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Abstract

We study weak solutions of the 3D Navier–Stokes equations with L2 initial data. We prove that ∇αu is locally integrable in
space–time for any real α such that 1 < α < 3. Up to now, only the second derivative ∇2u was known to be locally integrable by

standard parabolic regularization. We also present sharp estimates of those quantities in weak-L4/(α+1)
loc . These estimates depend

only on the L2-norm of the initial data and on the domain of integration. Moreover, they are valid even for α � 3 as long as u is
smooth. The proof uses a standard approximation of Navier–Stokes from Leray and blow-up techniques. The local study is based
on De Giorgi techniques with a new pressure decomposition. To handle the non-locality of fractional Laplacians, Hardy space and
Maximal functions are introduced.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction and the main result

In this paper, any derivative signs (∇,�, (−�)α/2,D, ∂ and etc.) denote derivatives in the only space variable
x ∈R3 unless the time variable t ∈R is clearly specified. We study the 3D Navier–Stokes equations

∂tu + (u · ∇)u + ∇P − �u = 0 and

divu = 0, t ∈ (0,∞), x ∈R3, (1)

with L2 initial data

u0 ∈ L2(R3), divu0 = 0. (2)

The problem of global regularity of weak solutions for the 3D Navier–Stokes equations has a long history.
Leray [27] 1930s and Hopf [22] 1950s proved the existence of a global-time weak solution for any given L2 initial
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data. Such Leray–Hopf weak solutions are weak solutions u of (1) lying in the functional class L∞(0,∞;L2(R3)) ∩
L2(0,∞;H 1(R3)) and satisfying the following global energy inequality:∥∥u(t)

∥∥2
L2(R3)

+ 2‖∇u‖2
L2(0,t;L2(R3))

� ‖u0‖2
L2(R3)

for a.e. 0 < t < ∞.

Until now, regularity and uniqueness of such weak solutions are generally open.
Instead, many criteria which ensure regularity of weak solutions have been developed. Among them, the most

famous one is Ladyženskaja–Prodi–Serrin Criteria [24,30,36], which says: if u ∈ Lp((0, T );Lq(R3)) for some p and
q satisfying 2

p
+ 3

q
= 1 and p < ∞, then it is regular. Recently, the limiting case p = ∞ was established in the

paper of Escauriaza, Seregin and Šverák [16]. Similar criteria exist with various conditions on derivatives of velocity,
vorticity, or pressure (see Beale, Kato and Majda [1], Beirão da Veiga [2] and Berselli and Galdi [4]). Also, many
other conditions exist (e.g. see Cheskidov and Shvydkoy [10], Chan [9] and [5]).

On the other hand, many efforts have been devoted to the estimation of the size of the possible singular set where
singularities may occur. This approach has been initiated by Scheffer [33]. Then, Caffarelli, Kohn and Nirenberg [6]
improved the result and showed that possible singular sets have zero Hausdorff measure of one dimension for certain
class of weak solutions (suitable weak solutions) satisfying the following additional inequality

∂t

|u|2
2

+ div

(
u

|u|2
2

)
+ div(uP ) + |∇u|2 − �

|u|2
2

� 0 (3)

in the sense of distribution. There are many other proofs of this fact (e.g. see Lin [28], [42] and Wolf [43]). Similar
criteria for interior points with other quantities can be found in many places (e.g. see Struwe [40], Gustafson, Kang
and Tsai [21], Seregin [35] and Chae, Kang and Lee [8]). Also, Robinson and Sadowski [31] and Kukavica [23]
studied box-counting dimensions of singular sets.

In this paper, we consider space–time L
p

(t,x) = L
p
t L

p
x -estimates of higher derivatives for weak solutions assuming

only L2 initial data. The estimate ∇u ∈ L2((0,∞)×R3) is obvious thanks to the energy inequality. A simple interpo-
lation gives u ∈ L10/3. For the second derivatives of weak solutions, a rough estimate ∇2u ∈ L5/4 can be obtained by
considering (u ·∇)u as a source term from the standard parabolic regularization theory (see Ladyženskaja, Solonnikov

and Ural’ceva [25]). With different ideas, Constantin [12] showed ∇2u ∈ L
4
3 −ε for any small ε > 0 in periodic setting,

and later Lions [29] improved it up to ∇2u ∈ weak-L
4
3 (or L

4
3 ,∞) by assuming that ∇u0 is lying in the space of all

bounded measures in R3. They used natural structure of the equation with some interpolation technique. On the other
hand, Foiaş, Guillopé and Temam [18] and Duff [15] obtained other kinds of estimates for higher derivatives of weak
solutions while Giga and Sawada [19] and Dong and Du [14] covered mild solutions. For asymptotic behavior, we
refer to Schonbek and Wiegner [34].

Recently in [41], it has been shown that, for any small ε > 0, any integer d � 1 and any smooth solution u on

(0, T ), there exist uniform bounds on ∇du in L
4

d+1 −ε

loc , which depend only on the L2-norm of the initial data once ε,
d and the domain of integration are fixed. It can be considered as a natural extension of the result of Constantin [12]
for higher derivatives. However, the method is very different. In [41], the proof uses the Galilean invariance of the
equation and some regularity criterion of [42], which reproves the famous result of [6] by using a parabolic version
of the De Giorgi method [13]. Note that this method gives full regularity to the critical Surface Quasi-Geostrophic
equation in [7]. The exponent p = 4

d+1 appears in a non-linear way from the following invariance of the Navier–Stokes

scaling uλ(t, x) = λu(λ2t, λx):∥∥∇duλ

∥∥p

Lp = λ−1
∥∥∇du

∥∥p

Lp . (4)

In this paper, our main result improves the above result of [41] in the sense of the following three directions. First,

we achieve the limiting case weak-L
4

d+1 (or L
4

d+1 ,∞) as Lions [29] did for second derivatives. Second, we make similar
bounds for fractional derivatives as well as classical derivatives. Last, we consider not only smooth solutions but also
global-time weak solutions. These three improvements will give us that ∇3−εu, which is almost third derivatives of
weak solutions, is locally integrable on (0,∞) ×R3.

Our precise result is the following:

Theorem 1.1. There exist universal constants Cd,α which depend only on integer d � 1 and real α ∈ [0,2) with the
following two properties (I) and (II):
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(I) Suppose that we have a smooth solution u of (1) on (0, T ) ×R3 for some 0 < T � ∞ with some initial data (2).
Then it satisfies

∥∥(−�)
α
2 ∇du

∥∥
Lp,∞(t0,T ;Lp,∞(K))

� Cd,α

(
‖u0‖2

L2(R3)
+ |K|

t0

) 1
p

(5)

for any t0 ∈ (0, T ), any integer d � 1, any α ∈ [0,2) and any bounded open subset K of R3, where p = 4
d+α+1

and | · | = the Lebesgue measure in R3.
(II) For any initial data (2), we can construct a suitable weak solution u of (1) on (0,∞)×R3 such that (−�)

α
2 ∇du

is locally integrable in (0,∞) ×R3 for d = 1,2 and for α ∈ [0,2) with (d + α) < 3. Moreover, the estimate (5)
holds with T = ∞ under the same setting of the above part (I) as long as (d + α) < 3.

Let us begin with some simple remarks.

Remark 1.1. For any suitable weak solution u, we can define (−�)α/2∇du in the sense of distributions D′ for any
integer d � 0 and for any real α ∈ [0,2):

〈
(−�)α/2∇du;ψ 〉>D′,D= (−1)d

∫
(0,∞)×R3

u · (−�)α/2∇dψ dx dt (6)

for any test function ψ ∈ D = C∞
c ((0,∞) × R3) where (−�)α/2 in the right-hand side is the traditional fractional

Laplacian in R3 defined by the Fourier transform. Note that (−�)α/2∇dψ lies in L∞
t L2

x . Thus, this definition from (6)
makes sense due to u ∈ L∞

t L2
x . For the case α = 0, we define (−�)0 as the identity map. For more general extensions

of this fractional Laplacian operator, we recommend Silvestre [37].

Remark 1.2. Since we impose only (2) to u0, the estimate (5) is a (quantitative) regularization result to higher deriva-
tives. Also, in the proof, we will see that ‖u0‖2

L2(R3)
in (5) can be relaxed to ‖∇u‖2

L2((0,T )×R3)
. Thus it says that any

(higher) derivatives can be controlled by having only L2-estimate on the dissipation of energy.

Remark 1.3. The result of the part (I) for α = 0 extends the result of the previous paper [41] since for any 0 < q <

p < ∞ and any bounded subset Ω ⊂Rn, we have

‖f ‖Lq(Ω) � C · ‖f ‖Lp,∞(Ω)

where C depends only on p, q , dimension n, and Lebesgue measure of Ω (e.g. see Grafakos [20]).

Remark 1.4. The “smoothness” assumption in the part (I) is about differentiability. For example, the result of the
part (I) for d � 1 and α = 0 holds as long as u is d-times differentiable. In addition, constants in (5) are independent
of any possible blow-time T .

Remark 1.5. p = 4/(d + α + 1) is a very interesting relation as mentioned before. Due to this p, the estimate (5) is
a non-linear estimate while many other a priori estimates are linear. Estimates for (d + α) very close to 3, show that
almost third derivatives of weak solutions are locally integrable. It would be very interesting to extend those results to
values of d < 1. The case d = α = 0, for instance, would imply that this weak solution u lies in L4,∞ which is beyond
the best known estimate u ∈ L10/3 from L2 initial data. This kind of extension, however, seems out of reach as now.

Remark 1.6. The exponent p of the main estimate (5) can be obtained by dimensional analysis using the scaling
invariance of the equation. As in [6], the scaling invariance is fundamental to our study. It allows us to guess the
dependence of p in terms of (d + α). Indeed, let Lx be a typical length scale in space. Then the scaling uλ(t, x) =
λu(λ2t, λx) implies that the typical time scale is Lt = L2

x , any space derivative symbol ∇α
x has dimension L−α

x , and
a solution u has dimension L−1

x . Then, taking pth power on both sides of (5), the term ‖(−�)
α
2 ∇du‖p

Lp,∞ on the

left-hand side has dimension L
3+2−p(d+α+1)
x while both terms ‖u0‖2 and |K|

t0
on the right-hand side have dimension

L3−2
x . Thus p should be 4/(d + α + 1).
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Prior to presenting the main idea, we want to mention that [6] contains two different kinds of local regularity
criteria. The first one is quantitative, and it says that if ‖u‖L3(Q(1)) and ‖P‖L3/2(Q(1)) are sufficiently small where
Q(r) is the parabolic cylinder (−r2,0] × B(r) ⊂ R × R3, then u is bounded by some universal constant in Q(1/2).
The second one says that u is locally bounded near the origin if lim supr→0 r−1‖∇u‖2

L2(Q(r))
is sufficiently small. So

it is qualitative in the sense that the conclusion does not say that u is bounded by a universal constant, but that sup |u|
is not infinite on some local neighbourhood. It also requires local estimates on an infinite number of zooms (via the
lim sup).

To explain the main idea and the scaling of the result, suppose that one could prove the following quantitative
statement which requires only the smallness of ‖∇u‖L2 :

If ‖∇u‖L2(Q(1)) � ε0 holds, for some absolute constant ε0 > 0, then |∇du| � Cd in Q(1/2) for d � 1 where Cd

depends only on d .

Then we could easily prove ∇du ∈ weak-L4/(d+1)

loc by using the contrapositive statement of the above one and the
standard scaling together with Chebyshev’s inequality. Indeed, applying the contrapositive statement on uλ(s, y) =
λu(t + λ2s, x + λy) (and scaling back the result on u), we would get that for all (t, x) such that |∇du(t, x)| � Cd

λd+1

with t � λ2 > 0, we get 1
λ5

∫
Q(t,x)(λ)

|∇u(s, y)|2 ds dy � ε2
0λ−4 where Q(t,x)(r) = (t − r2, t] × Bx(r). Let λ > 0. For

t � λ2 and x ∈ R3, denoting Fλ(t, x) = 1
λ5

∫
Q(t,x)(λ)

|∇u|2 ds dy, by Chebyshev and Fubini, we get

L
{
(t, x) ∈ (λ2,∞)×R3:

∣∣∇du(t, x)
∣∣� Cd

λd+1

}

� Cλ4
∫

(λ2,∞)×R3

Fλ dt dx = Cλ4
∫

(λ2,∞)×R3

1

λ5

∫
Q(λ)

|∇u|2(t + s, x + y)ds dy dt dx

� Cλ4
[

1

λ5

∫
Q(λ)

1ds dy

] ∫
(0,∞)×R3

|∇u|2(t, x) dt dx � Cλ4‖u0‖2
L2(R3)

.

This would give the result. Note that the dependence of p (= 4
d+1 ) with respect to d is unusual due to the non-linear

estimate obtained through Chebyshev’s inequality.
Unfortunately, the quantitative statement from above cannot be proven. This is due, in particular, to the long range

effect of the pressure. Energy outside of the fixed region Q(1) can have an effect (via the pressure) on the higher
derivatives of u in Q(1/2). A different quantitative local regularity criterion has been proposed in [42], which showed
that for any p > 1, there exists εp > 0 such that

if ‖u‖L∞
t L2

x(Q(1)) + ‖∇u‖L2
t,x (Q(1)) + ‖P‖L

p
t L1

x(Q(1)) � εp, then |u| � 1 in Q

(
1

2

)
. (7)

Recently, this criterion was used in [41] in order to obtain higher derivative estimates. The main proposition in [41]
says that if both ‖|∇u|2 + |∇2P |‖Lp(Q(1)) and some other quantity about pressure (Maximal function of ∇2−δP ) are
small, then u is bounded by 1 at the origin once u has a mean zero property in space. We can observe that ‖∇u‖2

L2(Q(1))

and ‖∇2P‖L1(Q(1)) have the same best scaling factor 1
λ

(see (4)) among all well-known quantities which we can obtain
from L2 initial data. However, the other quantity about pressure has a slightly worse scaling factor than that of ‖∇u‖2

L2 .

This is why the the limiting case L
4

d+1 ,∞ could not be proved in [41].

To cover the limiting case L
4

d+1 ,∞, we prove an equivalent estimate of (7) for p = 1. This is achieved by introduc-
ing a new pressure decomposition (see Lemma 3.3). In fact, it can also be applied to solutions of some approximation
scheme of the Navier–Stokes by adding one more assumption about the smallness of ‖M(|∇u|)‖L2 (see Proposi-
tion 2.1). We use the Leray regularization of the Navier–Stokes equation. This makes the drift velocity depend on the
velocity via a convolution. It is then, not anymore local. We can still control it locally, via any zoom, thanks to the
Maximal function. Then, the following will be shown in Section 5 by using the Galilean invariance and a blow-up
technique with the standard scaling:
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Let (u,P ) be a smooth solution of the Navier–Stokes equations. We define F := (|∇u|2 +|∇2P |) whose L1
t,x -norm

can be controlled by the L2-norm of the initial data u0 (see Lemma 5.1). Then for each point (t, x) and for any ε such
that 0 < ε2 � t , there exist an incompressible flow X(·) with the following property:

If 1
ε

∫∫
Q(t,x)(ε)

F (s, y + X(s)) dy ds � δ, then |∇du(t, x)| � Cd/ε(d+1) for d � 1.
The purpose of introducing the flow X(·) is to get a mean zero velocity. It enables us to avoid using any estimate

of the velocity u itself whose scaling is weaker than that of its derivative ∇u. This kind of universal property comes
from the local parabolic regularization effect of the viscosity term. However, if we do not control the main drift in a
fixed region Q(1), it could impair this process. The flow can be very fast in a fixed region Q(1) so the fluid may pass
through the region before having a chance to be locally regularized via the viscosity. Also, note that F has the right

scaling factor. As a consequence, thanks to the incompressibility of the flow X(·), we can prove ∇du ∈ L
4

d+1 ,∞
loc for

classical derivatives (α = 0 case) of smooth solutions of the Navier–Stokes equations.
The result for fractional derivatives (0 < α < 2 case) is not obvious at all because there is no proper interpola-

tion theorem for L
p,∞
loc spaces. For example, due to the non-locality of the fractional Laplacian operator, the fact

∇2u ∈ L
4
3 ,∞
loc with ∇3u ∈ L

1,∞
loc does not imply the case of fractional derivatives even if we assume that u is smooth.

Moreover, even though we assume that ∇2u ∈ L
4
3 (R3) and ∇3u ∈ L1(R3) which we can NOT prove here, the standard

interpolation theorem still requires ∇3u ∈ Lq(R3) for some q > 1 (we refer to Bergh and Löfström [3]).
To overcome the difficulty, we will use the Maximal function of ∇u which captures some behavior of u in long-

range distance. We will add some quantities depending on the Maximal functions of ∇u to F (e.g. see the assumption
of Proposition 2.2). This process should be done carefully because we want to add only functions whose scalings
are correct. Unfortunately, the second derivatives of the pressure, which lie in the Hardy space H ⊂ L1(R3) from
Coifman, Lions, Meyer and Semmes [11], do not have an integrable Maximal function since the Maximal operator is
not bounded on L1. In order to handle non-local effects of the pressure, we will use some property of Hardy space,
which says that some integrable functions play a similar role of the Maximal function (see (10)). This is the origin of
the last term inside of the integral in (23) in Proposition 2.2.

Finally, the result (II) for weak solutions comes from a specific approximation of Navier–Stokes equations that
Leray [27] used in order to construct a global-time weak solution: ∂tun + ((un ∗ φ(1/n)) · ∇)un + ∇Pn − �un = 0
and divun = 0 where φ is a fixed mollifier in R3, and φ(1/n) is defined by φ(1/n)(·) = n3φ(n·). The main advantage
of adopting this approximation is that it has strong existence theory of global-time smooth solutions un for each n,
and it is well-known that there exists a suitable weak solution u as a weak limit. In fact, for any integer d � 1 and
for any α ∈ [0,2), we will obtain bounds for un in the form of (5) with T = ∞, which is uniform in n. For the case
(d + α) < 3, thanks to p = 4/(d + α + 1) > 1, we can know that (−�)

α
2 ∇du exists as a locally integrable function

from weak-compactness of Lp for p > 1.
However, to prove (5) uniformly for the approximation is non-trivial because our proof is based on local study of

De Giorgi-type argument while the approximation is not scaling-invariant with the standard Navier–Stokes scaling
in the sense that u ∗ φ(1/n) becomes v ∗ φ1/(nε) (or see Remark 2.6). In other words, after the scaling, the convective
velocity of the approximation scheme depends on the original velocity more non-locally than before. For example,
once we fix n and let ε go to zero, then we need information of the velocity v in almost whole space to control the
convective velocity v ∗ φ1/(nε) in Q(1).

It will be solved by separating its proof into two Lemmas 3.4 and 3.5. In the first lemma, the convective velocity
is controlled by the Maximal function of |∇u|, which is not strong enough if the parameter r := 1

nε
is small. In the

second lemma with small r , we use the fact that the convective velocity is not too different from the velocity itself for
the first few steps. Then we can combine those two lemmas to get a uniform De Giorgi-type estimate Uk � CkU

β

k−1 for
some β > 1 (see Section 3.4). The free parameter r ∈ [0,∞) has to be handled carefully also in the final bootstrapping
arguments to get locally the control of higher derivatives (see Section 4.3).

The paper is organized as follows. In the next section, preliminaries with the main Propositions 2.1 and 2.2 will be
introduced. Then we prove those Propositions 2.1 and 2.2 in Sections 3 and 4, respectively. Finally we will explain how
Proposition 2.2 implies the part (II) of Theorem 1.1 for α = 0 and for 0 < α < 2 in Sections 5.2 and 5.3 respectively
while the part (I) will be covered in Section 5.4. After that, Appendix A contains some missing proofs of technical
lemmas.
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2. Preliminaries, definitions and the main propositions

We begin this section by fixing some notations and reminding some well-known results on analysis. After that, we
will present definitions of two approximations and two main propositions. In this paper, any derivatives, convolutions
and Maximal functions are with respect to the space variable x ∈ R3 unless the time variable is specified.

2.1. Notations for general purpose

We define B(r), the ball in R3 centered at the origin with radius r , Q(r) = (−r2,0] × B(r), the parabolic cylinder
in R×R3 and B(x; r) = Bx(r), the ball in R3 centered at x with radius r .

Remark 2.1. In Section 3, we will introduce more notations for balls Bk and cylinders Qk (see (24)), which decrease
as k increases. When using a De Giorgi-type argument, these notations are natural, and they will be used only in
Sections 3.1, 3.2 and 3.3.

We fix φ ∈ C∞(R3) satisfying:∫
R3

φ(x)dx = 1, supp(φ) ⊂ B(1), 0 � φ � 1,

φ(x) = 1 for |x| � 1

2
and φ is radial.

For any real number r > 0, we define the functions φr ∈ C∞(R3) by φr(x) = 1
r3 φ(x

r
). When r = 0, we define φr =

φ0 = δ0 as the Dirac-delta function. From Young’s inequality for convolutions, we can observe∥∥f ∗ φr

∥∥
Lp(B(a))

� ‖f ‖Lp(B(a+r)) (8)

due to supp(φr) ⊂ B(r) for any p ∈ [1,∞], for any f ∈ L
p

loc and for any a, r > 0.

2.2. Lp , weak-Lp and Sobolev spaces Wn,p

Let K be an open subset K of Rn. For 0 < p < ∞, we denote Lp(K) the usual space with (quasi) norm ‖f ‖Lp(K) =
(
∫
K

|f |p dx)(1/p).
Also, for 0 < p < ∞, the weak-Lp(K) space (or Lp,∞(K)) is defined by

Lp,∞(K) =
{
f measurable in K ⊂Rd : sup

α>0

(
αp · ∣∣{|f | > α

}∩ K
∣∣)< ∞

}

with (quasi) norm ‖f ‖Lp,∞(K) = supα>0(α ·|{|f | > α}∩K|1/p). From Chebyshev’s inequality, we have ‖f ‖Lp,∞(K) �
‖f ‖Lp(K) for any 0 < p < ∞. Also, for 0 < q < p < ∞, Lp,∞(K) ⊂ Lq(K) once K is bounded (refer to Remark 1.3
in the beginning).

For any integer n� 0 and for any p ∈ [1,∞], we denote Wn,p(R3) and Wn,p(B(r)) as the standard Sobolev spaces
for the whole space R3 and for a ball B(r) in R3, respectively.

2.3. The Maximal function M and the Riesz transform Rj

The Maximal function M in Rd is defined by the following standard way:

M(f )(x) = sup
r>0

1

|B(r)|
∫

B(r)

∣∣f (x + y)
∣∣dy.

Also, we can express this Maximal operator as a supremum of convolutions: M(f ) = C supδ>0(χδ ∗ |f |) where
χ = 1{|x|<1} is the characteristic function of the unit ball, and χδ(·) = (1/δ3)χ(·/δ). Note that M is bounded from
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Lp(Rd) to Lp(Rd) for p ∈ (1,∞] and from L1(Rd) to L1,∞(Rd). In this paper, we denote M and M(t) as the
Maximal functions in R3 and in R1, respectively.

For 1 � j � 3, the Riesz Transform Rj in R3 is defined by:

R̂j (f )(x) = i
xj

|x| f̂ (x).

The operator Rj is bounded in Lp for 1 < p < ∞.

2.4. The Hardy space H

The Hardy space H in R3 is defined by

H
(
R3)= {f ∈ L1(R3): sup

δ>0
|Pδ ∗ f | ∈ L1(R3)}

where P = C(1 + |x|2)−2 is the Poisson kernel and Pδ is defined by Pδ(·) = δ−3P(·/δ). A norm of H is defined by
L1-norm of supδ>0 |Pδ ∗ f |. Thus H is a subspace of L1(R3) and ‖f ‖L1(R3) � ‖f ‖H(R3) for any f ∈ H. Moreover,
the Riesz Transform is bounded from H to H.

One of important applications of the Hardy space is the compensated compactness (see Coifman, Lions, Meyer and
Semmes [11]). Especially, it says that if E,B ∈ L2(R3) and curlE = divB = 0 in distribution, then E · B ∈ H(R3)

and we have

‖E · B‖H(R3) � C · ‖E‖L2(R3) · ‖B‖L2(R3)

for some universal constant C. In order to obtain some regularity of second derivative of pressure, we can combine
compensated compactness with boundedness of the Riesz transform in H(R3). For example, if u is a weak solution
of the Navier–Stokes (1), then a corresponding pressure P satisfies

‖∇2P‖L1(0,∞;H(R3)) � C · ‖∇u‖2
L2(0,∞;L2(R3))

(9)

(see Lions [29] or Lemma 7 in [41]).
Note that if we replace the Poisson kernel P with any function G ∈ C∞(R3) with compact support, then we have

a constant C depending only on G such that∥∥∥ sup
δ>0

|Gδ ∗ f |
∥∥∥

L1(R3)
� C

∥∥∥ sup
δ>0

|Pδ ∗ f |
∥∥∥

L1(R3)
= C‖f ‖H(R3) (10)

where Gδ(·) = G(·/δ)/δ3 (see Fefferman and Stein [17] or see Stein [39], Grafakos [20] for modern texts). Even
though the Maximal function supδ>0(χδ ∗ |f |) of any non-trivial Hardy space function f is not integrable, there
exist integrable functions (supδ>0 |Gδ ∗ f |), which can capture locally some non-local feature of the function f in a
similar way Maximal functions do. However, (10) is slightly weaker than the Maximal function, since it controls only
mean values of non-local quantities (not the absolute value). This weakness is the reason that we introduce certain
definitions of ζ and hα in the following.

2.5. Notations associated to the fractional derivatives (−�)α/2

The following two definitions of ζ and hα will be used only in the proof concerning fractional derivatives. We
define ζ by ζ(x) = φ(x

2 ) − φ(x). Then we have

ζ ∈ C∞(R3), supp(ζ ) ⊂ B(2), ζ(x) = 0 for |x| � 1

2
and

∞∑
j=k

ζ

(
x

2j

)
= 1 for |x| � 2k for any integer k. (11)

In addition, we define the function hα for α > 0 by hα(x) = ζ(x)/|x|3+α . Also we define (hα)δ and (∇dhα)δ by
(hα)δ(x) = δ−3hα(x/δ) and (∇dhα)δ(x) = δ−3(∇dhα)(x/δ) for δ > 0 and for positive integer d , respectively. Then
they satisfy
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(
hα
)
δ
∈ C∞(R3), supp

((
hα
)
δ

)⊂ B(2δ) − B(δ/2) and

1

|x|3+α
· ζ
(

x

2j

)
= 1

(2j )α
· (hα

)
2j (x) for any integer j. (12)

2.6. The definition of the fractional Laplacian (−�)α/2

For −3 < α � 2 and for f ∈ S(R3) (the Schwartz space), (−�)
α
2 f is defined by the Fourier transform:

̂
(−�)

α
2 f (ξ) = |ξ |αf̂ (ξ). (13)

Note that (−�)0 = Id. Especially, for α ∈ (0,2), the fractional Laplacian can also be defined by the singular integral
for any f ∈ S :

(−�)
α
2 f (x) = Cα · P.V.

∫
R3

f (x) − f (y)

|x − y|3+α
dy. (14)

We introduce two approximations to the Navier–Stokes. The first one (Problem I-n) is the approximation, which
Leray [27] used, while the second one (Problem II-r) will be used in our local study after we apply some certain
scaling to (Problem I-n).

2.7. Definition of (Problem I-n): the first approximation to Navier–Stokes

Definition 2.1. Let n � 1 be either an integer or the infinity ∞, and let 0 < T � ∞. Suppose that u0 satisfy (2). We
say that (u,P ) ∈ [C∞((0, T ) ×R3)]2 is a solution of (Problem I-n) on (0, T ) for the data u0 if it satisfies

∂tu + ((u ∗ φ 1
n
) · ∇)u + ∇P − �u = 0,

divu = 0, t ∈ (0, T ), x ∈R3, (15)

and

u(t) → u0 ∗ φ 1
n

in L2-sense as t → 0. (16)

Remark 2.2. When n = ∞, (15) is the Navier–Stokes on (0, T ) ×R3 with the initial value u0.

Remark 2.3. If n is not the infinity but a positive integer, then for any given u0 of (2), we have existence and
uniqueness theory of (Problem I-n) on (0,∞) with the energy equality∥∥u(t)

∥∥2
L2(R3)

+ 2‖∇u‖2
L2(0,t;L2(R3))

= ‖u0 ∗ φ 1
n
‖2
L2(R3)

, (17)

for any t < ∞. It is well-known that we can extract a sub-sequence which converges to a suitable weak solution u of
(1) and (3) with the initial data u0 of (2) (see Leray [27], or see Lions [29], Lemarié-Rieusset [26] for modern texts).

Remark 2.4. As mentioned in the introduction section, we can observe that, for n < ∞, this notion (Problem I-n) is
not invariant under the standard Navier–Stokes scaling u(t, x) → εu(ε2t, εx) due to the convective velocity (u∗φ1/n).

2.8. Definition of (Problem II-r): the second approximation to Navier–Stokes

Definition 2.2. Let 0 � r < ∞ be real. We say that (u,P ) ∈ [C∞((−4,0) ×R3)]2 is a solution of (Problem II-r) if it
satisfies

∂tu + (w · ∇)u + ∇P − �u = 0,

divu = 0, t ∈ (−4,0), x ∈ R3, (18)

where w is the difference of two functions:
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w(t, x) = w′(t, x) − w′′(t), t ∈ (−4,0), x ∈ R3, (19)

which are defined by u in the following way:

w′(t, x) = (u ∗ φr)(t, x) and w′′(t) =
∫
R3

φ(y)(u ∗ φr)(t, y) dy.

Remark 2.5. This notion of (Problem II-r) gives us the mean zero property for the convective velocity w:∫
R3 φ(x)w(t, x) dx = 0 on (−4,0). Also this w is divergent free from the definition. Moreover, by multiplying u

to (18), we have

∂t

|u|2
2

+ div

(
w

|u|2
2

)
+ div(uP ) + |∇u|2 − �

|u|2
2

= 0 (20)

in classical sense because our definition assumes (u,P ) ∈ C∞.

Remark 2.6. We will introduce some specially designed ε-scaling which will be a bridge between (Problem I-n)
and (Problem II-r) (it can be found in (96) in Section 5). This scaling is based on the Galilean invariance in order to
obtain the mean zero property for the velocity u:

∫
R3 φ(x)u(t, x) dx = 0 on (−4,0). Moreover, this ε-scaling applied

to solutions of (Problem I-n), provides a solution to (Problem II- 1
nε

) (it can be found in (97)). We need a local result
which is independent of both ε and n. In other words, we have to consider the free parameter r := 1

nε
∈ [0,∞).

Remark 2.7. When r = 0, Eq. (18) is the Navier–Stokes on (−4,0) × R3 once we assume the mean zero property
for u.

Now we present two main local-study propositions which require the notion of (Problem II-r). These are kinds of
partial regularity theorems for solutions of (Problem II-r). The main difficulty to prove them is that both η̄ > 0 and
δ̄ > 0 should be independent of any r in [0,∞). We will prove this independence very carefully, which is the heart of
Sections 3 and 4.

2.9. The first local study proposition for (Problem II-r)

The following result is a quantitative version of partial regularity theorems which extends that of [42] up to p = 1.
The proof will be based on the De Giorgi iteration with a new pressure decomposition (see Lemma 3.3).

Proposition 2.1. There exists δ̄ > 0 with the following property:
If u is a solution of (Problem II-r) for some 0 � r < ∞ verifying both

‖u‖
L∞(−2,0;L2(B( 5

4 )))
+ ‖P‖L1(−2,0;L1(B(1))) + ‖∇u‖

L2(−2,0;L2(B( 5
4 )))

� δ̄ and∥∥M(|∇u|)∥∥
L2(−2,0;L2(B(2)))

� δ̄,

then we have

∣∣u(t, x)
∣∣� 1 on

[
−3

2
,0

]
× B

(
1

2

)
.

Remark 2.8. For the case r = 0, we do not need the smallness condition on ‖M(|∇u|)‖L2 . Indeed, if r = 0, then,
in Lemma 3.5, we have kr = k0 = ∞ without using the smallness of ‖M(|∇u|)‖L2 . Then we can use Lemma 3.6
directly in order to get the above conclusion.

Remark 2.9. For the case r > 0, the smallness condition on ‖∇u‖L2 is not necessary because we have |∇u(x)| �
M(|∇u|)(x) for a.e. x.
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The above proposition will be proved in Section 3. The two terms ‖u‖L∞
t L2

x
and ‖P‖L1

t L
1
x

do not have the correct
scaling through the ε-zoom. The next Proposition 2.2 deals only quantities which have the correct scaling. However,
since we cannot control the mean value of u with such quantities, it will assume the mean zero property on u. As
mentioned in the introduction, we cannot expect a local parabolic regularization effect if the drift is too big.

2.10. The second local study proposition for (Problem II-r)

Proposition 2.2. There exists η̄ > 0, and there exists a family of constants Cd,α with the following property:
If u is a solution of (Problem II-r) for some 0 � r < ∞ verifying both∫

R3

φ(x)u(t, x) dx = 0 for t ∈ (−4,0) and (21)

0∫
−4

∫
B(2)

(|∇u|2(t, x) + |∇2P |(t, x) + ∣∣M(|∇u|)∣∣2(t, x)
)
dx dt � η̄, (22)

then |∇du| � Cd,0 on Q( 1
3 ) = (−( 1

3 )2,0) × B( 1
3 ) for every integer d � 0.

Moreover if we assume further

0∫
−4

∫
B(2)

(∣∣M(
M
(|∇u|))∣∣2 + ∣∣M(∣∣M(|∇u|)∣∣q)∣∣2/q

+ ∣∣M(|∇u|q)∣∣2/q +
d+4∑
m=d

sup
δ>0

(∣∣(∇m−1hα
)
δ
∗ ∇2P

∣∣))dx dt � η̄ (23)

for some integer d � 1 and for some real α ∈ (0,2) where q = 12/(α + 6), then |(−�)
α
2 ∇du| � Cd,α on Q( 1

6 ) for
such (d,α).

Remark 2.10. The functions hα and (∇m−1hα)δ are defined in (12).

Remark 2.11. For the case r = 0, the smallness condition on ‖M(|∇u|)‖L2 in (22) is not necessary, while, for the
case r > 0, we do not need the smallness condition on ‖∇u‖L2 (refer to Remarks 2.8, 2.9).

The proof will be given in Section 4 which will use the conclusion of the previous Proposition 2.1. Moreover we
will use an induction argument together with the integral representation of the fractional Laplacian in order to get
estimates for the fractional case. The Maximal function term of (22) is introduced to estimate non-local part of the
velocity u while the Maximal of Maximal function terms of (23) are to estimate non-local part of the drift velocity w,
which depends on u non-locally. On the other hand, because ∇2P has only L1 integrability, we cannot have L1

Maximal function of ∇2P . Instead, we use some integrable function, which is the last term of (23). This term plays
the role which captures non-local information of pressure (see (10)). These will be stated clearly in Sections 4 and 5.

3. Proof of the first local study Proposition 2.1

This section is devoted to the proof of Proposition 2.1 which is a partial regularity theorem for (Problem II-r).
Remember that we are looking for δ̄ which should be independent of r ∈ [0,∞).

In the first Section 3.1, we present some lemmas related to the convective velocity w and a new pressure decompo-
sition. Then, we prove two Lemmas 3.4 and 3.5 in Sections 3.2 and 3.3, which give us controls for large r and small r ,
respectively. Finally, the proof of Proposition 2.1 is given in the last Section 3.4 where we combine those two lemmas.
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3.1. A control on the convective velocity w and a new pressure decomposition

The following lemma says that the maximum of a convolution of any functions with φr can be controlled by just
one point value of the Maximal function with some factor of 1

r
.

Lemma 3.1. Let f be an integrable function in R3. Then for any integer d � 0, there exists C = C(d) such that

∥∥∇d(f ∗ φr)
∥∥

L∞(B(2))
� C

rd
·
(

1 + 4

r

)3

· inf
x∈B(2)

Mf (x)

for any 0 < r < ∞.

Proof. Let z, x ∈ B(2). Then, we compute

∣∣∇d(f ∗ φr)(z)
∣∣= ∣∣(f ∗ ∇dφr

)
(z)
∣∣= ∣∣∣∣

∫
B(z,r)

f (y)∇dφr(z − y)dy

∣∣∣∣
�
∥∥∇dφr

∥∥
L∞

∫
B(z,r)

∣∣f (y)
∣∣dy = ‖∇dφ‖L∞

rd+3

∫
B(z,r)

∣∣f (y)
∣∣dy

� ‖∇dφ‖L∞

rd+3

(r + 4)3

(r + 4)3

∫
B(x,r+4)

∣∣f (y)
∣∣dy � C

rd
·
(

1 + 4

r

)3

·Mf (x).

We used B(z, r) ⊂ B(x, r + 4). Then we take sup in z and inf in x. Recall that φ(·) is the fixed function in this
paper. �

The following corollary is just an application of the previous lemma to solutions of (Problem II-r).

Corollary 3.2. Let u be a solution of (Problem II-r) for 0 < r < ∞. Then for any integer d � 0, there exists C = C(d)

such that

‖w‖L2(−4,0;L∞(B(2))) � C ·
(

1 + 4

r

)3

· ∥∥M(|∇u|)∥∥
L2(Q(2))

and, for d � 1,

∥∥∇dw
∥∥

L2(−4,0;L∞(B(2)))
� C

rd−1
·
(

1 + 4

r

)3

· ∥∥M(|∇u|)∥∥
L2(Q(2))

.

Proof. Recall
∫
R3 w(t, y)φ(y) dy = 0 and supp(φ) ⊂ B(1). Thus, for z ∈ B(2), we compute

∣∣w(t, z)
∣∣= ∣∣∣∣

∫
R3

w(t, z)φ(y) dy −
∫
R3

w(t, y)φ(y) dy

∣∣∣∣
�
∥∥∇w(t, ·)∥∥

L∞(B(2))

∫
R3

|z − y|φ(y)dy

� C
∥∥(∇u) ∗ φr(t, ·)

∥∥
L∞(B(2))

·
∫
R3

φ(y)dy

� C ·
(

1 + 4

r

)3

· inf
x∈B(2)

M
(|∇u|)(t, x).

For the last inequality, we used Lemma 3.1 to ∇u. For d � 1, use ∇dw = ∇d−1[(∇u) ∗ φr ]. �
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To use a De Giorgi-type argument, we introduce the following notations, which will be used only in this section.
For real k � 0, we define

Bk = the ball in R3 centered at the origin with radius
1

2

(
1 + 1

23k

)
,

Tk = −1

2

(
3 + 1

2k

)
,

Qk = [Tk,0] × Bk and

sk = the distance between BC
k−1 and B

k− 5
6

= 2−3k
(
(
√

2 − 1)2
√

2
)
. (24)

Also we define s∞ = 0. Note that 0 < s1 < 1
4 , and the sequence {sk}∞k=1 is strictly decreasing to zero as k goes to ∞.

For each integer k � 0, we define ψk ∈ C∞(R3) satisfying:

ψk = 1 in B
k− 2

3
, ψk = 0 in BC

k− 5
6
,

0 � ψk(x) � 1,
∣∣∇ψk(x)

∣∣� C23k and
∣∣∇2ψk(x)

∣∣� C26k for x ∈ R3. (25)

This ψk plays a role of a cut-off function for Bk .
To prove Proposition 2.1, we need the following important lemma related to a new pressure decomposition. Here

we decompose our pressure term into three parts: a non-local part depending on k, a local part depending on k, and a
non-local part, which does not depend on k. The last part will be absorbed into the velocity component later.

Lemma 3.3. There exists a constant Λ1 > 0 with the following property:
Suppose Aij ∈ L1(B0), 1 � i, j � 3 and P ∈ L1(B0) with −�P =∑ij ∂i∂jAij in B0. Then, there exist a function

P3 with P3|B 2
3

∈ L∞ such that, for any k � 1, we can decompose P by

P = P1,k + P2,k + P3 in B 1
3
, (26)

and they satisfy

‖∇P1,k‖L∞(B
k− 1

3
) + ‖P1,k‖L∞(B

k− 1
3
) � Λ1212k

∑
ij

‖Aij‖L1(B 1
6
), (27)

−�P2,k =
∑
ij

∂i∂j (ψkAij ) in R3 and (28)

‖∇P3‖L∞(B 2
3
) � Λ1

(
‖P‖L1(B 1

6
) +
∑
ij

‖Aij‖L1(B 1
6
)

)
. (29)

Note that Λ1 is an independent constant.

Proof. The product rule and the hypothesis imply

−�(ψ1P) = −ψ1�P − 2 div
(
(∇ψ1)P

)+ P�ψ1

= ψ1

∑
ij

∂i∂jAij − 2 div
(
(∇ψ1)P

)+ P�ψ1

= −�P1,k − �P2,k − �P3

where P1,k , P2,k and P3 are defined by

−�P1,k =
∑
ij

∂i∂j

(
(ψ1 − ψk)Aij

)
,

−�P2,k =
∑

∂i∂j (ψkAij ),
ij
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−�P3 = −
∑
ij

∂j

[
(∂iψ1)(Aij )

]−∑
ij

∂i

[
(∂jψ1)(Aij )

]+∑
ij

(∂i∂jψ1)(Aij ) − 2 div
(
(∇ψ1)P

)+ P�ψ1.

Here, P1,k and P3 are defined by the representation formula (−�)−1(f ) = 1
4π

( 1
|x| ∗ f ) while P2,k by the Riesz

transforms.
Since ψ1 = 1 on B 1

3
, we have �P = �(ψ1P) on B 1

3
. Thus (26) holds.

By definition of P2,k , (28) holds.
For (27) and (29), it follows from the proof of Lemma 3 of [42] directly. For completeness, we present the proof.

Note that (ψ1 − ψk) is supported in (B 1
6
− B

k− 2
3
) and ∇ψ1 is supported in (B 1

6
− B 1

3
). Thus for x ∈ B

k− 1
3
, we get

∣∣P1,k(x)
∣∣= ∣∣∣∣ 1

4π

∫
(B 1

6
−B

k− 2
3
)

1

|x − y|
∑
ij

(
∂i∂j

(
(ψ1 − ψk)Aij

))
(y) dy

∣∣∣∣

� sup
y∈BC

k− 2
3

(∣∣∣∣∇2
y

1

|x − y|
∣∣∣∣
)

·
∑
ij

∫
B 1

6

∣∣Aij (x)
∣∣dy

� C · sup
y∈BC

k− 2
3

(
1

|x − y|3
)

·
∑
ij

‖Aij‖L1(B 1
6
) � C1 · 29k ·

∑
ij

‖Aij‖L1(B 1
6
).

We used integration by parts with the facts |x − y| � 2−3k and |(ψ1 − ψk)| � 1.
In the same way, for x ∈ B

k− 1
3
, we compute

∣∣∇P1,k(x)
∣∣� C2 · 212k ·

∑
ij

‖Aij‖L1(B 1
6
).

For x ∈ B 2
3
, we get

∣∣∇P3(x)
∣∣= ∣∣∣∣ 1

4π

∫
(B 1

6
−B 1

3
)

(
∇y

1

|x − y|
)[

−
∑
ij

∂j

[
(∂iψ1)(Aij )

]−∑
ij

∂i

[
(∂jψ1)(Aij )

]

+
∑
ij

(∂i∂jψ1)(Aij ) − 2 div
(
(∇ψ1)P

)+ P�ψ1

]
dy

∣∣∣∣
� C3

(∑
ij

‖Aij‖L1(B 1
6
) + ‖P‖L1(B 1

6
)

)
.

These prove (27) and (29), and we keep the constant Λ1 = max(C1,C2,C3) for the future use. �
Before presenting the De Giorgi arguments for large r and small r , we need more notations. In the following two

main Lemmas 3.4 and 3.5, P3 will be constructed from solutions (u,P ) for (Problem II-r) by using the previous
Lemma 3.3 and it will be clearly shown that ∇P3 has the L1

t L
∞
x bound. Thus we can define, for t ∈ [−2,0] and for

k � 0,

Ek(t) = 1

2

(
1 − 2−k

)+
t∫

−1

∥∥∇P3(s, ·)
∥∥

L∞(B 2
3
)
ds. (30)

Note that Ek depends on t . We also define

vk = (|u| − Ek

)
+,

dk =
√

Ek1{|u|�Ek}
|u|

∣∣∇|u|∣∣2 + vk

|u| |∇u|2 and
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Uk = sup
t∈[Tk,0]

(∫
Bk

|vk|2dx

)
+
∫ ∫

Qk

|dk|2 dx dt

= ‖vk‖2
L∞(Tk,0;L2(Bk))

+ ‖dk‖2
L2(Qk)

.

It will be shown that P3 can be absorbed into vk , which is the key idea of the proof of Proposition 2.1.

3.2. De Giorgi argument to get a control for large r

The following lemma says that we can obtain a certain uniform non-linear estimate in the form of Wk � Ck · Wβ

k−1
when r is large. Then an elementary lemma can give us the conclusion (we will see Lemma 3.6 later). However, for
small r , the factor (1/r3) blows up as r goes to zero. The case of small r will be treated in Lemma 3.5.

Lemma 3.4. There exist constants δ1 > 0 and C̄1 > 1 such that if u is a solution of (Problem II-r) for some 0 < r < ∞
verifying

‖u‖
L∞(−2,0;L2(B( 5

4 )))
+ ‖P‖L1(−2,0;L1(B(1))) + ∥∥M(|∇u|)∥∥

L2(−2,0;L2(B(2)))
� δ1,

then we have

Uk �

⎧⎨
⎩

(C̄1)
kU

7
6
k−1, for any k � 1 if r � s1,

1
r3 · (C̄1)

kU
7
6
k−1, for any k � 1 if r < s1.

Remark 3.1. Since |f (x)| � M(f )(x) almost everywhere, the above assumption implies ‖∇u‖L2(−2,0;L2(B(2))) � δ1.

Remark 3.2. The parameter s1 is the fixed constant defined in (24) such that 0 < s1 < 1/4, and (δ1, C̄1) is independent
of any 0 < r < ∞. It will be clear that the exponent 7/6 is not optimal and we can make it close to (4/3) arbitrarily.
However, any exponent bigger than 1 is enough for our study.

Proof of Lemma 3.4. We assume δ1 < 1. First we claim that there exists a constant Λ2 � 1 such that∥∥|w| · |u|∥∥
L2(−2,0;L3/2(B 1

6
))
� Λ2 · δ1 for any 0 < r < ∞. (31)

In order to prove the above claim (31), we separate it into (I)-large r case (r � s1) and (II)-small r case (r < s1):
(I)-large r case. From Corollary 3.2 if r � s1, then we get

‖w‖L2(−4,0;L∞(B(2))) � C ·
(

1 + 4

s1

)3

· ∥∥M(|∇u|)∥∥
L2(Q(2))

� C
∥∥M(|∇u|)∥∥

L2(Q(2))
� Cδ1. (32)

Likewise, we obtain

‖∇w‖L2(−4,0;L∞(B(2))) � Cδ1. (33)

With Hölder’s inequality and B 1
6

⊂ B0 = B(1) ⊂ B( 5
4 ) ⊂ B(2), we get∥∥|w| · |u|∥∥

L2(−2,0;L3/2(B 1
6
))
� C‖u‖

L∞(−2,0;L2(B( 5
4 )))

· ‖w‖L2(−4,0;L∞(B(2)))

� C · δ1
2 � C1 · δ1,

so we obtained (31) for r � s1.
(II)-small r case. On the other hand, if r < s1, then we get

‖w‖L2(−4,0;L∞(B(2))) � C ·
(

1 + 4

r

)3

· ∥∥M(|∇u|)∥∥
L2(Q(2))

� C
1
3

∥∥M(|∇u|)∥∥
L2(Q(2))

� C
1
3
δ1 (34)
r r
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and

‖∇w‖L2(−4,0;L∞(B(2))) � C
1

r3
δ1. (35)

However, it is not enough to prove (31) because the factor 1
r3 blows up as r goes to zero. Instead, we use the fact

that w and u are similar for small r in the following sense:

‖u‖L4(−2,0;L3(B0))
� C

(‖u‖L∞(−2,0;L2(B0))
+ ‖∇u‖L2(−2,0;L2(B0))

)
� Cδ1

and ∥∥w′∥∥
L4(−2,0;L3(B 1

6
))

= ‖u ∗ φr‖L4(−2,0;L3(B 1
6
)) � ‖u‖L4(−2,0;L3(B0))

� Cδ1

because u ∗ φr in B 1
6

depends only on u in B0 (recall that r � s1 and s1 is the distance between BC
0 and B 1

6
and refer

to (8)). For w′′, we compute∥∥w′′∥∥
L∞(−2,0;L∞(B(2)))

= ∥∥w′′∥∥
L∞

t ((−2,0))

=
∥∥∥∥
∫
R3

φ(y)(u ∗ φr)(y) dy

∥∥∥∥
L∞

t ((−2,0))

� C
∥∥‖u ∗ φr‖L1

x(B(1))

∥∥
L∞

t ((−2,0))

� C
∥∥‖u‖

L1
x(B( 5

4 ))

∥∥
L∞

t ((−2,0))

� C‖u‖
L∞(−2,0;L2(B( 5

4 )))

� Cδ1 (36)

because w′′ is a constant in x, and u ∗ φr in B(1) depends only on u in B(1 + s1) which is a subset of B( 5
4 ). As a

result, we have∥∥|w| · |u|∥∥
L2(−2,0;L3/2(B 1

6
))
� C‖u‖L4(−2,0;L3(B(1))) · ‖w‖

L4(−2,0;L3(B( 1
6 )))

� Cδ1 · ∥∥∣∣w′∣∣+ ∣∣w′′∣∣∥∥
L4(−2,0;L3(B( 1

6 )))

� C · δ1
2 � C2 · δ1 (37)

so that we obtained (31) for r � s1.
Hence, by taking

Λ2 = max(C1,C2,1), (38)

we have (31), and Λ2 is independent of 0 < r < ∞ as long as δ1 < 1. From now on, we assume δ1 < 1 sufficiently
small to satisfy 10 · Λ1 · Λ2 · δ1 � 1/2 (recall that Λ1 comes from Lemma 3.3).

Thanks to Lemma 3.3 and (31), by putting Aij = wiuj , we can decompose P by

P = P1,k + P2,k + P3 in [−2,0] × B 1
3

for each k � 1 with the following properties: for any k � 1,∥∥|∇P1,k| + |P1,k|
∥∥

L2(−2,0;L∞(B
k− 1

3
))
�Λ1212k

∑
ij

‖wiuj‖L2(−2,0;L1(B 1
6
))

� 9 · Λ1 · Λ2 · δ1 · 212k � 212k, (39)

−�P2,k =
∑
ij

∂i∂j (ψkwiuj ) in [−2,0] ×R3 and (40)

‖∇P3‖L1(−2,0;L∞(B 2
3
)) �Λ1

(
‖P‖L1(−2,0;L1(B(1))) +

∑
ij

‖wiuj‖L2(−2,0;L1(B(1)))

)

�Λ1(δ1 + 9 · Λ2 · δ1) � 10 · Λ1 · Λ2 · δ1 �
1

2
. (41)

Note that (41) enables Ek to be well-defined and it satisfies 0 � Ek � 1 (see the definition of Ek in (30)).
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In the following Remarks 3.3–3.5, we gather some easy results, which were obtained in [42], without a proof. They
can be found in Lemmas 4, 6 and the remark of Lemma 4 of [42]. Note that any constants C in the following remarks
do not depend on k.

Remark 3.3. For any k � 0, the function u can be decomposed by u = u
vk|u| + u(1 − vk|u| ). Also we have∣∣∣∣u

(
1 − vk

|u|
)∣∣∣∣� 1,

vk

|u| |∇u| � dk, 1|u|�Ek

∣∣∇|u|∣∣� dk,

|∇vk| � dk and

∣∣∣∣∇ uvk

|u|
∣∣∣∣� 3dk. (42)

Remark 3.4. For any k � 1 and for any q � 1, we have

‖1vk>0‖Lq(Qk−1) � C2
10k
3q U

5
3q

k−1 and ‖1vk>0‖L∞(Tk−1,0;Lq(Qk−1)) � C2
2k
q U

1
q

k−1.

Remark 3.5. For any k � 1, we have ‖vk−1‖
L

10
3 (Qk−1)

� CU
1
2
k−1.

By using the above Remarks 3.3–3.5, we have, for any 1 � p � 10
3 ,

‖vk‖Lp(Qk−1) = ‖vk1vk>0‖Lp(Qk−1)

� ‖vk‖
L

10
3 (Qk−1)

· ‖1vk>0‖
L

1/( 1
p − 3

10 )
(Qk−1)

� ‖vk−1‖
L

10
3 (Qk−1)

· C2
10k

3 ·( 1
p

− 3
10 )

U
5
3 ·( 1

p
− 3

10 )

k−1

� C2
7k
3 U

5
3p

k−1. (43)

Likewise, we get, for any 1 � p � 2,

‖vk‖L∞(Tk−1,0;Lp(Bk−1)) � C2kU
1
p

k−1 (44)

and

‖dk‖Lp(Qk−1) � C2
5k
3 U

5
3p

− 1
3

k−1 . (45)

Second, we claim that for every k � 1, the function vk verifies

∂t

v2
k

2
+ div

(
w

v2
k

2

)
+ d2

k − �
v2
k

2
+ div

(
u(P1,k + P2,k)

)+( vk

|u| − 1

)
u · ∇(P1,k + P2,k)� 0 (46)

in (−2,0) × B 2
3
.

Remark 3.6. The above inequality (46) does not contain P3. We will see that this fact comes from the definition of
Ek(t) in (30).

Indeed, observe that
v2
k

2 = |u|2
2 + v2

k−|u|2
2 and note that Ek does not depend on the space variable but on the time

variable. Thus we compute, for time derivatives,

∂t

(
v2
k − |u|2

2

)
= vk∂tvk − u∂tu = vk∂t |u| − vk∂tEk − u∂tu

= u

(
vk

|u| − 1

)
∂tu − vk∂tEk = u

(
vk

|u| − 1

)
∂tu − vk

∥∥∇P3(t, ·)
∥∥

L∞(B 2
3
)

while, for any space derivatives ∂α , we get
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∂α

(
v2
k − |u|2

2

)
= u

(
vk

|u| − 1

)
∂αu.

Then we follow the same way as Lemma 5 of [42] did: First, we multiply (18) by u(
vk|u| − 1), and then we sum the

result and (20). We omit the details. As a result, we have

0 � ∂t

v2
k

2
+ div

(
w

v2
k

2

)
+ d2

k − �
v2
k

2
+ vk

∥∥∇P3(t, ·)
∥∥

L∞(B 2
3
)
+ div(uP ) +

(
vk

|u| − 1

)
u · ∇P

= ∂t

v2
k

2
+ div

(
w

v2
k

2

)
+ d2

k − �
v2
k

2
+
(

vk

∥∥∇P3(t, ·)
∥∥

L∞(B 2
3
)
+ vk

|u|u · ∇P3

)

+ div
(
u(P1,k + P2,k)

)+( vk

|u| − 1

)
u · ∇(P1,k + P2,k).

For the last equality, we used the fact P = P1,k + P2,k + P3 in B 1
3

and

div(uP3) +
(

vk

|u| − 1

)
u · ∇P3 = vk

|u|u · ∇P3. (47)

Thus we proved the claim (46) due to

vk

∥∥∇P3(t, ·)
∥∥

L∞(B 2
3
)
+ vk

|u|u · ∇P3 � 0 on (−2,0) × B 2
3
.

For any integer k, we introduce a cut-off function ηk(x) ∈ C∞(R3) satisfying

ηk = 1 in Bk, ηk = 0 in BC

k− 1
3
, 0 � ηk � 1,

|∇ηk|� C23k and
∣∣∇2ηk

∣∣� C26k, for any x ∈R3.

We multiply (46) by ηk and integrate on [σ, t] ×R3 for Tk−1 � σ � Tk � t � 0 to get:

∫
R3

ηk(x)
|vk(t, x)|2

2
dx +

t∫
σ

∫
R3

ηk(x)d2
k (s, x) dx ds

�
∫
R3

ηk(x)
|vk(σ, x)|2

2
dx +

t∫
σ

∫
R3

(∇ηk)(x)w(s, x)
|vk(s, x)|2

2
dx ds +

t∫
σ

∫
R3

(�ηk)(x)
|vk(s, x)|2

2
dx ds

−
t∫

σ

∫
R3

ηk(x)

(
div
(
u(P1,k + P2,k)

)+( vk

|u| − 1

)
u · ∇(P1,k + P2,k)

)
(s, x) dx ds.

We integrate on σ ∈ [Tk−1, Tk] and divide by −(Tk−1 − Tk) = 2−(k+1) to get:

sup
t∈[Tk,1]

( ∫
R3

ηk(x)
|vk(t, x)|2

2
dx +

t∫
Tk

∫
R3

ηk(x)d2
k (s, x) dx ds

)

� 2k+1 ·
Tk∫

Tk−1

∫
R3

ηk(x)
|vk(σ, x)|2

2
dx

+
0∫

T

∣∣∣∣
∫

3

∇ηk(x)w(s, x)
|vk(s, x)|2

2
dx

∣∣∣∣ds +
0∫

T

∣∣∣∣
∫

3

�ηk(x)
|vk(s, x)|2

2
dx

∣∣∣∣ds
k−1 R k−1 R
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+
0∫

Tk−1

∣∣∣∣
∫
R3

ηk(x)

(
div
(
u(P1,k + P2,k)

)+( vk

|u| − 1

)
u · ∇(P1,k + P2,k)

)
(s, x) dx

∣∣∣∣ds.

From ηk = 1 on Bk , we obtain

Uk � sup
t∈[Tk,1]

(∫
R3

ηk(x)
|vk(t, x)|2

2
dx

)
+

0∫
Tk

∫
R3

ηk(x)d2
k (s, x) dx ds

� 2 · sup
t∈[Tk,1]

( ∫
R3

ηk(x)
|vk(t, x)|2

2
dx +

t∫
Tk

∫
R3

ηk(x)d2
k (s, x) dx ds

)
.

Thus we have

Uk � (I ) + (II) + (III) + (IV) (48)

where

(I ) = C26k

∫
Qk−1

∣∣vk(s, x)
∣∣2 dx ds,

(II) =
∫

Qk−1

∣∣∇ηk(x)
∣∣ · ∣∣w(s, x)

∣∣ · ∣∣vk(s, x)
∣∣2 dx ds,

(III) = 2

0∫
Tk−1

∣∣∣∣
∫
R3

ηk(x)

(
div(uP1,k) +

(
vk

|u| − 1

)
u · ∇P1,k

)
(s, x) dx

∣∣∣∣ds and

(IV) = 2

0∫
Tk−1

∣∣∣∣
∫
R3

ηk(x)

(
div(uP2,k) +

(
vk

|u| − 1

)
u · ∇P2,k

)
(s, x) dx

∣∣∣∣ds. (49)

For (I ), by using (43), we get, for any 0 < r < ∞,

(I ) = C26k‖vk‖2
L2(Qk−1)

� C210kU
5
3
k−1. (50)

For (II) with r � s1, by using (32) and (44), we compute

(II) � C23k‖w‖L2(−4,0;L∞(B(2))) · ∥∥|vk|2
∥∥

L2(Tk−1,0;L1(Bk−1))

� C23kδ1‖vk‖
L∞(Tk−1,0;L 6

5 (Bk−1))
· ‖vk‖L2(Tk−1,0;L6(Bk−1))

� C24kδ1U
5
6
k−1 · (‖vk−1‖L∞(Tk−1,0;L2(Bk−1))

+ ‖∇vk−1‖L2(Tk−1,0;L2(Bk−1))

)
� C24k · δ1 · U

5
6
k−1 · U

1
2
k−1 � C24k · δ1 · U

4
3
k−1 � C24k · U

4
3
k−1. (51)

For r < s1, we follow the above steps using (34) instead of (32), then we get

(II) � C
1

r3
24k · U

4
3
k−1. (52)

For (III) (non-local pressure term), thanks to the smoothness of all functions, we observe that

div(uP1,k) +
(

vk − 1

)
u · ∇P1,k = vk

u · ∇P1,k.
|u| |u|
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Thus, by using (39) and (43), we compute, for any 0 < r < ∞,

(III)� C ·
∥∥∥∥ vk

|u|u · ∇P1,k

∥∥∥∥
L1(Qk−1)

� C
∥∥|vk| · |∇P1,k|

∥∥
L1(Qk−1)

� ‖vk‖L2(Tk−1,0;L1(Bk−1))
· ‖∇P1,k‖L2(Tk−1,0;L∞(Bk−1))

� ‖1vk>0‖L2(Tk−1,0;L2(Bk−1))
‖vk‖L∞(Tk−1,0;L2(Bk−1))

· 212k

� C2
43k

3 U
5
6
k−1U

1
2
k−1 � C2

43k
3 U

4
3
k−1. (53)

For (IV) (local pressure term), as we did for (III), observe

div(uP2,k) +
(

vk

|u| − 1

)
u · ∇P2,k = vk

|u|u · ∇P2,k.

By the definition of P2,k , we have

−�P2,k =
∑
ij

∂i∂j (ψkwiuj ) =
∑
ij

∂i

(
(∂jψk)wiuj + ψk(∂jwi)uj

)

=
∑
ij

∂i

(
(∂jψk)wiuj

(
1 − vk

|u|
)

+ (∂jψk)wiuj

vk

|u| + ψk(∂jwi)uj

(
1 − vk

|u|
)

+ ψk(∂jwi)uj

vk

|u|
)

and

−�(∇P2,k) =
∑
ij

∂i∇
(

(∂jψk)wiuj

(
1 − vk

|u|
)

+ (∂jψk)wiuj

vk

|u|

+ ψk(∂jwi)uj

(
1 − vk

|u|
)

+ ψk(∂jwi)uj

vk

|u|
)

.

Thus we can decompose ∇P2,k by the Riesz transform into

∇P2,k = G1,k + G2,k + G3,k + G4,k

where

G1,k =
∑
ij

(∂i∇)(−�)−1
(

(∂jψk)wiuj

(
1 − vk

|u|
))

,

G2,k =
∑
ij

(∂i∇)(−�)−1
(

(∂jψk)wiuj

vk

|u|
)

,

G3,k =
∑
ij

(∂i∇)(−�)−1
(

ψk(∂jwi)uj

(
1 − vk

|u|
))

and

G4,k =
∑
ij

(∂i∇)(−�)−1
(

ψk(∂jwi)uj

vk

|u|
)

.

From Lp-boundedness of the Riesz transform with the fact supp(ψk) ⊂ Bk−(5/6) ⊂ Bk−1, we have

‖G2,k‖L2(Tk−1,0;L2(R3)) � C23k‖w‖L2(Tk−1,0;L∞(Bk−1))
· ‖vk‖L∞(Tk−1,0;L2(Bk−1))

,

‖G4,k‖L2(Tk−1,0;L2(R3)) � C · ‖∇w‖L2(Tk−1,0;L∞(Bk−1))
· ‖vk‖L∞(Tk−1,0;L2(Bk−1))

.

Similarly, we have, for any 1 < p < ∞,

‖G1,k‖L2(Tk−1,0;Lp(R3)) � Cp · 23k‖w‖L2(Tk−1,0;L∞(Bk−1))
and

‖G3,k‖L2(Tk−1,0;Lp(R3)) � Cp · ‖∇w‖L2(Tk−1,0;L∞(Bk−1))
.

Therefore, by using (33) and (35), we get
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∥∥|G2,k| + |G4,k|
∥∥

L2(Tk−1,0;L2(R3))
�

⎧⎨
⎩

C · 23k · U
1
2
k−1, if r � s1,

C · 23k · 1
r3 · U

1
2
k−1, if r < s1,

and, for any 1 < p < ∞,

∥∥|G1,k| + |G3,k|
∥∥

L2(Tk−1,0;Lp(R3))
�
{

Cp · 23k, if r � s1,

Cp · 23k · 1
r3 , if r < s1.

Thus, by using the above estimates and (43), for r � s1 and p > 5, we compute

(IV) � C ·
∥∥∥∥ vk

|u|u · ∇P2,k

∥∥∥∥
L1(Qk−1)

� C
∥∥|vk| · |∇P2,k|

∥∥
L1(Qk−1)

� C
∥∥|vk| ·

(|G1,k| + |G3,k|
)∥∥

L1(Qk−1)
+ C

∥∥|vk| ·
(|G2,k| + |G4,k|

)∥∥
L1(Qk−1)

� ‖vk‖
L2(Tk−1,0;L

p
p−1 (Bk−1))

· ∥∥|G1,k| + |G3,k|
∥∥

L2(Tk−1,0;Lp(Bk−1))

+ ‖vk‖L2(Tk−1,0;L2(Bk−1))
· ∥∥|G2,k| + |G4,k|

∥∥
L2(Tk−1,0;L2(Bk−1))

� C · Cp · 2
16k
3 U

4p−5
3p

k−1 .

By the same way, for r < s1 and p > 5, we obtain

(IV) � C · Cp · 1

r3
2

16k
3 U

4p−5
3p

k−1 .

Thus, by taking p = 10, we obtain

(IV) �

⎧⎨
⎩

C · 2
16k

3 U
7
6
k−1, if r � s1,

C · 1
r3 2

16k
3 U

7
6
k−1, if r < s1.

(54)

Finally, combining (50), (51), (52), (53) and (54) gives us

(I ) + (II) + (III) + (IV) �

⎧⎨
⎩

Ck · U
7
6
k−1, if r � s1,

1
r3 · Ck · U

7
6
k−1, if r < s1.

�

3.3. De Giorgi argument to get a control for small r

The next result handles the case of small r including the case r = 0.
Recall the definition of sk in (24) first. It is the distance between BC

k−1 and B
k− 5

6
, and sk is strictly decreasing to

zero as k → ∞. For any 0 < r < s1 we define kr as the integer such that skr+1 < r � skr . Note that kr � 1, and it is
increasing to ∞ as r goes to zero. For the case r = 0, we simply define kr = k0 = ∞.

Lemma 3.5. There exist constants δ2 > 0 and C̄2 > 1 such that if u is a solution of (Problem II-r) for some 0 � r < s1
verifying

‖u‖
L∞(−2,0;L2(B( 5

4 )))
+ ‖P‖L1(−2,0;L1(B(1))) + ‖∇u‖

L2(−2,0;L2(B( 5
4 )))

� δ2

then we have

Uk � (C̄2)
kU

7
6
k−1 for any integer k such that 1 � k � kr .

Remark 3.7. Note that δ2 and C̄2 are independent of any r ∈ [0, s1), and the exponent 7/6 is not optimal.



K. Choi, A.F. Vasseur / Ann. I. H. Poincaré – AN 31 (2014) 899–945 919
Remark 3.8. This lemma says that even though r is very small, we can prove the above uniform estimate for the first
few steps k � kr . Moreover, the number kr of these steps is increasing to the infinity with a certain rate as r goes to
zero. In Section 3.4, we will see that this rate is enough to obtain a uniform estimate for any small r once we combine
the two Lemmas 3.4 and 3.5.

Proof of Lemma 3.5. In this proof, we can borrow any estimates in the proof of the previous Lemma 3.4 except
those which depend on r and blow up as r goes to zero (recall that every estimate depending on r in the previous
Lemma 3.4 was obtained when and only when we used the smallness condition of L2-norm of M(|∇u|), which we
do not assume in Lemma 3.5).

Let 0 � r < s1. We take any integer k such that 1 � k � kr . As we chose δ1 in the previous Lemma 3.4, we assume
δ2 > 0 first so small that

δ2 < 1, 10Λ1Λ2δ2 �
1

2
.

We begin this proof by decomposing w′ by

w′ = u ∗ φr =
(

u

(
1 − vk

|u|
))

∗ φr +
(

u
vk

|u|
)

∗ φr = w′,1 + w′,2.

Thus the convective velocity w has a new decomposition: w = w′ − w′′ = (w′,1 + w′,2) − w′′ = (w′,1 − w′′) + w′,2.
We will verify that (w′,1 − w′′) is bounded, and w′,2 can be controlled locally. First, for w′,1,

∣∣w′,1(t, x)
∣∣= ∣∣∣∣

((
u

(
1 − vk

|u|
))

∗ φr

)
(t, x)

∣∣∣∣�
∥∥∥∥u
(

1 − vk

|u|
)

(t, ·)
∥∥∥∥

L∞(R3)

� 1 (55)

for any −4 � t and any x ∈R3. From (36), we still have∥∥w′′∥∥
L∞(−2,0;L∞(B(2)))

� Cδ̄ � C. (56)

Combining above two results,∥∥∣∣w′,1∣∣+ ∣∣w′′∣∣∥∥
L∞(−2,0;L∞(B(2)))

� C. (57)

For w′,2, we observe that any Lp-norm of w′,2 = (u
vk|u| )∗φr in B

k− 5
6

is less than or equal to that of vk in Bk−1 because

r � skr � sk and sk is the distance between BC
k−1 and B

k− 5
6

(see (8)). Thus we have, for any 1 � p � ∞,

∥∥w′,2∥∥
Lp(Tk−1,0;Lp(B

k− 5
6
))

=
∥∥∥∥
(

u
vk

|u|
)

∗ φr

∥∥∥∥
Lp(Tk−1,0;Lp(B

k− 5
6
))

= ∥∥|vk| ∗ φr

∥∥
Lp(Tk−1,0;Lp(B

k− 5
6
))
� ‖vk‖Lp(Qk−1). (58)

So, by using (43), we have

∥∥w′,2∥∥
Lp(Tk−1,0;Lp(B

k− 5
6
))
� C2

7k
3 U

5
3p

k−1, for any 1 � p � 10

3
. (59)

Remark 3.9. The above computations show that, for 0 � r < s1 and for 1 � k � kr , the convective velocity w can be
decomposed into one bounded part (w′,1 − w′′) and the other part w′,2, which has a certain contribution to the power
of Uk−1.

Recall that the transport term estimate (31) is valid for 0 < r � s1 without having the smallness condition of
‖M(|∇u|)‖L2 (see (37)). Moreover, the argument in (37) says that (31) holds even for the case r = 0. As a result, for
any r ∈ [0, s1), we have the same pressure estimates (39), (40) and (41). Thus we can follow the proof of the previous
Lemma 3.4 up to (48) without any single modification. It remains to control (I )–(IV).

For (I ), the estimate (50) holds because (50) is independent of r .
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For (II), by using (57) and (59) with the fact supp(ηk) ⊂ B
k− 1

3
⊂ B

k− 5
6
, we have

(II) = ∥∥|∇ηk| · |w| · |vk|2
∥∥

L1(Qk−1)

� C23k
(∥∥(∣∣w′,1∣∣+ ∣∣w′′∣∣) · |vk|2

∥∥
L1(Qk−1)

+ ∥∥∣∣w′,2∣∣ · |vk|2
∥∥

L1(Tk−1,0;L1(B
k− 5

6
))

)
� C23k‖vk‖2

L2(Qk−1)
+ C23k

∥∥w′,2∥∥
L

10
3 (Tk−1,0;L 10

3 (B
k− 5

6
))

· ∥∥|vk|2
∥∥

L
10
7 (Q

k− 5
6
)

� C2
23k

3 U
5
3
k−1 + C210kU

5
3
k−1 � C210kU

5
3
k−1. (60)

For (III) (non-local pressure term), we have (53) since (53) is independent of r .
For (IV) (local pressure term), by definition of P2,k and decomposition of w,

−�P2,k =
∑
ij

∂i∂j

(
ψkwiuj

(
1 − vk

|u|
)

+ ψkwiuj

vk

|u|
)

=
∑
ij

∂i∂j

(
ψk

(
w

′,1
i − w′′

i

)
uj

(
1 − vk

|u|
)

+ ψkw
′,2
i uj

(
1 − vk

|u|
)

+ ψk

(
w

′,1
i − w′′

i

)
uj

vk

|u| + ψkw
′,2
i uj

vk

|u|
)

.

Thus we can decompose P2,k by

P2,k = P2,k,1 + P2,k,2 + P2,k,3 + P2,k,4

where

P2,k,1 =
∑
ij

(∂i∂j )(−�)−1
(

ψk

(
w

′,1
i − w′′

i

)
uj

(
1 − vk

|u|
))

,

P2,k,2 =
∑
ij

(∂i∂j )(−�)−1
(

ψkw
′,2
i uj

(
1 − vk

|u|
))

,

P2,k,3 =
∑
ij

(∂i∂j )(−�)−1
(

ψk

(
w

′,1
i − w′′

i

)
uj

vk

|u|
)

and

P2,k,4 =
∑
ij

(∂i∂j )(−�)−1
(

ψkw
′,2
i uj

vk

|u|
)

.

By using |u(1 − vk|u| )| � 1 and the fact that ψk is supported in B
k− 5

6
, we have

‖P2,k,1‖Lp(Tk−1,0;Lp(R3)) � Cp for 1 < p < ∞, and (61)

‖P2,k,2‖Lp(Tk−1,0;Lp(R3)) � Cp

∥∥|ψk| ·
∣∣w′,2∣∣∥∥

Lp(Tk−1,0;Lp(R3))

� CCp2
7k
3 U

5
3p

k−1 for 1 � p � 10

3
, (62)

thanks to (57) and (59). Observe that for i = 1,2,

div(uGi) +
(

vk

|u| − 1

)
u · ∇Gi = div

(
vk

u

|u|Gi

)
− Gi div

(
uvk

|u|
)

. (63)

For P2,k,1, by using (42), (43), (45), (63) and (61) with p = 10, we have
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0∫
Tk−1

∣∣∣∣
∫
R3

ηk(x)

(
div(uP2,k,1) +

(
vk

|u| − 1

)
u · ∇P2,k,1

)
(s, x) dx

∣∣∣∣ds

� C3k
∥∥vk · |P2,k,1|

∥∥
L1(Qk−1)

+ 3
∥∥dk · |P2,k,1|

∥∥
L1(Qk−1)

� C3k‖vk‖
L

10
9 (Qk−1)

· ‖P2,k,1‖L10(Qk−1)
+ 3‖dk‖

L
10
9 (Qk−1)

· ‖P2,k,1‖L10(Qk−1)

� C2
16k

3 U
3
2
k−1 + C2

5k
3 U

7
6
k−1 � C2

16k
3 U

7
6
k−1. (64)

Likewise, for P2,k,2, by using (62) instead of (61), we have

0∫
Tk−1

∣∣∣∣
∫
R3

ηk(x)

(
div(uP2,k,2) +

(
vk

|u| − 1

)
u · ∇P2,k,2

)
(s, x) dx

∣∣∣∣ds

� C2
23k

3 U
5
3
k−1 + C24kU

4
3
k−1 � C2

23k
3 U

4
3
k−1. (65)

From the definitions of P2,k,3 and P2,k,4 with div(w) = 0, we have

−�∇(P2,k,3 + P2,k,4) =
∑
ij

∂i∂j∇
(

ψkwiuj

vk

|u|
)

=
∑
ij

∇∂j

(
(∂iψk)wiuj

vk

|u| + ψkwi∂i

(
uj

vk

|u|
))

.

Then we use the fact w = (w′,1 − w′′) + w′,2 so that we can decompose

∇(P2,k,3 + P2,k,4) = H1,k + H2,k + H3,k + H4,k

where

H1,k =
∑
ij

(∇∂j )(−�)−1
(

(∂iψk)
(
w

′,1
i − w′′

i

)
uj

vk

|u|
)

,

H2,k =
∑
ij

(∇∂j )(−�)−1
(

(∂iψk)w
′,2
i uj

vk

|u|
)

,

H3,k =
∑
ij

(∇∂j )(−�)−1
(

ψk

(
w

′,1
i − w′′

i

)
∂i

(
uj

vk

|u|
))

and

H4,k =
∑
ij

(∇∂j )(−�)−1
(

ψkw
′,2
i ∂i

(
uj

vk

|u|
))

.

By using |u| � 1 + vk , we have

0∫
Tk−1

∣∣∣∣
∫
R3

ηk(x)

(
div
(
u(P2,k,3 + P2,k,4)

)+( vk

|u| − 1

)
u · ∇(P2,k,3 + P2,k,4)

)
dx

∣∣∣∣ds

� C3k

∫
Qk−1

(1 + vk) · ∣∣(P2,k,3 + P2,k,4)(s, x)
∣∣+ ∣∣∇(P2,k,3 + P2,k,4)

∣∣dx ds

� C3k
(‖P2,k,3‖L1(Qk−1)

+ ∥∥vk · |P2,k,3|
∥∥

L1(Qk−1)
+ ‖P2,k,4‖L1(Qk−1)

+ ∥∥vk · |P2,k,4|
∥∥

L1(Qk−1)

+ ‖H1,k‖L1(Qk−1)
+ ‖H2,k‖L1(Qk−1)

+ ‖H3,k‖L1(Qk−1)
+ ‖H4,k‖L1(Qk−1)

)
. (66)

From (43) and (57) with the Riesz transform, we obtain



922 K. Choi, A.F. Vasseur / Ann. I. H. Poincaré – AN 31 (2014) 899–945
‖P2,k,3‖L1(Qk−1)
� C‖P2,k,3‖

L
10
9 (Tk−1,0;L 10

9 (R3))
� C‖vk‖

L
10
9 (Qk−1)

� C2
7k
3 U

3
2
k−1, (67)

‖H1,k‖L1(Qk−1)
� C2

16k
3 U

3
2
k−1, and (68)∥∥vk · |P2,k,3|

∥∥
L1(Qk−1)

� ‖vk‖L2(Qk−1)
‖P2,k,3‖L2(Qk−1)

� C2
7k
3 U

5
6
k−1 · C2

7k
3 U

5
6
k−1 � C2

14k
3 U

5
3
k−1. (69)

Using (43), (59), (42) and (45), we have

‖P2,k,4‖L1(Qk−1)
� C2

14k
3 U

3
2
k−1, (70)

‖H2,k‖L1(Qk−1)
� C2

23k
3 U

3
2
k−1, (71)∥∥vk · |P2,k,4|

∥∥
L1(Qk−1)

� C2
21k

3 U
5
3
k−1, (72)

‖H3,k‖L1(Qk−1)
� C2

5k
3 U

7
6
k−1, and (73)

‖H4,k‖L1(Qk−1)
� C24kU

7
6
k−1. (74)

Combining (64), (65) and (66) together with (67)–(74), we obtain

(IV) � C2
23k

3 U
7
6
k−1. (75)

Finally we combine (60) and (75) together with (50) and (53) in the previous Lemma 3.4 in order to finish the proof
of Lemma 3.5. �
3.4. Combining the two De Giorgi arguments

First we present the following lemma. Then the proof of Proposition 2.1 will follow. The following lemma says
that certain non-linear estimates give the zero limit if the initial term is sufficiently small. This fact is one of the key
arguments of the De Giorgi method.

Lemma 3.6. Let C > 1 and β > 1. Then there exists a constant C∗
0 such that for every sequence verifying both

0 �W0 < C∗
0 and

0 � Wk � Ck · Wβ

k−1 for any k � 1,

we have limk→∞ Wk = 0.

Proof. It is quite standard, or see Lemma 1 in [42]. �
Finally we are ready to prove Proposition 2.1.

Proof of Proposition 2.1. Suppose that u is a solution of (Problem II-r) for some 0 � r < ∞ verifying

‖u‖
L∞(−2,0;L2(B( 5

4 )))
+ ‖P‖L1(−2,0;L1(B(1))) + ‖∇u‖

L2(−2,0;L2(B( 5
4 )))

� δ and∥∥M(|∇u|)∥∥
L2(−4,0;L2(B(2)))

� δ

where δ will be chosen within the proof.
From Lemmas 3.4 and 3.5, by assuming δ � min(δ1, δ2), we have

Uk �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(C̄1)
kU

7
6
k−1, for any k � 1 if r � s1,

1
r3 · (C̄1)

kU
7
6
k−1, for any k � 1 if 0 < r < s1,

(C̄ )kU
7
6 , for k = 1,2, . . . , k if 0 � r < s .

(76)
2 k−1 r 1



K. Choi, A.F. Vasseur / Ann. I. H. Poincaré – AN 31 (2014) 899–945 923
Note that kr = ∞ if r = 0. Thus we can combine the case r = 0 with the case r � s1 into one estimate:

Uk � (C̄3)
kU

7
6
k−1 for any k � 1 if either r � s1 or r = 0,

where we define C̄3 = max(C̄1, C̄2).
We consider now the case 0 < r < s1. Recall that sk = D ·2−3k where D = ((

√
2−1)2

√
2) > 1 and skr+1 < r � skr

for any r ∈ (0, s1). It gives us r � D · 2−3(kr+1). Thus if k � kr and if 0 < r < s1, then the second line in (76) becomes

Uk �
1

r3
· (C̄1)

kU
7
6
k−1 �

29(kr+1)

D3
· (C̄1)

kU
7
6
k−1

� 29(k+1) · (C̄1)
kU

7
6
k−1 �

(
218 · C̄1

)k
U

7
6
k−1. (77)

So we have for any r ∈ (0, s1),

Uk �

⎧⎨
⎩ (218 · C̄1)

kU
7
6
k−1, for any k � kr ,

(C̄2)
kU

7
6
k−1, for k = 1,2, . . . , kr .

Define C̄ = max(218 · C̄1, C̄2, C̄3) = max(218 · C̄1, C̄2). Then we can combine all three cases r = 0, 0 < r < s1, and
s1 � r < ∞ into one uniform estimate:

Uk � (C̄)kU
7
6
k−1 for any k � 1 and for any 0 � r < ∞.

Finally, by using the recursive Lemma 3.6, we obtain C∗
0 such that Uk → 0 as k → 0 whenever U0 < C∗

0 . This

condition U0 < C∗
0 is achievable once we assume δ so small that δ �

√
C∗

0
2 because

U0 �
(‖u‖

L∞(−2,0;L2(B( 5
4 )))

+ ‖P‖L1(−2,0;L1(B(1))) + ‖∇u‖
L2(−2,0;L2(B( 5

4 )))

)2
.

Thus we fix δ = min(

√
C∗

0
2 , δ1, δ2) which does not depend on any r ∈ [0,∞). Observe that for any k � 1,

sup
− 3

2�t�0

∫
B( 1

2 )

(∣∣u(t, x)
∣∣− 1

)2
+ dx � Uk

from Ek � 1 and (− 3
2 ,0) × B( 1

2 ) ⊂ Qk . Due to the fact Uk → 0, the conclusion of Proposition 2.1 follows. �
4. Proof of the second local study Proposition 2.2

First we present technical lemmas, whose proofs will be given in Appendix A. In Section 4.2, it will be explained
how to apply the previous local study Proposition 2.1 in order to get an L∞-bound of the velocity u. Then, Sections 4.3
and 4.4 will give us L∞-bounds for classical derivatives ∇du and for fractional derivatives (−�)α/2∇du, respectively.

4.1. Some lemmas

The following lemma present estimates about higher derivatives of pressure which we can find a similar lemma
in [41]. However they are different in the sense that here we require (n−1)st order norm of v1 to control nth derivatives
of pressure (see (78)) while, in [41], nth order is required. This fact follows the divergence structure and it will be
useful for the bootstrap argument in Section 4.3 for large r (we will see (84)). In the following lemmas, (v2 ⊗ v1)

represents the matrix whose (i, j) component is the product of j -th component v2,j of v2 and i-th one v1,i of v1 and
(div(v2 ⊗ v1))i =∑j ∂j (v2,j v1,i ).

Lemma 4.1. Suppose that we have v1, v2 ∈ (C∞(B(1)))3 with divv1 = divv2 = 0 and P ∈ C∞(B(1)) which satisfy

−�P = div div(v2 ⊗ v1)
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on B(1) ⊂ R3. Then, for any n� 2, 0 < b < a < 1 and 1 < p < ∞, we have the two following estimates:∥∥∇nP
∥∥

Lp(B(b))
� C(a,b,n,p)

(‖v2‖Wn−1,p2 (B(a)) · ‖v1‖Wn−1,p1 (B(a)) + ‖P‖L1(B(a))

)
(78)

where 1
p

= 1
p1

+ 1
p2

, and∥∥∇nP
∥∥

L∞(B(b))
� C(a,b,n)

(‖v2‖Wn,∞(B(a)) · ‖v1‖Wn,∞(B(a)) + ‖P‖L1(B(a))

)
. (79)

Note that such constants are independent of any v1, v2 and P . Also, ∞ is allowed for p1 and p2, e.g. if p1 = ∞, then
p2 = p.

Proof. See Appendix A. �
The following is a local result by using a parabolic regularization. It will be used in Section 4.3 to prove (82)

and (84).

Lemma 4.2. Suppose that we have smooth solution (v1, v2,P ) on Q(1) = (−1,0) × B(1) of

∂t (v1) + div(v2 ⊗ v1) + ∇P − �v1 = 0,

div(v1) = 0 and div(v2) = 0.

Then, for any n� 1, 0 < b < a < 1, 1 < p1 < ∞ and 1 < p2 < ∞, we have∥∥∇nv1
∥∥

Lp1 (−(b)2,0;Lp2 (B(b)))
� C(a,b,n,p1,p2)

(‖v2 ⊗ v1‖Lp1 (−a2,0;Wn−1,p2 (B(a)))

+ ‖v1‖Lp1 (−a2,0;Wn−1,p2 (B(a))) + ‖P‖L1(−a2,0;L1(B(a)))

)
. (80)

Note that such constants are independent of any v1, v2 and P .

Proof of Lemma 4.2 is omitted because it is based on the standard parabolic regularization result (e.g. Solon-
nikov [38]) and precise argument is essentially contained in [41] except that here we consider

(v1)t + div(v2 ⊗ v1) + ∇P − �v1 = 0

while [41] covered

(u)t + div(u ⊗ u) + ∇P − �u = 0.

The following lemma will be used in Section 4.3, especially when we prove (84) for large r .

Lemma 4.3. Suppose that we have smooth solution (v1, v2,P ) on Q(1) = (−1,0) × B(1) of

∂t (v1) + (v2 · ∇)(v1) + ∇P − �v1 = 0,

div(v1) = 0 and div(v2) = 0.

Then, for any n� 0 and 0 < b < a < 1, we have∥∥∇nv1
∥∥

L∞(−(b)2,0;L1(B(b)))
� C(a,b,n)

[(‖v2‖L2(−a2,0;Wn,∞(B(a))) + 1
) · ‖v1‖L2(−a2,0;Wn,1(B(a)))

+ ∥∥∇n+1P
∥∥

L1(−a2,0;L1(B(a)))

]
and, for any p � 1,

∥∥∇nv1
∥∥p+ 1

2

L∞(−(b)2,0;Lp+ 1
2 (B(b)))

� C(a,b,n,p)

[(‖v2‖L2(−a2,0;Wn,∞(B(a))) + 1
) · ‖v1‖L2(−(a)2,0;Wn,2p(B(a)))

+ ∥∥∇n+1P
∥∥

L1(−(a)2,0;L2p(B(a)))

] · ‖v1‖p− 1
2

L∞(−(a)2,0;Wn,p(B(a)))
.

Note that such constants are independent of any v1, v2 and P .
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Proof. See Appendix A. �
The following non-local Sobolev-type lemma will be useful when we handle fractional derivatives by Maximal

functions. We will see in Section 4.4 that the power (1 + 3
p
) of M on the right-hand side of the following estimate is

important to obtain the estimate (90).

Lemma 4.4. Let M0 > 0 and 1 � p < ∞. Then there exist C = C(M0,p) with the following property:
For any M � M0 and for any f ∈ C1(R3) such that

∫
R3 φ(x)f (x) dx = 0, we have

‖f ‖Lp(B(M)) � CM
1+ 3

p · (∥∥M(|∇f |p)∥∥1/p

L1(B(1))
+ ‖∇f ‖L1(B(2))

)
.

Proof. See Appendix A. �
With the above lemmas, we are ready to prove Proposition 2.2.

Proof of Proposition 2.2. We divide this proof into three stages.
Stage 1 in Section 4.2: First, we will obtain an L∞

t L2
x -local bound for u by using the mean zero property of u

and w. Then, an L∞-local bound of u follows thanks to the first local study Proposition 2.1.
Stage 2 in Section 4.3: We will get an L∞-local bound for ∇du for d � 1 by using an induction argument with a

bootstrapping. This is not obvious especially when r is large because w depends on a non-local part of u while our
knowledge about the L∞-bound of u from the stage 1 is only local.

Stage 3 in Section 4.4: We will achieve an L∞-local bound for (−�)α/2∇du for d � 1 with 0 < α < 2 from the
integral representation of the fractional Laplacian. The non-locality of this fractional operator will lead us to adopting
more complicated conditions (see (23)).

4.2. Stage 1: to obtain L∞-local bound for u

First we suppose that u satisfies all conditions of Proposition 2.2 without (23) (the condition (23) will be assumed
only at the stage 3). Our goal is to find a sufficiently small η̄ > 0, which should be independent of r ∈ [0,∞).

Assume η̄ � 1 and define r̄0 = 1
4 for this subsection. From (21), we get

‖u‖L2(−4,0;L6(B(2))) � C‖∇u‖L2(−4,0;L2(B(2))) � C · η̄.

From Corollary 3.2, if r � r̄0, then

‖w‖L2(−4,0;L∞(B(2))) � C · η̄.

On the other hand, if 0 � r < r̄0, then∥∥w′∥∥
L2(−4,0;L6(B( 7

4 )))
� C‖u‖L2(−4,0;L6(B(2))) � Cη̄

because φr is supported in B(r) ⊂ B(r̄), and w = u ∗ φr (see (8)). For w′′,∥∥w′′∥∥
L2(−4,0;L∞(B(2)))

�
∥∥∥∥u ∗ φr

∥∥
L1(B(1))

∥∥
L2((−4,0))

�
∥∥‖u‖L1(B(2))

∥∥
L2((−4,0))

� C‖u‖L2(−4,0;L6(B(2))) � Cη̄.

Thus ‖w‖L2(−4,0;L6(B( 7
4 ))) � Cη̄ if r < r̄0 from w = w′ + w′′.

In sum, for any 0 � r < ∞,

‖w‖L2(−4,0;L6(B( 7
4 ))) � Cη̄. (81)

Since Eq. (18) depends only on ∇P , without loss of generality, we may assume
∫
R3 φ(x)P (t, x) = 0 for t ∈

(−4,0). Then with the mean zero property (21) of u, we have∥∥∥∥
∫
R3

φ(x)∇P(·, x) dx

∥∥∥∥
L1(−4,0)

� Cη̄
1
2

after integrating in x.
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From Sobolev’s inequality, we have

‖∇P‖
L1(−4,0;L 3

2 (B( 7
4 )))

� Cη̄
1
2 and

‖P‖L1(−4,0;L3(B( 7
4 ))) � Cη̄

1
2 .

Then we follow step 1 and step 2 of the proof of Proposition 10 in [41], we can obtain

‖u‖
L∞(−3,0;L 3

2 (B( 6
4 )))

� Cη̄
1
3

and then

‖u‖
L∞(−2,0;L2(B( 5

4 )))
� Cη̄

1
4

for 0 � r < ∞. Details are omitted.
Finally, by taking 0 < η̄ < 1 such that Cη̄

1
4 � δ̄, we have all assumptions of Proposition 2.1. As a result, we have

|u(t, x)| � 1 on [− 3
2 ,0] × B( 1

2 ).

4.3. Stage 2: to obtain L∞ local bound for ∇du

In this subsection, we cover only classical derivatives, i.e. the case α = 0. For any integer d � 1, our goal is to find

Cd,0 such that |((−�)
0
2 ∇d)u(t, x)| = |∇du(t, x)| � Cd,0 on (−( 1

3 )2,0) × (B( 1
3 )).

We define strictly decreasing sequences of balls and parabolic cylinders from (−( 1
2 )2,0) × B( 1

2 ) to (−( 1
3 )2,0) ×

(B( 1
3 )) by

B̄n = B

(
1

3
+ 1

6
· 2−n

)
= B(ln),

Q̄n =
(

−
(

1

3
+ 1

6
· 2−n

)2

,0

)
× B̄n = (−(ln)

2,0
)× B̄n

where ln = 1
3 + 1

6 · 2−n. These notations will be used only in this subsection.
First, in order to cover the small r case, we claim the following:
There exist two positive sequences {r̄n}∞n=0 and {Cn,small}∞n=0 such that for any integer n� 0 and for any r ∈ [0, r̄n),∥∥∇nu

∥∥
L∞(Q̄11n)

� Cn,small. (82)

Indeed, from the previous Section 4.2 (the stage 1), the estimate (82) holds for n = 0 by taking r̄0 = 1 and
C0,small = 1. We define r̄n = distance between B11n and (B11n−1)

C for n � 1. Then {r̄n}∞n=0 is decreasing to zero
as n goes to ∞. Moreover, we can control w by u as long as 0 � r < r̄n: for any n� 1,

‖w‖Lp1 (−(lm)2,0;Lp2 (B̄m)) �
(‖u‖Lp1 (−(lm−1)

2,0;Lp2 (B̄m−1))
+ C

)
and∥∥∇kw

∥∥
Lp1 (−(lm)2,0;Lp2 (B̄m))

�
∥∥∇ku

∥∥
Lp1 (−(lm−1)

2,0;Lp2 (B̄m−1))
(83)

for any integer m such that m � 11 · n, for any k � 1 and for any p1 ∈ [1,∞] and p2 ∈ [1,∞] (see (8)).
We will use an induction with a bootstrapping. First we fix d � 1 and suppose that (82) is true up to n = (d − 1).

It implies for any r ∈ [0, r̄d−1)

‖u‖L∞(−l2s ,0;Wd−1,∞(B̄s ))
� C

where s = 11(d − 1). We want to show that (82) is also true for the case n = d .
From (83), ‖w‖L∞(−l2s+1,0;Wd−1,∞(B̄s+1))

� C and, from Lemma 4.2 with v2 = w and v1 = u,

‖u‖L16(−l2s+2,0;Wd,32(B̄s+2))
� C. Then, we use (83) and Lemma 4.2 in turn:

→ w ∈ L16(−l2
s+3,0;Wd,32(B̄s+3)

)→ u ∈ L8(−l2
s+4,0;Wd+1,16(B̄s+4)

)
→ w ∈ L8Wd+1,16 → ·· · → u ∈ L2Wd+3,4.
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Then, from Sobolev’s inequality,

→ u ∈ L2Wd+2,∞ → w ∈ L2(−l2
s+9,0;Wd+2,∞(B̄s+9)

)
.

This estimate gives us

�
(∇du

)
, div

(∇d(w ⊗ u)
)

and ∇(∇dP
) ∈ L1(−l2

s+10,0;L∞(B̄s+10)
)

where we used (79) for the pressure term. Thus

∂t

(∇du
) ∈ L1(−l2

s+10,0;L∞(B̄s+10)
)
.

Finally, we obtain that, for any r ∈ [0, r̄d )∥∥∇du
∥∥

L∞(−l2s+11,0;L∞(B̄s+11))
� C

where C depends only on d . By this induction argument, we showed the above claim (82).
Now we introduce the second claim:
There exists a sequence {Cn,large}∞n=0 such that for any integer n� 0 and for any r � r̄n,∥∥∇nu

∥∥
L∞(Q̄21·n)

� Cn,large (84)

where r̄n comes from the previous claim (82).
Before proving the above second claim (84), we need the following two observations (I), (II) from Lemmas 4.2

and 4.1:
(I). From Corollary 3.2 for any n� 0, if r � r̄n, then

‖w‖L2(−4,0;Wn,∞(B(2))) � Cn.

We use (80) in Lemma 4.2 with v1 = u and v2 = w. Then it becomes∥∥∇nu
∥∥

Lp1 (−(lm)2,0;Lp2 (B̄m))
� C(m,n,p2)

(‖u‖
L

2p1
2−p1 (−(lm−1)

2,0;Wn−1,p2 (B̄m−1))

+ 1
)

(85)

for n� 1, m � 1, 1 < p1 � 2 and 1 < p2 < ∞ (for the case p1 = 2, we may interpret 2p1
2−p1

= ∞).
(II). Moreover, (78) in Lemma 4.1 becomes∥∥∇nP

∥∥
L1(−(lm)2,0;Lp(B̄m))

� C(m,n,p)

(‖u‖L2(−(lm−1)
2,0;Wn−1,p(B̄m−1))

+ 1
)

(86)

for n� 2 and 1 < p < ∞.
Now we are ready to prove the second claim (84) by an induction with a bootstrapping. From the previous Sec-

tion 4.2 (the stage 1), (84) holds for n = 0 with C0,large = 1. Fix d � 1 and suppose that we have (84) up to n = (d −1).
It implies for any r � r̄d−1

‖u‖L∞(−l2s ,0;Wd−1,∞(B̄s ))
� Cd−1,large

where s = 21(d − 1). We want to show (84) for n = d .
By using (85) with n = d,p1 = 2 and p2 = 11, we have

‖u‖L2(−l2s+1,0;Wd,11(B̄s+1))
� C

and, from (86) with n = d + 1,m = 0 and p = 11, we get∥∥∇d+1P
∥∥

L1(−l2s+2,0;L11(B̄s+2))
� C.

Combining the above two results with Lemma 4.3 for v1 = u and v2 = w, we can increase the integrability in space
of u by 0.5 up to 6:

‖u‖L∞(−l2s+3,0;Wd,1(B̄s+3))
� C,

‖u‖L∞(−l2s+4,0;Wd,1.5(B̄s+4))
� C,

...

‖u‖L∞(−l2 ,0;Wd,6(B̄ )) � C.

s+13 s+13
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By using (85) and (86) again, we have

‖u‖L2(−l2s+14,0;Wd+1,6(B̄s+14))
� C and∥∥∇d+2P

∥∥
L1(−l2s+15,0;L6(B̄s+15))

� C.

Combining the above two results with Lemma 4.3 again, we have

‖u‖L∞(−l2s+16,0;Wd+1,1(B̄s+16))
� C,

...

‖u‖L∞(−l2s+21,0;Wd+1,3.5(B̄s+21))
� C.

Finally, from Sobolev’s inequality,∥∥∇du
∥∥

L∞(−l2s+21,0;L∞(B̄s+21))
� C

where C depends only on d as long as r � r̄d . From this induction, we proved the second claim (84).
Define for any n � 0, Cn,0 = max(Cn,small,Cn,large) where Cn,small and Cn,large come from (82) and (84) respec-

tively. Then we have:∥∥∇nu
∥∥

L∞(Q( 1
3 ))

� Cn,0 (87)

for any n� 0 and for any 0 � r < ∞ due to Q( 1
3 ) ⊂ Q̄n. It ends this stage 2.

4.4. Stage 3: to obtain L∞ local bound for (−�)α/2∇du

From now on, we assume further that (u,P ) satisfies (23) as well as all the other conditions of Proposition 2.2. In
the following proof, we will not divide the proof into a small r part and a large r part.

Fix an integer d � 1 and a real α with 0 < α < 2. i.e. any constant which will appear may depend on d and α.
However, it will be clear that all constants are independent of any r ∈ [0,∞) and of any solution (u,P ).

First, we claim:
There exists a constant C = C(d,α) such that

∣∣(−�)
α
2 ∇du(t, x)

∣∣� C(d,α) +
∣∣∣∣
∫

|y|�(1/6)

∇du(t, x − y)

|y|3+α
dy

∣∣∣∣ (88)

for |x| � (1/6) and for −(1/3)2 � t � 0.
To prove (88), we first recall the Taylor expansion of any C2 function f at x: f (y) − f (x) = (∇f )(x) · (y − x) +

R(x, y), and we have an error estimate |R| � C|x − y|2 · ‖∇2f ‖L∞(B(x;|x−y|)). Note that if we integrate the first order
term (∇f )(x) · (y − x) in y on any sphere with the center x, the integral vanishes thanks to the symmetry. As a result,
if we take (t, x) such that |x| � (1/6) and −(1/3)2 � t � 0, then we have

∣∣(−�)
α
2 ∇du(t, x)

∣∣= ∣∣∣∣P.V.

∫
R3

∇du(t, x) − ∇du(t, y)

|x − y|3+α
dy

∣∣∣∣
� sup

z∈B((1/3))

(∣∣∇d+2u(t, z)
∣∣) · ∫

|x−y|<(1/6)

1

|x − y|3+α−2
dy

+ sup
z∈B((1/3))

(∣∣∇du(t, z)
∣∣) · ∫

|x−y|�(1/6)

1

|x − y|3+α
dy +

∣∣∣∣
∫

|x−y|�(1/6)

∇du(t, y)

|x − y|3+α
dy

∣∣∣∣
� C(d,α) +

∣∣∣∣
∫ ∇du(t, x − y)

|y|3+α
dy

∣∣∣∣

|y|�(1/6)
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where we used the result (87) of the previous Section 4.3 (the stage 2) together with the Taylor expansion of ∇du(t, ·)
at x in order to reduce certain amount of singularity at the origin x = y. We proved the first claim (88).

Second, we claim:
There exists C = C(d,α) such that∣∣∣∣

∫
|y|�(1/6)

∇du(t, x − y)

|y|3+α
dy

∣∣∣∣� C(d,α) +
∞∑

j=k

(
1

2α

)j

· ∣∣((hα
)

2j ∗ ∇du
)
(t, x)

∣∣ (89)

for |x| � (1/6) and for −(1/3)2 � t � 0 where k is the integer such that 2k � (1/6) < 2k+1 (i.e. from now on, we fix
k = −3). Recall that hα is defined in (12).

To prove the above second claim (89): (recall (11) and (12))∣∣∣∣
∫

|y|�(1/6)

∇du(t, x − y)

|y|3+α
dy

∣∣∣∣=
∣∣∣∣
∫

|y|�(1/6)

∞∑
j=k

ζ

(
y

2j

)∇du(t, x − y)

|y|3+α
dy

∣∣∣∣
=
∣∣∣∣
∫

|y|�(1/6)

∞∑
j=k

1

(2j )α
· (hα

)
2j (y)∇du(t, x − y)dy

∣∣∣∣

�
k+1∑
j=k

1

(2j )α
·
∣∣∣∣
∫

|y|�(1/6)

(
hα
)

2j (y)∇du(t, x − y)dy

∣∣∣∣
+

∞∑
j=k+2

1

(2j )α
·
∣∣∣∣
∫

|y|�(1/6)

(
hα
)

2j (y)∇du(t, x − y)dy

∣∣∣∣
= (I ) + (II).

For (I ), we have

(I ) �
k+1∑
j=k

1

(2j )α
·
(∣∣∣∣
∫
R3

(
hα
)

2j (y)∇du(t, x − y)dy

∣∣∣∣+
∫

|y|�(1/6)

∣∣(hα
)

2j (y)
∣∣ · ∣∣∇du(t, x − y)

∣∣dy

)

�
k+1∑
j=k

1

(2j )α

(∣∣((hα
)

2j ∗ ∇du
)
(t, x)

∣∣+ C · sup
z∈B(1/3)

∣∣∇du(t, z)
∣∣)

=
k+1∑
j=k

(
1

2α

)j

· ∣∣((hα
)

2j ∗ ∇du
)
(t, x)

∣∣+ C(d,α).

For (II), by using supp(hα
2j ) ⊂ (B(2j−1))C ⊂ (B(1/6))C for any j � k + 2,

(II) =
∞∑

j=k+2

1

(2j )α
·
∣∣∣∣
∫
R3

(
hα
)

2j (y)∇du(t, x − y)dy

∣∣∣∣
=

∞∑
j=k+2

(
1

2α

)j

· ∣∣((hα
)

2j ∗ ∇du
)
(t, x)

∣∣.
We showed the second claim (89).

Third, we claim:
There exists C = C(d,α) such that∥∥(hα

)
M

∗ ∇du
∥∥

L∞(−(1/6)2,0;L1(B(1/6)))
� C(d,α) · M1−d (90)

for any M � 2k (recall k = −3).
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To prove the above third claim (90), we take the convolution with ∇d [(hα)M ] to Eq. (18). Then we have(∇d
[(

hα
)
M

] ∗ u
)
t
+ (∇d

[(
hα
)
M

] ∗ ((w · ∇)u
))+ (∇d

[(
hα
)
M

] ∗ ∇P
)− (∇d

[(
hα
)
M

] ∗ �u
)= 0

so that we get(∇d−1[(hα
)
M

] ∗ ∇u
)
t
+ (∇d

[(
hα
)
M

] ∗ ((w · ∇)u
))+ (∇d−1[(hα

)
M

] ∗ ∇2P
)− �

(∇d−1[(hα
)
M

] ∗ ∇u
)= 0.

Define a cut-off Φ(t, x) by

0 � Φ(x)� 1, supp(Φ) ⊂ (−4,0) × B(2),

Φ(t, x) = 1 for (t, x) ∈ (−(1/6)2,0
)× B

(
(1/6)

)
.

We multiply Φ(t, x)
(∇d−1[(hα)M ]∗∇u)(t,x)

|(∇d−1[(hα)M ]∗∇u)(t,x)| , then integrate in x:

d

dt

∫
R3

Φ(t, x)
∣∣(∇d−1[(hα

)
M

] ∗ ∇u
)
(t, x)

∣∣dx

�
∫
R3

(∣∣∂tΦ(t, x)
∣∣+ ∣∣�Φ(t, x)

∣∣)∣∣(∇d−1[(hα
)
M

] ∗ ∇u
)
(t, x)

∣∣dx

+
∫
R3

∣∣Φ(t, x)
∣∣∣∣(∇d−1[(hα

)
M

] ∗ ∇2P
)∣∣dx +

∫
R3

∣∣Φ(t, x)
∣∣∣∣∇d

[(
hα
)
M

] ∗ ((w · ∇)u
)∣∣dx.

Then the integration on [−4, t] for any t ∈ [−(1/6),0] gives us∥∥(hα
)
M

∗ ∇du
∥∥

L∞(−(1/6)2,0;L1(B(1/6)))
= ∥∥∇d−1[(hα

)
M

] ∗ ∇u
∥∥

L∞(−(1/6)2,0;L1(B(1/6)))

� C
(∥∥∇d−1[(hα

)
M

] ∗ ∇u
∥∥

L1(−4,0;L1(B(2)))

+ ∥∥∇d−1[(hα
)
M

] ∗ ∇2P
∥∥

L1(−4,0;L1(B(2)))

+ ∥∥∇d
[(

hα
)
M

] ∗ ((w · ∇)u
)∥∥

L1(−4,0;L1(B(2)))

)
= (I ) + (II) + (III).

For (I ), we use simple observations ∇m[(f )δ] = δ−m · (∇mf )δ and |(f )δ ∗ ∇u|(x) � Cf · M(|∇u|)(x) for any
f ∈ C∞

0 (R3). Thus we get∣∣(∇d−1[(hα
)
M

] ∗ ∇u
)
(t, x)

∣∣= M−(d−1) · ∣∣((∇d−1hα
)
M

∗ ∇u
)
(t, x)

∣∣
� C · M−(d−1) ·M(|∇u|)(t, x)

for any 0 < M < ∞. It implies, for any 0 < M < ∞,

(I ) = ∥∥(∇d−1[(hα
)
M

] ∗ ∇u
)∥∥

L1(−4,0;L1(B(2)))

� C · M−(d−1) · ∥∥M(|∇u|)∥∥
L1(−4,0;L1(B(2)))

� C · M−(d−1) · ∥∥M(|∇u|)∥∥
L2(−4,0;L2(B(2)))

� C · M1−d .

For (II), we use our global information about the pressure in (23) thanks to the property of the Hardy space (10):

(II) = ∥∥∇d−1[(hα
)
M

] ∗ ∇2P
∥∥

L1(−4,0;L1(B(2)))

= M−(d−1) · ∥∥(∇d−1hα
)
M

∗ ∇2P
∥∥

L1(−4,0;L1(B(2)))

� M−(d−1) ·
∥∥∥ sup

δ>0

(∣∣(∇d−1hα
)
δ
∗ ∇2P

∣∣)∥∥∥
L1(−4,0;L1(B(2)))

� C · M1−d (91)

for any 0 < M < ∞.
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For (III), we use the following useful facts (1–5):
1. From supp((hα)M) ⊂ B(2M), we compute∥∥∇d

[(
hα
)
M

] ∗ ((w · ∇)u
)
(t, ·)∥∥

L1(B(2))

�
∫

B(2)

∫
R3

∣∣((w · ∇)u
)
(t, y) · (∇d

[(
hα
)
M

])
(x − y)

∣∣dy dx

�
∫

B(2M+2)

∣∣((w · ∇)u
)
(t, y)

∣∣ · [ ∫
B(2)

∣∣(∇d
[(

hα
)
M

])
(x − y)

∣∣dx

]
dy

� C
∥∥∇d

[(
hα
)
M

]∥∥
L∞(R3)

· ∥∥((w · ∇)u
)
(t, ·)∥∥

L1(B(2M+2))

� C · 1

M3+d
· ∥∥((w · ∇)u

)
(t, ·)∥∥

L1(B(2M+2))

� C · 1

M3+d
· ∥∥w(t, ·)∥∥

Lq′
(B(2M+2))

· ∥∥∇u(t, ·)∥∥
Lq(B(2M+2))

where q = 12/(α + 6) and 1/q + 1/q ′ = 1. Note that 12/8 < q < 2 due to 0 < α < 2.
2. For any M � 2k , we have∥∥w(t, ·)∥∥

Lq(B(2M+2))
� CM

1+ 3
q · (∥∥M(|∇w|q)(t, ·)∥∥1/q

L1(B(1))
+ ∥∥∇w(t, ·)∥∥

L1(B(2))

)
� CM

1+ 3
q · (∥∥M(∣∣M(|∇u|)∣∣q)(t, ·)∥∥1/q

L1(B(1))
+ ∥∥M(|∇u|)(t, ·)∥∥

L1(B(2))

)
,

where, for the first inequality, we used Lemma 4.4 and, for the second one, we used the fact |∇w(t, x)| = |(∇u ∗
φr)(t, x)| � C ·M(|∇u|)(t, x). Note that C is independent of r ∈ [0,∞) thanks to the definitions of the convolution
and the Maximal function. So, for any M � 2k , from (23), we get

‖w‖L2(−4,0;Lq(B(2M+2))) � CM
1+ 3

q
(∥∥∥∥M(∣∣M(|∇u|)∣∣q)∥∥1/q

L1
x(B(1))

∥∥
L2

t (−4,0)
+ ∥∥∥∥M(|∇u|)∥∥

L1
x(B(2))

∥∥
L2

t (−4,0)

)
� CM

1+ 3
q
(∥∥M(∣∣M(|∇u|)∣∣q)∥∥1/q

L2/q (−4,0;L1(B(2)))
+ ∥∥M(|∇u|)∥∥

L2(−4,0;L1(B(2)))

)
� CM

1+ 3
q .

Before stating the third fact, we need the following two observations:
From the standard Sobolev–Poincaré inequality on balls (e.g. see Saloff-Coste [32]), we have, for any 0 < M < ∞

and for any f whose derivatives are in L
q

loc(R
3),

‖f − f̄ ‖L3q/(3−q)(B(M)) � C · ‖∇f ‖Lq(B(M)) (92)

where f̄ = ∫
B

f dx/|B| is the mean value on B . Note that C is independent of M .
On the other hand, once we fix M0 > 0, then there exists C = C(M0) with the following property:
For any p with 1 � p < ∞, for any M � M0 and for any f ∈ L

p

loc(R
3), we have

‖f ‖Lp(B(M)) � CM
3
p · ∥∥M(|f |p)∥∥1/p

L1(B(2))
. (93)

Indeed, to prove (93), it is enough to show that

‖g‖L1(B(M)) � CM3 · ∥∥M(g)
∥∥

L1(B(2))
.

For any z ∈ B(2), we get∫
B(M)

∣∣g(x)
∣∣dx = (M + 2)3

(M + 2)3
·
∫

B(M+2)

∣∣g(z + x)
∣∣dx

� (M + 2)3M(g)(z) � CM0M
3M(g)(z).

Then we take integral on z ∈ B(2).
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Now we state the third fact.

3.
∥∥w(t, ·)∥∥

L3q/(3−q)(B(2M+2))

� C · ∥∥∇w(t, ·)∥∥
Lq(B(2M+2))

+ ∥∥w̄(t, ·)∥∥
L3q/(3−q)(B(2M+2))

� C · M3/q · ∥∥M(|∇w|q)(t, ·)∥∥1/q

L1(B(2))
+ CM−3

∥∥w(t, ·)∥∥
L1(B(2M+2))

· CM
3· 3−q

3q

� C · M3/q · ∥∥M(∣∣M(|∇u|)∣∣q)(t, ·)∥∥1/q

L1(B(2))
+ CM

3
q
−4∥∥w(t, ·)∥∥

L1(B(2M+2))

� C · M3/q · ∥∥M(∣∣M(|∇u|)∣∣q)(t, ·)∥∥1/q

L1(B(2))

+ CM
3
q
−4

CM1+ 3
1 · (∥∥M(|∇w|1)(t, ·)∥∥1/1

L1(B(1))
+ ∥∥∇w(t, ·)∥∥

L1(B(2))

)
� C · M3/q · ∥∥M(∣∣M(|∇u|)∣∣q)(t, ·)∥∥1/q

L1(B(2))

+ CM
3
q
(∥∥M(∣∣M(|∇u|)∣∣)(t, ·)∥∥

L1(B(1))
+ ∥∥M(|∇u|)(t, ·)∥∥

L1(B(2))

)
where we used (92) for the first inequality while we used (93) and definition of mean value for the second one. For
fourth and fifth ones, |∇w(t, x)| � C|M(|∇u|)(t, x)| and Lemma 4.4 were used. So, by taking L2-norm on time
[−4,0] with (23), we get

‖w‖
L2(−4,0;L

3q
3−q (B(2M+2)))

� CM
3
q

for any M � 2k .

4.
∥∥w(t, ·)∥∥

Lq′(B(2M+2))
�
∥∥w(t, ·)∥∥θ

Lq(B(2M+2))
· ∥∥w(t, ·)∥∥1−θ

L3q/(3−q)(B(2M+2))

where q ′ = q/(q − 1) and θ = (4q − 6)/q .
Note that due to 12/8 < q < 2, we have 0 < θ < 1. So, for any M � 2k , we get

‖w‖L2(−4,0;Lq′(B(2M+2))) � ‖w‖θ
L2(−4,0;Lq(B(2M+2)))

· ‖w‖1−θ

L2(−4,0;L3q/(3−q)(B(2M+2)))

� C · (M1+(3/q)
)θ (

M3/q
)1−θ = C · M4− 3

q .

5. From (93), for any M � 2k , we get

∥∥∇u(t, ·)∥∥
Lq(B(2M+2))

� C · M3/q · ∥∥M(|∇u|q)(t, ·)∥∥1/q

L1(B(2))
.

So, for any M � 2k , from (23), we obtain

‖∇u‖L2(−4,0;Lq(B(2M+2))) � C · M3/q · ∥∥∥∥M(|∇u|q)∥∥1/q

L1
x(B(2))

∥∥
L2

t (−4,0)

� C · M3/q · ∥∥M(|∇u|q)∥∥1/q

L2/q (−4,0;L1(B(2)))
� C · M3/q .

Using the above results (1–5) all together, we have, for any M � 2k ,

(III) � C · 1

M3+d
· ‖w‖

L2(−4,0;Lq′
(B(2M+2)))

‖∇u‖L2(−4,0;Lq(B(2M+2)))

� C · 1

M3+d
· M4−(3/q) · M3/q = C · M1−d .

It proves the above third claim (90).
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Finally we combine three claims (88), (89) and (90):∥∥(−�)
α
2 ∇du

∥∥
L∞(−(1/6)2,0;L1(B((1/6))))

�
∥∥∥∥C
(

1 +
∣∣∣∣
∫

|y|�(1/6)

∇du(·t , ·x − y)

|y|3+α
dy

∣∣∣∣
)∥∥∥∥

L∞(−(1/6)2,0;L1(B((1/6))))

� C + C

∞∑
j=k

(
1

2α

)j

· ∥∥∣∣((hα
)

2j ∗ ∇du
)
(·t , ·x)

∣∣∥∥
L∞(−(1/6)2,0;L1(B((1/6))))

� C + C

∞∑
j=k

(
1

2α

)j

· (2j
)1−d � C + C

∞∑
j=k

(
1

2d+α−1

)j

� C

thanks to d + α − 1 > 0 from d � 1 and α > 0.
By the exact same way, we can also prove that∥∥(−�)

α
2 ∇mu

∥∥
L∞(−(1/6)2,0;L1(B((1/6))))

� C

for m = d + 1, . . . , d + 4. By repeated uses of Sobolev’s inequality, we get∥∥(−�)
α
2 ∇du

∥∥
L∞(−(1/6)2,0;L∞(B((1/6))))

� C(d,α).

It finishes the proof of Proposition 2.2. �
5. Proof of the main Theorem 1.1

We begin this section by presenting one lemma about pivot quantities. After that, Section 5.2 will cover the part (II)
for α = 0 while Section 5.3 does the part (II) for 0 < α < 2. Finally the part (I) for 0 � α < 2 will be proved in
Section 5.4.

5.1. L1 Pivot quantities

The following lemma says that L1 space–time norm of our pivot quantities can be controlled by L2 space norm
of the initial data. These quantities have the best scaling as |∇u|2 and |∇2P | have among all other a priori quantities
from L2 initial data (also see (4)).

Lemma 5.1. There exist constant C > 0 and Cd,α for integer d � 1 and real α ∈ (0,2) with the following property:
If (u,P ) is a solution of (Problem I-n) for some 1 � n� ∞, then we have

∞∫
0

∫
R3

(∣∣∇u(t, x)
∣∣2 + ∣∣∇2P(t, x)

∣∣+ ∣∣M(|∇u|)(t, x)
∣∣2)dx dt � C‖u0‖2

L2(R3)

and
∞∫

0

∫
R3

(∣∣M(
M
(|∇u|))∣∣2 + ∣∣M(|∇u|q)∣∣2/q + ∣∣M(∣∣M(|∇u|)∣∣q)∣∣2/q

+
d+4∑
m=d

sup
δ>0

(∣∣(∇m−1hα
)
δ
∗ ∇2P

∣∣))dx dt � Cd,α‖u0‖2
L2(R3)

for any integer d � 1 and any real α ∈ (0,2) where q = q(α) is defined by 12/(α + 6).

Remark 5.1. The definitions of hα and (∇m−1hα)δ can be found in (12).
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Remark 5.2. In the proof, we will see that every quantity in the left-hand sides of the above two estimates can be
controlled by dissipation of energy ‖∇u‖2

L2((0,∞)×R3)
only. It explains the latter part of Remark 1.2.

Proof of Lemma 5.1. From (17), we have

‖∇u‖2
L2(0,∞;L2(R3))

� ‖u0 ∗ φ 1
n
‖2
L2(R3)

� ‖u0‖2
L2(R3)

.

For the pressure term, we use boundedness of the Riesz transform on Hardy space H and the compensated compact-
ness result in Coifman, Lions, Meyer and Semmes [11]:∥∥∇2P

∥∥
L1(0,∞;L1(R3))

�
∥∥∇2P

∥∥
L1(0,∞;H(R3))

� C‖�P‖L1(0,∞;H(R3))

= ∥∥div div
(
(u ∗ φ1/n) ⊗ u

)∥∥
L1(0,∞;H(R3))

� C · ∥∥∇(u ∗ φ1/n)
∥∥

L2(0,∞;L2(R3))
‖∇u‖L2(0,∞;L2(R3))

� C · ‖∇u‖2
L2(0,∞;L2(R3))

� C‖u0‖2
L2(R3)

. (94)

For Maximal functions, we have∥∥M(
M
(|∇u|))∥∥2

L2(0,∞;L2(R3))
� C · ∥∥M(|∇u|)∥∥2

L2(0,∞;L2(R3))

� C · ‖∇u‖2
L2(0,∞;L2(R3))

� C · ‖u0‖2
L2(R3)

.

Let d � 1 and 0 < α < 2 and take q = 12/(α + 6). Due to 1 < (2/q) < (4/3), we get∥∥M(|∇u|q)∥∥2/q

L2/q (0,∞;L2/q (R3))
� C · ∥∥|∇u|q∥∥2/q

L2/q (0,∞;L2/q (R3))

= C · ‖∇u‖2
L2(0,∞;L2(R3))

� C · ‖u0‖2
L2(R3)

and ∥∥M(∣∣M(|∇u|)∣∣q)∥∥2/q

L2/q (0,∞;L2/q (R3))
� C · ∥∥∣∣M(|∇u|)∣∣q∥∥2/q

L2/q (0,∞;L2/q (R3))

� C · ∥∥M(|∇u|)∥∥2
L2(0,∞;L2(R3))

� C · ‖∇u‖2
L2(0,∞;L2(R3))

� C · ‖u0‖2
L2(R3)

where C depends only on α.
Thanks to the property of Hardy space (10) with (94), we have

d+4∑
m=d

∥∥∥ sup
δ>0

(∣∣(∇m−1hα
)
δ
∗ ∇2P

∣∣)∥∥∥
L1(0,∞;L1(R3))

�
d+4∑
m=d

C
∥∥∇2P

∥∥
L1(0,∞;H(R3))

� C‖u0‖2
L2(R3)

where the above C depends only on d and α. �
We are ready to prove the main Theorem 1.1.

Remark 5.3. In the following Sections 5.2 and 5.3, we consider solutions of (Problem I-n) for positive integers n.
However it will be clear that every computation in these subsections can also be verified for the case n = ∞ once we
assume that the smooth solution u of the Navier–Stokes exists. The n = ∞ case (the original Navier–Stokes) will be
covered in Section 5.4.

We focus on the α = 0 case of the part (II) first.
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5.2. Proof of Theorem 1.1, part (II) for the α = 0 case

Proof of Theorem 1.1, part (II) for the α = 0 case. Let any initial data u0 of (2) be given. From Leray’s construction,
there exists the C∞ solution sequence {un}∞n=1 of (Problem I-n) on (0,∞) with corresponding pressures {Pn}∞n=1.
From now on, our goal is to make an estimate for ∇dun which is uniform in n.

For each n, ε > 0, t > 0 and x ∈ R3, define a new flow Xn,ε(·, t, x) by solving

∂Xn,ε

∂s
(s, t, x) = un ∗ φ 1

n
∗ φε

(
s,Xn,ε(s, t, x)

)
for s ∈ [0, t],

Xn,ε(t, t, x) = x.

For convenience, we define Fn(t, x) and gn(t).

Fn(t, x) = (|∇un|2 + ∣∣∇2Pn

∣∣+ ∣∣M(∇un)
∣∣2)(t, x), gn(t) =

∫
R3

Fn(t, x) dx.

We define, for n, t > 0 and ε such that 0 < 4ε2 � t ,

Ωn,ε,t =
{

x ∈R3
∣∣∣ 1

ε

t∫
t−4ε2

∫
B(2ε)

Fn

(
s,Xn,ε(s, t, x) + y

)
dy ds � η̄

}

where η̄ comes from Proposition 2.2. We estimate the size of (Ωn,ε,t )
C :

∣∣(Ωn,ε,t )
C
∣∣=
∣∣∣∣∣
{

x ∈R3
∣∣∣ 1

ε

t∫
t−4ε2

∫
B(2ε)

Fn

(
s,Xn,ε(s, t, x) + y

)
dy ds > η̄

}∣∣∣∣∣
� 1

η̄

∫
R3

(
1

ε

t∫
t−4ε2

∫
B(2ε)

Fn

(
s,Xn,ε(s, t, x) + y

)
dy ds

)
dx

= 1

η̄ε

( ∫
B(2ε)

0∫
−4ε2

∫
R3

Fn

(
t + s,Xn,ε(t + s, t, x) + y

)
dx ds dy

)

= 1

η̄ε

( ∫
B(2ε)

0∫
−4ε2

∫
R3

Fn(t + s, z + y)dz ds dy

)

� 1

η̄ε

( ∫
B(2ε)

1dy

)( 0∫
−4ε2

∫
R3

Fn(t + s, z̄) dz̄ds

)

� Cε2

η̄

( 0∫
−4ε2

∫
R3

Fn(t + s, z̄) dz̄ ds

)

� C
ε4

η̄

(
1

4ε2

0∫
−4ε2

gn(t + s) ds

)
� ε4M(t)

(
C

η̄
gn · 1(0,∞)

)
(t) = ε4g̃n(t) (95)

where g̃n =M(t)(C
η̄
gn ·1(0,∞)) and M(t) is the Maximal function in R1. For the third inequality, we used the fact that

Xn,ε(·, t, x) is incompressible. From the fact that the Maximal operator is bounded from L1 to L1,∞ together with
Lemma 5.1, we get ‖g̃n(·)‖L1,∞(0,∞) � C ‖gn(·)‖L1(0,∞) � C ‖u0‖2

2 3 .

η̄ η̄ L (R )
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Now we fix n, t, ε and x with n � 1, 0 < t < ∞, 0 < 4ε2 � t and x ∈ Ωn,ε,t . We define v,Q on (−4,∞) ×R3 by
using the Galilean invariance:

v(s, y) = εun

(
t + ε2s,Xn,ε

(
t + ε2s, t, x

)+ εy
)− ε(un ∗ φε)

(
t + ε2s,Xn,ε

(
t + ε2s, t, x

))
,

Q(s, y) = ε2Pn

(
t + ε2s,Xn,ε

(
t + ε2s, t, x

)+ εy
)+ εy∂s

[
(un ∗ φε)

(
t + ε2s,Xn,ε

(
t + ε2s, t, x

))]
. (96)

Remark 5.4. This specially designed ε-scaling will give the mean zero property to both the velocity and the convective
velocity of the resulting equation (97).

Let us denote � and � by � = (t +ε2s,Xn,ε(t +ε2s, t, x)+εy) and � = (t +ε2s,Xn,ε(t +ε2s, t, x)), respectively.
Then the chain rule gives us

∂sv(s, y) = ε3∂t (un)(�) + ε3((un ∗ φ 1
n

∗ φε)(�) · ∇)un(�) − ε∂s

[
(un ∗ φε)(�)

]
,

(v ∗y φ 1
nε

)(s, y) = ε(un ∗ φ 1
n
)(�) − ε(un ∗ φε)(�),∫

R3

(v ∗y φ 1
nε

)(s, z)φ(z) dz = ε(un ∗ φ 1
n

∗ φε)(�) − ε(un ∗ φε)(�),

((
(v ∗y φ 1

nε
)(s, y) −

∫
R3

(v ∗y φ 1
nε

)(s, z)φ(z) dz

)
· ∇
)

v(s, y)

= ε3((un ∗ φ 1
n
)(�) · ∇)un(�) − ε3((un ∗ φ 1

n
∗ φε)(�) · ∇)un(�),

−�yv(s, y) = −ε3�yun(�) and

∇yQ(s, y) = ε3∇Pn(�) + ε∂s

[
(un ∗ φε)(�)

]
.

Thus, for (s, y) ∈ (−4,∞) ×R3, we get[
∂sv +

((
(v ∗ φ 1

nε
) −
∫

(v ∗ φ 1
nε

)φ

)
· ∇
)

v + ∇Q − �v

]
(s, y) = 0. (97)

As a result, (v(·s , ·y),Q(·s , ·y)) is a solution of (Problem II- 1
nε

).
From the definition of the Maximal function, we can verify that |M(∇v)|2 has the right scaling as |∇v|2 has in the

following sense:

M(∇v)(s, y) = sup
M>0

C

M3

∫
B(M)

ε2(∇un)
(
t + ε2s,Xn,ε

(
t + ε2s, t, x

)+ ε(y + z)
)
dz

= sup
εM>0

C

ε3M3

∫
B(εM)

ε2(∇un)
(
t + ε2s,Xn,ε

(
t + ε2s, t, x

)+ εy + z̄
)
dz̄

= ε2M(∇un)(�). (98)

As a result, we have

0∫
−4

∫
B(2)

(∣∣∇v(s, y)
∣∣2 + ∣∣∇2Q(s, y)

∣∣+ ∣∣M(∇v)(s, y)
∣∣2)dy ds

= ε4

0∫
−4

∫
B(2)

[|∇un|2 + ∣∣∇2Pn

∣∣+ ∣∣M(∇un)
∣∣2](�) dy ds

= ε4

0∫ ∫
Fn(�) dy ds
−4 B(2)
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= ε−1

t∫
t−4ε2

∫
B(2ε)

Fn

(
s,Xn,ε(s, t, x) + y

)
dy ds � η̄

where the first equality comes from the definition of (v,Q), and the second one follows the change of variable
(t + ε2s, εy) → (s, y). Moreover, it satisfies∫

R3

φ(z)v(s, z) dz = 0, −4 < s < 0. (99)

So (v,Q) satisfies all conditions of (21) and (22) in Proposition 2.2 with r = 1/(nε) ∈ [0,∞).
The conclusion of Proposition 2.2 implies that if x ∈ Ωn,ε,t for some n, t and ε such that 4ε2 � t then

|∇dv(0,0)| � Cd . As a result, by using ∇dv(0,0) = εd+1∇dun(t, x) for any integer d � 1, we have∣∣∣∣
{
x ∈ R3

∣∣∣ ∣∣∇dun(t, x)
∣∣> Cd

εd+1

}∣∣∣∣� ∣∣ΩC
n,ε,t

∣∣� ε4 · g̃n(t).

Let K be any open bounded subset in R3. Also we define p = 4/(d + 1). Then for any t > 0, we have

βp · ∣∣{x ∈ K:
∣∣(∇dun

)
(t, x)

∣∣> β
}∣∣� {βp · |K|, if β � C · t−2/p,

C · g̃n(t), if β > C · t−2/p.

It implies

∥∥(∇dun

)
(t, ·)∥∥p

Lp,∞(K)
� C · max

(
g̃n(t),

|K|
t2

)
.

We pick any t0 > 0. If we take L1,∞(t0, T )-norm to the both sides of the above inequality, then we obtain

∥∥∇dun

∥∥p

Lp,∞(t0,∞;Lp,∞(K))
� C

(
‖g̃n‖L1,∞(0,∞) + |K| ·

∥∥∥∥ 1

| · |2
∥∥∥∥

L1,∞(t0,∞)

)

� C

(
‖u0‖2

L2(R3)
+ |K|

t0

)
(100)

where C depends only on d � 1.
We observe that the above estimate is uniform in n. It is well known that both ∇u and ∇2u are locally integrable

functions if u is a suitable weak solution u which can be obtained by a limiting argument of un (e.g. see Lions [29]).
Thus, the above estimate (100) holds even for u with d = 1,2.

Remark 5.5. In fact, for the case d = 1, the above estimate says ∇u ∈ L
2,∞
loc , which is useless because we know a

better estimate ∇u ∈ L2.

Remark 5.6. For d � 3, the above estimate (100) does not give us any direct information about higher derivatives
∇du of a weak solution u because full regularity of weak solutions is still open, so ∇du may not be locally integrable
for d � 3. Instead, the only thing we can say is that, for d � 3, higher derivatives ∇dun of Leray’s approximation un

have L
4/(d+1),∞
loc bounds which are uniform in n� 1. �

From now on, we will prove the 0 < α < 2 case of the part (II).

5.3. Proof of Theorem 1.1, part (II) for the 0 < α < 2 case

Proof of Theorem 1.1, part (II) for the 0 < α < 2 case. We fix d � 1 and 0 < α < 2. Then, for any positive integer n,
any t > 0 and x ∈R3, we denote Fn(t, x) by:
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Fn(t, x) =
(∣∣∇un(t, x)

∣∣2 + ∣∣∇2Pn(t, x)
∣∣+ ∣∣M(∇un)(t, x)

∣∣2 + ∣∣M(
M
(|∇un|

))∣∣2 + (M(∣∣M(|∇un|
)∣∣q))2/q

+ ∣∣M(|∇un|q
)∣∣2/q +

d+4∑
m=d

sup
δ>0

(∣∣(∇m−1hα
)
δ
∗ ∇2P

∣∣)).

We define gn, g̃n, Xn,ε and Ωn,ε,t in a similar way as we did in the previous Section 5.2. Note that we have
‖g̃n‖L1,∞(0,∞) �

Cd,α

η̄
· ‖u0‖2

L2(R3)
from Lemma 5.1.

Now we pick any x ∈ Ωn,ε,t and any ε such that 4ε2 � t , and define v and Q as in the previous Section 5.2 (see
(96)).

In order to follow the same way we did in the previous Section 5.2, we need to verify if all quantities in Fn(t, x)

have the right scaling after the transform (96). For Maximal of Maximal functions,

M
(
M
(|∇v|))(s, y) = sup

M>0

C

M3

∫
B(M)

M
(|∇v|)(s, y + z) dz

= sup
M>0

C

M3

∫
B(M)

ε2M
(|∇un|

)(
t + ε2s,Xn,ε

(
t + ε2s, t, x

)+ ε(y + z)
)
dz

= ε2M
(
M
(|∇un|

))
(�)

where � = (t +ε2s,Xn,ε(t +ε2s, t, x)+εy) and we used the idea of (98) for the second and third equalities. Likewise,
we get M(|∇v|q)(s, y) = ε2q ·M(|∇un|q)(�) and M(|M(|∇v|)|q)(s, y) = ε2q ·M(|M(|∇un|)|q)(�).

Also, we have, for any function G ∈ C∞
0 ,

sup
δ>0

(∣∣Gδ ∗ ∇2Q
∣∣)(s, y) = sup

δ>0

∣∣∣∣
∫
R3

1

δ3
G
(

z

δ

)
· (∇2Q

)
(s, y − z) dz

∣∣∣∣
= sup

δ>0

∣∣∣∣
∫
R3

ε4

δ3
G
(

z

δ

)
· (∇2Pn

)(
t + ε2s,Xn,ε

(
t + ε2s, t, x

)+ ε(y − z)
)
dz

∣∣∣∣
= sup

δ>0

∣∣∣∣
∫
R3

ε4

ε3δ3
G
(

z

εδ

)
· (∇2Pn

)(
t + ε2s,Xn,ε

(
t + ε2s, t, x

)+ εy − z
)
dz

∣∣∣∣
= sup

εδ>0

∣∣∣∣
∫
R3

ε4Gεδ(z) · (∇2Pn

)(
t + ε2s,Xn,ε

(
t + ε2s, t, x

)+ εy − z
)
dz

∣∣∣∣
= sup

εδ>0
ε4
∣∣(Gεδ ∗ (∇2Pn

))(
t + ε2s,Xn,ε

(
t + ε2s, t, x

)+ εy
)∣∣

= ε4 sup
δ>0

∣∣Gδ ∗ (∇2Pn

)∣∣(�).

Thus, by taking G = (∇m−1hα), we have

sup
δ>0

(∣∣(∇m−1hα
)
δ
∗ ∇2Q

∣∣)(s, y) = ε4 sup
δ>0

∣∣(∇m−1hα
)
δ
∗ (∇2Pn

)∣∣(�).

As a result, we have

0∫
−4

∫
B(2)

[
|∇v|2 + ∣∣∇2Q

∣∣+ ∣∣M(∇v)
∣∣2 + ∣∣M(

M
(|∇v|))∣∣2 + ∣∣M(∣∣M(|∇v|)∣∣q)∣∣q/2

+ ∣∣M(|∇v|q)∣∣2/q +
d+4∑

sup
δ>0

(∣∣(∇m−1hα
)
δ
∗ ∇2Q

∣∣)](s, y) dy ds
m=d
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= ε4

0∫
−4

∫
B(2)

Fn(�) dy ds

= ε−1

t∫
t−4ε2

∫
B(2ε)

Fn

(
s,Xn,ε(s, t, x) + y

)
dy ds � η̄.

Then (v,Q) satisfies (23) as well as (21) and (22) of Proposition 2.2 with r = 1/(nε) ∈ [0,∞). In sum if x ∈ Ωn,ε,t

and if 4ε2 � t , then we get∣∣(−�)α/2∇dv(0,0)
∣∣� Cd,α.

Because un is a smooth solution of (Problem I-n), the fractional derivative (−�)α/2∇dun is not only a distribution
but also a locally integrable function. Indeed, from a bootstrapping argument, it is easy to show that ∇dun(t) has a
desirable behavior at infinity which is required in order to use the integral representation (14) pointwise. For example,
(C2 ∩ W 2,∞) is enough (for a better approach, see Silvestre [37]). Also it can be easily verified that the resulting
function (−�)α/2[∇dun(t, ·)](x) from the integral representation (14) satisfies the definition in Remark 1.1.

As a result, it makes sense to talk about pointwise values of (−�)α/2∇dun. Note that, for any integer d � 1 and
any real 0 < α < 2,

(−�)α/2∇dv(0,0) = εd+α+1(−�)α/2∇dun(t, x).

Thus we can deduce the following set inclusion:{
x ∈ R3

∣∣∣ ∣∣(−�)
α
2 ∇dun(t, x)

∣∣> Cd,α

εd+α+1

}
⊂ ΩC

n,ε,t . (101)

It implies, for any 0 < t < ∞ and for any 0 < 4ε2 � t ,∣∣∣∣
{
x ∈ R3

∣∣∣ ∣∣(−�)
α
2 ∇dun(t, x)

∣∣> Cd,α

εd+α+1

}∣∣∣∣� ∣∣ΩC
n,ε,t

∣∣� ε4 · g̃n(t).

We define p = 4/(d + α + 1). As we did for case α = 0, we obtain

∥∥(−�)
α
2 ∇dun

∥∥p

Lp,∞(t0,∞;Lp,∞(K))
� C

(
‖u0‖2

L2(R3)
+ |K|

t0

)

for any integer n,d � 1, for any real α ∈ (0,2), for any bounded open subset K of R3, and for any t0 ∈ (0,∞) where
C depends only on d and α.

If we restrict further (d + α) < 3, then p = 4
d+α+1 > 1. This implies (−�)α/2∇dun ∈ L

q

loc((t0,∞) × K) for every
q between 1 and p, and the norm is uniformly bounded in n. Thus, from the weak-compactness of Lq for q > 1,
we conclude that if u is a suitable weak solution obtained by a limiting argument of un, then any higher derivative
(−�)α/2∇du, which is defined by following Remark 1.1, lie in L1

loc as long as (d + α) < 3 with the same estimate

∥∥(−�)
α
2 ∇du

∥∥p

Lp,∞(t0,∞;Lp,∞(K))
� Cd,α

(
‖u0‖2

L2(R3)
+ |K|

t0

)
. � (102)

5.4. Proof of Theorem 1.1, part (I)

Proof of Theorem 1.1, part (I). Suppose that (u,P ) is a smooth solution of the Navier–Stokes equations (1) on
(0, T ) with (2). Then it satisfies all conditions of (Problem I-n) for n = ∞ on (0, T ). As we mentioned in Remark 5.3,
we follow every steps in Section 5.2 and 5.3 except each last arguments which require d < 3 or (d + α) < 3. Indeed,
under the scaling (96), the resulting function (v,Q) is a solution for (Problem II-r) for r = 0.

Recall that u is smooth by assumption. As a result, we do NOT have any restriction like d < 3 or (d + α) < 3 at
this time because we do not need any limiting argument any more which requires the weak-compactness of Lq for
q > 1. Thus, we obtain (102) for any integer d � 1, for any real α ∈ [0,2) and for any t0 ∈ (0, T ). It finishes the proof
of the part (I) of the main Theorem 1.1. �
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Appendix A. Proofs of some technical lemmas

Proof of Lemma 4.1. We fix (n, a, b,p) such that n � 2, 0 < b < a < 1 and 1 < p < ∞. Let α be any multi index
such that |α| = n and Dα = ∂α1∂α2D

β where β is a multi index with |β| = n − 2.
Observe that, from div(v2) = 0 and div(v1) = 0, we have

−�
(
DαP

)= div divDα(v2 ⊗ v1)

= Dα

(∑
ij

(∂j v2,i )(∂iv1,j )

)

= ∂α1∂α2H

where H = Dβ(
∑

ij (∂j v2,i )(∂iv1,j )) and vk = (vk,1, vk,2, vk,3) for k = 1,2. Then, for any (p1,p2) such that 1
p

=
1
p1

+ 1
p2

, we get

‖H‖Lp(B(a)) � C‖v2‖Wn−1,p2 (B(a)) · ‖v1‖Wn−1,p1 (B(a))

where C is independent of choice of p1 and p2 and

‖H‖W 1,∞(B(a)) � C‖v2‖Wn,∞(B(a)) · ‖v1‖Wn,∞(B(a)).

We fix a function ψ ∈ C∞(R3) satisfying:

ψ = 1 in B

(
b + a − b

3

)
, ψ = 0 in

(
B

(
b + 2(a − b)

3

))C

and 0 �ψ � 1.

We decompose DαP by using ψ :

−�
(
ψDαP

)= −ψ�DαP − 2 div
(
(∇ψ)

(
DαP

))+ (DαP
)
�ψ

= ψ∂α1∂α2H − 2 div
(
(∇ψ)

(
DαP

))+ (DαP
)
�ψ

= −�Q1 − �Q2 − �Q3

where

−�Q1 = ∂α1∂α2(ψH),

−�Q2 = −∂α2

[
(∂α1ψ)(H)

]− ∂α1

[
(∂α2ψ)(H)

]+ (∂α1∂α2ψ)(H) and

−�Q3 = −2 div
(
(∇ψ)

(
DαP

))+ (DαP
)
�ψ.

Here Q2 and Q3 are defined by the representation formula (−�)−1(f ) = 1
4π

( 1
|x| ∗ f ) while Q1 is defined by the

Riesz transforms.
Then, by the Riesz transform, we get

‖Q1‖Lp(B(b)) � C‖ψH‖Lp(R3) � C‖H‖Lp(B(a))

� C‖v2‖Wn−1,p2 (B(a)) · ‖v1‖Wn−1,p1 (B(a)).

Moreover, using Sobolev’s inequality, we have

‖Q1‖L∞(B(b)) � C
(‖Q1‖L4(B(b)) + ‖∇Q1‖L4(B(b))

)
� C‖H‖W 1,4(B(a)) � C‖H‖W 1,∞(B(a))

� C‖v2‖Wn,∞(B(a)) · ‖v1‖Wn,∞(B(a)).
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For x ∈ B(b), we compute

∣∣Q2(x)
∣∣= ∣∣∣∣ 1

4π

∫
(B(b+ 2(a−b)

3 )−B(b+ a−b
3 ))

1

|x − y|
(
∂α2

[
(∂α1ψ)(H)

]
(y)

− ∂α1

[
(∂α2ψ)(H)

]
(y) + (∂α1∂α2ψ)(H)(y)

)
dy

∣∣∣∣
� 2‖∇ψ‖L∞ · sup

y∈B(b+ a−b
3 )C

(∣∣∣∣∇y

1

|x − y|
∣∣∣∣
)

· ‖H‖L1(B(a))

+ ∥∥∇2ψ
∥∥

L∞ · sup
y∈B(b+ a−b

3 )C

(∣∣∣∣ 1

|x − y|
∣∣∣∣
)

· ‖H‖L1(B(a))

� C · ‖H‖L1(B(a))

because |x − y|� (a − b)/3. Likewise, for x ∈ B(b), we get

∣∣Q3(x)
∣∣� C

(
n∑

k=0

∥∥∇k+1ψ
∥∥

L∞

)
·
(

n∑
k=0

sup
y∈B(b+ a−b

3 )C

∣∣∣∣∇k+1
y

1

|x − y|
∣∣∣∣
)

· ‖P‖L1(B(a))

+ C

(
n∑

k=0

∥∥∇k+2ψ
∥∥

L∞

)
·
(

n∑
k=0

sup
y∈B(b+ a−b

3 )C

∣∣∣∣∇k
y

1

|x − y|
∣∣∣∣
)

· ‖P‖L1(B(a))

� C · ‖P‖L1(B(a)).

Finally, we obtain∥∥∇nP
∥∥

Lp(B(b))
� ‖Q1‖Lp(B(b)) + C

∥∥|Q2| + |Q3|
∥∥

L∞(B(b))

� C · ‖H‖Lp(B(a)) + C · ‖H‖L1(B(a)) + C · ‖P‖L1(B(a))

� Ca,b,p,n

(‖v2‖Wn−1,p2 (B(a)) · ‖v1‖Wn−1,p1 (B(a)) + ‖P‖L1(B(a))

)
and ∥∥∇nP

∥∥
L∞(B(b))

�
∥∥|Q1| + |Q2| + |Q3|

∥∥
L∞(B(b))

� C · ‖H‖W 1,∞(B(a)) + C · ‖H‖L1(B(a)) + C · ‖P‖L1(B(a))

� Ca,b,n

(‖v2‖Wn,∞(B(a)) · ‖v1‖Wn,∞(B(a)) + ‖P‖L1(B(a))

)
. �

Proof of Lemma 4.3. We fix (n, a, b) such that n � 0 and 0 < b < a < 1 and let α be a multi index with |α| = n.
Then, by taking Dα to (18), we have

0 = ∂t

(
Dαv1

)+ ∑
β�α,|β|>0

(
α

β

)((
Dβv2

) · ∇)(Dα−βv1
)+ (v2 · ∇)

(
Dαv1

)+ ∇(DαP
)− �

(
Dαv1

)
. (103)

We define Φ(t, x) ∈ C∞ by 0 � Φ � 1, Φ = 1 on Qb and Φ = 0 on QC
a . We observe that, for p � 1

2 and for f ∈ C∞,(
p + 1

2

)
|f |p− 3

2 f · ∂xf = ∂x |f |p+ 1
2 and

(
p + 1

2

)
|f |p− 3

2 f · �f � �
(|f |p+ 1

2
)

which can be verified directly due to the fact |∇f | � |∇|f ||.
Now we multiply (p+ 1

2 )Φ Dαv1
|Dαv1|(3/2)−p to (103), use the above observation and integrate in x to get: for any p � 1

2 ,

d

dt

∫
3

Φ(t, x)
∣∣Dαv1(t, x)

∣∣p+ 1
2 dx
R
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�
∫
R3

(∣∣∂tΦ(t, x)
∣∣+ ∣∣�Φ(t, x)

∣∣)∣∣Dαv1(t, x)
∣∣p+ 1

2 dx

+
(

p + 1

2

)∫
R3

∣∣∇DαP(t, x)
∣∣∣∣Dαv1(t, x)

∣∣p− 1
2 dx

+
(

p + 1

2

) ∑
β�α,|β|>0

(
α

β

)∫
R3

∣∣(Dβv2(t, x) · ∇)Dα−βv1(t, x)
∣∣∣∣Dαv1(t, x)

∣∣p− 1
2 dx

−
∫
R3

Φ(t, x)
(
v2(t, x) · ∇)(∣∣Dαv1(t, x)

∣∣p+ 1
2
)
dx

� C
∥∥∣∣∇nv1(t, ·)

∣∣p+ 1
2
∥∥

L1(B(a))

+ C
∥∥∇n+1P(t, ·)∥∥

L2p(B(a))
· ∥∥∣∣∇nv1(t, ·)

∣∣p− 1
2
∥∥

L
2p

2p−1 (B(a))

+ C
∥∥v2(t, ·)

∥∥
Wn,∞(B(a))

· ∥∥v1(t, ·)
∥∥

W
n,p+ 1

2 (B(a))
· ∥∥∣∣∇nv1(t, ·)

∣∣p− 1
2
∥∥

L

p+ 1
2

p− 1
2 (B(a))

−
∫
R3

Φ(t, x)div
(
v2(t, x) ⊗ ∣∣Dαv1(t, x)

∣∣p+ 1
2
)
dx

� C
∥∥v1(t, ·)

∥∥p+ 1
2

W
n,p+ 1

2 (B(a))

+ C
∥∥∇n+1P(t, ·)∥∥

L2p(B(a))
· ∥∥∇nv1(t, ·)

∥∥p− 1
2

Lp(B(a))

+ C
∥∥v2(t, ·)

∥∥
Wn,∞(B(a))

· ∥∥v1(t, ·)
∥∥p+ 1

2

W
n,p+ 1

2 (B(a))

+ C
∥∥v2(t, ·)

∥∥
L∞(B(a))

· ∥∥∇nv1(t, ·)
∥∥p+ 1

2

L
p+ 1

2 (B(a))

.

Then the integration on [−a2, t] for any t ∈ [−b2,0] gives us

∥∥Dαv1
∥∥p+ 1

2

L∞(−(b)2,0;Lp+ 1
2 (B(b)))

� C‖v1‖p+ 1
2

L
p+ 1

2 (−(a)2,0;Wn,p+ 1
2 (B(a)))

+ C
∥∥∇n+1P

∥∥
L1(−(a)2,0;L2p(B(a)))

· ∥∥∇nv1
∥∥p− 1

2

L∞(−(a)2,0;Lp(B(a)))

+ C‖v2‖L2(−(a)2,0;Wn,∞(B(a))) · ‖v1‖p+ 1
2

L2p+1(−(a)2,0;Wn,p+ 1
2 (B(a)))

+ C‖v2‖L2(−(a)2,0;L∞(B(a))) · ∥∥∇nv1
∥∥p+ 1

2

L2p+1(−(a)2,0;Lp+ 1
2 (B(a)))

.

Thus for the case p = 1/2, we have∥∥Dαv1
∥∥

L∞(−(b)2,0;L1(B(b)))

� C
[(‖v2‖L2(−a2,0;Wn,∞(B(a))) + 1

) · ‖v1‖L2(−a2,0;Wn,1(B(a))) + ∥∥∇n+1P
∥∥

L1(−a2,0;L1(B(a)))

]
while, for the case p � 1, we have
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∥∥Dαv1
∥∥p+ 1

2

L∞(−(b)2,0;Lp+ 1
2 (B(b)))

� C
(‖v2‖L2(−a2,0;Wn,∞(B(a))) + 1

)(‖v1‖
1

p+ 1
2

L2(−(a)2,0;Wn,2p(B(a)))
· ‖v1‖

1− 1
p+ 1

2

L∞(−(a)2,0;Wn,p(B(a)))

)p+ 1
2

+ C
∥∥∇n+1P

∥∥
L1(−(a)2,0;L2p(B(a)))

· ‖v1‖p− 1
2

L∞(−(a)2,0;Wn,p(B(a)))

� Ca,b,n,p

[(‖v2‖L2(−a2,0;Wn,∞(B(a))) + 1
) · ‖v1‖L2(−(a)2,0;Wn,2p(B(a)))

+ ∥∥∇n+1P
∥∥

L1(−(a)2,0;L2p(B(a)))

] · ‖v1‖p− 1
2

L∞(−(a)2,0;Wn,p(B(a)))
. �

Proof of Lemma 4.4. Let M0 > 0 and 1 � p < ∞. Then, for any M � M0 and for any f ∈ C1(R3) such that∫
R3 φ(x)f (x) dx = 0, we have

‖f ‖Lp(B(M)) =
( ∫

B(M)

∣∣∣∣
∫
R3

(
f (x) − f (y)

)
φ(y)dy

∣∣∣∣
p

dx

)1/p

� C

( ∫
B(M)

( ∫
B(1)

∣∣f (x) − f (y)
∣∣dy

)p

dx

)1/p

� C

( ∫
B(M)

( ∫
B(1)

1∫
0

∣∣(∇f )
(
(1 − t)x + ty

) · (x − y)
∣∣dt dy

)p

dx

)1/p

� C(M + 1)

( ∫
B(M)

( ∫
B(1)

1∫
0

∣∣(∇f )
(
(1 − t)x + ty

)∣∣dt dy

)p

dx

)1/p

� C(M + 1)

( ∫
B(M)

( ∫
B(1)

M
M+1∫
0

∣∣(∇f )
(
(1 − t)x + ty

)∣∣dt dy

)p

dx

)1/p

+ C(M + 1)

( ∫
B(M)

( ∫
B(1)

1∫
M

M+1

∣∣(∇f )
(
(1 − t)x + ty

)∣∣dt dy

)p

dx

)1/p

= (I ) + (II)

where we used x ∈ B(M) and y ∈ B(1).
For (I ), we have

(I ) � CM0 · M ·
( ∫

B(1)

M
M+1∫
0

( ∫
B(M)

∣∣(∇f )
(
(1 − t)x + ty

)∣∣pdx

)1/p

dt dy

)

� CM0 · M ·
M

M+1∫
0

1

(1 − t)3/p

( ∫
B((1−t)M+1)

∣∣(∇f )(z)
∣∣p dz

)1/p

dt

� CM0 · M ·
M

M+1∫
1

(1 − t)3/p

( ∫ ∫ ∣∣(∇f )(z + u)
∣∣p dz du

)1/p

dt
0 B(1) B((1−t)M+2)
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� CM0 · M ·
M

M+1∫
0

((1 − t)M + 2)3/p

(1 − t)3/p

( ∫
B(1)

M
(|∇f |p)(u) du

)1/p

dt

� CM0,p · M · ∥∥M(|∇f |p)∥∥1/p

L1(B(1))

M
M+1∫
0

(
M3/p + 1

(1 − t)3/p

)
dt

� CM0,p · M · ∥∥M(|∇f |p)∥∥1/p

L1(B(1))

(
M3/p +

1∫
1

M+1

1

s3/p
ds

)

� CM0 · M · ∥∥M(|∇f |p)∥∥1/p

L1(B(1))

(
M3/p + (M + 1)3/p

)
� CM0,p · M1+ 3

p · ∥∥M(|∇f |p)∥∥1/p

L1(B(1))

where we used the integral version of Minkowski’s inequality and the fact (1 + M) � CM0 · M from M � M0 for the
first inequality.

For (II), we observe that if M
M+1 � t � 1, then 0 � 1 − t � 1

M+1 and

∣∣(1 − t)x + ty
∣∣� (1 − t) · |x| + t |y| � M

M + 1
+ 1 � 2

due to x ∈ B(M) and y ∈ B(1). Thus, we have

(II) � CM0 · M
( ∫

B(M)

( 1∫
M

M+1

1

t3

∫
B(2)

∣∣(∇f )(z)
∣∣dzdt

)p

dx

)1/p

� CM0 · M · M3/p ·
∫

B(2)

∣∣(∇f )(z)
∣∣dz ·

1∫
M

M+1

1

t3
dt

� CM0M
1+ 3

p · ‖∇f ‖L1(B(2)). �
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