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Abstract

We study the boundary value problem for the — conformally invariant — super-Liouville functional

E(u,ψ) =
∫
M

{
1

2
|∇u|2 + Kgu + 〈(

/D + eu
)
ψ,ψ

〉 − e2u

}
dz

that couples a function u and a spinor ψ on a Riemann surface. The boundary condition that we identify (motivated by quantum
field theory) couples a Neumann condition for u with a chirality condition for ψ . Associated to any solution of the super-Liouville
system is a holomorphic quadratic differential T (z), and when our boundary condition is satisfied, T becomes real on the boundary.
We provide a complete regularity and blow-up analysis for solutions of this boundary value problem.
© 2013 Published by Elsevier Masson SAS.

1. Introduction

In [12], we have introduced the super-Liouville functional, a conformally invariant functional that couples a real-
valued function u and a spinor ψ on a Riemann surface M with conformal metric g and a spin structure,

E(u,ψ) =
∫
M

{
1

2
|∇u|2 + Kgu + 〈(

/D + eu
)
ψ,ψ

〉 − e2u

}
dz. (1)

Here Kg is the Gaussian curvature of M . The Dirac operator /D is defined by /Dψ := ∑2
α=1 eα · ∇eαψ , where {e1, e2}

is an orthonormal basis on T M and ∇ is the connection on the spinor bundle ΣM of M , which is induced from the
Levi-Civita connection on M with respect to g and · denotes the Clifford multiplication in the spinor bundle ΣM .
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Finally, 〈·,·〉 is the natural Hermitian metric on ΣM induced by g. The system of Euler–Lagrange equations associated
to (1) is called the super-Liouville equation. For the geometric background, see [15] or [10].

In this paper, we wish to address the boundary value problem for the super-Liouville functional. We therefore first
of all need to identify the appropriate boundary condition for the spinor field ψ . Since the super-Liouville functional
is inspired by quantum field theory, we likewise turn to the physics literature [2,6,16,17] to get some clue about a
natural boundary condition. This boundary condition then will be of chirality type. The main point of the paper then
is an analytical investigation of solutions of the boundary value problem. In particular, we shall show the regularity
of solutions and identify the blow-up behavior for limits of sequences of solutions. In other words, we analytically
understand the non-compactness of the solution space.

The key property of the functional is of course its conformal invariance. Therefore, the boundary conditions to
be imposed likewise need to be conformally invariant. Conformal invariance on one hand makes the solution space
non-compact, but on the other hand allows for a control of limits of solutions via a blow-up analysis. This is, of course,
a well-known scheme, but the details are technically somewhat tricky and interesting.

Conformal invariance, like any invariance, by Noether’s theorem leads to some conserved current. For two-
dimensional conformally invariant variational problems, this conserved quantity can be identified with a holomorphic
quadratic differential associated to a solution. From this perspective, our boundary condition is the natural one, because
it renders that holomorphic quadratic differential real on the boundary. At a more technical level, this is important for
the study of the asymptotic behavior of an entire solution on the upper half-plane with finite energy. Also, our bound-
ary condition allows for the reflection of solutions across the boundary, which, at least heuristically, reduces boundary
to interior regularity and which therefore, technically, is a useful device.

In [5], we have investigated the chirality boundary condition for Dirac-harmonic maps. Since in the present case,
the coupling between the two fields is different, so then necessarily is the boundary analysis. Since the Liouville field u

is scalar valued, in particular, here we can achieve a more precise blow-up analysis at the boundary. Since the chirality
boundary condition is of physical interest, its general mathematical understanding should be useful.

2. The boundary value problem for the super-Liouville equation

In this section, we shall derive the boundary condition to be imposed on solutions of the super-Liouville equation.
Thus, let M be a compact Riemann surface with smooth boundary ∂M and with a fixed spin structure. When ∂M �= ∅,
we know that the Laplacian operator � is in general not formally self-adjoint, and neither is the Dirac operator /D. In
fact, we have∫

M

〈ψ,/Dϕ〉dv =
∫
M

〈/Dψ,ϕ〉dv −
∫

∂M

〈�n · ψ,ϕ〉dv

for all ψ,ϕ ∈ C∞(ΣM). Here �n is the outward unit normal vector field on ∂M .
As is well known, the natural boundary condition for the function u is of Neumann type. This condition is clearly

conformally invariant. We now shall derive a boundary conditions for the spinor field ψ that is likewise conformally
invariant.

We recall the chirality boundary conditions for the Dirac operator /D first introduced in [7]. See also [9]. Let M be
a compact Riemann surface with ∂M �= ∅ and with a fixed spin structure, admitting a chirality operator G, which is
an endomorphism of the spinor bundle ΣM satisfying:

G2 = I, 〈Gψ,Gϕ〉 = 〈ψ,ϕ〉,
and

∇X(Gψ) = G∇Xψ, X · Gψ = −G(X · ψ),

for any X ∈ T M,ψ,ϕ ∈ Γ (ΣM). Here I denotes the identity endomorphism of ΣM .
We usually take G = γ (ω2), the Clifford multiplication by the complex volume form ω2 = ie1e2, where e1, e2 is a

local orthonormal frame on M .
Let

S := ΣM|∂M
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denote the restricted spinor bundle with induced Hermitian product. The outward unit normal vector field �n induces
an operator �nG : Γ (S) → Γ (S), which is a self-adjoint endomorphism satisfying

(�nG)2 = I, 〈�nGψ,ϕ〉 = 〈ψ, �nGϕ〉.
Hence, we can decompose S = V + ⊕V −, where V ± is the eigensubbundle corresponding to the eigenvalue ±1 of �nG.
One can check that the orthogonal projection onto the eigensubbundle V ±:

B± : L2(S) → L2(V ±)
ψ → 1

2
(I ± �nG)ψ,

defines a local elliptic boundary condition for the Dirac operator /D, see [9]. We say that a spinor ψ ∈ W 1, 4
3 (Γ (ΣM))

satisfies the chirality boundary conditions B± if

B±ψ
∣∣
∂M

= 0.

It is shown in [9] that if ψ,ϕ ∈ W 1, 4
3 (Γ (ΣM)) satisfy the chirality boundary conditions, resp., then

〈�n · ψ,ϕ〉 = 0, on ∂M.

In particular,∫
∂M

〈�n · ψ,ϕ〉 = 0. (2)

It follows that the Dirac operator /D is self-adjoint when we impose the chirality boundary conditions.
Let us note that on a surface the (usual) Dirac operator /D can be seen as the (doubled) Cauchy–Riemann operator.

Consider R
2 with the Euclidean metric ds2 + dt2. Let e1 = ∂

∂s
and e2 = ∂

∂t
be the standard orthonormal frame.

A spinor field is simply a map Ψ : R2 → �2 = C
2, and the Cliford multiplication of e1 and e2 acting on spinor fields

can be identified by the multiplication with matrices

e1 =
(

0 i

i 0

)
, e2 =

(
0 1

−1 0

)
.

Here, without loss of generality, we keep e1 and e2 consistence with that in [5]. If exchanging e1 and e2, then e1 and

e2 are consistent with that in [12] and this case can be handled analogously. If Ψ :=
(

f
g

)
: R2 → C

2 is a spinor field,

then the Dirac operator is

/DΨ =
(

0 i

i 0

)( ∂f
∂s
∂g
∂s

)
+

(
0 1

−1 0

)( ∂f
∂t
∂g
∂t

)
= 2i

( ∂g
∂z

∂f
∂z̄

)
,

where

∂

∂z
= 1

2

(
∂

∂s
− i

∂

∂t

)
,

∂

∂z̄
= 1

2

(
∂

∂s
+ i

∂

∂t

)
.

Therefore, the elliptic estimates developed for (anti-)holomorphic functions can be used to study the Dirac equation.

If M is the upper half Euclidean space R
2+, then the chirality operator is simply G = ie1e2 =

(
1 0
0 −1

)
. Note that

�n = −e2, we get that

B± = 1

2
(I ± �n · G) = 1

2

(
1 ±1

±1 1

)
.

By the standard chirality decomposition, we can write ψ =
(

ψ+
ψ−

)
, then the boundary condition becomes

ψ+ = ∓ψ− on ∂R2+.
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In this paper, we will consider the functional

EB(u,ψ) =
∫
M

{
1

2
|∇u|2 + Kgu + 〈(

/D + eu
)
ψ,ψ

〉 − e2u

}
dv +

∫
∂M

{
hgu − ceu

}
dσ, (3)

where hg is geodesic curvature of ∂M and c is a given constant.

Proposition 2.1. The Euler–Lagrange system for EB(u,ψ) with Neumann/chirality boundary conditions is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−�u = 2e2u − eu〈ψ,ψ〉 − Kg, in Mo,

/Dψ = −euψ, in Mo,

∂u

∂n
= ceu − hg, on ∂M,

B±ψ = 0, on ∂M.

(4)

Here � is the Laplacian with respect to g, and Kg is the Gaussian curvature in M , and hg is the geodesic curvature
of ∂M .

Proof. Let ut be a family of function with ∂ut

∂t
|t=0 = η, and let ψt be a family of spinor with ∂ψt

∂t
|t=0 = ξ . Since

dEB(u,ψt )

dt

∣∣∣∣
t=0

=
∫
M

〈/Dξ,ψ〉 + 〈/Dψ,ξ 〉 + eu〈ξ,ψ〉 + eu〈ψ,ξ〉dv

= 2
∫
M

Re〈ξ,/Dψ〉 + 2eu Re〈ξ,ψ〉dv −
∫

∂M

〈ξ, �n · ψ〉dσ,

and

dEB(ut ,ψ)

dt

∣∣∣∣
t=0

=
∫
M

∇u · ∇η + Kgη + ηeu〈ψ,ψ〉 − 2e2uη dv +
∫

∂M

hgη − ceuη dσ

= −
∫
M

η�udv +
∫

∂M

η
∂u

∂n
dσ +

∫
M

Kgη + ηeu〈ψ,ψ〉 − 2e2uη dv +
∫

∂M

hgη − ceuη dσ,

one can easily obtain (4). �
For simplicity, we shall call (4) the Neumann boundary problem in the sequel.
Now we come to an important property of the Neumann boundary problem (4).

Proposition 2.2. Assume that (u,ψ) is a solution of (4). For any conformal diffeomorphism ϕ : M → M , if we set

ũ = u ◦ ϕ − φ,

ψ̃ = e− φ
2 ψ ◦ ϕ (5)

where eφ is the conformal factor of the conformal map ϕ, i.e., ϕ∗(g) = e2φg, then (ũ, ψ̃) is also a solution of (4).
Moreover, the functional EB(u,ψ) is conformally invariant.

Proof. Let g̃ = ϕ∗g, where g is the metric on M . Let /̃D, B̃ be the Dirac operator and the chirality boundary operator
with respect to the new metric g̃ respectively. We identify the new and old spin bundles as in [8]. Since the relation
between the two Dirac operators /D and /̃D is

/̃Dψ̃ = λ− 3
2 /D

(
λ

1
2 ψ̃

) = λ− 3
2 /Dψ
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for λ = eφ , and the relation between the two Gaussian curvatures and between the two geodesic curvatures are respec-
tively

−�gφ = Kg̃e
2φ − Kg,

∂φ

∂n
= hg̃e

φ − hg.

We can show by a direct computation that (ũ, ψ̃) satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−�g̃ũ = 2e2ũ − eũ〈ψ̃, ψ̃〉 − Kg̃, in Mo,

/̃Dψ̃ = −eũψ̃, in Mo,

∂ũ

∂n
= ceũ − hg̃, on ∂M,

B̃±ψ̃ = 0, on ∂M.

Similarly, one can also show that the functional is conformally invariant. The proof of the proposition is complete. �
In the sequel, we will only consider the case of B+ and omit the symbol “+”. The case of B− can, of course, be

handled analogously.
Let us recall that a Killing spinor is a spinor ψ satisfying

∇Xψ = λX · ψ, for any vector field X

for some constant λ. On the standard sphere, there are Killing spinors with the Killing constant λ = 1
2 , see for in-

stance [3]. A Killing spinor is an eigenspinor, i.e.,

/Dψ = −ψ, (6)

with constant |ψ |2. Choose a Killing spinor ψ with |ψ |2 = 1. If we identify S
2\{north pole} by the stereographic

projection with the Euclidean plane R
2 with the metric

4

(|1 + |x|2)2
|dx|2,

then any Killing spinor has the form

v + x · v√
1 + |x|2 ,

for a constant v ∈ C
2, up to a translation or a dilation. See [3].

We can now construct some special solutions of (4).

Proposition 2.3. Let M =R
2+. Then(

log

√
2

1 + |x − x0|2 ,0

)
is a solution of (4), where x0 = (s0, t0) for s0 ∈R and t0 = −

√
2c
2 for any constant c. Furthermore, if c = 0, then(

log
2

1 + |x − x1|2 ,
√

2
v + (x − x1) · v
1 + |x − x1|2

)
is also a solution of (4), where x1 = (s1,0) for s1 ∈R, and v = ( v1

v2

) ∈ {v ∈C
2 | |v| = 1} and v1 = −v2.

Proof. Set ψ = √
2 v+(x−x1)·v

1+|x−x1|2 . Since /Dψ = −ψ , according to the argument in [12], it is sufficient to show that
Bψ |∂R2 = 0. Since
+



690 J. Jost et al. / Ann. I. H. Poincaré – AN 31 (2014) 685–706
v + (x − x1) · v = v + (s − s1)e1 · v + te2 · v
=

(
v1
v2

)
+ (s − s1)

(
0 i

i 0

)(
v1
v2

)
+ t

(
0 1

−1 0

)(
v1
v2

)
=

(
v1 + i(s − s1)v2 + tv2
v2 + i(s − s1)v1 − tv1

)
,

we have

ψ =
√

2

1 + |x − x1|2
(

v1 + i(s − s1)v2 + tv2
v2 + i(s − s1)v1 − tv1

)
.

Hence we have by using v1 = −v2 on ∂R2+,

ψ =
√

2

1 + |x − x1|2
(

v1 − i(s − s1)v1
−v1 + i(s − s1)v1

)
on ∂R2+.

This means that Bψ |∂R2+ = 0. �
3. Regularity of solutions for the Neumann boundary problem

In this section, we consider the regularity of solutions for the Neumann boundary problem (4) under the condition
that ∫

M

(
e2u + |ψ |4 dv +

∫
∂M

eu

)
dσ < ∞.

First, we define weak solutions of (4). We say that (u,ψ) is a weak solution of (4), if u ∈ W 1,2(M) and ψ ∈
W

1, 4
3

B (Γ (ΣM)) satisfy∫
M

∇u∇φ dv =
∫
M

(
2e2u − eu|ψ |2 − Kg

)
φ dv +

∫
∂M

(
ceu − hg

)
φ dσ,

∫
M

〈ψ,/Dξ 〉dv = −
∫
M

eu〈ψ,ξ〉dv

for φ ∈ C∞(M) and any smooth spinor ξ ∈ C∞ ∩ W
1, 4

3
B (Γ (ΣM)). Here

W
1, 4

3
B

(
Γ (ΣM)

) = {
ψ

∣∣ ψ ∈ W 1, 4
3
(
Γ (ΣM)

)
, Bψ |∂M = 0

}
.

It is clear that (u,ψ) ∈ W 1,2(M) × W
1, 4

3
B (Γ (ΣM)) is a weak solution if and only if (u,ψ) is a critical point of

EB(u,ψ) in W 1,2(M) × W
1, 4

3
B (Γ (ΣM)). A weak solution is a classical solution by the following.

Proposition 3.1. Let (u,ψ) be a weak solution of (4) with
∫
M

e2u +|ψ |4 dv + ∫
∂M

eu dσ < ∞. Then u ∈ C2,α(Mo)∩
C1,α(M) and ψ ∈ C2,α(Γ (ΣMo)) ∩ C1,α(Γ (ΣM)) for some α ∈ (0,1).

To prove this proposition, we need several lemmas.

Lemma 3.2. (See [4].) Assume Ω ⊂R
2 is a bounded domain and let u be a solution of{−�u = f (x) in Ω,

u = 0 on ∂Ω

with f ∈ L1(Ω). Then for every δ ∈ (0,4π) we have
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∫
Ω

exp

{
(4π − δ)|u(x)|

‖f ‖1

}
dx � 4π2

δ
(diamΩ)2, (7)

where ‖f ‖1 = ∫
Ω

|f (x)|dx.

Lemma 3.3. (See [13].) Assume that u is a solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�u = 0, in B+

R ,

∂u

∂t
= f (x), on {t = 0} ∩ ∂B+

R ,

u = 0, on ∂B+
R ∩ B+

R ,

with f ∈ L1({t = 0} ∩ ∂B+
R ) for any R > 0. Then for every δ1 ∈ (0,4π) we have∫

B+
R

exp

{
(4π − δ1)|u(x)|

‖f ‖1

}
dx � 16π2R2

δ1

and for every δ2 ∈ (0,2π)∫
∂B+

R ∩{t=0}
exp

{
(2π − δ2)|u(x)|

‖f ‖1

}
ds � 4πR

δ2

where ‖f ‖1 = ∫
{t=0}∩∂B+

R
|f |ds.

By Lemma 3.2 and Lemma 3.3, we obtain the following

Lemma 3.4. If (u,ψ) is a weak solution to (4) with
∫
M

e2u + |ψ |4 dv + ∫
∂M

eu dσ < ∞, then we have for 0 < α < 1

u+ ∈ L∞(M), ψ ∈ Cα
(
Γ (ΣM)

)
.

Proof. By the conformal invariance of (4) and by the interior regularity Lemma 4.3 in [12], it suffices to show that, for
any x0 ∈ ∂M , u is bounded from above in BM

r (x0) ∩ M and ψ is continuous in Γ (Σ(BM
r (x0) ∩ M)), where BM

r (x0)

is a geodesic ball at x0 of M . Without loss of generality, we assume that x0 = 0 and BM
r (x0) ∩ M = {x = (s, t) |

s2 + t2 < r2, t � 0} ⊂ R2+. Set B+
r = {x = (s, t) | s2 + t2 < r2, t > 0}, B−

r = {(s, t) | s2 + t2 < r2, t < 0} and
Γ1 = ∂B+

r ∩ ∂R2+, Γ2 = ∂B+
r ∩R

2+. By using the conformality again, we may assume that∫
M

e2u + |ψ |4 dv +
∫

∂M

eu dσ <
1

4
π.

First, we show the boundedness from above of u. Set

f = 2e2u − eu|ψ |2 and g = ceu.

Then we consider⎧⎨⎩
−�u = f, in B+

r ,

∂u

∂n
= g, on Γ1.

It is clear that g ∈ L1(Γ1). Set g = g1 + g2 with ‖g1‖L1(Γ1)
� π and g2 ∈ L∞(Γ1). Define u1, u2 and u3 by⎧⎪⎪⎨⎪⎪⎩

−�u1 = f, in B+
r ,

∂u1

∂n
= 0, on Γ1,
u1 = 0, on Γ2,
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⎧⎪⎪⎨⎪⎪⎩
−�u2 = 0, in B+

r ,

∂u2

∂n
= g1, on Γ1,

u2 = 0, on Γ2,⎧⎪⎪⎨⎪⎪⎩
−�u3 = 0, in B+

r ,

∂u3

∂n
= g2, on Γ1,

u3 = 0, on Γ2.

Extending u1 and f evenly we have{−�u1 = f, in Br,

u1 = 0, on ∂Br .

Since
∫
B+

r
e2u + |ψ |4 dx < ∞, we know that f ∈ L1(B+

r ) with ‖f ‖L1 � π . By applying Lemma 3.2 we have

e4|u1| ∈ L1(Br).

For u2, by Lemma 3.3, we have∫
B+

r

exp
(
4|u2|

)
dx � C,

∫
Γ1

exp
(
2|u2|

)
ds � C.

For u3, it is obvious that

‖u3‖L∞(B+
r
2
) � C.

Let u4 = u − u1 − u2 − u3. Then we have⎧⎨⎩
−�u4 = 0, in B+

r ,

∂u4

∂n
= 0, on Γ1.

Extending u4 evenly, u4 becomes a harmonic function in Br . Then the mean value theorem for harmonic functions
implies that∥∥u+

4

∥∥
L∞(B+

r
2
)
� C

∥∥u+
4

∥∥
L1(B+

r )
.

Notice that

u+
4 � u+ + |u1| + |u2| + |u3|,

and ∫
B+

r

u+ dx � 1

2

∫
B+

r

e2u dx < ∞.

We get∥∥u+
4

∥∥
L∞(B+

r
2
)
� C.

Altogether, we find that f ∈ L2(B+
r ) and g ∈ L2(Γ1).

The standard elliptic estimates imply that∥∥u+∥∥
L∞(B+

r
4
)
� C.

Next we show the continuity of the spinor field ψ . For this purpose, we extend (u,ψ) to the lower half disk B−
r .

Assume x̄ is the reflection point of x about ∂R2+, and define
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u(x̄) := u(x), x̄ ∈ B−
r ,

ψ(x̄) := ie1 · ψ(x), x̄ ∈ B−
r .

Since we have for a.e. x ∈ Γ1

ψ(x) = −�nGψ(x) = ie1 · ψ(x),

it is clear that the extension for ψ is well defined.

Now assume that (u,ψ) is a weak solution of (4) and ξ is in W 1, 4
3 (Γ (ΣBr)) with compact support. Then we

obtain∫
Br

〈ψ,/Dξ 〉 =
∫

B+
r

〈ψ,/Dξ 〉 +
∫

B−
r

〈ψ,/Dξ 〉

=
∫

B+
r

〈ψ,/Dξ 〉 +
∫

x∈B+
r

〈
ψ(x̄), /Dξ(x̄)

〉
=

∫
B+

r

〈ψ,/Dξ 〉 +
∫

x∈B+
r

〈
ie1 · ψ(x),/Dξ(x̄)

〉
=

∫
B+

r

〈ψ,/Dξ 〉 +
∫

x∈B+
r

〈
ψ(x),/D

(
ie1 · ξ(x̄)

)〉
=

∫
B+

r

〈
ψ(x),/D

(
ξ(x) + ie1 · ξ(x̄)

)〉
.

By the definition of the chirality operator B , we have for a.e. x ∈ Γ1

B
(
ξ(x) + ie1 · ξ(x̄)

) = 1

2
(I − ie1) · (ξ(x) + ie1 · ξ(x)

) = 0.

Then by the definition of a weak solution we obtain∫
B+

r

〈
ψ(x),/D

(
ξ(x) + ie1 · ξ(x̄)

)〉
=

∫
B+

r

〈
/Dψ(x), ξ(x) + ie1 · ξ(x̄)

〉
= −

∫
B+

r

eu
〈
ψ(x), ξ(x) + ie1 · ξ(x̄)

〉
= −

∫
B+

r

eu
〈
ψ(x), ξ(x)

〉 − ∫
x∈B+

r

eu
〈
ψ(x), ie1 · ξ(x̄)

〉
= −

∫
B+

r

eu
〈
ψ(x), ξ(x)

〉 − ∫
x∈B−

r

eu(x̄)
〈
ψ(x̄), ie1 · ξ(x)

〉
= −

∫
B+

r

eu
〈
ψ(x), ξ(x)

〉 − ∫
x∈B−

r

eu(x̄)
〈
ψ(x), ξ(x)

〉
.

Therefore we obtain that∫
Br

〈ψ,/Dξ 〉 = −
∫
+

eu
〈
ψ(x), ξ(x)

〉 − ∫
−

eu(x̄)
〈
ψ(x), ξ(x)

〉
.

Br x∈Br
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Set

A(x) =
{

eu(x), x ∈ B+
r ,

eu(x̄), x ∈ B−
r .

It follows that ψ satisfies

/Dψ = −A(x)ψ, in Br.

Since A(x) ∈ L∞(B r
4
) and

∫
Br

|ψ |4 dx < ∞, we have ψ ∈ W 1,4(Γ (ΣBr
8
)) and in particular ψ ∈ Cα(Γ (ΣB+

r
8
)) for

some 0 < α < 1. �
Proof of Proposition 3.1. Assume that (u,ψ) is a weak solution of (4). For any q > 2, let 2 > p = q

q−1 > 1. Then
we have

‖∇u‖Lq(M) � sup

{∣∣∣∣ ∫
M

∇u∇ϕ dv

∣∣∣∣ ∣∣∣ ϕ ∈ W 1,p(M),

∫
M

ϕ dv = 0, ‖ϕ‖W 1,p(M) = 1

}
.

Since from Lemma 3.4∣∣∣∣ ∫
M

∇u∇ϕ dv

∣∣∣∣ =
∣∣∣∣ ∫
M

−�uϕ dv +
∫

∂M

∂u

∂n
ϕ dσ

∣∣∣∣
=

∣∣∣∣ ∫
M

(
2e2u − eu|ψ |2 − Kg

)
ϕ dv +

∫
∂M

(
ceu − hg

)
ϕ dσ

∣∣∣∣
� C

∫
M

|ϕ|dv +
∫

∂M

|ϕ|dσ

� C,

we have ‖∇u‖Lq(M) � C for any q > 2. Therefore we have u ∈ W 1,q (M) for any q > 2. By W 2+k,q estimates for the
Neumann boundary problem (see [1], see also [14])

‖u‖W 2+k,q (M) � C

(
‖�u‖Wk,q (M) +

∥∥∥∥∂u

∂n

∥∥∥∥
W 1+k,q (∂M)

+ ‖u‖W 1+k,q (M)

)
,

we have u ∈ W 2,q (M) for any q > 2. By the Sobolev embedding theorem we know u ∈ C1,α(M) for some α ∈ (0,1).
Similarly we obtain that u ∈ C2,α(Mo) for some α ∈ (0,1).

For ψ , since (u,ψ) satisfies

/Dψ = −A(x)ψ

in the neighborhood of x0 ∈ ∂M after the reflection, see Lemma 3.4. By the well-know Lichnerowitz formula /D2ψ =
−�ψ + 1

4Kgψ (see e.g. [10]), we know

−�ψ = −dA(x) · ψ + A2(x)ψ − 1

4
Kgψ.

It follows that ψ ∈ W 2,q for any q > 1 in the neighborhood of x0 ∈ ∂M . Hence we have ψ ∈ C2,α(Γ (ΣMo)) ∩
C1,α(Γ (ΣM)) for some α ∈ (0,1). This concludes the proof. �

We call (u,ψ) a regular solution to (4) if u ∈ C2,α(Mo)∩C1,α(M) and ψ ∈ C2,α(Γ (ΣMo))∩C1,α(Γ (ΣM)) for
some α ∈ (0,1).

Next we discuss the convergence of a sequence of regular solutions to (4), under a smallness condition for the
energy.
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Lemma 3.5. For ε1 < π , and ε2 < π . If a sequence of regular solutions (un,ψn) satisfy⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−�un = 2e2un − eun〈ψn,ψn〉, in B+
r ,

/Dψn = −eunψn, in B+
r ,

∂un

∂n
= ceun, on ∂B+

r ∩ {t = 0},
Bψn = 0, on ∂B+

r ∩ {t = 0}
and ∫

B+
r

e2un dx < ε1, |c|
∫

∂B+
r ∩{t=0}

eun dσ < ε2,

∫
B+

r

|ψn|4 dx < C.

Then ‖u+
n ‖L∞(B+

r
4
) and ‖ψn‖L∞(B+

r
8
) are uniformly bounded.

Proof. If c = 0, by extending (un,ψn) to the lower half disk B−
r as Lemma 3.4, we have{−�un = 2e2un − eun〈ψn,ψn〉, in Br,

/Dψn = −eunψn, in Br.

From Lemma 4.4 of [12], we obtain the conclusions.
Next we assume that c �= 0. Let Γ1 = ∂B+

r ∩ {t = 0} and Γ2 = ∂B+
r ∩ {t > 0}. Define u1,n, u2,n by⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�u1,n = 2e2un − eun |ψn|2, in B+
r ,

∂u1,n

∂n
= 0, on Γ1,

u1,n = 0, on Γ2,

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�u2,n = 0, in B+

r ,

∂u2,n

∂n
= ceun, on Γ1,

u2,n = 0, on Γ2.

Extending u1,n evenly we have{
−�u1,n = 2e2un, in Br,

u1,n = 0, on ∂Br .

Since ε1 < π , we can choose δ1 > 0 such that 4π − δ1 > (4ε1 + 2
√

Cε1 )(2 + δ1). By Lemma 3.2 we get∫
Br

e(2+δ1)|u1,n| � C

for some constant C. In particular we have∫
B+

r

e(2+δ1)|u1,n| � C.

For u2,n, since ε2 < π , by Lemma 3.3 we also can choose δ2 > 0, δ3 > 0 such that∫
+

e(2+δ2)|u2,n| � C,

∫
Γ1

e(1+δ3)|u2,n| � C.
Br



696 J. Jost et al. / Ann. I. H. Poincaré – AN 31 (2014) 685–706
Now setting wn = un − u1,n − u2,n, it follows⎧⎨⎩
�wn = eun |ψn|2 � 0, in B+

r ,

∂wn

∂n
= 0, on Γ1.

Extending wn evenly, we have wn are subharmonic functions in Br . Then the mean value theorem for subharmonic
functions implies that∥∥w+

n

∥∥
L∞(B+

r
2
)
� C

∥∥w+
n

∥∥
L1(B+

r )
.

Notice that∫
B+

r

w+
n dx �

∫
B+

r

u+
n + |u1,n| + |u2,n|dx

� C

∫
B+

r

e2un + e(2+δ1)|u1,n| + e(2+δ2)|u2,n| dx

� C.

Therefore we have∥∥w+
n

∥∥
L∞(B+

r
2
)
� C.

Finally, we write⎧⎨⎩
−�un = 2e2un − eun |ψn|2 = fn, in B+

r ,

∂un

∂n
= ceun = gn, on Γ1.

The standard elliptic estimates imply that∥∥u+
n

∥∥
L∞(B+

r
4
)
� C

since ‖fn‖Lq(B+
r
2
) � C and ‖gn‖Lq(∂B+

r
2
)∩{t=0} � C for some q > 1. Consequently, it follows that

‖ψn‖L∞(B+
r
8
) � C. �

4. Blow-up behavior

When the energy
∫
M

e2un dx and
∫
∂M

eun dx are large, the blow-up phenomenon may occur as in the case of the
Liouville equation. In this section we will analyze the asymptotic behavior of a sequence of regular solutions⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−�un = 2e2un − eun〈ψn,ψn〉 − Kg, in Mo,

/Dψn = −eunψn, in Mo,

∂un

∂n
= ceun − hg, on ∂M,

Bψn = 0, on ∂M,

(8)

with ∫
M

e2un + |ψn|4 dv +
∫

∂M

eun dσ � C. (9)

The blow-up analysis was first introduced in [4] for the Liouville-type equation on an open bounded domain.
Later, similar results for the Toda system and the super-Liouville equation, the natural generalization of the Liouville
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equation, were obtained in [11] and in [12] respectively. Here we will provide the blow-up analysis for the Neu-
mann boundary problem (8) under condition (9). The key point is a Harnack inequality for the non-homogeneous
Neumann-type boundary problem for second-order elliptic equations. See Lemma A.2 in Appendix A.

Theorem 4.1. Let (un,ψn) be a sequence of regular solutions to (8) satisfying (9). Define

Σ1 = {
x ∈ M

∣∣ there is a sequence yn → x such that un(yn) → +∞}
,

Σ2 = {
x ∈ M

∣∣ there is a sequence yn → x such that
∣∣ψn(yn)

∣∣ → +∞}
.

Then, we have Σ2 ⊂ Σ1. Moreover, (un,ψn) admits a subsequence, denoted still by (un,ψn), satisfying that:

a) |ψn| is bounded in L∞
loc(M\Σ2) .

b) For un, one of the following alternatives holds:
i) un is bounded in L∞(M).

ii) un → −∞ uniformly on M .
iii) Σ1 is finite, nonempty and either

un is bounded in L∞
loc(M\Σ1) (10)

or

un → −∞ uniformly on compact subsets of M\Σ1. (11)

Proof. First of all, if x ∈ M\Σ1, then it follows from the equation /Dψn = −eunψn that x ∈ M\Σ2. Therefore we
have Σ2 ⊂ Σ1. It is clear that |ψn| are bounded in L∞

loc(M\Σ2).
Since e2un is bounded in L1(M) and eun is bounded in L1(∂M), we may extract a subsequence from un (still

denoted un) such that∫
M

e2unϕ dv →
∫
M

ϕ dμ,

∫
∂M

eunφ dσ →
∫

∂M

φ dϑ

for every ϕ ∈ C(M) and φ ∈ C(∂M). Here μ and ϑ are two nonnegative bounded measures. A point x ∈ M is called
an ε-regular point with respect to μ and ϑ if there is a function ϕ ∈ C(M), suppϕ ⊂ BM

r (x) ⊂ M with 0 � ϕ � 1 and
ϕ = 1 in a neighborhood of x such that∫

M

ϕ dμ < ε, if x ∈ Mo,

or ∫
M

ϕ dμ < ε, and
∫

∂M

ϕ dϑ < ε, if x ∈ ∂M.

Here BM
r (x) is a geodesic ball at center x.

We define

Ω(ε) = {x ∈ M | x is not an ε-regular point with respect to μ and ϑ}.
By

∫
M

e2un < C and
∫
∂M

eun < C, we have that Ω(ε) is finite. We divide the proof into three steps.

Step 1. Σ1 = Ω(ε0), where ε0 = min{ε1, ε2} and ε1, ε2 as in Lemma 3.5.
First we show that Ω(ε0) ⊂ Σ1. Suppose that x0 ∈ Ω(ε0). If x0 ∈ Mo, it is easy to show that x0 ∈ Σ1, see [12].

Next we assume that x0 ∈ ∂M . We claim that for any R > 0, and BM
R (x0) ⊂ M , limn→+∞ ‖u+

n ‖L∞(BM
R (x0))

= +∞.

We prove the claim by a contradiction. So we assume that there is some R0 > 0 and BM (x0) ⊂ M and a subsequence
R0
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such that ‖u+
n ‖L∞(BM

R0
(x0))

is bounded. In particular we have ‖e2un‖L∞(BM
R0

(x0))
� C. Therefore

∫
BM

R (x0)
e2un dx � CRδ

and
∫
∂BM

R (x0)∩∂M
eun dx � CRδ for all R < R0 and some δ > 0. This implies∫

M

ϕ dμ < ε0, and
∫

∂M

ϕ dϑ < ε0 for some suitable ϕ.

Therefore x0 is regular, contradicting x0 ∈ Ω(ε0). The claim is proved. Now we choose R > 0 small enough so that
BM

R (x0) does not contain any other point of Ω(ε0). Let xn ∈ BM
R (x0) be such that

u+
n (xn) = max

BM
R (x0)

u+
n → +∞.

We claim that xn → x0, i.e., x0 ∈ Σ1. Otherwise there would be a subsequence

xnk
→ x̄ �= x0 and x̄ /∈ Ω(ε0)

that is, x̄ is a regular point. This is a contradiction. Therefore we have proved that Ω(ε0) ⊂ Σ1.
Next we show that Σ1 ⊂ Ω(ε0). Let x0 ∈ Σ1. There are two cases. Case 1. x0 ∈ Mo ⇒ x0 ∈ Ω(ε0).

Case 2. x0 ∈ ∂M ⇒ x0 ∈ Ω(ε0).
Here we only show Case 2, since Case 1 easily follows from the argument in [12]. So next we assume that x0 ∈ ∂M .

We choose small R > 0 such that BM
R (x0) ∩ Σ1 = x0. We assume by contradiction that x0 /∈ Ω(ε0). Thus we have∫

BM
δ (x0)

e2un < ε1,

∫
∂BM

δ (x0)∩∂M

eun < ε2

for any small δ < R. Since un satisfies that⎧⎨⎩
−�un = 2e2un − eun |ψn|2 − Kg in BM

δ (x0) ∩ Mo,

∂un

∂n
= ceun − hg on ∂BM

δ (x0) ∩ ∂M,

by Lemma 3.5, we also see that u+
n is uniformly bounded in L∞(BM

δ
2

(x0)). Thus we have a contradiction with x0 ∈ Σ1.
Therefore x0 ∈ Ω(ε0).

Step 2. Σ1 = ∅ implies i) and ii) hold.
Σ1 = ∅ means that u+

n is uniformly bounded in L∞(M). Consequently ψn is bounded in L∞(M). Thus, f n =
2e2un − eun |ψn|2 −Kg is bounded in Lp(M) for any p > 1 and gn = ceun −hg is bounded in Lp(∂M) for any p > 1.
Applying the Harnack inequality in Lemma A.2 in Appendix A, we have i) or ii).

Step 3. Σ1 �= ∅ implies iii).
In this case, we know that u+

n is bounded in L∞
loc(M\Σ1) and therefore f n is bounded in L

p

loc(M\Σ1) for any
p > 1 and gn is bounded in L

p

loc(∂M\Σ1) for any p > 1. Then as in Step 2 we know that either

un is bounded in L∞
loc(M\Σ1),

or

un → −∞ on any compact subset of M\Σ1

Thus we complete the proof of the theorem. �
5. Asymptotic behavior of entire solutions

In the rest of the paper we will analyze the asymptotic behavior of an entire solution on the upper half-plane R
2+

with finite energy. Such an entire solution will be obtained after a suitable rescaling at a boundary blow-up point. We
will show that an entire solution on R

2+ with finite energy can be extended to a spherical cap, i.e., the singularity at
infinity is removable.
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The considered equations are⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−�u = 2e2u − eu〈ψ,ψ〉, in R
2+,

/Dψ = −euψ, in R
2+,

∂u

∂n
= ceu, on ∂R2+,

Bψ = 0, on ∂R2+.

(12)

The energy condition is

I (u,ψ) =
∫
R

2+

(
e2u + |ψ |4)dx +

∫
∂R2+

eu ds < ∞. (13)

First by a similar argument as Proposition 3.1 we have

Lemma 5.1. Let (u,ψ) be a solution of (12) and (13) with u ∈ H
1,2
loc (R2+) and ψ ∈ W

1, 4
3

loc (R2+). Then u+ ∈ L∞(R2+).

Consequently it follows that u ∈ C
2,α
loc (R2+) ∩ C

1,α
loc (R2+) and ψ ∈ C

2,α
loc (Γ (ΣR

2+)) ∩ C
1,α
loc (Γ (ΣR

2+)).

We call (u,ψ) a regular solution of (12) and (13) if u ∈ C
2,α
loc (R2+) ∩ C

1,α
loc (R2+) and ψ ∈ C

2,α
loc (Γ (ΣR

2+)) ∩
C

1,α
loc (Γ (ΣR

2+)) for some α ∈ (0,1).

Proposition 5.2. Let (u,ψ) be a regular solution of (12) and (13). Then the quadratic differential

T (z) dz2 =
{
(∂zu)2 − ∂2

z u + 1

4
〈ψ,dz · ∂z̄ψ〉 + 1

4
〈dz̄ · ∂zψ,ψ〉

}
dz2

is holomorphic in R
2+ and T (z) dz2 is real on ∂R2+. Here z = s + it ∈ R

2.

Proof. From Proposition 3.3 of [12], it is clear that T (z) dz2 is holomorphic in R
2+. Next we show that T (z) dz2 is

real on ∂R2+. Let

T1(z) = (∂zu)2 − ∂2
z u,

T2(z) = 1

4
〈ψ,dz · ∂z̄ψ〉 + 1

4
〈dz̄ · ∂zψ,ψ〉.

Then we have

Im
(
T1(z)

) = 1

2

(
∂2u

∂s∂t
− ∂u

∂s

∂u

∂t

)
.

Since ∂u
∂t

= −ceu on ∂R2+, we have

Im
(
T1(z)

)∣∣
∂R2+

= 1

2

(
−ceu ∂u

∂s
+ ceu ∂u

∂s

)
= 0

On the other hand, by a computation we have

T2(z) = 1

2

(〈
ψ, (e1 + ie2) · (∇e1ψ + i∇e2ψ)

〉 + 〈
(e1 − ie2) · (∇e1ψ − i∇e2ψ),ψ

〉)
= Re〈ψ,e1 · ∇e1ψ〉 − Re〈ψ,e2 · ∇e2ψ〉 − 2i Re〈ψ,e1 · ∇e2ψ〉
= Re〈ψ,e1 · ∇e1ψ〉 − Re〈ψ,e2 · ∇e2ψ〉 − 2i Re〈ψ,e2 · ∇e1ψ〉.

Here e1, e2 constitute the standard orthonormal frame of R2. Notice that we can write ψ =
(

ψ+
ψ−

)
, then the chiral-

ity boundary condition becomes ψ+ = −ψ− on ∂R2+. Since e1 = ∂
∂s

, it follows that ∇e1ψ+ = −∇e1ψ− on ∂R2+.
Therefore we obtain



700 J. Jost et al. / Ann. I. H. Poincaré – AN 31 (2014) 685–706
〈ψ,e2 · ∇e1ψ〉 =
〈(

ψ+
−ψ+

)
,

(
0 1

−1 0

)( ∇e1ψ+
−∇e1ψ+

)〉
= 0, on ∂R2+.

Consequently we have ImT2(z)|∂R2+ = 0. It follows that ImT (z)|∂R2+ = 0. �
Next let (v,φ) be the Kelvin transformation of (u,ψ), i.e.,

v(x) = u

(
x

|x|2
)

− 2 ln |x|,

φ(x) = |x|−1ψ

(
x

|x|2
)

.

Then (v,φ) satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−�v = 2e2v − ev〈φ,φ〉, in R
2+,

/Dφ = −evφ, in R
2+,

∂v

∂n
= cev, on ∂R2+\{0},

Bφ = 0, on ∂R2+\{0}.

(14)

And, by change of variable,∫
|x|�r0

e2v dx =
∫

|x|� 1
r0

e2u dx,

∫
|x|�r0

|φ|4 dx =
∫

|x|� 1
r0

|ψ |4 dx,

∫
|s|�r0

ev ds =
∫

|s|� 1
r0

eu ds

can be made small if r0 is small. Therefore, there is a small enough r0 such that (v,φ) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−�v = 2e2v − ev〈φ,φ〉, in B+
r0

,

/Dφ = −evφ, in B+
r0

,

∂v

∂n
= cev, on (∂R2+ ∩ ∂B+

r0
)\{0},

Bφ = 0, on (∂R2+ ∩ ∂B+
r0

)\{0}

(15)

with energy condition∫
|x|�r0

e2v dx � ε1 < 2π,

∫
|x|�r0

|φ|4 dx � C, |c|
∫

|s|�r0

ev ds � ε2 < π. (16)

Since (15) and (16) are conformally invariant, in the sequel we may assume B+
r0

to be the unit disk B+
1 . We have

Lemma 5.3. There are 0 < ε1 < π and 0 < ε2 < π such that if (v,φ) is a regular solution to (15) with energy
condition (16) (for r0 = 1), then for any x ∈ B+

1
2

we have

∣∣φ(x)
∣∣|x| 1

2 + ∣∣∇φ(x)
∣∣|x| 3

2 � C

( ∫
B+

|φ|4 dx

) 1
4

. (17)
2|x|
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Furthermore, if we assume that e2v = O( 1
|x|2−ε ), then, for any x ∈ B+

1
2

, we have

∣∣φ(x)
∣∣|x| 1

2 + ∣∣∇φ(x)
∣∣|x| 3

2 � C|x| 1
4C

( ∫
B+

1

|φ|4 dx

) 1
4

, (18)

for some positive constant C. Here ε is any sufficiently small positive number.

Proof. Firstly by the chirality boundary condition of φ, we can extend (v,φ) to the lower half disk B−
1 . Assume x̄ is

the reflection point of x about ∂R2+, and define

v(x̄) := v(x), x̄ ∈ B−
1 ,

φ(x̄) := ie1 · φ(x), x̄ ∈ B−
1 .

Then from the argument in Lemma 3.4 we obtain that

/Dψ = −A(x)ψ, in B1.

Here

A(x) =
{

eu(x), x ∈ B+
1 ,

eu(x̄), x ∈ B−
1 .

The conclusions follow from applying similar arguments as in the proof of Lemma 6.2 of [12]. �
From Lemma 5.3 and the Kelvin transformation, we obtain the asymptotic estimate of the spinor ψ(x)∣∣ψ(x)

∣∣� C|x|− 1
2 −δ0 for |x| near ∞ (19)

for some positive number δ0 provided that e2v = O( 1
|x|2−ε ).

Now let α = ∫
R

2+ 2e2u − eu|ψ |2 dx + ∫
∂R2+ ceu ds and define a constant spinor ξ0 = ∫

R
2+ euψ dx. It will turn out

that the constant spinor ξ0 is well defined. Then we have

Proposition 5.4. Let (u,ψ) be a regular solution of (12) and (13) and let c be a nonnegative constant. Then we have

u(x) = −α

π
ln |x| + C + O

(|x|−1) for |x| near ∞, (20)

ψ(x) = − 1

2π

x

|x|2 (I + ie1) · ξ0 + o
(|x|−1) for |x| near ∞, (21)

where · is the Clifford multiplication, C is a positive universal constant, and I is the identity spinor. In particular we
have

α = 2π.

Proof. We prove Proposition 5.4 in several steps.

Step 1. lim|x|→∞ u(x)
ln |x| = − α

π
.

Let

w(x) = 1

2π

∫
R

2+

(
log |x − y| + log |x̄ − y| − 2 log |y|)(2e2u(y) − eu(y)

∣∣ψ(y)
∣∣2)

dy

+ 1

2π

∫
∂R2+

(
log |x − y| + log |x̄ − y| − 2 log |y|)ceu(y) dy,

where x̄ is the reflection point of x about ∂R2+. It is easy to check that w(x) satisfies
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⎧⎨⎩
�w = 2e2u − eu|ψ |2, in R

2+,

∂w

∂n
= −ceu, on ∂R2+,

and

lim|x|→∞
w(x)

ln |x| = α

π
.

Consider v(x) = u + w. Then v(x) satisfies⎧⎨⎩
�v = 0, in R

2+,

∂v

∂n
= 0, on ∂R2+.

We extend v(x) to R
2 by even reflection such that v(x) is harmonic in R

2. From Lemma 5.1 we know v(x) �
C(1 + ln(|x| + 1)) for some positive constant C. Thus v(x) is a constant. This completes the proof of Step 1.

Step 2. α > π .
Since

∫
R

2+ e2u dx < ∞, we get that α � π . Next we show that α > π . Assume by contradiction that α = π . Let
(v,φ) be the Kelvin transformation of (u,ψ). Then (v,φ) satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−�v = 2e2v − ev|φ|2, in R
2+,

/Dφ = −evφ, in R
2+,

∂v

∂n
= cev, on ∂R2+ \ {0},

Bφ = 0, on ∂R2+ \ {0},
with the energy conditions∫

R
2+

e2v + |φ|4 dx < ∞,

and ∫
∂R2+

ev ds < ∞.

Let D+ be a small half disk centered at zero. Denote f (x) := 2e2v − ev|φ|2. From the asymptotic estimate (19) we
know that f (x) > 0 in a small half disk D+. Define w(x) by

w(x) = 1

2π

∫
D+

(
log |x − y| + log |x̄ − y|)f (y)dy

+ 1

2π

∫
∂D+∩{t=0}

(
log |x − y| + log |x̄ − y|)cev(y) dy

and define g(x) = v(x) + w(x). It is clear that⎧⎨⎩
�g = 0, in D+,

∂g

∂n
= 0, on {∂D+ ∩ {t = 0}} \ {0}.

Therefore by extending g(x) to D \ {0} evenly we obtain a harmonic g(x) in D \ {0}.
On the other hand, we can check that

lim
w = 0
|x|→0 − log |x|
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by Step 1 which implies

lim|x|→0

g(x)

− log |x| = lim|x|→0

v(x) + w(x)

− log |x| = 1.

Since g(x) is harmonic in D\{0}, we have g(x) = − log |x| + g0(x) with a smooth harmonic function g0 in D. By the
definition, we have w(x) < 0 since c is nonnegative and f (x) > 0 in D+. Thus, we have∫

D+
e2v dx =

∫
D+

e2g−2w dx �
∫

D+
|x|−2e2g0 dx = ∞,

which is a contradiction with
∫
R

2+ e2v dx < ∞. Hence we have shown that α > π . Thus we finish the proof of Step 2.

Step 3. The proof of (20) and α = 2π .
From α > π we can improve the estimates for e2u to

e2u � C|x|−2−ε for |x| near ∞.

Then by using the standard potential analysis we can obtain that

u(x) = −α

π
ln |x| + C + O

(|x|−1) for |x| near ∞.

Furthermore, we can show that α = 2π . Since the quadratic differential T (z) dz2 is holomorphic in R
2+ and is real

on ∂R2+, we can extend T (z) to a holomorphic function in R
2. Then by using (19) and (20), we have the following

expansion of T (z) near infinity

1

4

(
α

π

)2 1

z2
− 1

2

α

π

1

z2
+ o

(
1

z2

)
+ · · · = 1

2z2

(
1

2

(
α

π

)2

− α

π

)
+ o

(
1

z2

)
+ · · · .

Hence, T (z) is a constant and 1
2 ( α

π
)2 − α

π
= 0, i.e., α = 2π .

Step 4. The proof of (21).
First from α = 2π , we can improve the estimate for e2u to

e2u � C|x|−4 for |x| near ∞. (22)

This implies that the constant spinor ξ0 is well defined.
Then by using the chirality boundary condition of spinor we have

/Dψ = −A(x)ψ, in R
2.

Here A(x) is defined as before. Define

ξ1 =
∫
R2

A(x)ψ dx.

The constant spinor ξ1 is also well defined. From the asymptotic estimates (19) and (22) and a similar argument in [12]
we obtain

ψ(x) = − 1

2π

x

|x|2 · ξ1 + o
(|x|−1) for |x| near ∞. (23)

Since

ξ1 =
∫
R

2+

A(x)ψ dx +
∫
R

2−

A(x)ψ dx

=
∫
R

2

euψ dx +
∫
R

2

eu(x̄)ie1 · ψ(x̄) dx
+ −
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=
∫
R

2+

euψ dx +
∫
R

2−

eu(y)ie1 · ψ(y)dy

= (I + ie1) ·
∫
R

2+

euψ dx

= (I + ie1) · ξ0.

Hence we obtain from (23)

ψ(x) = − 1

2π

x

|x|2 (I + ie1) · ξ0 + o
(|x|−1) for |x| near ∞.

Thus we finish the proof of Step 4 and we complete the proof of the proposition. �
Consequently, from Proposition 5.2, we shall show that an infinite singularity of regular solutions for (12) and (13)

can be removed as in many other conformally invariant problems.

Theorem 5.5. Let (u,ψ) be a regular solution of (12) and (13). Then (u,ψ) extends to a regular solution on a
spherical cap S

2
c′ , where c′ is the geodesic curvature of ∂S2

c′ .

Proof. Let (v,φ) be the Kelvin transformation of (u,ψ) as before. Then (v,φ) satisfies the system (14). To prove the
theorem, by conformal invariance, it is sufficient to show that (v,φ) is regular on R

2+. Applying Proposition 5.4, we
get

v(x) =
(

α

π
− 2

)
ln |x| + O(1) for |x| near 0. (24)

Since α = 2π , it follows that v is bounded near the singularity 0. Recall that φ is also bounded near 0, we can apply
elliptic theory to obtain that (v,φ) is regular on R

2+. �
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Appendix A

We present a Harnack inequality for a non-homogeneous Neumann-type boundary problem for second-order ellip-
tic equations.

Lemma A.1. Let f ∈ Lp(Br) for some 1 < p � +∞ and u satisfy{−�u = f in Br,

u� 0 on ∂Br .

Then for any 0 < θ < 1, there exists a constant β ∈ (0,1) depending on r, θ only, and a constant γ > 0 depending
on r,p only, such that

sup
Bθr

u� β inf
Bθr

u + (1 + β)γ ‖f ‖Lp(Br ).

Lemma A.2. Let f ∈ Lp(B+
r ) for some 1 < p � +∞, g ∈ Lq(∂B+

r ∩ {t = 0}) for some 1 < q � +∞ and u satisfy⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�u = f in B+

r ,

∂u

∂t
= g on ∂B+

r ∩ {t = 0},
+
u � 0 on ∂Br ∩ {t > 0}.
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Then for any 0 < θ < 1, there exist a constant β ∈ (0,1) depending on r, θ only, and a constant γ > 0 depending
on r,p, q only, such that

sup
B+

θr

u� β inf
B+

θr

u + (1 + β)γ
(‖f ‖Lp(B+

r ) + ‖g‖Lq(∂B+
r ∩{t=0})

)
.

Proof. Let w satisfy⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�w = f in B+

r ,

∂w

∂t
= g on ∂B+

r ∩ {t = 0},
w = 0 on ∂B+

r ∩ {t > 0}
and set v = w − u. Then v satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�v = 0 in B+
r ,

∂v

∂t
= 0 on ∂B+

r ∩ {t = 0},
v � 0 on ∂B+

r ∩ {t > 0}.
By the maximum principle and Hopf lemma, v � 0 in B+

r . By extending v evenly, v becomes a harmonic function
in Br with v � 0. Then from Harnack inequality of harmonic function we have

sup
B+

θr

v � 1

β
inf
B+

θr

v (25)

for any θ ∈ (0,1) and for some β ∈ (0,1) depending on r, θ only.
Next, assume that w1 satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�w1 = f in B+
r ,

∂w1

∂t
= 0 on ∂B+

r ∩ {t = 0},
w1 = 0 on ∂B+

r ∩ {t > 0}
and that w2 satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�w2 = 0 in B+
r ,

∂w2

∂t
= g on ∂B+

r ∩ {t = 0},
w2 = 0 on ∂B+

r ∩ {t > 0}.
It is clear from extending evenly that

sup
B+

r

|w1|� γ ‖f ‖Lp(B+
r ).

For w2, we define

φ(x) = 1

2π

∫
∂B+

r ∩{t=0}

(
log

2r

|y − x| + log
2r

|y − x̄|
)∣∣g(y)

∣∣dy

where x̄ is the reflection point of about {t = 0}. Then φ satisfies⎧⎨⎩
−�φ = 0 in B+

r ,

∂w2 = −|g| on ∂B+
r ∩ {t = 0}.
∂t
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It is clear that φ � 0 and

sup
B+

r

φ � γ ‖g‖Lq(B+
r ∩{t=0}).

Since ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�(w2 − φ) = 0 in B+

r ,

∂(w2 − φ)

∂t
= g + |g| on ∂B+

r ∩ {t = 0},
w2 − φ � 0 on ∂B+

r ∩ {t > 0}.
It follows from the maximum principle and Hopf lemma that w2 � φ in B+

r . By a similar argument we also have⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�(w2 + φ) = 0 in B+

r ,

∂(w2 + φ)

∂t
= g − |g| on ∂B+

r ∩ {t = 0},
w2 + φ � 0 on ∂B+

r ∩ {t > 0}
which implies that w2 � −φ in B+

r . Thus we have |w2| � |φ| in B+
r . Since w = w1 + w2, it follows that

sup
B+

r

|w|� γ ‖g‖Lq(B+
r ∩{t=0}). (26)

By (25), (26) and u = w − v, it follows that

sup
B+

θr

u� β inf
B+

θr

u + (1 + β)γ
(‖f ‖Lp(B+

r ) + ‖g‖Lq(∂B+
r ∩{t=0})

)
. �
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