3γ 3
‖u0‖3

2

and λ′′ = min{ν∗, λ′}.
Therefore, replacing the last estimate in (6.4) it yields

1

c

∥∥u(t)
∥∥

H 3(R)
� e−λ′t‖u0‖2 + α2

(
T0,‖u0‖2

)
e−λ′′t‖u0‖H 3(R).

Inequality (6.3) then follows from the previous one just by choosing

α3
(
T0,‖u0‖2

) = c
(
1 + α2

(
T0,‖u0‖2

))
. �
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