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Abstract

This paper extends the concept of generalized polarization tensors (GPTs), which was previously defined for inclusions with
homogeneous conductivities, to inhomogeneous conductivity inclusions. We begin by giving two slightly different but equivalent
definitions of the GPTs for inhomogeneous inclusions. We then show that, as in the homogeneous case, the GPTs are the ba-
sic building blocks for the far-field expansion of the voltage in the presence of the conductivity inclusion. Relating the GPTs to
the Neumann-to-Dirichlet (NtD) map, it follows that the full knowledge of the GPTs allows unique determination of the conduc-
tivity distribution. Furthermore, we show important properties of the the GPTs, such as symmetry and positivity, and derive bounds
satisfied by their harmonic sums. We also compute the sensitivity of the GPTs with respect to changes in the conductivity distri-
bution and propose an algorithm for reconstructing conductivity distributions from their GPTs. This provides a new strategy for
solving the highly nonlinear and ill-posed inverse conductivity problem. We demonstrate the viability of the proposed algorithm
by preforming a sensitivity analysis and giving some numerical examples.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

There are several geometric and physical quantities associated with shapes such as eigenvalues and capacities [34].
The concept of the generalized polarization tensors (GPTs) is one of them. The notion appears naturally when we
describe the perturbation of the electrical potential due to the presence of inclusions whose material parameter (con-
ductivity) is different from that of the background.
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To mathematically introduce the concept of GPTs, we consider the conductivity problem in R
d , d = 2,3:{∇ · (χ(

R
d \ Ω

) + kχ(Ω)
)∇u = 0 in R

d ,

u(x) − h(x) = O
(|x|1−d

)
as |x| → ∞.

(1.1)

Here, Ω is the inclusion embedded in R
d with a Lipschitz boundary, χ(Ω) (resp. χ(Rd \ Ω)) is the characteristic

function of Ω (resp. Rd \ Ω), the positive constant k is the conductivity of the inclusion which is supposed to be
different from the background conductivity 1, h is a harmonic function in R

d representing the background electrical
potential, and the solution u to the problem represents the perturbed electrical potential. The perturbation u − h due
to the presence of the conductivity inclusion Ω admits the following asymptotic expansion as |x| → ∞:

u(x) − h(x) =
∑

|α|,|β|�1

(−1)|β|

α!β! ∂αh(0)Mαβ(k,Ω)∂βΓ (x), (1.2)

where Γ is the fundamental solution of the Laplacian (see, for example, [7,9]). The building blocks Mαβ(k,Ω) for
the asymptotic expansion (1.2) are called the GPTs. Note that the GPTs Mαβ(k,Ω) can be reconstructed from the
far-field measurements of u by a least-squares method. A stability analysis of the reconstruction is provided in [1]. On
the other hand, it is shown in [2] that in the full-view case, the reconstruction problem of GPTs from boundary data
has the remarkable property that low order GPTs are not affected by the error caused by the instability of higher-orders
in the presence of measurement noise.

The GPTs carry geometric information about the inclusion. For example, the inverse GPT problem holds to be
true, namely, the whole set of GPTs, {Mαβ(k,Ω): |α|, |β| � 1}, determines k and Ω uniquely [6]. The leading order
GPT (called the polarization tensor (PT)), {Mαβ(k,Ω): |α|, |β| = 1}, provides the equivalent ellipse (ellipsoid) which
represents overall property of the inclusion [11,20]. Moreover, there are important analytical and numerical studies
which show that finer details of the shape can be recovered using higher-order GPTs [14,4]. The GPTs even carry
topology information of the inclusion [4]. It is also worth mentioning that an efficient algorithm for computing the
GPTs is presented in [21].

The notion of GPTs appears in various contexts such as asymptotic models of dilute composites (cf. [30,32,13]),
low-frequency asymptotics of waves [24], potential theory related to certain questions arising in hydrodynam-
ics [34], biomedical imaging of small inclusions (see [10] and the references therein), reconstructing small inclusions
[27,11,20], and shape description [4]. Recently the concept of GPTs finds another promising application to cloaking
and electromagnetic and acoustic invisibility. It is shown that the near-cloaking effect of [29] can be dramatically
improved by using multi-layered structures whose GPTs vanish up to a certain order [12].

As far as we know, the GPTs have been introduced only for inclusions with homogeneous conductivities or layers
with constant conductivities. It is the purpose of this paper to extend the notion of GPTs to inclusions with inho-
mogeneous conductivities and use this new concept for solving the inverse conductivity problem. We first introduce
the GPTs for inhomogeneous inclusions and show that exactly the same kind of far-field asymptotic formula as (1.2)
holds. We also prove important properties of the GPTs such as unique determination of Neumann-to-Dirichlet map,
symmetry, and positivity. We then provide a sensitivity analysis of the GPTs with respect to changes in the conduc-
tivity distribution. We finally propose a minimization algorithm for reconstructing an inhomogeneous conductivity
distribution from its high-order GPTs. We carry out a resolution and stability analysis for this reconstruction problem
in the linearized case and present numerical examples to show its viability.

The paper is organized as follows. In Section 2 we introduce the GPTs for inhomogeneous conductivity inclusions
and prove that they are the building blocks of the far-field expansion of the potential. Section 3 is devoted to the
derivation of integral representations of the GPTs. We also establish a relation between the GPTs and the NtD map.
In Section 4 we prove important properties of symmetry and positivity of the GPTs and obtain bounds satisfied by
their harmonic sums. In Section 5 we perform a sensitivity analysis of the GPTs with respect to the conductivity
distribution. We also show that in the linearized case, high-order GPTs capture high-frequency oscillations of the
conductivity. In Section 6, we present an algorithm for reconstructing inhomogeneous conductivity distributions from
their high-order GPTs. The algorithm is based on minimizing the discrepancy between the computed and measured
GPTs.
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2. Contracted GPTs and asymptotic expansions

Let σ be a bounded measurable function in R
d , d = 2,3, such that σ − 1 is compactly supported and

λ1 � σ � λ2 (2.1)

for positive constants λ1 and λ2. For a given harmonic function h in R
d , we consider the following conductivity

problem:{
∇ · σ∇u = 0 in R

d ,

u(x) − h(x) = O
(|x|1−d

)
as |x| → ∞.

(2.2)

In this section we derive a full far-field expansion of (u − h)(x) as |x| → ∞. In the course of doing so, the notion of
(contracted) generalized polarization tensors (GPT) appears naturally.

Let B be a bounded domain in R
d with a C1,η-boundary ∂B for some 0 < η < 1. We assume that B is such that

supp(σ − 1) ⊂ B. (2.3)

Suppose that B contains the origin. Let Hs(∂B), for s ∈ R, be the usual L2-Sobolev space and let Hs
0 (∂B) :=

{φ ∈ Hs(∂B) | ∫
∂B

φ = 0}. For s = 0, we use the notation L2
0(∂B).

The Neumann-to-Dirichlet (NtD) map Λσ : H−1/2
0 (∂B) → H

1/2
0 (∂B) is defined to be

Λσ [g] := u|∂B, (2.4)

where u is the solution to⎧⎪⎨⎪⎩
∇ · σ∇u = 0 in B,

σ
∂u

∂ν
= g on ∂B,

( ∫
∂B

u = 0

)
(2.5)

for g ∈ H
−1/2
0 (∂B). The operator Λ1 is the NtD map when σ ≡ 1.

Note that (2.2) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · σ∇u = 0 in B,

�u = 0 in R
d \ B,

∂u

∂ν

∣∣∣∣+ = σ
∂u

∂ν

∣∣∣∣− on ∂B,

u|+ = u|− on ∂B,

u(x) − h(x) = O
(|x|1−d

)
as |x| → ∞.

(2.6)

Here and throughout this paper, the subscripts ± indicate the limits from outside and inside B , respectively.
Let Γ (x) be the fundamental solution to the Laplacian:

Γ (x) =

⎧⎪⎪⎨⎪⎪⎩
1

2π
ln |x|, d = 2,

− 1

4π
|x|−1, d = 3.

(2.7)

If u is the solution to (2.2), then by Green’s formula we have for x ∈R
d \ B

(u − h)(x) =
∫
∂B

Γ (x − y)
∂(u − h)

∂ν

∣∣∣∣+(y) dsy −
∫
∂B

∂Γ (x − y)

∂νy

(u − h)

∣∣∣∣+(y) dsy

=
∫

Γ (x − y)
∂u

∂ν

∣∣∣∣+(y) dsy −
∫

∂Γ (x − y)

∂νy

u

∣∣∣∣+(y) dsy,
∂B ∂B
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where the second equality holds since h is harmonic. Let g = σ ∂u
∂ν

|−. Then we have u|∂B = Λσ [g] on ∂B . Thus we
get from the transmission conditions in (2.6) that

(u − h)(x) =
∫
∂B

Γ (x − y)g(y) dsy −
∫
∂B

∂Γ (x − y)

∂νy

Λσ [g](y) dsy. (2.8)

For x ∈ R
d \ B , we have

Λ1

(
∂Γ (x − ·)

∂νy

)
= Γ (x − ·) − 1

|∂B|
∫
∂B

Γ (x − y)dsy on ∂B,

and hence∫
∂B

∂Γ (x − y)

∂νy

Λσ [g](y) dsy =
∫
∂B

Γ (x − y)Λ−1
1 Λσ [g](y) dsy. (2.9)

Thus we get from (2.8) and (2.9) that

(u − h)(x) =
∫
∂B

Γ (x − y)Λ−1
1 (Λ1 − Λσ )[g](y) dsy, x ∈ R

d \ B. (2.10)

Here we have used the fact that Λ1 : H−1/2
0 (∂B) → H

1/2
0 (∂B) is invertible and self-adjoint:〈

Λ1[g], f 〉
H 1/2,H−1/2 = 〈

g,Λ1[f ]〉
H 1/2,H−1/2 , ∀f,g ∈ H

−1/2
0 (∂B),

with 〈 , 〉H 1/2,H−1/2 being the duality pair between H−1/2(∂B) and H 1/2(∂B).
Suppose that d = 2. For each positive integer n, let uc

n and us
n be the solutions to (2.2) when h(x) = rn cosnθ and

h(x) = rn sinnθ , respectively. Let

gc
n := σ

∂uc
n

∂ν

∣∣∣∣− and gs
n := σ

∂us
n

∂ν

∣∣∣∣− on ∂B. (2.11)

Since (2.2) is linear, it follows that if the harmonic function h admits the expansion

h(x) = h(0) +
∞∑

n=1

rn
(
ac
n cosnθ + as

n sinnθ
)

(2.12)

with x = (r cos θ, r sin θ), then we have

g := σ
∂u

∂ν

∣∣∣∣− =
∞∑

n=1

(
ac
ng

c
n + as

ng
s
n

)
,

and hence

(u − h)(x) =
∞∑

n=1

∫
∂B

Γ (x − y)
(
ac
nΛ

−1
1 (Λ1 − Λσ )

[
gc

n

]
(y) + as

nΛ
−1
1 (Λ1 − Λσ )

[
gs

n

]
(y)

)
dsy. (2.13)

Note that Γ (x − y) admits the expansion

Γ (x − y) =
∞∑

n=1

−1

2πn

[
cosnθx

rn
x

rn
y cosnθy + sinnθx

rn
x

rn
y sinnθy

]
+ C, (2.14)

where C is a constant, x = rx(cos θx, sin θx) and y = ry(cos θy, sin θy). Expansion (2.14) is valid if |x| → ∞ and
y ∈ ∂B . The contracted generalized polarization tensors are defined as follows (see [12]):
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Mcc
mn = Mcc

mn[σ ] :=
∫
∂B

rm
y cosmθyΛ

−1
1 (Λ1 − Λσ )

[
gc

n

]
(y) dsy, (2.15)

Mcs
mn = Mcs

mn[σ ] :=
∫
∂B

rm
y cosmθyΛ

−1
1 (Λ1 − Λσ )

[
gs

n

]
(y) dsy, (2.16)

Msc
mn = Msc

mn[σ ] :=
∫
∂B

rm
y sinmθyΛ

−1
1 (Λ1 − Λσ )

[
gc

n

]
(y) dsy, (2.17)

Mss
mn = Mss

mn[σ ] :=
∫
∂B

rm
y sinmθyΛ

−1
1 (Λ1 − Λσ )

[
gs

n

]
(y) dsy. (2.18)

From (2.13) and (2.14), we get the following theorem.

Theorem 2.1. Let u be the solution to (2.2) with d = 2. If h admits the expansion (2.12), then we have

(u − h)(x) = −
∞∑

m=1

cosmθ

2πmrm

∞∑
n=1

(
Mcc

mna
c
n + Mcs

mna
s
n

) −
∞∑

m=1

sinmθ

2πmrm

∞∑
n=1

(
Msc

mna
c
n + Mss

mna
s
n

)
, (2.19)

which holds uniformly as |x| → ∞.

In three dimensions, we can decompose harmonic functions as follows:

h(x) = h(0) +
∞∑

n=1

n∑
m=−n

amnr
nYm

n (θ,ϕ), (2.20)

where (r, θ,ϕ) is the spherical coordinate of x and Ym
n is the spherical harmonic function of degree n and of order m.

Let

gmn = σ
∂umn

∂ν

∣∣∣∣− on ∂B, (2.21)

where umn is the solution to (2.2) when h(x) = rnYm
n (θ,ϕ). It is well-known (see, for example, [36]) that

Γ (x − y) = −
∞∑

�=0

�∑
k=−�

1

2� + 1
Y k

� (θ,ϕ)Y k
�

(
θ ′, ϕ′) r ′ n

rn+1
, (2.22)

where (r, θ,ϕ) and (r ′, θ ′, ϕ′) are the spherical coordinates of x and y, respectively. Analogously to Theorem 2.1, the
following result holds.

Theorem 2.2. Let u be the solution to (2.2) with d = 3. If h admits the expansion (2.20), then we have

(u − h)(x) = −
∞∑

�=1

�∑
k=−�

∞∑
n=1

n∑
m=−n

amnMmnk�

(2� + 1)rn+1
Y k

� (θ,ϕ) as |x| → ∞, (2.23)

where the GPT Mmnk� = Mmnk�[σ ] is defined by

Mmnk� :=
∫
∂B

Y k
�

(
θ ′, ϕ′)r ′ nΛ−1

1 (Λ1 − Λσ )[gmn]
(
r ′, θ ′, ϕ′)dσ. (2.24)

We emphasize that the definitions of contracted GPTs do not depend on the choice of B as long as (2.3) is satisfied.
This can be seen easily from (2.19) and (2.23) (see also Section 4).
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3. Integral representation of GPTs

In this section, we provide another definition of GPTs which is based on integral equation formulations as in [28,9].
Proper linear combinations of GPTs defined in this section coincide with the contracted GPTs defined in the previous
section.

Let Nσ (x, y) be the Neumann function of problem (2.5), that is, for each fixed z ∈ B , Nσ (x, y) is the solution to⎧⎪⎨⎪⎩
∇ · σ∇N(·, z) = −δz(·) in B,

σ∇N(·, z) · ν|∂B = 1

|∂B| ,
∫
∂B

N(x, z) dσ (x) = 0. (3.1)

Then the function u defined by

u(x) =NB,σ [g](x) :=
∫
∂B

Nσ (x, y)g(y) dsy, x ∈ B (3.2)

is the solution to (2.5), and hence

Λσ [g](x) =NB,σ [g](x), x ∈ ∂B. (3.3)

Let SB be the single layer potential on ∂B , namely,

SB [φ](x) =
∫
∂B

Γ (x − y)φ(y)dsy, x ∈R
d . (3.4)

Let the boundary integral operator KB (sometimes called the Poincaré–Neumann operator) be defined by

KB [φ](x) =
∫
∂B

∂Γ

∂νy

(x − y)φ(y)dsy.

It is well-known that the single layer potential SB satisfies the trace formula

∂

∂ν
SB [φ]

∣∣∣∣± =
(

±1

2
I +K∗

B

)
[φ] on ∂B, (3.5)

where K∗
B is the L2-adjoint of KB . We recall that λI − K∗

B is invertible on L2
0(∂B) if |λ| � 1/2 (see, for example,

[26,39,9]).
Identity (2.10) suggests that the solution u to (2.2) may be represented as

u(x) =
{

h(x) + SB [φ](x), x ∈R
d \ B,

NB,σ [ψ](x) + C, x ∈ B
(3.6)

for some densities φ and ψ on ∂B , where the constant C is given by

C = 1

|∂B|
∫
∂B

(
h + SB [φ])ds. (3.7)

In view of the transmission conditions along ∂B in (2.2), (3.3) and (3.5), the pair of densities (φ,ψ) should satisfy⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−SB [φ] + 1

|∂B|
∫
∂B

SB [φ]ds + Λσ [ψ] = h − 1

|∂B|
∫
∂B

hds,

−
(

1

2
I +K∗

B

)
[φ] + ψ = ∂h

∂ν

on ∂B. (3.8)

We now prove that the integral equation (3.8) is uniquely solvable. For that, let

S̃B [φ] := SB [φ] − 1

|∂B|
∫
∂B

SB [φ]ds. (3.9)
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Lemma 3.1. The operator A : H−1/2(∂B) × H
−1/2
0 (∂B) → H

1/2
0 (∂B) × H−1/2(∂B) defined by

A :=
[ −S̃B Λσ

−( 1
2I +K∗

B) I

]
(3.10)

is invertible.

As an immediate consequence of Lemma 3.1 we obtain the following theorem.

Theorem 3.1. The solution u to (2.2) can be represented in the form (3.6) where the pair (φ,ψ) ∈ H−1/2(∂B) ×
H

−1/2
0 (∂B) is the solution to

A
[

φ

ψ

]
=

[
h − 1

|∂B|
∫
∂B

hds

∂h
∂ν

|∂B

]
. (3.11)

Proof of Lemma 3.1. We first recall the invertibility of SB : H−1/2(∂B) → H 1/2(∂B) in three dimensions (see, for
instance, [39]). In two dimensions this result is not anymore true. However, using Theorem 2.26 of [9], one can show
that in two dimensions there exists a unique φ0 ∈ L2(∂B) such that∫

∂B

φ0 = 1 and S̃B [φ0] = 0 on ∂B. (3.12)

Then we have

A
[

φ0
0

]
=

[
0

−( 1
2I +K∗

B)[φ0]
]

, (3.13)

and ∫
∂B

(
1

2
I +K∗

B

)
[φ0]dσ =

∫
∂B

φ0

(
1

2
I +KB

)
[1]dσ =

∫
∂B

φ0 dσ = 1. (3.14)

Therefore, by replacing φ with φ − φ0
∫
∂B

φ, it is enough in both the two- and three-dimensional cases to determine

uniquely (φ,ψ) ∈ H
−1/2
0 (∂B) × H

−1/2
0 (∂B) satisfying

A
[

φ

ψ

]
=

[
f

g

]
(3.15)

for (f, g) ∈ H
1/2
0 (∂B) × H

−1/2
0 (∂B). In fact, if (f, g) ∈ H

1/2
0 (∂B) × H−1/2(∂B), then let C = 1

|∂B|
∫
∂B

g and let
(φ,ψ) be the solution to

A
[

φ

ψ

]
=

[
f

g − C( 1
2I +K∗

B)[φ0]
]

.

It then follows from (3.13) and (3.14) that

A
[

φ − Cφ0
ψ

]
=

[
f

g

]
.

We now show that (3.15) is uniquely solvable for a given (f, g) ∈ H
1/2
0 (∂B) × H

−1/2
0 (∂B). We first introduce the

functional spaces

H 1
loc

(
R

d
) := {

hu ∈ L2(
R

d
)
, ∇(hu) ∈ L2(

R
d
)
, ∀h ∈ C∞

0

(
R

d
)}

,

W3
(
R

3) :=
{
w ∈ H 1

loc

(
R

3):
w

r
∈ L2(

R
3), ∇w ∈ L2(

R
3)} (3.16)

and
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W2
(
R

2) :=
{
w ∈ H 1

loc

(
R

2):
w√

1 + r2 ln(2 + r2)
∈ L2(

R
2), ∇w ∈ L2(

R
2)}, (3.17)

where r = |x|. We also recall that � sets an isomorphism from Wd(Rd) to its dual Wd(Rd)∗; see, for example, [36].
Observe that it is equivalent to the existence and uniqueness of the solution in Wd(Rd) to the problem (see, for

instance, [8, Theorem 2.17])⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · σ∇u = 0 in B,

�u = 0 in R
d \ B,

σ
∂u

∂ν

∣∣∣∣− − ∂u

∂ν

∣∣∣∣+ = g on ∂B,

u|− − u|+ = f on ∂B,

u(x) = O
(|x|1−d

)
as |x| → ∞.

(3.18)

The injectivity of A comes directly from the uniqueness of a solution to (2.6). Since u is harmonic in R
d \ B and

u(x) = O(|x|1−d) as |x| → ∞, there exists φ ∈ L2
0(∂B) such that

u(x) = SB [φ](x), x ∈R
d \ B. (3.19)

If we set ψ = σ ∂u
∂ν

|−, then

u|− = Λσ [ψ] + C, (3.20)

where C = 1
|∂B|

∫
∂B

u|−. Note that

C = 1

|∂B|
∫
∂B

(u|+ + f ) = 1

|∂B|
∫
∂B

SB [φ]. (3.21)

We now have from (3.19) and (3.21) that

g = ψ −
(

1

2
I +K∗

B

)
[φ]. (3.22)

Furthermore, we have

f = Λσ [ψ] + C − SB [φ] = Λσ [ψ] − S̃B [φ]. (3.23)

Thus (φ,ψ) satisfies (3.15) and the proof is complete. �
We can now define the GPTs associated with σ using the operator A.

Definition 3.1. Let σ be a bounded measurable function in R
d , d = 2,3, such that σ − 1 is compactly supported

and (2.1) holds and let B be a smooth domain satisfying (2.3). For a multi-index α ∈ N
d with |α| � 1, let (φα,ψα) ∈

H−1/2(∂B) × H
−1/2
0 (∂B) be the solution to

A
[

φα

ψα

]
=

[
xα − 1

|∂B|
∫
∂B

xα ds

ν · ∇xα

]
on ∂B. (3.24)

For another multi-index β ∈ N
d , define the generalized polarization tensors associated with the conductivity distribu-

tion σ(x) by

Mαβ = Mαβ(σ ) =
∫
∂B

xβφα(x) ds. (3.25)

Definition 3.1 of the GPTs involves the domain B satisfying (2.3). However, we will show later that GPTs for σ

(in fact, their harmonic combinations) are independent of the choice of B satisfying (2.3).
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When |α| = |β| = 1, we denote M := (Mαβ)|α|=|β|=1 and call it the polarization tensor (matrix). Sometimes we
write M = (Mij )

d
i,j=1.

For a given harmonic function h in R
d , let (φ,ψ) be the solution to (3.11). Since

h(x) = h(0) +
∑

|α|�1

∂αh(0)

α! xα,

we have[
φ

ψ

]
=

∑
|α|�1

∂αh(0)

α!
[

φα

ψα

]
. (3.26)

By (3.6) the solution u to (2.2) can be written as

u(x) = h(x) +
∑

|α|�1

∂αh(0)

α! SB [φα](x), x ∈R
d \ B.

Using the Taylor expansion

Γ (x − y) =
+∞∑

|β|=0

(−1)|β|

β! ∂βΓ (x)yβ

which holds for all x such that |x| → ∞ while y is bounded [9], we obtain the following theorem.

Theorem 3.2. For a given harmonic function h in R
d , let u be the solution to (2.2). The following asymptotic formula

holds uniformly as |x| → ∞:

u(x) − h(x) =
∑

|α|,|β|�1

(−1)|β|

α!β! ∂αh(0)Mαβ∂βΓ (x). (3.27)

There is yet another way to represent the solution to (3.11). To explain it, let Λe be the NtD map for the exterior
problem:

Λe[g] := u|∂B − 1

|∂B|
∫
∂B

u,

where u is the solution to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�u = 0 in R

d \ B,

∂u

∂ν

∣∣∣∣+ = g on ∂B,

u(x) = O
(|x|1−d

)
as |x| → ∞.

(3.28)

Let (φ,ψ) be the solution to (3.11). By (3.22), we have

ψ =
(

1

2
I +K∗

B

)
[φ] + ∂h

∂ν

∣∣∣∣
∂B

= φ +
(

−1

2
I +K∗

B

)
[φ] + ∂h

∂ν

∣∣∣∣
∂B

. (3.29)

On one hand, we obtain from the second identity in (3.29) that
∫
∂B

φ = 0. On the other hand, the first identity in (3.29)
says that

ψ = ∂

∂ν
SB [φ]

∣∣∣∣+ + ∂h

∂ν

∣∣∣∣
∂B

on ∂B, (3.30)

and hence

Λe[ψ] = SB [φ] − 1

|∂B|
∫

SB [φ] + Λe

[
∂h

∂ν

∣∣∣∣
∂B

]
. (3.31)
∂B
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Moreover,

ψ = φ + ∂

∂ν
SB [φ]

∣∣∣∣− + ∂h

∂ν

∣∣∣∣
∂B

on ∂B, (3.32)

and therefore,

Λ1[ψ] = Λ1[φ] + SB [φ] + h|∂B − 1

|∂B|
(
SB [φ] + h

)
. (3.33)

Combining (3.31) and (3.33) with

Λσ [ψ] = SB [φ] + h|∂B − 1

|∂B|
(
SB [φ] + h

)
in (3.11) yields(

Λσ − Λe
)[ψ] = (

Λ1 − Λe
)[∂h

∂ν

]
,

(Λ1 − Λσ )[ψ] = Λ1[φ].
Thus we readily get

φ = Λ−1
1 (Λ1 − Λσ )

(
Λσ − Λe

)−1(
Λ1 − Λe

)[∂h

∂ν

∣∣∣∣
∂B

]
, (3.34)

ψ = (
Λσ − Λe

)−1(
Λ1 − Λe

)[∂h

∂ν

∣∣∣∣
∂B

]
. (3.35)

Note that by the uniqueness of a solution to problem (3.18), it is easy to see that (Λσ −Λe) : H−1/2
0 (∂B) → H

1/2
0 (∂B)

is invertible.
Using (3.34) gives a slightly different but equivalent definition of the GPTs.

Lemma 3.2. For all α,β ∈ N
d , Mαβ , defined by (3.25), can be rewritten in the following form:

Mαβ(σ ) =
∫
∂B

xβΛ−1
1 (Λ1 − Λσ )

(
Λσ − Λe

)−1(
Λ1 − Λe

)[∂xα

∂ν

∣∣∣∣
∂B

]
ds. (3.36)

Formula (3.36) shows how to get the GPTs from the NtD maps.

4. Properties of GPTs

In this section, we prove important properties for the GPTs. We emphasize that the harmonic sums of GPTs, not
individual ones, play a key role. Let I and J be finite index sets. Harmonic sums of GPTs are

∑
α∈I, β∈J aαbβMαβ

where
∑

α∈I aαxα and
∑

β∈J bβxβ are harmonic polynomials.
The following lemma will be useful later.

Lemma 4.1. Let I and J be finite index sets. Let h1(x) := ∑
α∈I aαxα and h2(x) := ∑

β∈J bβxβ be harmonic poly-
nomials and let u1 be the solution to (2.2) with h1(x) in the place of h(x). Then,∑

α∈I

∑
β∈J

aαbβMαβ =
∫
Rd

(σ − 1)∇u1 · ∇h2 dx. (4.1)

Proof. Let ψ = ∑
α∈I aαψα and φ = ∑

α∈I aαφα . Then u1 is given by

u1(x) :=
{

h1(x) + SB [φ](x), x ∈R
d \ B,

N [ψ](x) + C, x ∈ B.
B,σ
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By (3.24), (3.25), and the integration by parts, we see∑
α∈I

∑
β∈J

aαbβMαβ =
∫
∂B

h2(x)φ(x) dsx

=
∫
∂B

h2

(
∂SB [φ]

∂ν

∣∣∣∣+ − ∂SB [φ]
∂ν

∣∣∣∣−
)

dsx

=
∫
∂B

h2

(
ψ − ∂h1

∂ν

)
dsx −

∫
∂B

h2
∂SB [φ]

∂ν

∣∣∣∣− dsx

=
∫
∂B

h2

(
ψ − ∂h1

∂ν

)
dsx −

∫
∂B

SB [φ]∂h2

∂ν
dsx

=
∫
∂B

h2

(
ψ − ∂h1

∂ν

)
dsx −

∫
∂B

(
Λσ [ψ] − h1

)∂h2

∂ν
dsx

=
∫
∂B

(
h2ψ − Λσ [ψ]∂h2

∂ν

)
dsx

=
∫
∂B

(
h2σ

∂u

∂ν

∣∣∣∣− − u
∂h2

∂ν

)
dsx

=
∫
B

(σ − 1)∇h2 · ∇u1 dx,

which concludes the proof. �
Identity (4.1) shows in particular that the definition of (harmonic combinations of) the GPTs given in the previous

section is independent of the choice of B .

4.1. Symmetry

We now prove symmetry of GPTs.

Lemma 4.2. Let I and J be finite index sets. For any harmonic coefficients {aα | α ∈ I } and {bβ | β ∈ J }, we have∑
α∈I

∑
β∈J

aαbβMαβ =
∑
α∈I

∑
β∈J

aαbβMβα. (4.2)

In particular, the first-order GPT, M, is symmetric.

Proof. The symmetry property (4.2) can be easily deduced from the proof of Lemma 4.1. However, we give here a
slightly different proof. For doing so, let

h1(x) :=
∑
α∈I

aαxα, h2(x) :=
∑
β∈J

bβxβ.

By (3.34), we have∑
α∈I

∑
β∈J

aαbβMαβ =
∫
∂B

h2(x)φ(x) dsx

=
∫
∂B

h2Λ
−1
1 (Λ1 − Λσ )

(
Λσ − Λe

)−1(
Λ1 − Λe

)[∂h1

∂ν

∣∣∣∣
∂B

]

=
∫

∂h2

∂ν
(Λ1 − Λσ )

(
Λσ − Λe

)−1(
Λ1 − Λe

)[∂h1

∂ν

∣∣∣∣
∂B

]
.

∂B
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Since (
Λσ − Λe

)−1 = (
Λ1 − Λe

)−1 + (
Λσ − Λe

)−1
(Λ1 − Λσ )

(
Λ1 − Λe

)−1
,

we have∑
α∈I

∑
β∈J

aαbβMα,β =
∫
∂B

∂h2

∂ν
(Λ1 − Λσ )

[
∂h1

∂ν

]
+

∫
∂B

∂h2

∂ν
(Λ1 − Λσ )

(
Λσ − Λe

)−1
(Λ1 − Λσ )

[
∂h1

∂ν

]
.

Since the NtD maps, Λ1,Λσ , and Λe, are self-adjoint, we get (4.2) which concludes the proof. �
4.2. Positivity and bounds

Let h(x) = ∑
α∈I aαxα be a harmonic function in R

d and u be the solution to (2.2). As in the proof of Lemma 4.1,
we have∑

α,β∈I

aαaβMαβ =
∫
∂B

(
hσ

∂u

∂ν

∣∣∣∣− − u
∂h

∂ν

)
ds

=
∫
∂B

(
uσ

∂u

∂ν

∣∣∣∣− − 2(u − h)
∂h

∂ν
− h

∂h

∂ν
− (u − h)

∂(u − h)

∂ν

∣∣∣∣+
)

ds

=
∫
B

(
σ |∇u|2 − 2∇(u − h) · ∇h − |∇h|2) +

∫
Rd\B

∣∣∇(u − h)
∣∣2

=
∫
Rd

(
σ
∣∣∇(u − h)

∣∣2 + 2(σ − 1)∇(u − h) · ∇h + (σ − 1)|∇h|2)
=

∫
Rd

σ
∣∣∇(u − h) + (

1 − σ−1)∇h
∣∣2 +

∫
B

(σ − 1)

σ
|∇h|2.

We can also check the following variational principle:∑
α,β∈I

aαaβMαβ = min
w∈Wd(Rd )

∫
Rd

σ
∣∣∇w + (

1 − σ−1)∇h
∣∣2 +

∫
B

(σ − 1)

σ
|∇h|2, (4.3)

where Wd(Rd) is defined by (3.16) and (3.17).
Following the same lines of proof as in [9] for the homogeneous case, we have the following bounds for GPTs.

Theorem 4.1. Let I be a finite index set. Let {aα | α ∈ I } be the set of coefficients such that h(x) := ∑
α∈I aαxα is a

harmonic function. Then we have∫
B

(σ − 1)

σ
|∇h|2 �

∑
α,β∈I

aαaβMαβ �
∫
B

(σ − 1)|∇h|2. (4.4)

Proof. The bound on the left-hand side is obvious since

min
w∈Wd(Rd )

∫
Rd

σ
∣∣∇w + (

1 − σ−1)∇h
∣∣2 � 0.

By taking w = 0, we get∑
α,β∈I

aαaβMαβ �
∫
B

(σ − 1)2

σ
|∇h|2 +

∫
B

(σ − 1)

σ
|∇h|2 =

∫
B

(σ − 1)|∇h|2,

which concludes the proof. �
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The above theorem shows that if σ is strictly lager than 1 then the GPTs are positive definite, and they are negative
definite if 0 < σ < 1. Note that optimal bounds on the first-order GPT have been derived in [22,31].

4.3. GPTs and contracted GPTs

The contracted GPTs appeared in the asymptotic expansions as in (2.19) and (2.23) while the GPTs appeared
in (3.27). By comparing those asymptotic formulas, we obtain the following lemma which relates both quantities.

Lemma 4.3.

(i) If rn cosnθ = ∑
|α|=n ac

αxα and rn sinnθ = ∑
|α|=n as

αxα in two dimensions, then

Mcc
mn =

∑
|α|=m, |β|=n

ac
αac

βMαβ, Mcs
mn =

∑
|α|=m, |β|=n

ac
αas

βMαβ,

Msc
mn =

∑
|α|=m, |β|=n

as
αac

βMαβ, Mss
mn =

∑
|α|=m, |β|=n

as
αas

βMαβ.

(ii) If rnYm
n (θ,ϕ) = ∑

|α|=n amn
α xα in three dimensions, then

Mmnkl =
∑

|α|=n, |β|=l

amn
α akl

β Mαβ.

Conversely, any harmonic combination of the GPTs can be recovered from the contracted GPTs.

4.4. Determination of NtD map

It is proved in [6] (see also [9, Theorem 4.9]) that the full set of harmonic combinations of GPTs associated with a
homogeneous inclusion determines the NtD map on the boundary of any domain enclosing the inclusion, and hence
the inclusion. In the case of inhomogeneous conductivity inclusions, the same proof can be easily adapted to obtain
the following result.

Theorem 4.2. Let I and J be finite index sets. Let σi , i = 1,2, be two conductivity distributions with supp(σi −1) ⊂ B

and satisfying (2.1). If∑
α∈I

∑
β∈J

aαbβMαβ(σ1) =
∑
α∈I

∑
β∈J

aαbβMαβ(σ2) (4.5)

for any harmonic coefficients aα and bβ , then

Λσ1 = Λσ2 on ∂B. (4.6)

Using uniqueness results of the Calderón problems (for example [38,15]) one can deduce from (4.6) that σ1 = σ2
under some regularity assumptions on the conductivities imposed in those results. In two dimensions, uniqueness
holds for conductivities in L∞ [15].

5. Sensitivity analysis for GPTs

We now consider the sensitivity of the GPTs with respect to changes in the conductivity distribution. Again, we
suppose that σ − 1 is compactly supported in a domain B . The perturbation of the conductivity σ is given by σ + εγ ,
where ε is a small positive parameter, γ is compactly supported in B and refers to the direction of the changes. The
aim of this section is to derive an asymptotic formula, as ε → 0, for the perturbation

�M :=
∑
α∈I

∑
β∈J

aαbβ

(
Mαβ(σ + εγ ) − Mαβ(σ )

)
, (5.1)

where {aα} and {bβ} are harmonic coefficients and I and J are finite index sets.
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Let, as above, h1 and h2 be the harmonic functions given by

h1(x) =
∑
α

aαxα, h2(x) =
∑
β

bβxβ.

By (3.34) and a direct calculation we obtain

�M =
∫
∂B

h2Λ
−1
1

(
(Λ1 − Λσ+εγ )

(
Λσ+εγ − Λe

)−1 − (Λ1 − Λσ )
(
Λσ − Λe

)−1)(
Λ1 − Λe

)[∇h1 · ν]

=
∫
∂B

h2Λ
−1
1

(
(Λσ − Λσ+εγ )

(
Λσ+εγ − Λe

)−1

+ (Λ1 − Λσ )
[(

Λσ+εγ − Λe
)−1 − (

Λσ − Λe
)−1])(

Λ1 − Λe
)[∇h1 · ν]

=
∫
∂B

h2Λ
−1
1

(
Λ1 − Λe

)(
Λσ − Λe

)−1
(Λσ − Λσ+εγ )

(
Λσ+εγ − Λe

)−1(
Λ1 − Λe

)[∇h1 · ν]

=
∫
∂B

(Λσ − Λσ+εγ )[g2]gε
1,

where

gε
1 = (

Λσ+εγ − Λe
)−1(

Λ1 − Λe
)[∇h1 · ν] and g2 = (

Λσ − Λe
)−1(

Λ1 − Λe
)[∇h2 · ν]. (5.2)

Since Λσ is self-adjoint, we have

�M = 1

2

∫
∂B

(Λσ − Λσ+εγ )
[
g2 + gε

1

](
g2 + gε

1

) − 1

2

∫
∂B

(Λσ − Λσ+εγ )[g2]g2 − 1

2

∫
∂B

(Λσ − Λσ+εγ )
[
gε

1

]
gε

1.

We need the following two lemmas.

Lemma 5.1. If u1 and u2 are the solutions of ∇ · (σ1∇u1) = 0 and ∇ · (σ2∇u2) = 0 with the Neumann boundary
conditions σ1

∂u1
∂ν

= g and σ2
∂u2
∂ν

= g on ∂B , respectively, then the following identity holds∫
∂B

(Λσ2 − Λσ1)[g]g ds = 1

2

∫
B

(σ1 − σ2)
(∣∣∇(u1 − u2)

∣∣2 + |∇u1|2 + |∇u2|2
)
dx. (5.3)

Proof. The following identity is well-known (see, for instance, [9]):∫
B

σ1
∣∣∇(u1 − u2)

∣∣2
dx +

∫
B

(σ1 − σ2)|∇u1|2 dx =
∫
∂B

(Λσ2 − Λσ1)[g]g ds.

We also have∫
B

σ2
∣∣∇(u1 − u2)

∣∣2
dx −

∫
B

(σ1 − σ2)|∇u2|2 dx =
∫
∂B

(Λσ1 − Λσ2)[g]g ds.

Subtracting those two equalities we obtain (5.3). �
Lemma 5.2. There is a constant C such that

‖Λσ1 − Λσ2‖� C‖σ1 − σ2‖L∞(B). (5.4)

Proof. Let u1 and u2 be the solutions to ∇ · (σ1∇u1) = 0 and ∇ · (σ2∇u2) = 0 with boundary conditions σ1
∂u1
∂ν

= g

and σ2
∂u2 = g on ∂B , respectively, and let h be the harmonic function with ∂h = g on ∂B . Then we have

∂ν ∂ν
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∫
B

σ1|∇u1|2 =
∫
B

∇h · ∇u1 �
1

2ε

∫
B

|∇h|2 dx + ε

2

∫
B

|∇u1|2 dx,

for any ε > 0. Choosing ε = infB σ1 := σ1 we get∫
B

|∇u1|2 dx � 1

σ1
2

∫
B

|∇h|2 dx.

Similarly, we get∫
B

|∇u2|2 dx � 1

σ2
2

∫
B

|∇h|2 dx,

where σ2 := infB σ2. It then follows from (5.3) that∣∣∣∣ ∫
∂B

(Λσ2 − Λσ1)[g]g ds

∣∣∣∣� 3

2
‖σ1 − σ2‖L∞(B)

( ∫
B

|∇u1|2 dx +
∫
B

|∇u2|2 dx

)

� 3

2

(
1

σ1
2

+ 1

σ2
2

)( ∫
B

|∇h|2 dx

)
‖σ1 − σ2‖L∞(B)

� C‖g‖2
H−1/2(∂B)

‖σ1 − σ2‖L∞(B).

Thus, we obtain (5.4). �
With the notation (5.2) in hand, let

g1 := (
Λσ − Λe

)−1(
Λ1 − Λe

)[∇h1 · ν], (5.5)

and let ui , for i = 1,2, be the solution to⎧⎨⎩
∇ · (σ∇ui) = 0 in B,

σ
∂ui

∂ν
= gi on ∂B.

(5.6)

Let uε
1, vε

1 and vε
2 be the solutions to⎧⎨⎩

∇ · (σ∇uε
1

) = 0 in B,

σ
∂uε

1

∂ν
= gε

1 on ∂B,
(5.7)

⎧⎨⎩
∇ · ((σ + εγ )∇vε

1

) = 0 in B,

σ
∂vε

1

∂ν
= gε

1 on ∂B,
(5.8)

and ⎧⎨⎩
∇ · ((σ + εγ )∇vε

2

) = 0 in B,

σ
∂vε

2

∂ν
= g2 on ∂B.

(5.9)

Then by Lemma 5.1 we have

�M = 1

4

∫
B

εγ
(∣∣∇(

u2 + uε
1 − vε

2 − vε
1

)∣∣2 + ∣∣∇(
u2 + uε

1

)∣∣2 + ∣∣∇(
vε

2 + vε
1

)∣∣2)
dx

− 1

4

∫
εγ

(∣∣∇(
u2 − vε

2

)∣∣2 + |∇u2|2 + ∣∣∇vε
2

∣∣2)
dx − 1

4

∫
εγ

(∣∣∇(
uε

1 − vε
1

)∣∣2 + ∣∣∇uε
1

∣∣2 + ∣∣∇vε
1

∣∣2)
dx.
B B
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Lemma 5.2 yields∥∥uε
1 − u1

∥∥2
L2(B)

= O(ε) (5.10)

and ∥∥vε
j − uj

∥∥2
L2(B)

= O(ε), j = 1,2. (5.11)

Thus we get

�M = ε

2

∫
B

γ
(∣∣∇(u1 + u2)

∣∣2 − |∇u1|2 − |∇u2|2
)
dx + O

(
ε2),

to arrive at the following theorem.

Theorem 5.1. Let I and J be finite index sets. Let u1 and u2 be the solutions to (5.6). Then we have∑
α∈I

∑
β∈J

aαbβMαβ(σ + εγ ) =
∑
α∈I

∑
β∈J

aαbβMαβ(σ ) + ε

∫
B

γ∇u1 · ∇u2 dx + O
(
ε2). (5.12)

6. Reconstruction of an inhomogeneous conductivity distribution

Over the last decades, a considerable amount of work has been dedicated to the inverse conductivity problem. We
refer, for instance, to [18,23] and the references therein.

Here, our approach is completely different. We stably recover some important features of inhomogeneous con-
ductivities using their GPTs. It should be emphasized that the GPTs can be obtained from boundary measurements
by solving a least-squares problem [1]. The purpose of this section is to illustrate numerically the viability of this
finding.

For doing so, we use a least-square approach (see, for instance, [25]). Let σ ∗ be the exact (target) conductivity
(in two dimensions) and let ymn := Mmn(σ

∗) (omitting for the sake of simplicity c and s for the superscripts in
contracted GPTs). The general approach is to minimize over bounded conductivities σ the discrepancy functional

S(σ ) = 1

2

∑
m+n�N

ωmn

∥∥ymn − Mmn(σ)
∥∥2 (6.1)

for some finite number N and some well-chosen weights ωmn. The weights ωmn are used to enhance resolved features
of the conductivity as done in [3,19]. We solve the above minimization problem using the gradient descent (Landwe-
ber) method.

6.1. Fréchet derivative and an optimization procedure

Let, again for the sake of simplicity, Mmn(σ) = Mcc
mn(σ ) be the contracted GPTs for a given conductivity σ . The

Fréchet derivative in the direction of γ , M ′
mn(σ )[γ ], is defined to be

M ′
mn(σ )[γ ] := lim

ε→0

Mmn(σ + εγ ) − Mmn(σ)

ε
.

From (5.12) we obtain that

M ′
mn(σ )[γ ] =

∫
B

γ∇un · ∇um dx, (6.2)

where un and um are the solutions of⎧⎨⎩
∇ · (σ∇u) = 0 in B,

σ
∂u = (

Λσ − Λe
)−1(

Λ1 − Λe
)[∇h · ν] on ∂B,

(6.3)
∂ν
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with h = rn cosnθ and h = rm cosmθ , respectively. Note that if Mmn(σ) is one of the other contracted GPTs, then h

should be changed accordingly.
One can easily see that the adjoint M ′

mn(σ )∗ of M ′
mn(σ ) is given by

M ′
mn(σ )∗[c] = c∇um · ∇un, c ∈R. (6.4)

The gradient descent procedure to solve the least-square problem (6.1) reads

σk+1 = σk +
∑
m,n

ωmnM
′
mn(σk)

∗[ymn − Mmn(σk)
]
. (6.5)

In the numerical implementation, the GPTs for the exact conductivity distribution can be computed by using the
following formula:

Mmn(σ) =
∫
∂B

(h1 − ũ1)σ
∂u2

∂ν
ds =

∫
∂B

h1σ
∂u2

∂ν
ds −

∫
∂B

∂h1

∂ν
u2 ds, (6.6)

where ũ1 and u2 are the solutions to⎧⎪⎪⎨⎪⎪⎩
∇ · (σ(x)∇ũ1

) = 0 in B,

σ
∂ũ1

∂ν
= ∂h1

∂ν
on ∂B,

( ∫
∂B

ũ1 = 0

)
,

(6.7)

and {
∇ · σ∇u2 = 0 in R

d ,

u2(x) − h2(x) = O
(|x|1−d

)
, |x| → ∞,

(6.8)

respectively. Here, h1 = rn cosnθ and h2 = rm cosmθ in two dimensions.
On the other hand, in order to compute M ′

mn(σ )∗ we need to invert the operator Λσ − Λe. This can be done
iteratively. In fact, the least-square solution to(

Λσ − Λe
)[g] = f,

is given by

gk+1 = gk + ω
(
Λσ − Λe

)(
f − (

Λσ − Λe
)[gk]

)
, (6.9)

where ω is a positive step-size.
In order to stably and accurately reconstruct the conductivity distribution, we use a recursive approach pro-

posed in [14] (see also [3,4,19,16]). We first minimize the discrepancy between the first contracted GPTs for 1 �
m,n � l. Then we use the result as an initial guess for the minimization between the GPTs for 1 � m,n � l + 1. This
corresponds to choosing appropriately the weights ωmn in (6.1). Moreover, we refine the mesh used to compute the
reconstructed conductivity distribution every time we increase the number of used contracted GPTs in the discrepancy
functional.

6.2. Resolution analysis in the linearized case

Let d = 2 and let B be a disk centered at the origin. Consider the linearized case by assuming that the conductivity
σ is given by σ = k+εγ , where k �= 1 is a positive constant and ε is a small parameter. In that case, using Theorem 5.1
together with Lemma 4.3, one can easily see that

Mmn(k + εγ ) = Mmn(k) + ε

∫
B

γ∇um · ∇un dx + O
(
ε2),

with um(x) = rmeimθ , un(x) = rneinθ , and x = (r, θ). Hence, it follows that( ∫
γ (r, θ)rm+n−2ei(m+n)θ dθ dr

)
1�m,n�N
B
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Fig. 1. Reconstructed conductivity distribution.

can be obtained from the contracted GPTs, Mmn, for 1 �m,n �N . Therefore, the higher is N , the better is the angular
resolution in reconstructing γ . On the other hand, it is clear that variations of γ that are orthogonal (in the L2 sense)
to the set of polynomials (rm+n−2)1�m,n�N cannot be reconstructed from the contracted GPTs Mmn, 1 � m,n � N .
Moreover, the reconstruction of γ near the origin (r = 0) is more sensitive to noise than near the boundary of B . This
is in accordance with [5,35].

6.3. Numerical illustration

In this section, for simplicity we only consider the reconstruction from contracted GPTs of a conductivity distribu-
tion which is radially symmetric. Many recent works have been devoted to the reconstruction of radially symmetric
conductivities. See, for instance, [17,33,37].

Here we consider the following conductivity distribution:

σ = (
0.3r2 + 0.5r3 + 6

(
r2 − 0.5

)2 + 3.0
)
/3.0, (6.10)

and apply our original approach for recovering σ from the contracted GPTs Mmn, for m,n � N . Since the conductivity
distribution σ is radially symmetric we have

Mcs
mn = Msc

mn = 0 for all m,n,

Mcc
mn = Mss

mn = 0 if m �= n,

and Mm := Mcc
mm = Mss

mm. We use M1 to estimate the constant conductivity which has the same first-order GPT as
follows:

σ0 := 2|B| + M1

2|B| − M1
. (6.11)

Then we use σ0 as an initial guess and apply the recursive approach described below.
Let k∗ be the last iteration step, and let εM and εσ be discrepancies of GPTs and the conductivities, i.e.,

εM :=
∑(

yn − Mn(σk∗)
)2

, yn := Mn(σ). (6.12)

n�N
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Fig. 2. The convergence history of εM , where k is the number of iterations.

Fig. 3. The convergence history of εσ , where k is the number of iterations.

(N represents the number of GPTs used) and

εσ :=
∫
B
(σk∗ − σ)2∫

B
σ 2

. (6.13)

Fig. 1 shows the reconstructed conductivity distribution using contracted GPTs with N = 6. In this reconstruction, the
errors εM and εσ are given by

εM = 9.83318e − 005, εσ = 3.5043e − 005,
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after 1598 iterations. It should be noted that the conductivity is better reconstructed near the boundary of the inclusion
than inside the inclusion itself. Fig. 2 shows how fast εM decreases as the iteration proceeds. The sudden jump in the
figure happens when we switch the number of GPTs from N to N + 1. Fig. 3 is for the convergence history of εσ .

7. Conclusion

In this paper we have introduced for the first time the notion of GPTs for inhomogeneous conductivity inclusions.
The GPTs carry out overall properties of the conductivity distribution. They can be determined from the NtD map. We
have established positivity and symmetry properties for the GPTs. We have also analyzed their sensitivity with respect
to small changes in the conductivity. We have proposed a recursive algorithm for reconstructing the conductivity
from the GPTs and presented a numerical example to show that radially symmetric conductivities can be accurately
reconstructed from the GPTs. A numerical study of the use of the GPTs for solving the inverse conductivity problem
will be the subject of a forthcoming work. A stability and resolution analysis will be performed. It would also be very
interesting to extend the ideas of this paper to the inverse wave medium problems.
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