The boundary value problem for the super-Liouville equation

Jürgen Jost ${ }^{\text {a }}$, Guofang Wang ${ }^{\mathrm{b}}$, Chunqin Zhou ${ }^{\mathrm{c}}$, Miaomiao Zhu ${ }^{\mathrm{d}, *}$
${ }^{\text {a }}$ Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, D-04103 Leipzig, Germany
${ }^{\mathrm{b}}$ Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
${ }^{\text {c }}$ Department of Mathematics, Shanghai Jiaotong University, Shanghai, 200240, China
${ }^{\text {d }}$ Mathematics Institute, University of Warwick, CV4 7AL, Coventry, UK

Received 18 April 2012; accepted 22 June 2013
Available online 17 July 2013

Abstract

We study the boundary value problem for the - conformally invariant - super-Liouville functional $$
E(u, \psi)=\int_{M}\left\{\frac{1}{2}|\nabla u|^{2}+K_{g} u+\left\langle\left(\phi+e^{u}\right) \psi, \psi\right\rangle-e^{2 u}\right\} d z
$$ that couples a function u and a spinor ψ on a Riemann surface. The boundary condition that we identify (motivated by quantum field theory) couples a Neumann condition for u with a chirality condition for ψ. Associated to any solution of the super-Liouville system is a holomorphic quadratic differential $T(z)$, and when our boundary condition is satisfied, T becomes real on the boundary. We provide a complete regularity and blow-up analysis for solutions of this boundary value problem.

© 2013 Published by Elsevier Masson SAS.

1. Introduction

In [12], we have introduced the super-Liouville functional, a conformally invariant functional that couples a realvalued function u and a spinor ψ on a Riemann surface M with conformal metric g and a spin structure,

$$
\begin{equation*}
E(u, \psi)=\int_{M}\left\{\frac{1}{2}|\nabla u|^{2}+K_{g} u+\left\langle\left(D D+e^{u}\right) \psi, \psi\right\rangle-e^{2 u}\right\} d z . \tag{1}
\end{equation*}
$$

Here K_{g} is the Gaussian curvature of M. The Dirac operator $\not D$ is defined by $\not D \psi:=\sum_{\alpha=1}^{2} e_{\alpha} \cdot \nabla_{e_{\alpha}} \psi$, where $\left\{e_{1}, e_{2}\right\}$ is an orthonormal basis on $T M$ and ∇ is the connection on the spinor bundle ΣM of M, which is induced from the Levi-Civita connection on M with respect to g and • denotes the Clifford multiplication in the spinor bundle ΣM.

[^0]Finally, $\langle\cdot, \cdot\rangle$ is the natural Hermitian metric on ΣM induced by g. The system of Euler-Lagrange equations associated to (1) is called the super-Liouville equation. For the geometric background, see [15] or [10].

In this paper, we wish to address the boundary value problem for the super-Liouville functional. We therefore first of all need to identify the appropriate boundary condition for the spinor field ψ. Since the super-Liouville functional is inspired by quantum field theory, we likewise turn to the physics literature $[2,6,16,17]$ to get some clue about a natural boundary condition. This boundary condition then will be of chirality type. The main point of the paper then is an analytical investigation of solutions of the boundary value problem. In particular, we shall show the regularity of solutions and identify the blow-up behavior for limits of sequences of solutions. In other words, we analytically understand the non-compactness of the solution space.

The key property of the functional is of course its conformal invariance. Therefore, the boundary conditions to be imposed likewise need to be conformally invariant. Conformal invariance on one hand makes the solution space non-compact, but on the other hand allows for a control of limits of solutions via a blow-up analysis. This is, of course, a well-known scheme, but the details are technically somewhat tricky and interesting.

Conformal invariance, like any invariance, by Noether's theorem leads to some conserved current. For twodimensional conformally invariant variational problems, this conserved quantity can be identified with a holomorphic quadratic differential associated to a solution. From this perspective, our boundary condition is the natural one, because it renders that holomorphic quadratic differential real on the boundary. At a more technical level, this is important for the study of the asymptotic behavior of an entire solution on the upper half-plane with finite energy. Also, our boundary condition allows for the reflection of solutions across the boundary, which, at least heuristically, reduces boundary to interior regularity and which therefore, technically, is a useful device.

In [5], we have investigated the chirality boundary condition for Dirac-harmonic maps. Since in the present case, the coupling between the two fields is different, so then necessarily is the boundary analysis. Since the Liouville field u is scalar valued, in particular, here we can achieve a more precise blow-up analysis at the boundary. Since the chirality boundary condition is of physical interest, its general mathematical understanding should be useful.

2. The boundary value problem for the super-Liouville equation

In this section, we shall derive the boundary condition to be imposed on solutions of the super-Liouville equation. Thus, let M be a compact Riemann surface with smooth boundary ∂M and with a fixed spin structure. When $\partial M \neq \emptyset$, we know that the Laplacian operator Δ is in general not formally self-adjoint, and neither is the Dirac operator \mathscr{D}. In fact, we have

$$
\int_{M}\langle\psi, \not D \varphi\rangle d v=\int_{M}\langle\not D \psi, \varphi\rangle d v-\int_{\partial M}\langle\vec{n} \cdot \psi, \varphi\rangle d v
$$

for all $\psi, \varphi \in C^{\infty}(\Sigma M)$. Here \vec{n} is the outward unit normal vector field on ∂M.
As is well known, the natural boundary condition for the function u is of Neumann type. This condition is clearly conformally invariant. We now shall derive a boundary conditions for the spinor field ψ that is likewise conformally invariant.

We recall the chirality boundary conditions for the Dirac operator $D D$ first introduced in [7]. See also [9]. Let M be a compact Riemann surface with $\partial M \neq \emptyset$ and with a fixed spin structure, admitting a chirality operator G, which is an endomorphism of the spinor bundle ΣM satisfying:

$$
G^{2}=I, \quad\langle G \psi, G \varphi\rangle=\langle\psi, \varphi\rangle,
$$

and

$$
\nabla_{X}(G \psi)=G \nabla_{X} \psi, \quad X \cdot G \psi=-G(X \cdot \psi)
$$

for any $X \in T M, \psi, \varphi \in \Gamma(\Sigma M)$. Here I denotes the identity endomorphism of ΣM.
We usually take $G=\gamma\left(\omega_{2}\right)$, the Clifford multiplication by the complex volume form $\omega_{2}=i e_{1} e_{2}$, where e_{1}, e_{2} is a local orthonormal frame on M.

Let

$$
S:=\left.\Sigma M\right|_{\partial M}
$$

denote the restricted spinor bundle with induced Hermitian product. The outward unit normal vector field \vec{n} induces an operator $\vec{n} G: \Gamma(S) \rightarrow \Gamma(S)$, which is a self-adjoint endomorphism satisfying

$$
(\vec{n} G)^{2}=I, \quad\langle\vec{n} G \psi, \varphi\rangle=\langle\psi, \vec{n} G \varphi\rangle
$$

Hence, we can decompose $S=V^{+} \oplus V^{-}$, where $V^{ \pm}$is the eigensubbundle corresponding to the eigenvalue ± 1 of $\vec{n} G$. One can check that the orthogonal projection onto the eigensubbundle $V^{ \pm}$:

$$
\begin{aligned}
B^{ \pm}: L^{2}(S) & \rightarrow L^{2}\left(V^{ \pm}\right) \\
\psi & \mapsto \frac{1}{2}(I \pm \vec{n} G) \psi
\end{aligned}
$$

defines a local elliptic boundary condition for the Dirac operator $\not D$, see [9]. We say that a spinor $\psi \in W^{1, \frac{4}{3}}(\Gamma(\Sigma M))$ satisfies the chirality boundary conditions $B^{ \pm}$if

$$
\left.B^{ \pm} \psi\right|_{\partial M}=0
$$

It is shown in [9] that if $\psi, \varphi \in W^{1, \frac{4}{3}}(\Gamma(\Sigma M))$ satisfy the chirality boundary conditions, resp., then

$$
\langle\vec{n} \cdot \psi, \varphi\rangle=0, \quad \text { on } \partial M
$$

In particular,

$$
\begin{equation*}
\int_{\partial M}\langle\vec{n} \cdot \psi, \varphi\rangle=0 \tag{2}
\end{equation*}
$$

It follows that the Dirac operator $\not D$ is self-adjoint when we impose the chirality boundary conditions.
Let us note that on a surface the (usual) Dirac operator $\not D$ can be seen as the (doubled) Cauchy-Riemann operator. Consider \mathbb{R}^{2} with the Euclidean metric $d s^{2}+d t^{2}$. Let $e_{1}=\frac{\partial}{\partial s}$ and $e_{2}=\frac{\partial}{\partial t}$ be the standard orthonormal frame. A spinor field is simply a map $\Psi: \mathbb{R}^{2} \rightarrow \Delta_{2}=\mathbb{C}^{2}$, and the Cliford multiplication of e_{1} and e_{2} acting on spinor fields can be identified by the multiplication with matrices

$$
e_{1}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Here, without loss of generality, we keep e_{1} and e_{2} consistence with that in [5]. If exchanging e_{1} and e_{2}, then e_{1} and e_{2} are consistent with that in [12] and this case can be handled analogously. If $\Psi:=\binom{f}{g}: \mathbb{R}^{2} \rightarrow \mathbb{C}^{2}$ is a spinor field, then the Dirac operator is

$$
\not D \Psi=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)\binom{\frac{\partial f}{\partial s}}{\frac{\partial g}{\partial s}}+\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{\frac{\partial f}{\partial t}}{\frac{\partial g}{\partial t}}=2 i\binom{\frac{\partial g}{\partial z}}{\frac{\partial f}{\partial \bar{z}}}
$$

where

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial s}-i \frac{\partial}{\partial t}\right), \quad \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial s}+i \frac{\partial}{\partial t}\right)
$$

Therefore, the elliptic estimates developed for (anti-)holomorphic functions can be used to study the Dirac equation.
If M is the upper half Euclidean space \mathbb{R}_{+}^{2}, then the chirality operator is simply $G=i e_{1} e_{2}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Note that $\vec{n}=-e_{2}$, we get that

$$
B^{ \pm}=\frac{1}{2}(I \pm \vec{n} \cdot G)=\frac{1}{2}\left(\begin{array}{cc}
1 & \pm 1 \\
\pm 1 & 1
\end{array}\right)
$$

By the standard chirality decomposition, we can write $\psi=\binom{\psi_{+}}{\psi_{-}}$, then the boundary condition becomes

$$
\psi_{+}=\mp \psi_{-} \quad \text { on } \partial \mathbb{R}_{+}^{2}
$$

In this paper, we will consider the functional

$$
\begin{equation*}
E_{B}(u, \psi)=\int_{M}\left\{\frac{1}{2}|\nabla u|^{2}+K_{g} u+\left\langle\left(D D+e^{u}\right) \psi, \psi\right\rangle-e^{2 u}\right\} d v+\int_{\partial M}\left\{h_{g} u-c e^{u}\right\} d \sigma, \tag{3}
\end{equation*}
$$

where h_{g} is geodesic curvature of ∂M and c is a given constant.
Proposition 2.1. The Euler-Lagrange system for $E_{B}(u, \psi)$ with Neumann/chirality boundary conditions is

$$
\begin{cases}-\Delta u=2 e^{2 u}-e^{u}\langle\psi, \psi\rangle-K_{g}, & \text { in } M^{o}, \tag{4}\\ \not D \psi=-e^{u} \psi, & \text { in } M^{o}, \\ \frac{\partial u}{\partial n}=c e^{u}-h_{g}, & \text { on } \partial M, \\ B^{ \pm} \psi=0, & \text { on } \partial M\end{cases}
$$

Here Δ is the Laplacian with respect to g, and K_{g} is the Gaussian curvature in M, and h_{g} is the geodesic curvature of ∂M.

Proof. Let u_{t} be a family of function with $\left.\frac{\partial u_{t}}{\partial t}\right|_{t=0}=\eta$, and let ψ_{t} be a family of spinor with $\left.\frac{\partial \psi_{t}}{\partial t}\right|_{t=0}=\xi$. Since

$$
\begin{aligned}
\left.\frac{d E_{B}\left(u, \psi_{t}\right)}{d t}\right|_{t=0} & =\int_{M}\langle\not D \xi, \psi\rangle+\langle\not D \psi, \xi\rangle+e^{u}\langle\xi, \psi\rangle+e^{u}\langle\psi, \xi\rangle d v \\
& =2 \int_{M} \operatorname{Re}\langle\xi, \not D \psi\rangle+2 e^{u} \operatorname{Re}\langle\xi, \psi\rangle d v-\int_{\partial M}\langle\xi, \vec{n} \cdot \psi\rangle d \sigma
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.\frac{d E_{B}\left(u_{t}, \psi\right)}{d t}\right|_{t=0} \\
& \quad=\int_{M} \nabla u \cdot \nabla \eta+K_{g} \eta+\eta e^{u}\langle\psi, \psi\rangle-2 e^{2 u} \eta d v+\int_{\partial M} h_{g} \eta-c e^{u} \eta d \sigma \\
& \quad=-\int_{M} \eta \Delta u d v+\int_{\partial M} \eta \frac{\partial u}{\partial n} d \sigma+\int_{M} K_{g} \eta+\eta e^{u}\langle\psi, \psi\rangle-2 e^{2 u} \eta d v+\int_{\partial M} h_{g} \eta-c e^{u} \eta d \sigma,
\end{aligned}
$$

one can easily obtain (4).
For simplicity, we shall call (4) the Neumann boundary problem in the sequel.
Now we come to an important property of the Neumann boundary problem (4).
Proposition 2.2. Assume that (u, ψ) is a solution of (4). For any conformal diffeomorphism $\varphi: M \rightarrow M$, if we set

$$
\begin{align*}
& \tilde{u}=u \circ \varphi-\phi, \\
& \tilde{\psi}=e^{-\frac{\phi}{2}} \psi \circ \varphi \tag{5}
\end{align*}
$$

where e^{ϕ} is the conformal factor of the conformal map φ, i.e., $\varphi^{*}(g)=e^{2 \phi} g$, then $(\tilde{u}, \tilde{\psi})$ is also a solution of (4). Moreover, the functional $E_{B}(u, \psi)$ is conformally invariant.

Proof. Let $\tilde{g}=\varphi^{*} g$, where g is the metric on M. Let $\widetilde{D}, \widetilde{B}$ be the Dirac operator and the chirality boundary operator with respect to the new metric \tilde{g} respectively. We identify the new and old spin bundles as in [8]. Since the relation between the two Dirac operators $D D$ and \widetilde{D} is

$$
\widetilde{D} \tilde{\psi}=\lambda^{-\frac{3}{2}} \not D\left(\lambda^{\frac{1}{2}} \tilde{\psi}\right)=\lambda^{-\frac{3}{2}} \not D \psi
$$

for $\lambda=e^{\phi}$, and the relation between the two Gaussian curvatures and between the two geodesic curvatures are respectively

$$
\begin{aligned}
& -\Delta_{g} \phi=K_{\tilde{g}} e^{2 \phi}-K_{g} \\
& \frac{\partial \phi}{\partial n}=h_{\tilde{g}} e^{\phi}-h_{g}
\end{aligned}
$$

We can show by a direct computation that $(\tilde{u}, \tilde{\psi})$ satisfies

$$
\begin{cases}-\Delta \tilde{g} \tilde{u}=2 e^{2 \tilde{u}}-e^{\tilde{u}}\langle\tilde{\psi}, \tilde{\psi}\rangle-K_{\tilde{g}}, & \text { in } M^{o}, \\ \widetilde{D} \tilde{\psi}=-e^{\tilde{u}} \tilde{\psi}, & \text { in } M^{o} \\ \frac{\partial \tilde{u}}{\partial n}=c e^{\tilde{u}}-h_{\tilde{g}}, & \text { on } \partial M \\ \widetilde{B}^{ \pm} \tilde{\psi}=0, & \text { on } \partial M\end{cases}
$$

Similarly, one can also show that the functional is conformally invariant. The proof of the proposition is complete.
In the sequel, we will only consider the case of B^{+}and omit the symbol " + ". The case of B^{-}can, of course, be handled analogously.

Let us recall that a Killing spinor is a spinor ψ satisfying

$$
\nabla_{X} \psi=\lambda X \cdot \psi, \quad \text { for any vector field } X
$$

for some constant λ. On the standard sphere, there are Killing spinors with the Killing constant $\lambda=\frac{1}{2}$, see for instance [3]. A Killing spinor is an eigenspinor, i.e.,

$$
\begin{equation*}
\not D \psi=-\psi \tag{6}
\end{equation*}
$$

with constant $|\psi|^{2}$. Choose a Killing spinor ψ with $|\psi|^{2}=1$. If we identify $\mathbb{S}^{2} \backslash\{$ north pole\} by the stereographic projection with the Euclidean plane \mathbb{R}^{2} with the metric

$$
\frac{4}{\left(\left|1+|x|^{2}\right)^{2}\right.}|d x|^{2}
$$

then any Killing spinor has the form

$$
\frac{v+x \cdot v}{\sqrt{1+|x|^{2}}}
$$

for a constant $v \in \mathbb{C}^{2}$, up to a translation or a dilation. See [3].
We can now construct some special solutions of (4).
Proposition 2.3. Let $M=\mathbb{R}_{+}^{2}$. Then

$$
\left(\log \frac{\sqrt{2}}{1+\left|x-x_{0}\right|^{2}}, 0\right)
$$

is a solution of (4), where $x_{0}=\left(s_{0}, t_{0}\right)$ for $s_{0} \in \mathbb{R}$ and $t_{0}=-\frac{\sqrt{2} c}{2}$ for any constant c. Furthermore, if $c=0$, then

$$
\left(\log \frac{2}{1+\left|x-x_{1}\right|^{2}}, \sqrt{2} \frac{v+\left(x-x_{1}\right) \cdot v}{1+\left|x-x_{1}\right|^{2}}\right)
$$

is also a solution of (4), where $x_{1}=\left(s_{1}, 0\right)$ for $s_{1} \in \mathbb{R}$, and $v=\binom{v_{1}}{v_{2}} \in\left\{v \in \mathbb{C}^{2}| | v \mid=1\right\}$ and $v_{1}=-v_{2}$.
Proof. Set $\psi=\sqrt{2} \frac{v+\left(x-x_{1}\right) \cdot v}{1+\left|x-x_{1}\right|^{2}}$. Since $\not \square \psi=-\psi$, according to the argument in [12], it is sufficient to show that $\left.B \psi\right|_{\partial \mathbb{R}_{+}^{2}}=0$. Since

$$
\begin{aligned}
v+\left(x-x_{1}\right) \cdot v & =v+\left(s-s_{1}\right) e_{1} \cdot v+t e_{2} \cdot v \\
& =\binom{v_{1}}{v_{2}}+\left(s-s_{1}\right)\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)\binom{v_{1}}{v_{2}}+t\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{v_{1}}{v_{2}} \\
& =\binom{v_{1}+i\left(s-s_{1}\right) v_{2}+t v_{2}}{v_{2}+i\left(s-s_{1}\right) v_{1}-t v_{1}}
\end{aligned}
$$

we have

$$
\psi=\frac{\sqrt{2}}{1+\left|x-x_{1}\right|^{2}}\binom{v_{1}+i\left(s-s_{1}\right) v_{2}+t v_{2}}{v_{2}+i\left(s-s_{1}\right) v_{1}-t v_{1}}
$$

Hence we have by using $v_{1}=-v_{2}$ on $\partial \mathbb{R}_{+}^{2}$,

$$
\psi=\frac{\sqrt{2}}{1+\left|x-x_{1}\right|^{2}}\binom{v_{1}-i\left(s-s_{1}\right) v_{1}}{-v_{1}+i\left(s-s_{1}\right) v_{1}} \quad \text { on } \partial \mathbb{R}_{+}^{2}
$$

This means that $\left.B \psi\right|_{\partial \mathbb{R}_{+}^{2}}=0$.

3. Regularity of solutions for the Neumann boundary problem

In this section, we consider the regularity of solutions for the Neumann boundary problem (4) under the condition that

$$
\int_{M}\left(e^{2 u}+|\psi|^{4} d v+\int_{\partial M} e^{u}\right) d \sigma<\infty
$$

First, we define weak solutions of (4). We say that (u, ψ) is a weak solution of (4), if $u \in W^{1,2}(M)$ and $\psi \in$ $W_{B}^{1, \frac{4}{3}}(\Gamma(\Sigma M))$ satisfy

$$
\begin{aligned}
& \int_{M} \nabla u \nabla \phi d v=\int_{M}\left(2 e^{2 u}-e^{u}|\psi|^{2}-K_{g}\right) \phi d v+\int_{\partial M}\left(c e^{u}-h_{g}\right) \phi d \sigma \\
& \int_{M}\langle\psi, \not D \xi\rangle d v=-\int_{M} e^{u}\langle\psi, \xi\rangle d v
\end{aligned}
$$

for $\phi \in C^{\infty}(M)$ and any smooth spinor $\xi \in C^{\infty} \cap W_{B}^{1, \frac{4}{3}}(\Gamma(\Sigma M))$. Here

$$
W_{B}^{1, \frac{4}{3}}(\Gamma(\Sigma M))=\left\{\psi\left|\psi \in W^{1, \frac{4}{3}}(\Gamma(\Sigma M)), B \psi\right|_{\partial M}=0\right\}
$$

It is clear that $(u, \psi) \in W^{1,2}(M) \times W_{B}^{1, \frac{4}{3}}(\Gamma(\Sigma M))$ is a weak solution if and only if (u, ψ) is a critical point of $E_{B}(u, \psi)$ in $W^{1,2}(M) \times W_{B}^{1, \frac{4}{3}}(\Gamma(\Sigma M))$. A weak solution is a classical solution by the following.

Proposition 3.1. Let (u, ψ) be a weak solution of (4) with $\int_{M} e^{2 u}+|\psi|^{4} d v+\int_{\partial M} e^{u} d \sigma<\infty$. Then $u \in C^{2, \alpha}\left(M^{o}\right) \cap$ $C^{1, \alpha}(M)$ and $\psi \in C^{2, \alpha}\left(\Gamma\left(\Sigma M^{o}\right)\right) \cap C^{1, \alpha}(\Gamma(\Sigma M))$ for some $\alpha \in(0,1)$.

To prove this proposition, we need several lemmas.
Lemma 3.2. (See [4].) Assume $\Omega \subset \mathbb{R}^{2}$ is a bounded domain and let u be a solution of

$$
\begin{cases}-\Delta u=f(x) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

with $f \in L^{1}(\Omega)$. Then for every $\delta \in(0,4 \pi)$ we have

$$
\begin{equation*}
\int_{\Omega} \exp \left\{\frac{(4 \pi-\delta)|u(x)|}{\|f\|_{1}}\right\} d x \leqslant \frac{4 \pi^{2}}{\delta}(\operatorname{diam} \Omega)^{2} \tag{7}
\end{equation*}
$$

where $\|f\|_{1}=\int_{\Omega}|f(x)| d x$.
Lemma 3.3. (See [13].) Assume that u is a solution of

$$
\begin{cases}-\Delta u=0, & \text { in } B_{R}^{+}, \\ \frac{\partial u}{\partial t}=f(x), & \text { on }\{t=0\} \cap \partial B_{R}^{+}, \\ u=0, & \text { on } \partial B_{R}^{+} \cap B_{R}^{+},\end{cases}
$$

with $f \in L^{1}\left(\{t=0\} \cap \partial B_{R}^{+}\right)$for any $R>0$. Then for every $\delta_{1} \in(0,4 \pi)$ we have

$$
\int_{B_{R}^{+}} \exp \left\{\frac{\left(4 \pi-\delta_{1}\right)|u(x)|}{\|f\|_{1}}\right\} d x \leqslant \frac{16 \pi^{2} R^{2}}{\delta_{1}}
$$

and for every $\delta_{2} \in(0,2 \pi)$

$$
\int_{\partial B_{R}^{+} \cap\{t=0\}} \exp \left\{\frac{\left(2 \pi-\delta_{2}\right)|u(x)|}{\|f\|_{1}}\right\} d s \leqslant \frac{4 \pi R}{\delta_{2}}
$$

where $\|f\|_{1}=\int_{\{t=0\} \cap \partial B_{R}^{+}}|f| d s$.

By Lemma 3.2 and Lemma 3.3, we obtain the following

Lemma 3.4. If (u, ψ) is a weak solution to (4) with $\int_{M} e^{2 u}+|\psi|^{4} d v+\int_{\partial M} e^{u} d \sigma<\infty$, then we have for $0<\alpha<1$

$$
u^{+} \in L^{\infty}(M), \quad \psi \in C^{\alpha}(\Gamma(\Sigma M)) .
$$

Proof. By the conformal invariance of (4) and by the interior regularity Lemma 4.3 in [12], it suffices to show that, for any $x_{0} \in \partial M, u$ is bounded from above in $B_{r}^{M}\left(x_{0}\right) \cap M$ and ψ is continuous in $\Gamma\left(\Sigma\left(B_{r}^{M}\left(x_{0}\right) \cap M\right)\right)$, where $B_{r}^{M}\left(x_{0}\right)$ is a geodesic ball at x_{0} of M. Without loss of generality, we assume that $x_{0}=0$ and $B_{r}^{M}\left(x_{0}\right) \cap M=\{x=(s, t) \mid$ $\left.s^{2}+t^{2}<r^{2}, t \geqslant 0\right\} \subset \overline{\mathbb{R}}_{+}^{2}$. Set $B_{r}^{+}=\left\{x=(s, t) \mid s^{2}+t^{2}<r^{2}, t>0\right\}, B_{r}^{-}=\left\{(s, t) \mid s^{2}+t^{2}<r^{2}, t<0\right\}$ and $\Gamma_{1}=\partial B_{r}^{+} \cap \partial \mathbb{R}_{+}^{2}, \Gamma_{2}=\partial B_{r}^{+} \cap \mathbb{R}_{+}^{2}$. By using the conformality again, we may assume that

$$
\int_{M} e^{2 u}+|\psi|^{4} d v+\int_{\partial M} e^{u} d \sigma<\frac{1}{4} \pi .
$$

First, we show the boundedness from above of u. Set

$$
f=2 e^{2 u}-e^{u}|\psi|^{2} \quad \text { and } \quad g=c e^{u} .
$$

Then we consider

$$
\begin{cases}-\Delta u=f, & \text { in } B_{r}^{+}, \\ \frac{\partial u}{\partial n}=g, & \text { on } \Gamma_{1}\end{cases}
$$

It is clear that $g \in L^{1}\left(\Gamma_{1}\right)$. Set $g=g_{1}+g_{2}$ with $\left\|g_{1}\right\|_{L^{1}\left(\Gamma_{1}\right)} \leqslant \pi$ and $g_{2} \in L^{\infty}\left(\Gamma_{1}\right)$. Define u_{1}, u_{2} and u_{3} by

$$
\begin{cases}-\Delta u_{1}=f, & \text { in } B_{r}^{+}, \\ \frac{\partial u_{1}}{\partial n}=0, & \text { on } \Gamma_{1}, \\ u_{1}=0, & \text { on } \Gamma_{2},\end{cases}
$$

$$
\begin{aligned}
& \begin{cases}-\Delta u_{2}=0, & \text { in } B_{r}^{+}, \\
\frac{\partial u_{2}}{\partial n}=g_{1}, & \text { on } \Gamma_{1}, \\
u_{2}=0, & \text { on } \Gamma_{2},\end{cases} \\
& \begin{cases}-\Delta u_{3}=0, & \text { in } B_{r}^{+}, \\
\frac{\partial u_{3}}{\partial n}=g_{2}, & \text { on } \Gamma_{1}, \\
u_{3}=0, & \text { on } \Gamma_{2} .\end{cases}
\end{aligned}
$$

Extending u_{1} and f evenly we have

$$
\begin{cases}-\Delta u_{1}=f, & \text { in } B_{r}, \\ u_{1}=0, & \text { on } \partial B_{r}\end{cases}
$$

Since $\int_{B_{r}^{+}} e^{2 u}+|\psi|^{4} d x<\infty$, we know that $f \in L^{1}\left(B_{r}^{+}\right)$with $\|f\|_{L^{1}} \leqslant \pi$. By applying Lemma 3.2 we have $e^{4\left|u_{1}\right|} \in L^{1}\left(B_{r}\right)$.
For u_{2}, by Lemma 3.3, we have

$$
\int_{B_{r}^{+}} \exp \left(4\left|u_{2}\right|\right) d x \leqslant C, \quad \int_{\Gamma_{1}} \exp \left(2\left|u_{2}\right|\right) d s \leqslant C .
$$

For u_{3}, it is obvious that

$$
\left\|u_{3}\right\|_{L^{\infty}\left(\bar{B}_{\frac{1}{2}}^{+}\right)} \leqslant C .
$$

Let $u_{4}=u-u_{1}-u_{2}-u_{3}$. Then we have

$$
\begin{cases}-\Delta u_{4}=0, & \text { in } B_{r}^{+} \\ \frac{\partial u_{4}}{\partial n}=0, & \text { on } \Gamma_{1}\end{cases}
$$

Extending u_{4} evenly, u_{4} becomes a harmonic function in B_{r}. Then the mean value theorem for harmonic functions implies that

$$
\left\|u_{4}^{+}\right\|_{L^{\infty}\left(\bar{B}_{\frac{r}{2}}^{+}\right)} \leqslant C\left\|u_{4}^{+}\right\|_{L^{1}\left(B_{r}^{+}\right)} .
$$

Notice that

$$
u_{4}^{+} \leqslant u^{+}+\left|u_{1}\right|+\left|u_{2}\right|+\left|u_{3}\right|,
$$

and

$$
\int_{B_{r}^{+}} u^{+} d x \leqslant \frac{1}{2} \int_{B_{r}^{+}} e^{2 u} d x<\infty .
$$

We get

$$
\left\|u_{4}^{+}\right\|_{L^{\infty}\left(\bar{B}_{\frac{1}{2}}^{+}\right)} \leqslant C .
$$

Altogether, we find that $f \in L^{2}\left(B_{r}^{+}\right)$and $g \in L^{2}\left(\Gamma_{1}\right)$.
The standard elliptic estimates imply that

$$
\left\|u^{+}\right\|_{L^{\infty}\left(\bar{B}_{\left.\frac{r}{4}\right)}^{+}\right)} \leqslant C
$$

Next we show the continuity of the spinor field ψ. For this purpose, we extend (u, ψ) to the lower half disk B_{r}^{-}. Assume \bar{x} is the reflection point of x about $\partial \mathbb{R}_{+}^{2}$, and define

$$
\begin{aligned}
& u(\bar{x}):=u(x), \quad \bar{x} \in B_{r}^{-}, \\
& \psi(\bar{x}):=i e_{1} \cdot \psi(x), \quad \bar{x} \in B_{r}^{-} .
\end{aligned}
$$

Since we have for a.e. $x \in \Gamma_{1}$

$$
\psi(x)=-\vec{n} G \psi(x)=i e_{1} \cdot \psi(x)
$$

it is clear that the extension for ψ is well defined.
Now assume that (u, ψ) is a weak solution of (4) and ξ is in $W^{1, \frac{4}{3}}\left(\Gamma\left(\Sigma B_{r}\right)\right)$ with compact support. Then we obtain

$$
\begin{aligned}
\int_{B_{r}}\langle\psi, \not D \xi\rangle & =\int_{B_{r}^{+}}\langle\psi, \not D \xi\rangle+\int_{B_{r}^{-}}\langle\psi, \not D \xi\rangle \\
& =\int_{B_{r}^{+}}\langle\psi, \not D \xi\rangle+\int_{x \in B_{r}^{+}}\langle\psi(\bar{x}), \not D \xi(\bar{x})\rangle \\
& =\int_{B_{r}^{+}}\langle\psi, \not D \xi\rangle+\int_{x \in B_{r}^{+}}\left\langle i e_{1} \cdot \psi(x), \not D \xi(\bar{x})\right\rangle \\
& =\int_{B_{r}^{+}}\langle\psi, \not D \xi\rangle+\int_{x \in B_{r}^{+}}\left\langle\psi(x), \not D\left(i e_{1} \cdot \xi(\bar{x})\right)\right\rangle \\
& =\int_{B_{r}^{+}}\left\langle\psi(x), \not D\left(\xi(x)+i e_{1} \cdot \xi(\bar{x})\right)\right\rangle .
\end{aligned}
$$

By the definition of the chirality operator B, we have for a.e. $x \in \Gamma_{1}$

$$
B\left(\xi(x)+i e_{1} \cdot \xi(\bar{x})\right)=\frac{1}{2}\left(I-i e_{1}\right) \cdot\left(\xi(x)+i e_{1} \cdot \xi(x)\right)=0
$$

Then by the definition of a weak solution we obtain

$$
\begin{aligned}
\int_{B_{r}^{+}} & \left\langle\psi(x), \not D\left(\xi(x)+i e_{1} \cdot \xi(\bar{x})\right)\right\rangle \\
& =\int_{B_{r}^{+}}\left\langle\not D \psi(x), \xi(x)+i e_{1} \cdot \xi(\bar{x})\right\rangle \\
& =-\int_{B_{r}^{+}} e^{u}\left\langle\psi(x), \xi(x)+i e_{1} \cdot \xi(\bar{x})\right\rangle \\
& =-\int_{B_{r}^{+}} e^{u}\langle\psi(x), \xi(x)\rangle-\int_{x \in B_{r}^{+}} e^{u}\left\langle\psi(x), i e_{1} \cdot \xi(\bar{x})\right\rangle \\
& =-\int_{B_{r}^{+}} e^{u}\langle\psi(x), \xi(x)\rangle-\int_{x \in B_{r}^{-}} e^{u(\bar{x})}\left\langle\psi(\bar{x}), i e_{1} \cdot \xi(x)\right\rangle \\
& =-\int_{B_{r}^{+}} e^{u}\langle\psi(x), \xi(x)\rangle-\int_{x \in B_{r}^{-}} e^{u(\bar{x})}\langle\psi(x), \xi(x)\rangle .
\end{aligned}
$$

Therefore we obtain that

$$
\int_{B_{r}}\langle\psi, \not D \xi\rangle=-\int_{B_{r}^{+}} e^{u}\langle\psi(x), \xi(x)\rangle-\int_{x \in B_{r}^{-}} e^{u(\bar{x})}\langle\psi(x), \xi(x)\rangle
$$

Set

$$
A(x)= \begin{cases}e^{u(x)}, & x \in B_{r}^{+} \\ e^{u(\bar{x})}, & x \in B_{r}^{-}\end{cases}
$$

It follows that ψ satisfies

$$
\not D \psi=-A(x) \psi, \quad \text { in } B_{r} .
$$

Since $A(x) \in L^{\infty}\left(B_{\frac{r}{4}}^{r}\right)$ and $\int_{B_{r}}|\psi|^{4} d x<\infty$, we have $\psi \in W^{1,4}\left(\Gamma\left(\Sigma B_{\frac{r}{8}}\right)\right)$ and in particular $\psi \in C^{\alpha}\left(\Gamma\left(\Sigma \bar{B}_{\frac{r}{8}}^{+}\right)\right)$for some $0<\alpha<1$.

Proof of Proposition 3.1. Assume that (u, ψ) is a weak solution of (4). For any $q>2$, let $2>p=\frac{q}{q-1}>1$. Then we have

$$
\|\nabla u\|_{L^{q}(M)} \leqslant \sup \left\{\left|\int_{M} \nabla u \nabla \varphi d v\right| \mid \varphi \in W^{1, p}(M), \int_{M} \varphi d v=0,\|\varphi\|_{W^{1, p}(M)}=1\right\} .
$$

Since from Lemma 3.4

$$
\begin{aligned}
\left|\int_{M} \nabla u \nabla \varphi d v\right| & =\left|\int_{M}-\Delta u \varphi d v+\int_{\partial M} \frac{\partial u}{\partial n} \varphi d \sigma\right| \\
& =\left|\int_{M}\left(2 e^{2 u}-e^{u}|\psi|^{2}-K_{g}\right) \varphi d v+\int_{\partial M}\left(c e^{u}-h_{g}\right) \varphi d \sigma\right| \\
& \leqslant C \int_{M}|\varphi| d v+\int_{\partial M}|\varphi| d \sigma \\
& \leqslant C
\end{aligned}
$$

we have $\|\nabla u\|_{L^{q}(M)} \leqslant C$ for any $q>2$. Therefore we have $u \in W^{1, q}(M)$ for any $q>2$. By $W^{2+k, q}$ estimates for the Neumann boundary problem (see [1], see also [14])

$$
\|u\|_{W^{2+k, q}(M)} \leqslant C\left(\|\Delta u\|_{W^{k, q}(M)}+\left\|\frac{\partial u}{\partial n}\right\|_{W^{1+k, q}(\partial M)}+\|u\|_{W^{1+k, q}(M)}\right),
$$

we have $u \in W^{2, q}(M)$ for any $q>2$. By the Sobolev embedding theorem we know $u \in C^{1, \alpha}(M)$ for some $\alpha \in(0,1)$. Similarly we obtain that $u \in C^{2, \alpha}\left(M^{o}\right)$ for some $\alpha \in(0,1)$.

For ψ, since (u, ψ) satisfies

$$
\not D \psi=-A(x) \psi
$$

in the neighborhood of $x_{0} \in \partial M$ after the reflection, see Lemma 3.4. By the well-know Lichnerowitz formula $D^{2} \psi=$ $-\Delta \psi+\frac{1}{4} K_{g} \psi$ (see e.g. [10]), we know

$$
-\Delta \psi=-d A(x) \cdot \psi+A^{2}(x) \psi-\frac{1}{4} K_{g} \psi
$$

It follows that $\psi \in W^{2, q}$ for any $q>1$ in the neighborhood of $x_{0} \in \partial M$. Hence we have $\psi \in C^{2, \alpha}\left(\Gamma\left(\Sigma M^{o}\right)\right) \cap$ $C^{1, \alpha}(\Gamma(\Sigma M))$ for some $\alpha \in(0,1)$. This concludes the proof.

We call (u, ψ) a regular solution to (4) if $u \in C^{2, \alpha}\left(M^{o}\right) \cap C^{1, \alpha}(M)$ and $\psi \in C^{2, \alpha}\left(\Gamma\left(\Sigma M^{o}\right)\right) \cap C^{1, \alpha}(\Gamma(\Sigma M))$ for some $\alpha \in(0,1)$.

Next we discuss the convergence of a sequence of regular solutions to (4), under a smallness condition for the energy.

Lemma 3.5. For $\varepsilon_{1}<\pi$, and $\varepsilon_{2}<\pi$. If a sequence of regular solutions $\left(u_{n}, \psi_{n}\right)$ satisfy

$$
\begin{cases}-\Delta u_{n}=2 e^{2 u_{n}}-e^{u_{n}}\left\langle\psi_{n}, \psi_{n}\right\rangle, & \text { in } B_{r}^{+}, \\ \not D \psi_{n}=-e^{u_{n}} \psi_{n}, & \text { in } B_{r}^{+}, \\ \frac{\partial u_{n}}{\partial n}=c e^{u_{n}}, & \text { on } \partial B_{r}^{+} \cap\{t=0\}, \\ B \psi_{n}=0, & \text { on } \partial B_{r}^{+} \cap\{t=0\}\end{cases}
$$

and

$$
\int_{B_{r}^{+}} e^{2 u_{n}} d x<\varepsilon_{1}, \quad|c| \int_{\partial B_{r}^{+} \cap\{t=0\}} e^{u_{n}} d \sigma<\varepsilon_{2}, \quad \int_{B_{r}^{+}}\left|\psi_{n}\right|^{4} d x<C .
$$

Then $\left\|u_{n}^{+}\right\|_{L^{\infty}\left(\frac{\bar{B}_{+}^{+}}{+}\right.}$and $\left\|\psi_{n}\right\|_{\left.L^{\infty}{ }_{\left(\bar{B}_{\frac{1}{8}}^{+}\right)}\right)}$are uniformly bounded.
Proof. If $c=0$, by extending $\left(u_{n}, \psi_{n}\right)$ to the lower half disk B_{r}^{-}as Lemma 3.4, we have

$$
\begin{cases}-\Delta u_{n}=2 e^{2 u_{n}}-e^{u_{n}}\left\langle\psi_{n}, \psi_{n}\right\rangle, & \text { in } B_{r}, \\ \not D \psi_{n}=-e^{u_{n}} \psi_{n}, & \text { in } B_{r} .\end{cases}
$$

From Lemma 4.4 of [12], we obtain the conclusions.
Next we assume that $c \neq 0$. Let $\Gamma_{1}=\partial B_{r}^{+} \cap\{t=0\}$ and $\Gamma_{2}=\partial B_{r}^{+} \cap\{t>0\}$. Define $u_{1, n}, u_{2, n}$ by

$$
\begin{cases}-\Delta u_{1, n}=2 e^{2 u_{n}}-e^{u_{n}}\left|\psi_{n}\right|^{2}, & \text { in } B_{r}^{+}, \\ \frac{\partial u_{1, n}}{\partial n}=0, & \text { on } \Gamma_{1}, \\ u_{1, n}=0, & \text { on } \Gamma_{2},\end{cases}
$$

and

$$
\begin{cases}-\Delta u_{2, n}=0, & \text { in } B_{r}^{+}, \\ \frac{\partial u_{2, n}}{\partial n}=c e^{u_{n}}, & \text { on } \Gamma_{1}, \\ u_{2, n}=0, & \text { on } \Gamma_{2}\end{cases}
$$

Extending $u_{1, n}$ evenly we have

$$
\begin{cases}-\Delta u_{1, n}=2 e^{2 u_{n}}, & \text { in } B_{r}, \\ u_{1, n}=0, & \text { on } \partial B_{r} .\end{cases}
$$

Since $\varepsilon_{1}<\pi$, we can choose $\delta_{1}>0$ such that $4 \pi-\delta_{1}>\left(4 \varepsilon_{1}+2 \sqrt{C \varepsilon_{1}}\right)\left(2+\delta_{1}\right)$. By Lemma 3.2 we get

$$
\int_{B_{r}} e^{\left(2+\delta_{1}\right)\left|u_{1, n}\right|} \leqslant C
$$

for some constant C. In particular we have

$$
\int_{B_{r}^{+}} e^{\left(2+\delta_{1}\right)\left|u_{1, n}\right|} \leqslant C .
$$

For $u_{2, n}$, since $\varepsilon_{2}<\pi$, by Lemma 3.3 we also can choose $\delta_{2}>0, \delta_{3}>0$ such that

$$
\int_{B_{r}^{+}} e^{\left(2+\delta_{2}\right)\left|u_{2, n}\right|} \leqslant C, \quad \int_{\Gamma_{1}} e^{\left(1+\delta_{3}\right)\left|u_{2, n}\right|} \leqslant C
$$

Now setting $w_{n}=u_{n}-u_{1, n}-u_{2, n}$, it follows

$$
\begin{cases}\Delta w_{n}=e^{u_{n}}\left|\psi_{n}\right|^{2} \geqslant 0, & \text { in } B_{r}^{+} \\ \frac{\partial w_{n}}{\partial n}=0, & \text { on } \Gamma_{1}\end{cases}
$$

Extending w_{n} evenly, we have w_{n} are subharmonic functions in B_{r}. Then the mean value theorem for subharmonic functions implies that

$$
\left\|w_{n}^{+}\right\|_{L^{\infty}\left(\bar{B}_{\frac{1}{2}}^{+}\right)} \leqslant C\left\|w_{n}^{+}\right\|_{L^{1}\left(B_{r}^{+}\right)} .
$$

Notice that

$$
\begin{aligned}
\int_{B_{r}^{+}} w_{n}^{+} d x & \leqslant \int_{B_{r}^{+}} u_{n}^{+}+\left|u_{1, n}\right|+\left|u_{2, n}\right| d x \\
& \leqslant C \int_{B_{r}^{+}} e^{2 u_{n}}+e^{\left(2+\delta_{1}\right)\left|u_{1, n}\right|}+e^{\left(2+\delta_{2}\right)\left|u_{2, n}\right|} d x \\
& \leqslant C .
\end{aligned}
$$

Therefore we have

$$
\left\|w_{n}^{+}\right\|_{L^{\infty}\left(\bar{B}_{\frac{1}{2}}^{+}\right)} \leqslant C .
$$

Finally, we write

$$
\begin{cases}-\Delta u_{n}=2 e^{2 u_{n}}-e^{u_{n}}\left|\psi_{n}\right|^{2}=f_{n}, & \text { in } B_{r}^{+}, \\ \frac{\partial u_{n}}{\partial n}=c e^{u_{n}}=g_{n}, & \text { on } \Gamma_{1} .\end{cases}
$$

The standard elliptic estimates imply that

$$
\left\|u_{n}^{+}\right\|_{L^{\infty}\left(\bar{B}_{\frac{1}{4}}^{+}\right)} \leqslant C
$$

since $\left\|f_{n}\right\|_{L^{q}\left(B_{\frac{r}{2}}^{+}\right)} \leqslant C$ and $\left\|g_{n}\right\|_{L^{q}\left(\partial B_{\frac{r}{2}}^{+}\right) \cap\{t=0\}} \leqslant C$ for some $q>1$. Consequently, it follows that $\left\|\psi_{n}\right\|_{L^{\infty}\left(\bar{B}_{\frac{1}{8}}^{+}\right)} \leqslant C$.

4. Blow-up behavior

When the energy $\int_{M} e^{2 u_{n}} d x$ and $\int_{\partial M} e^{u_{n}} d x$ are large, the blow-up phenomenon may occur as in the case of the Liouville equation. In this section we will analyze the asymptotic behavior of a sequence of regular solutions

$$
\begin{cases}-\Delta u_{n}=2 e^{2 u_{n}}-e^{u_{n}}\left\langle\psi_{n}, \psi_{n}\right\rangle-K_{g}, & \text { in } M^{o}, \tag{8}\\ \not D \psi_{n}=-e^{u_{n}} \psi_{n}, & \text { in } M^{o}, \\ \frac{\partial u_{n}}{\partial n}=c e^{u_{n}}-h_{g}, & \text { on } \partial M, \\ B \psi_{n}=0, & \text { on } \partial M,\end{cases}
$$

with

$$
\begin{equation*}
\int_{M} e^{2 u_{n}}+\left|\psi_{n}\right|^{4} d v+\int_{\partial M} e^{u_{n}} d \sigma \leqslant C . \tag{9}
\end{equation*}
$$

The blow-up analysis was first introduced in [4] for the Liouville-type equation on an open bounded domain. Later, similar results for the Toda system and the super-Liouville equation, the natural generalization of the Liouville
equation, were obtained in [11] and in [12] respectively. Here we will provide the blow-up analysis for the Neumann boundary problem (8) under condition (9). The key point is a Harnack inequality for the non-homogeneous Neumann-type boundary problem for second-order elliptic equations. See Lemma A. 2 in Appendix A.

Theorem 4.1. Let $\left(u_{n}, \psi_{n}\right)$ be a sequence of regular solutions to (8) satisfying (9). Define
$\Sigma_{1}=\left\{x \in M \mid\right.$ there is a sequence $y_{n} \rightarrow x$ such that $\left.u_{n}\left(y_{n}\right) \rightarrow+\infty\right\}$,
$\Sigma_{2}=\left\{x \in M \mid\right.$ there is a sequence $y_{n} \rightarrow x$ such that $\left.\left|\psi_{n}\left(y_{n}\right)\right| \rightarrow+\infty\right\}$.
Then, we have $\Sigma_{2} \subset \Sigma_{1}$. Moreover, $\left(u_{n}, \psi_{n}\right)$ admits a subsequence, denoted still by $\left(u_{n}, \psi_{n}\right)$, satisfying that:
a) $\left|\psi_{n}\right|$ is bounded in $L_{l o c}^{\infty}\left(M \backslash \Sigma_{2}\right)$.
b) For u_{n}, one of the following alternatives holds:
i) u_{n} is bounded in $L^{\infty}(M)$.
ii) $u_{n} \rightarrow-\infty$ uniformly on M.
iii) Σ_{1} is finite, nonempty and either

$$
\begin{equation*}
u_{n} \text { is bounded in } L_{l o c}^{\infty}\left(M \backslash \Sigma_{1}\right) \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{n} \rightarrow-\infty \text { uniformly on compact subsets of } M \backslash \Sigma_{1} . \tag{11}
\end{equation*}
$$

Proof. First of all, if $x \in M \backslash \Sigma_{1}$, then it follows from the equation $\not D \psi_{n}=-e^{u_{n}} \psi_{n}$ that $x \in M \backslash \Sigma_{2}$. Therefore we have $\Sigma_{2} \subset \Sigma_{1}$. It is clear that $\left|\psi_{n}\right|$ are bounded in $L_{l o c}^{\infty}\left(M \backslash \Sigma_{2}\right)$.

Since $e^{2 u_{n}}$ is bounded in $L^{1}(M)$ and $e^{u_{n}}$ is bounded in $L^{1}(\partial M)$, we may extract a subsequence from u_{n} (still denoted u_{n}) such that

$$
\begin{aligned}
\int_{M} e^{2 u_{n}} \varphi d v & \rightarrow \int_{M} \varphi d \mu, \\
\int_{\partial M} e^{u_{n}} \phi d \sigma & \rightarrow \int_{\partial M} \phi d \vartheta
\end{aligned}
$$

for every $\varphi \in C(M)$ and $\phi \in C(\partial M)$. Here μ and ϑ are two nonnegative bounded measures. A point $x \in M$ is called an ε-regular point with respect to μ and ϑ if there is a function $\varphi \in C(M), \operatorname{supp} \varphi \subset B_{r}^{M}(x) \subset M$ with $0 \leqslant \varphi \leqslant 1$ and $\varphi=1$ in a neighborhood of x such that

$$
\int_{M} \varphi d \mu<\varepsilon, \quad \text { if } x \in M^{o}
$$

or

$$
\int_{M} \varphi d \mu<\varepsilon, \quad \text { and } \quad \int_{\partial M} \varphi d \vartheta<\varepsilon, \quad \text { if } x \in \partial M .
$$

Here $B_{r}^{M}(x)$ is a geodesic ball at center x.
We define
$\Omega(\varepsilon)=\{x \in M \mid x$ is not an ε-regular point with respect to μ and $\vartheta\}$.
By $\int_{M} e^{2 u_{n}}<C$ and $\int_{\partial M} e^{u_{n}}<C$, we have that $\Omega(\varepsilon)$ is finite. We divide the proof into three steps.
Step 1. $\Sigma_{1}=\Omega\left(\varepsilon_{0}\right)$, where $\varepsilon_{0}=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$ and $\varepsilon_{1}, \varepsilon_{2}$ as in Lemma 3.5.
First we show that $\Omega\left(\varepsilon_{0}\right) \subset \Sigma_{1}$. Suppose that $x_{0} \in \Omega\left(\varepsilon_{0}\right)$. If $x_{0} \in M^{o}$, it is easy to show that $x_{0} \in \Sigma_{1}$, see [12]. Next we assume that $x_{0} \in \partial M$. We claim that for any $R>0$, and $B_{R}^{M}\left(x_{0}\right) \subset M$, $\lim _{n \rightarrow+\infty}\left\|u_{n}^{+}\right\|_{L^{\infty}\left(B_{R}^{M}\left(x_{0}\right)\right)}=+\infty$. We prove the claim by a contradiction. So we assume that there is some $R_{0}>0$ and $B_{R_{0}}^{M}\left(x_{0}\right) \subset M$ and a subsequence
such that $\left\|u_{n}^{+}\right\|_{L^{\infty}\left(B_{R_{0}}^{M}\left(x_{0}\right)\right)}$ is bounded. In particular we have $\left\|e^{2 u_{n}}\right\|_{L^{\infty}\left(B_{R_{0}}^{M}\left(x_{0}\right)\right)} \leqslant C$. Therefore $\int_{B_{R}^{M}\left(x_{0}\right)} e^{2 u_{n}} d x \leqslant C R^{\delta}$ and $\int_{\partial B_{R}^{M}\left(x_{0}\right) \cap \partial M} e^{u_{n}} d x \leqslant C R^{\delta}$ for all $R<R_{0}$ and some $\delta>0$. This implies

$$
\int_{M} \varphi d \mu<\varepsilon_{0}, \quad \text { and } \quad \int_{\partial M} \varphi d \vartheta<\varepsilon_{0} \quad \text { for some suitable } \varphi .
$$

Therefore x_{0} is regular, contradicting $x_{0} \in \Omega\left(\varepsilon_{0}\right)$. The claim is proved. Now we choose $R>0$ small enough so that $\bar{B}_{R}^{M}\left(x_{0}\right)$ does not contain any other point of $\Omega\left(\varepsilon_{0}\right)$. Let $x_{n} \in B_{R}^{M}\left(x_{0}\right)$ be such that

$$
u_{n}^{+}\left(x_{n}\right)=\max _{\bar{B}_{R}^{M}\left(x_{0}\right)} u_{n}^{+} \rightarrow+\infty .
$$

We claim that $x_{n} \rightarrow x_{0}$, i.e., $x_{0} \in \Sigma_{1}$. Otherwise there would be a subsequence

$$
x_{n_{k}} \rightarrow \bar{x} \neq x_{0} \quad \text { and } \quad \bar{x} \notin \Omega\left(\varepsilon_{0}\right)
$$

that is, \bar{x} is a regular point. This is a contradiction. Therefore we have proved that $\Omega\left(\varepsilon_{0}\right) \subset \Sigma_{1}$.
Next we show that $\Sigma_{1} \subset \Omega\left(\varepsilon_{0}\right)$. Let $x_{0} \in \Sigma_{1}$. There are two cases. Case 1. $x_{0} \in M^{o} \Rightarrow x_{0} \in \Omega\left(\varepsilon_{0}\right)$. Case 2. $x_{0} \in \partial M \Rightarrow x_{0} \in \Omega\left(\varepsilon_{0}\right)$.

Here we only show Case 2, since Case 1 easily follows from the argument in [12]. So next we assume that $x_{0} \in \partial M$. We choose small $R>0$ such that $\bar{B}_{R}^{M}\left(x_{0}\right) \cap \Sigma_{1}=x_{0}$. We assume by contradiction that $x_{0} \notin \Omega\left(\varepsilon_{0}\right)$. Thus we have

$$
\int_{B_{\delta}^{M}\left(x_{0}\right)} e^{2 u_{n}}<\varepsilon_{1}, \quad \int_{\partial B_{\delta}^{M}\left(x_{0}\right) \cap \partial M} e^{u_{n}}<\varepsilon_{2}
$$

for any small $\delta<R$. Since u_{n} satisfies that

$$
\begin{cases}-\Delta u_{n}=2 e^{2 u_{n}}-e^{u_{n}}\left|\psi_{n}\right|^{2}-K_{g} & \text { in } B_{\delta}^{M}\left(x_{0}\right) \cap M^{o}, \\ \frac{\partial u_{n}}{\partial n}=c e^{u_{n}}-h_{g} & \text { on } \partial B_{\delta}^{M}\left(x_{0}\right) \cap \partial M\end{cases}
$$

by Lemma 3.5, we also see that u_{n}^{+}is uniformly bounded in $L^{\infty}\left(\overline{B_{\frac{\delta}{2}}^{M}\left(x_{0}\right)}\right)$. Thus we have a contradiction with $x_{0} \in \Sigma_{1}$. Therefore $x_{0} \in \Omega\left(\varepsilon_{0}\right)$.

Step 2. $\Sigma_{1}=\emptyset$ implies i) and ii) hold.
$\Sigma_{1}=\emptyset$ means that u_{n}^{+}is uniformly bounded in $L^{\infty}(M)$. Consequently ψ_{n} is bounded in $L^{\infty}(M)$. Thus, $f^{n}=$ $2 e^{2 u_{n}}-e^{u_{n}}\left|\psi_{n}\right|^{2}-K_{g}$ is bounded in $L^{p}(M)$ for any $p>1$ and $g^{n}=c e^{u_{n}}-h_{g}$ is bounded in $L^{p}(\partial M)$ for any $p>1$. Applying the Harnack inequality in Lemma A. 2 in Appendix A, we have i) or ii).
Step 3. $\Sigma_{1} \neq \emptyset$ implies iii).
In this case, we know that u_{n}^{+}is bounded in $L_{l o c}^{\infty}\left(M \backslash \Sigma_{1}\right)$ and therefore f^{n} is bounded in $L_{l o c}^{p}\left(M \backslash \Sigma_{1}\right)$ for any $p>1$ and g^{n} is bounded in $L_{l o c}^{p}\left(\partial M \backslash \Sigma_{1}\right)$ for any $p>1$. Then as in Step 2 we know that either u_{n} is bounded in $L_{l o c}^{\infty}\left(M \backslash \Sigma_{1}\right)$,
or

$$
u_{n} \rightarrow-\infty \text { on any compact subset of } M \backslash \Sigma_{1}
$$

Thus we complete the proof of the theorem.

5. Asymptotic behavior of entire solutions

In the rest of the paper we will analyze the asymptotic behavior of an entire solution on the upper half-plane \mathbb{R}_{+}^{2} with finite energy. Such an entire solution will be obtained after a suitable rescaling at a boundary blow-up point. We will show that an entire solution on \mathbb{R}_{+}^{2} with finite energy can be extended to a spherical cap, i.e., the singularity at infinity is removable.

The considered equations are

$$
\begin{cases}-\Delta u=2 e^{2 u}-e^{u}\langle\psi, \psi\rangle, & \text { in } \mathbb{R}_{+}^{2} \tag{12}\\ \not D \psi=-e^{u} \psi, & \text { in } \mathbb{R}_{+}^{2} \\ \frac{\partial u}{\partial n}=c e^{u}, & \text { on } \partial \mathbb{R}_{+}^{2} \\ B \psi=0, & \text { on } \partial \mathbb{R}_{+}^{2}\end{cases}
$$

The energy condition is

$$
\begin{equation*}
I(u, \psi)=\int_{\mathbb{R}_{+}^{2}}\left(e^{2 u}+|\psi|^{4}\right) d x+\int_{\partial \mathbb{R}_{+}^{2}} e^{u} d s<\infty \tag{13}
\end{equation*}
$$

First by a similar argument as Proposition 3.1 we have
Lemma 5.1. Let (u, ψ) be a solution of (12) and (13) with $u \in H_{l o c}^{1,2}\left(\mathbb{R}_{+}^{2}\right)$ and $\psi \in W_{\text {loc }}^{1, \frac{4}{3}}\left(\mathbb{R}_{+}^{2}\right)$. Then $u^{+} \in L^{\infty}\left(\overline{\mathbb{R}}_{+}^{2}\right)$. Consequently it follows that $u \in C_{\text {loc }}^{2, \alpha}\left(\mathbb{R}_{+}^{2}\right) \cap C_{\text {loc }}^{1, \alpha}\left(\overline{\mathbb{R}}_{+}^{2}\right)$ and $\psi \in C_{\text {loc }}^{2, \alpha}\left(\Gamma\left(\Sigma \mathbb{R}_{+}^{2}\right)\right) \cap C_{\text {loc }}^{1, \alpha}\left(\Gamma\left(\Sigma \overline{\mathbb{R}}_{+}^{2}\right)\right)$.

We call (u, ψ) a regular solution of (12) and (13) if $u \in C_{l o c}^{2, \alpha}\left(\mathbb{R}_{+}^{2}\right) \cap C_{l o c}^{1, \alpha}\left(\overline{\mathbb{R}}_{+}^{2}\right)$ and $\psi \in C_{l o c}^{2, \alpha}\left(\Gamma\left(\Sigma \mathbb{R}_{+}^{2}\right)\right) \cap$ $C_{\text {loc }}^{1, \alpha}\left(\Gamma\left(\Sigma \overline{\mathbb{R}}_{+}^{2}\right)\right)$ for some $\alpha \in(0,1)$.

Proposition 5.2. Let (u, ψ) be a regular solution of (12) and (13). Then the quadratic differential

$$
T(z) d z^{2}=\left\{\left(\partial_{z} u\right)^{2}-\partial_{z}^{2} u+\frac{1}{4}\left\langle\psi, d z \cdot \partial_{\bar{z}} \psi\right\rangle+\frac{1}{4}\left\langle d \bar{z} \cdot \partial_{z} \psi, \psi\right\rangle\right\} d z^{2}
$$

is holomorphic in \mathbb{R}_{+}^{2} and $T(z) d z^{2}$ is real on $\partial \mathbb{R}_{+}^{2}$. Here $z=s+i t \in \mathbb{R}^{2}$.
Proof. From Proposition 3.3 of [12], it is clear that $T(z) d z^{2}$ is holomorphic in \mathbb{R}_{+}^{2}. Next we show that $T(z) d z^{2}$ is real on $\partial \mathbb{R}_{+}^{2}$. Let

$$
\begin{aligned}
& T_{1}(z)=\left(\partial_{z} u\right)^{2}-\partial_{z}^{2} u, \\
& T_{2}(z)=\frac{1}{4}\left\langle\psi, d z \cdot \partial_{\bar{z}} \psi\right\rangle+\frac{1}{4}\left\langle d \bar{z} \cdot \partial_{z} \psi, \psi\right\rangle .
\end{aligned}
$$

Then we have

$$
\operatorname{Im}\left(T_{1}(z)\right)=\frac{1}{2}\left(\frac{\partial^{2} u}{\partial s \partial t}-\frac{\partial u}{\partial s} \frac{\partial u}{\partial t}\right)
$$

Since $\frac{\partial u}{\partial t}=-c e^{u}$ on $\partial \mathbb{R}_{+}^{2}$, we have

$$
\left.\operatorname{Im}\left(T_{1}(z)\right)\right|_{\partial \mathbb{R}_{+}^{2}}=\frac{1}{2}\left(-c e^{u} \frac{\partial u}{\partial s}+c e^{u} \frac{\partial u}{\partial s}\right)=0
$$

On the other hand, by a computation we have

$$
\begin{aligned}
T_{2}(z) & =\frac{1}{2}\left(\left\langle\psi,\left(e_{1}+i e_{2}\right) \cdot\left(\nabla_{e_{1}} \psi+i \nabla_{e_{2}} \psi\right)\right\rangle+\left\langle\left(e_{1}-i e_{2}\right) \cdot\left(\nabla_{e_{1}} \psi-i \nabla_{e_{2}} \psi\right), \psi\right\rangle\right) \\
& =\operatorname{Re}\left\langle\psi, e_{1} \cdot \nabla_{e_{1}} \psi\right\rangle-\operatorname{Re}\left\langle\psi, e_{2} \cdot \nabla_{e_{2}} \psi\right\rangle-2 i \operatorname{Re}\left\langle\psi, e_{1} \cdot \nabla_{e_{2}} \psi\right\rangle \\
& =\operatorname{Re}\left\langle\psi, e_{1} \cdot \nabla_{e_{1}} \psi\right\rangle-\operatorname{Re}\left\langle\psi, e_{2} \cdot \nabla_{e_{2}} \psi\right\rangle-2 i \operatorname{Re}\left\langle\psi, e_{2} \cdot \nabla_{e_{1}} \psi\right\rangle .
\end{aligned}
$$

Here e_{1}, e_{2} constitute the standard orthonormal frame of \mathbb{R}^{2}. Notice that we can write $\psi=\binom{\psi_{+}}{\psi_{-}}$, then the chirality boundary condition becomes $\psi_{+}=-\psi_{-}$on $\partial \mathbb{R}_{+}^{2}$. Since $e_{1}=\frac{\partial}{\partial s}$, it follows that $\nabla_{e_{1}} \psi_{+}=-\nabla_{e_{1}} \psi_{-}$on $\partial \mathbb{R}_{+}^{2}$. Therefore we obtain

$$
\left\langle\psi, e_{2} \cdot \nabla_{e_{1}} \psi\right\rangle=\left\langle\binom{\psi_{+}}{-\psi_{+}},\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{\nabla_{e_{1}} \psi_{+}}{-\nabla_{e_{1}} \psi_{+}}\right\rangle=0, \quad \text { on } \partial \mathbb{R}_{+}^{2} .
$$

Consequently we have $\left.\operatorname{Im} T_{2}(z)\right|_{\partial \mathbb{R}_{+}^{2}}=0$. It follows that $\left.\operatorname{Im} T(z)\right|_{\partial \mathbb{R}_{+}^{2}}=0$.
Next let (v, ϕ) be the Kelvin transformation of (u, ψ), i.e.,

$$
\begin{aligned}
& v(x)=u\left(\frac{x}{|x|^{2}}\right)-2 \ln |x|, \\
& \phi(x)=|x|^{-1} \psi\left(\frac{x}{|x|^{2}}\right) .
\end{aligned}
$$

Then (v, ϕ) satisfies

$$
\begin{cases}-\Delta v=2 e^{2 v}-e^{v}\langle\phi, \phi\rangle, & \text { in } \mathbb{R}_{+}^{2}, \tag{14}\\ \not D \phi=-e^{v} \phi, & \text { in } \mathbb{R}_{+}^{2}, \\ \frac{\partial v}{\partial n}=c e^{v}, & \text { on } \partial \mathbb{R}_{+}^{2} \backslash\{0\}, \\ B \phi=0, & \text { on } \partial \mathbb{R}_{+}^{2} \backslash\{0\} .\end{cases}
$$

And, by change of variable,

$$
\begin{aligned}
& \int_{|x| \leqslant r_{0}} e^{2 v} d x=\int_{|x| \geqslant \frac{1}{r_{0}}} e^{2 u} d x \\
& \int_{|x| \leqslant r_{0}}|\phi|^{4} d x=\int_{|x| \geqslant \frac{1}{r_{0}}}|\psi|^{4} d x \\
& \int_{|s| \leqslant r_{0}} e^{v} d s=\int_{|s| \geqslant \frac{1}{r_{0}}} e^{u} d s
\end{aligned}
$$

can be made small if r_{0} is small. Therefore, there is a small enough r_{0} such that (v, ϕ) satisfies

$$
\begin{cases}-\Delta v=2 e^{2 v}-e^{v}\langle\phi, \phi\rangle, & \text { in } B_{r_{0}}^{+}, \tag{15}\\ \not D \phi=-e^{v} \phi, & \text { in } B_{r_{0}}^{+}, \\ \frac{\partial v}{\partial n}=c e^{v}, & \text { on }\left(\partial \mathbb{R}_{+}^{2} \cap \partial B_{r_{0}}^{+}\right) \backslash\{0\}, \\ B \phi=0, & \text { on }\left(\partial \mathbb{R}_{+}^{2} \cap \partial B_{r_{0}}^{+}\right) \backslash\{0\}\end{cases}
$$

with energy condition

$$
\begin{equation*}
\int_{|x| \leqslant r_{0}} e^{2 v} d x \leqslant \varepsilon_{1}<2 \pi, \quad \int_{|x| \leqslant r_{0}}|\phi|^{4} d x \leqslant C, \quad|c| \int_{|s| \leqslant r_{0}} e^{v} d s \leqslant \varepsilon_{2}<\pi . \tag{16}
\end{equation*}
$$

Since (15) and (16) are conformally invariant, in the sequel we may assume $B_{r_{0}}^{+}$to be the unit disk B_{1}^{+}. We have
Lemma 5.3. There are $0<\varepsilon_{1}<\pi$ and $0 \leq \varepsilon_{2}<\pi$ such that if (v, ϕ) is a regular solution to (15) with energy condition (16) (for $r_{0}=1$), then for any $x \in \bar{B}_{\frac{1}{2}}^{+}$we have

$$
\begin{equation*}
|\phi(x)||x|^{\frac{1}{2}}+|\nabla \phi(x)||x|^{\frac{3}{2}} \leqslant C\left(\int_{B_{2|x|}^{+}}|\phi|^{4} d x\right)^{\frac{1}{4}} . \tag{17}
\end{equation*}
$$

Furthermore, if we assume that $e^{2 v}=O\left(\frac{1}{|x|^{2-\varepsilon}}\right)$, then, for any $x \in \bar{B}_{\frac{1}{2}}^{+}$, we have

$$
\begin{equation*}
|\phi(x)||x|^{\frac{1}{2}}+|\nabla \phi(x)||x|^{\frac{3}{2}} \leqslant C|x|^{\frac{1}{4 C}}\left(\int_{B_{1}^{+}}|\phi|^{4} d x\right)^{\frac{1}{4}}, \tag{18}
\end{equation*}
$$

for some positive constant C. Here ε is any sufficiently small positive number.
Proof. Firstly by the chirality boundary condition of ϕ, we can extend (v, ϕ) to the lower half disk B_{1}^{-}. Assume \bar{x} is the reflection point of x about $\partial \mathbb{R}_{+}^{2}$, and define

$$
\begin{aligned}
& v(\bar{x}):=v(x), \quad \bar{x} \in B_{1}^{-}, \\
& \phi(\bar{x}):=i e_{1} \cdot \phi(x), \quad \bar{x} \in B_{1}^{-} .
\end{aligned}
$$

Then from the argument in Lemma 3.4 we obtain that

$$
\not D \psi=-A(x) \psi, \quad \text { in } B_{1} .
$$

Here

$$
A(x)= \begin{cases}e^{u(x)}, & x \in B_{1}^{+}, \\ e^{u(\bar{x})}, & x \in B_{1}^{-}\end{cases}
$$

The conclusions follow from applying similar arguments as in the proof of Lemma 6.2 of [12].
From Lemma 5.3 and the Kelvin transformation, we obtain the asymptotic estimate of the spinor $\psi(x)$

$$
\begin{equation*}
|\psi(x)| \leqslant C|x|^{-\frac{1}{2}-\delta_{0}} \quad \text { for }|x| \text { near } \infty \tag{19}
\end{equation*}
$$

for some positive number δ_{0} provided that $e^{2 v}=O\left(\frac{1}{|x|^{2-\varepsilon}}\right)$.
Now let $\alpha=\int_{\mathbb{R}_{+}^{2}} 2 e^{2 u}-e^{u}|\psi|^{2} d x+\int_{\partial R_{+}^{2}} c e^{u} d s$ and define a constant spinor $\xi_{0}=\int_{\mathbb{R}_{+}^{2}} e^{u} \psi d x$. It will turn out that the constant spinor ξ_{0} is well defined. Then we have

Proposition 5.4. Let (u, ψ) be a regular solution of (12) and (13) and let c be a nonnegative constant. Then we have

$$
\begin{align*}
& u(x)=-\frac{\alpha}{\pi} \ln |x|+C+O\left(|x|^{-1}\right) \quad \text { for }|x| \text { near } \infty, \tag{20}\\
& \psi(x)=-\frac{1}{2 \pi} \frac{x}{|x|^{2}}\left(I+i e_{1}\right) \cdot \xi_{0}+o\left(|x|^{-1}\right) \quad \text { for }|x| \text { near } \infty, \tag{21}
\end{align*}
$$

where \cdot is the Clifford multiplication, C is a positive universal constant, and I is the identity spinor. In particular we have

$$
\alpha=2 \pi
$$

Proof. We prove Proposition 5.4 in several steps.
Step 1. $\lim _{|x| \rightarrow \infty} \frac{u(x)}{\ln |x|}=-\frac{\alpha}{\pi}$.
Let

$$
\begin{aligned}
w(x)= & \frac{1}{2 \pi} \int_{\mathbb{R}_{+}^{2}}(\log |x-y|+\log |\bar{x}-y|-2 \log |y|)\left(2 e^{2 u(y)}-e^{u(y)}|\psi(y)|^{2}\right) d y \\
& +\frac{1}{2 \pi} \int_{\partial \mathbb{R}_{+}^{2}}(\log |x-y|+\log |\bar{x}-y|-2 \log |y|) c e^{u(y)} d y
\end{aligned}
$$

where \bar{x} is the reflection point of x about $\partial \mathbb{R}_{+}^{2}$. It is easy to check that $w(x)$ satisfies

$$
\begin{cases}\Delta w=2 e^{2 u}-e^{u}|\psi|^{2}, & \text { in } \mathbb{R}_{+}^{2} \\ \frac{\partial w}{\partial n}=-c e^{u}, & \text { on } \partial \mathbb{R}_{+}^{2}\end{cases}
$$

and

$$
\lim _{|x| \rightarrow \infty} \frac{w(x)}{\ln |x|}=\frac{\alpha}{\pi} .
$$

Consider $v(x)=u+w$. Then $v(x)$ satisfies

$$
\begin{cases}\Delta v=0, & \text { in } \mathbb{R}_{+}^{2} \\ \frac{\partial v}{\partial n}=0, & \text { on } \partial \mathbb{R}_{+}^{2}\end{cases}
$$

We extend $v(x)$ to \mathbb{R}^{2} by even reflection such that $v(x)$ is harmonic in \mathbb{R}^{2}. From Lemma 5.1 we know $v(x) \leqslant$ $C(1+\ln (|x|+1))$ for some positive constant C. Thus $v(x)$ is a constant. This completes the proof of Step 1.
Step 2. $\alpha>\pi$.
Since $\int_{\mathbb{R}_{+}^{2}} e^{2 u} d x<\infty$, we get that $\alpha \geqslant \pi$. Next we show that $\alpha>\pi$. Assume by contradiction that $\alpha=\pi$. Let (v, ϕ) be the Kelvin transformation of (u, ψ). Then (v, ϕ) satisfies

$$
\begin{cases}-\Delta v=2 e^{2 v}-e^{v}|\phi|^{2}, & \text { in } \mathbb{R}_{+}^{2}, \\ \not D \phi=-e^{v} \phi, & \text { in } \mathbb{R}_{+}^{2}, \\ \frac{\partial v}{\partial n}=c e^{v}, & \text { on } \partial \mathbb{R}_{+}^{2} \backslash\{0\}, \\ B \phi=0, & \text { on } \partial \mathbb{R}_{+}^{2} \backslash\{0\},\end{cases}
$$

with the energy conditions

$$
\int_{\mathbb{R}_{+}^{2}} e^{2 v}+|\phi|^{4} d x<\infty,
$$

and

$$
\int_{\partial \mathbb{R}_{+}^{2}} e^{v} d s<\infty .
$$

Let D^{+}be a small half disk centered at zero. Denote $f(x):=2 e^{2 v}-e^{v}|\phi|^{2}$. From the asymptotic estimate (19) we know that $f(x)>0$ in a small half disk D^{+}. Define $w(x)$ by

$$
\begin{aligned}
w(x)= & \frac{1}{2 \pi} \int_{D^{+}}(\log |x-y|+\log |\bar{x}-y|) f(y) d y \\
& +\frac{1}{2 \pi} \int_{\left.\partial D^{+} \cap t=0\right\}}(\log |x-y|+\log |\bar{x}-y|) c e^{v(y)} d y
\end{aligned}
$$

and define $g(x)=v(x)+w(x)$. It is clear that

$$
\begin{cases}\Delta g=0, & \text { in } D^{+}, \\ \frac{\partial g}{\partial n}=0, & \text { on }\left\{\partial D^{+} \cap\{t=0\}\right\} \backslash\{0\} .\end{cases}
$$

Therefore by extending $g(x)$ to $D \backslash\{0\}$ evenly we obtain a harmonic $g(x)$ in $D \backslash\{0\}$.
On the other hand, we can check that

$$
\lim _{|x| \rightarrow 0} \frac{w}{-\log |x|}=0
$$

by Step 1 which implies

$$
\lim _{|x| \rightarrow 0} \frac{g(x)}{-\log |x|}=\lim _{|x| \rightarrow 0} \frac{v(x)+w(x)}{-\log |x|}=1 .
$$

Since $g(x)$ is harmonic in $D \backslash\{0\}$, we have $g(x)=-\log |x|+g_{0}(x)$ with a smooth harmonic function g_{0} in D. By the definition, we have $w(x)<0$ since c is nonnegative and $f(x)>0$ in D^{+}. Thus, we have

$$
\int_{D^{+}} e^{2 v} d x=\int_{D^{+}} e^{2 g-2 w} d x \geqslant \int_{D^{+}}|x|^{-2} e^{2 g_{0}} d x=\infty
$$

which is a contradiction with $\int_{\mathbb{R}_{+}^{2}} e^{2 v} d x<\infty$. Hence we have shown that $\alpha>\pi$. Thus we finish the proof of Step 2.
Step 3. The proof of (20) and $\alpha=2 \pi$.
From $\alpha>\pi$ we can improve the estimates for $e^{2 u}$ to

$$
e^{2 u} \leqslant C|x|^{-2-\varepsilon} \quad \text { for }|x| \text { near } \infty
$$

Then by using the standard potential analysis we can obtain that

$$
u(x)=-\frac{\alpha}{\pi} \ln |x|+C+O\left(|x|^{-1}\right) \quad \text { for }|x| \text { near } \infty .
$$

Furthermore, we can show that $\alpha=2 \pi$. Since the quadratic differential $T(z) d z^{2}$ is holomorphic in \mathbb{R}_{+}^{2} and is real on $\partial \mathbb{R}_{+}^{2}$, we can extend $T(z)$ to a holomorphic function in \mathbb{R}^{2}. Then by using (19) and (20), we have the following expansion of $T(z)$ near infinity

$$
\frac{1}{4}\left(\frac{\alpha}{\pi}\right)^{2} \frac{1}{z^{2}}-\frac{1}{2} \frac{\alpha}{\pi} \frac{1}{z^{2}}+o\left(\frac{1}{z^{2}}\right)+\cdots=\frac{1}{2 z^{2}}\left(\frac{1}{2}\left(\frac{\alpha}{\pi}\right)^{2}-\frac{\alpha}{\pi}\right)+o\left(\frac{1}{z^{2}}\right)+\cdots
$$

Hence, $T(z)$ is a constant and $\frac{1}{2}\left(\frac{\alpha}{\pi}\right)^{2}-\frac{\alpha}{\pi}=0$, i.e., $\alpha=2 \pi$.
Step 4. The proof of (21).
First from $\alpha=2 \pi$, we can improve the estimate for $e^{2 u}$ to

$$
\begin{equation*}
e^{2 u} \leqslant C|x|^{-4} \quad \text { for }|x| \text { near } \infty \tag{22}
\end{equation*}
$$

This implies that the constant spinor ξ_{0} is well defined.
Then by using the chirality boundary condition of spinor we have

$$
\not D \psi=-A(x) \psi, \quad \text { in } \mathbb{R}^{2} .
$$

Here $A(x)$ is defined as before. Define

$$
\xi_{1}=\int_{\mathbb{R}^{2}} A(x) \psi d x
$$

The constant spinor ξ_{1} is also well defined. From the asymptotic estimates (19) and (22) and a similar argument in [12] we obtain

$$
\begin{equation*}
\psi(x)=-\frac{1}{2 \pi} \frac{x}{|x|^{2}} \cdot \xi_{1}+o\left(|x|^{-1}\right) \quad \text { for }|x| \text { near } \infty . \tag{23}
\end{equation*}
$$

Since

$$
\begin{aligned}
\xi_{1} & =\int_{\mathbb{R}_{+}^{2}} A(x) \psi d x+\int_{\mathbb{R}_{-}^{2}} A(x) \psi d x \\
& =\int_{\mathbb{R}_{+}^{2}} e^{u} \psi d x+\int_{\mathbb{R}_{-}^{2}} e^{u(\bar{x})} i e_{1} \cdot \psi(\bar{x}) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}_{+}^{2}} e^{u} \psi d x+\int_{\mathbb{R}_{-}^{2}} e^{u(y)} i e_{1} \cdot \psi(y) d y \\
& =\left(I+i e_{1}\right) \cdot \int_{\mathbb{R}_{+}^{2}} e^{u} \psi d x \\
& =\left(I+i e_{1}\right) \cdot \xi_{0} .
\end{aligned}
$$

Hence we obtain from (23)

$$
\psi(x)=-\frac{1}{2 \pi} \frac{x}{|x|^{2}}\left(I+i e_{1}\right) \cdot \xi_{0}+o\left(|x|^{-1}\right) \quad \text { for }|x| \text { near } \infty
$$

Thus we finish the proof of Step 4 and we complete the proof of the proposition.
Consequently, from Proposition 5.2, we shall show that an infinite singularity of regular solutions for (12) and (13) can be removed as in many other conformally invariant problems.

Theorem 5.5. Let (u, ψ) be a regular solution of (12) and (13). Then (u, ψ) extends to a regular solution on a spherical cap $\mathbb{S}_{c^{\prime}}^{2}$, where c^{\prime} is the geodesic curvature of $\partial \mathbb{S}_{c^{\prime}}^{2}$.

Proof. Let (v, ϕ) be the Kelvin transformation of (u, ψ) as before. Then (v, ϕ) satisfies the system (14). To prove the theorem, by conformal invariance, it is sufficient to show that (v, ϕ) is regular on $\overline{\mathbb{R}}_{+}^{2}$. Applying Proposition 5.4 , we get

$$
\begin{equation*}
v(x)=\left(\frac{\alpha}{\pi}-2\right) \ln |x|+O(1) \quad \text { for }|x| \text { near } 0 . \tag{24}
\end{equation*}
$$

Since $\alpha=2 \pi$, it follows that v is bounded near the singularity 0 . Recall that ϕ is also bounded near 0 , we can apply elliptic theory to obtain that (v, ϕ) is regular on $\overline{\mathbb{R}}_{+}^{2}$.

Acknowledgements

The work was carried out when the third author was visiting the Max Planck Institute for Mathematics in the Sciences. She would like to thank the institute for the hospitality and the good working conditions.

Appendix A

We present a Harnack inequality for a non-homogeneous Neumann-type boundary problem for second-order elliptic equations.

Lemma A.1. Let $f \in L^{p}\left(B_{r}\right)$ for some $1<p \leqslant+\infty$ and u satisfy

$$
\begin{cases}-\Delta u=f & \text { in } B_{r}, \\ u \leqslant 0 & \text { on } \partial B_{r} .\end{cases}
$$

Then for any $0<\theta<1$, there exists a constant $\beta \in(0,1)$ depending on r, θ only, and a constant $\gamma>0$ depending on r, p only, such that

$$
\sup _{B_{\theta r}} u \leqslant \beta \inf _{B_{\theta r}} u+(1+\beta) \gamma\|f\|_{L^{p}\left(B_{r}\right)} .
$$

Lemma A.2. Let $f \in L^{p}\left(B_{r}^{+}\right)$for some $1<p \leqslant+\infty, g \in L^{q}\left(\partial B_{r}^{+} \cap\{t=0\}\right)$ for some $1<q \leqslant+\infty$ and u satisfy

$$
\begin{cases}-\Delta u=f & \text { in } B_{r}^{+}, \\ \frac{\partial u}{\partial t}=g & \text { on } \partial B_{r}^{+} \cap\{t=0\}, \\ u \leqslant 0 & \text { on } \partial B_{r}^{+} \cap\{t>0\} .\end{cases}
$$

Then for any $0<\theta<1$, there exist a constant $\beta \in(0,1)$ depending on r, θ only, and a constant $\gamma>0$ depending on r, p, q only, such that

$$
\sup _{\bar{B}_{\theta r}^{+}} u \leqslant \beta \inf _{\bar{B}_{\theta r}^{+}} u+(1+\beta) \gamma\left(\|f\|_{L^{p}\left(B_{r}^{+}\right)}+\|g\|_{L^{q}\left(\partial B_{r}^{+} \cap\{t=0\}\right)}\right) .
$$

Proof. Let w satisfy

$$
\begin{cases}-\Delta w=f & \text { in } B_{r}^{+}, \\ \frac{\partial w}{\partial t}=g & \text { on } \partial B_{r}^{+} \cap\{t=0\}, \\ w=0 & \text { on } \partial B_{r}^{+} \cap\{t>0\}\end{cases}
$$

and set $v=w-u$. Then v satisfies

$$
\begin{cases}-\Delta v=0 & \text { in } B_{r}^{+}, \\ \frac{\partial v}{\partial t}=0 & \text { on } \partial B_{r}^{+} \cap\{t=0\} \\ v \geqslant 0 & \text { on } \partial B_{r}^{+} \cap\{t>0\}\end{cases}
$$

By the maximum principle and Hopf lemma, $v \geqslant 0$ in B_{r}^{+}. By extending v evenly, v becomes a harmonic function in B_{r} with $v \geqslant 0$. Then from Harnack inequality of harmonic function we have

$$
\begin{equation*}
\sup _{\bar{B}_{\theta r}^{+}} v \leqslant \frac{1}{\beta} \inf _{\bar{B}_{\theta r}^{+}} v \tag{25}
\end{equation*}
$$

for any $\theta \in(0,1)$ and for some $\beta \in(0,1)$ depending on r, θ only.
Next, assume that w_{1} satisfies

$$
\begin{cases}-\Delta w_{1}=f & \text { in } B_{r}^{+}, \\ \frac{\partial w_{1}}{\partial t}=0 & \text { on } \partial B_{r}^{+} \cap\{t=0\}, \\ w_{1}=0 & \text { on } \partial B_{r}^{+} \cap\{t>0\}\end{cases}
$$

and that w_{2} satisfies

$$
\begin{cases}-\Delta w_{2}=0 & \text { in } B_{r}^{+} \\ \frac{\partial w_{2}}{\partial t}=g & \text { on } \partial B_{r}^{+} \cap\{t=0\} \\ w_{2}=0 & \text { on } \partial B_{r}^{+} \cap\{t>0\}\end{cases}
$$

It is clear from extending evenly that

$$
\sup _{\bar{B}_{r}^{+}}\left|w_{1}\right| \leqslant \gamma\|f\|_{L^{p}\left(B_{r}^{+}\right)}
$$

For w_{2}, we define

$$
\phi(x)=\frac{1}{2 \pi} \int_{\partial B_{r}^{+} \cap\{t=0\}}\left(\log \frac{2 r}{|y-x|}+\log \frac{2 r}{|y-\bar{x}|}\right)|g(y)| d y
$$

where \bar{x} is the reflection point of about $\{t=0\}$. Then ϕ satisfies

$$
\begin{cases}-\Delta \phi=0 & \text { in } B_{r}^{+} \\ \frac{\partial w_{2}}{\partial t}=-|g| & \text { on } \partial B_{r}^{+} \cap\{t=0\}\end{cases}
$$

It is clear that $\phi \geqslant 0$ and

$$
\sup _{\bar{B}_{r}^{+}} \phi \leqslant \gamma\|g\|_{L^{q}\left(B_{r}^{+} \cap\{t=0\}\right)} .
$$

Since

$$
\begin{cases}-\Delta\left(w_{2}-\phi\right)=0 & \text { in } B_{r}^{+}, \\ \frac{\partial\left(w_{2}-\phi\right)}{\partial t}=g+|g| & \text { on } \partial B_{r}^{+} \cap\{t=0\}, \\ w_{2}-\phi \leqslant 0 & \text { on } \partial B_{r}^{+} \cap\{t>0\} .\end{cases}
$$

It follows from the maximum principle and Hopf lemma that $w_{2} \leqslant \phi$ in \bar{B}_{r}^{+}. By a similar argument we also have

$$
\begin{cases}-\Delta\left(w_{2}+\phi\right)=0 & \text { in } B_{r}^{+}, \\ \frac{\partial\left(w_{2}+\phi\right)}{\partial t}=g-|g| & \text { on } \partial B_{r}^{+} \cap\{t=0\} \\ w_{2}+\phi \geqslant 0 & \text { on } \partial B_{r}^{+} \cap\{t>0\}\end{cases}
$$

which implies that $w_{2} \geqslant-\phi$ in \bar{B}_{r}^{+}. Thus we have $\left|w_{2}\right| \leqslant|\phi|$ in \bar{B}_{r}^{+}. Since $w=w_{1}+w_{2}$, it follows that

$$
\begin{equation*}
\sup _{\bar{B}_{r}^{+}}|w| \leqslant \gamma\|g\|_{L^{q}\left(B_{r}^{+} \cap\{t=0\}\right)} \tag{26}
\end{equation*}
$$

By (25), (26) and $u=w-v$, it follows that

$$
\sup _{\bar{B}_{\theta r}^{+}} u \leqslant \beta \inf _{\bar{B}_{\theta r}^{+}} u+(1+\beta) \gamma\left(\|f\|_{L^{p}\left(B_{r}^{+}\right)}+\|g\|_{L^{q}\left(\partial B_{r}^{+} \cap\{t=0\}\right)}\right) .
$$

References

[1] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959) 623-727.
[2] C. Ahn, C. Rim, M. Stanishkov, Exact one-point function of $N=1$ super-Liouville theory with boundary, Nucl. Phys. B 636 (FS) (2002) 497-513.
[3] H. Baum, T. Friedrich, R. Grunewald, I. Kath, Twistor and Killing Spinors on Riemannian Manifolds, Humboldt Universität, Berlin, 1990.
[4] H. Brezis, F. Merle, Uniform estimates and blow up behavior for solutions of $-\Delta u=V(x) e^{u}$ in two dimensions, Comm. Partial Differential Equations 16 (1991) 1223-1253.
[5] Q. Chen, J. Jost, G. Wang, M.M. Zhu, The boundary value problem for Dirac-harmonic maps, J. Eur. Math. Soc. 15 (2013) $997-1031$.
[6] T. Fukuda, K. Hosomichi, Super-Liouville theory with boundary, Nucl. Phys. B 635 (2002) 215-254.
[7] G.W. Gibbons, S.W. Hawking, G.T. Horowitz, M.J. Perry, Positive mass theorems for black holes, Comm. Math. Phys. 88 (1983) $295-308$.
[8] N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974) 1-55.
[9] O. Hijazi, S. Montiel, A. Roldán, Eigenvalue boundary problems for the Dirac operator, Comm. Math. Phys. 231 (2002) 375-390.
[10] J. Jost, Riemannian Geometry and Geometric Analysis, 6th edition, Springer, 2011.
[11] J. Jost, G. Wang, Analytic aspects of the Toda system: I. A Moser-Trudinger inequality, Comm. Pure Appl. Math. 54 (2001) 1289-1319.
[12] J. Jost, G. Wang, C.Q. Zhou, Super-Liouville equations on closed Riemann surfaces, Comm. Partial Differential Equations 32 (2007) 1103-1128.
[13] J. Jost, G. Wang, C.Q. Zhou, Metrics of constant curvature on a Riemann surface with two corners on the boundary, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 437-456.
[14] Katrin Wehrheim, Uhenbeck Compactness, European Mathematical Society, 2004.
[15] H.B. Lawson, M. Michelsohn, Spin Geometry, Princeton Math. Ser., vol. 38, Princeton University Press, Princeton, NJ, 1989.
[16] A.M. Polyakov, Quantum geometry of fermionic strings, Phys. Lett. B 103 (1981) 211.
[17] J.N.G.N. Prata, The super-Liouville equation on the half-line, Phys. Lett. B 405 (1997) 271-279.

[^0]: in The first author is supported by the ERC Advanced Grant FP7-267087. The second is supported partly by SFB/TR71 "Geometric partial differential equations" of DFG. The third author is supported partially by NSFC of China (No. 10871126). The fourth author is supported in part by The Leverhulme Trust.

 Corresponding author.
 E-mail addresses: jost@mis.mpg.de (J. Jost), Guofang.Wang@math.uni-freiburg.de (G. Wang), cqzhou@sjtu.edu.cn (C. Zhou), Miaomiao.Zhu@warwick.ac.uk (M. Zhu).

