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Abstract

The average-distance problem is to find the best way to approximate (or represent) a given measure μ on R
d by a one-

dimensional object. In the penalized form the problem can be stated as follows: given a finite, compactly supported, positive
Borel measure μ, minimize

E(Σ) =
∫

Rd

d(x,Σ)dμ(x) + λH1(Σ)

among connected closed sets, Σ , where λ > 0, d(x,Σ) is the distance from x to the set Σ , and H1 is the one-dimensional Hausdorff
measure. Here we provide, for any d � 2, an example of a measure μ with smooth density, and convex, compact support, such that
the global minimizer of the functional is a rectifiable curve which is not C1. We also provide a similar example for the constrained
form of the average-distance problem.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Given a positive, compactly supported, Borel measure μ on R
d , d � 2, λ > 0, and Σ a nonempty subset of Rd

consider

E(Σ) =
∫

Rd

d(x,Σ)dμ(x) + λH1(Σ). (1)

The average-distance problem is to minimize the functional over A= {Σ ⊂R
d : Σ − connected and compact}.
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The problem was introduced by Buttazzo, Oudet, and Stepanov [1] and Buttazzo and Stepanov [2]. They studied
the problem in the constrained form, where instead of H1 penalization one minimizes

F(Σ) =
∫

Rd

d(x,Σ)dμ(x) over A1 := {
Σ ∈ A: H1(Σ) � �

}
. (2)

Over the past few years there has been a significant progress on understanding of the functional; some of which we
outline below. An excellent overview article has recently been written by Lemenant [3].

The problem has wide ranging applications. When interpreted as a simplified description of designing the optimal
public transportation network then μ represents the distribution of passengers, and Σ is the network. The desire is
to design the network that minimizes the total distance of passengers to the network. Another related problem which
can be reduced to the average-distance problem, studied in [1], is when we think of passengers as workers that need
to get to their workplace. Then two measures are initially given, the distribution of where workers reside and where
they work. Again the goal is to find the optimal network that minimizes the total transportation cost (traveling along
the network is for free).

A related interpretation is that of finding the optimal irrigation network (the irrigation problem).
Another interpretation, whose application in a related setting is presently investigated by Laurent and the author,

is to find a good one-dimensional representation to a data cloud. Here μ represents the distribution of data points.
One wishes to approximate the cloud by a one-dimensional object. The first term in (1) then charges the errors in the
approximation, while the second one penalizes the complexity of the representation.

The existence of minimizers of E follows from the theorems of Blaschke and Gołąb [2]. In this paper we investigate
their regularity. It was shown in [2] that, at least for d = 2, the minimizer is topologically a tree made of finitely many
simple rectifiable curves which meet at triple junctions (no more that three branches can meet at one point). The
authors also show that the minimizer is Ahlfors regular (which was extended to higher dimensions by Paolini and
Stepanov [4]), but further regularity of branches remained open. Recently Tilli [5] showed that every compact simple
C1,1 curve is a minimizer of the average-distance problem (in the constrained form (27)) where μ is the characteristic
function of a small tubular neighborhood of the curve. This suggests that C1,1 is the best regularity for minimizers
one can expect (even if μ were smooth). Further criteria for regularity were established by Lemenant [6].

Due to the presence of the H1 term one might expect that, if μ is a measure with smooth density, Σ is at least C1.
A recent paper by Buttazzo, Mainini, and Stepanov [7] suggests that this may not be the case, and exhibits a measure μ

which is a characteristic function of a set in R
2, for which there exists a stationary point of E which has a corner.

Furthermore the results on the blow-up of the problem by Santambrogio and Tilli [8] support the possibility of corners.
Here we prove that minimizers which are not C1 are indeed possible. That is for any d � 2 provide an example of
a measure μ with smooth density for which we prove that the minimizer is a curve which has a corner, and is thus
not C1. One of the difficulties in dealing with global energy minimizers is that the functional is not convex. To be able
to treat them we introduce constructions and an approximation technique that may be of independent interest.

Our approach is based on approximating the measure μ of our interest by particle measures μn (i.e. the ones that
have only atoms). For particle measures μn the average-distance problem (1) has a discrete formulation that can be
carefully analyzed. In particular the minimizers are trees with piecewise linear branches. Our starting point is the
construction of a particle measure with three particles, μ̄, for which we can show that the minimizer is a wedge (curve
with exactly two line segments), see Fig. 1. We then show that if μ̄ is smoothed out a bit then the minimizer will still
have a corner (even if we also add a smooth background measure of small total mass, q , that makes the support of
the perturbed measure convex). We denote the smooth perturbed measure by μq,δ were δ is the smoothing parameter.
To show that a minimizer of E for μq,δ has a corner when δ and q are small, we consider discrete approximations
μq,δ,n of μq,δ . We show that the minimizers Σq,δ,n of E corresponding to μq,δ,n have a corner whose opening
is bounded from above independent of n. We furthermore obtain appropriate estimates on the minimizers which
guarantee convergence as n → ∞ to a minimizer Σq,δ of E corresponding to μq,δ and insure that the corner remains
in the limit.

1.1. Outline

In Section 2 we list some of the basic properties of the functional E given in (1), in particular its continuity
properties with respect to parameters and scaling with respect to dilation of μ. In Section 3 we consider the energy (1)
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with μ being a particle measure. We obtain conditions for criticality, information of the projection of the measure μ

onto the minimizer Σ , and a priori estimates on the curvature (turning angle). The basic three-particle configuration, μ̄,
for which the minimizer is a wedge is also introduced. The construction of the counterexample is carried out in Section
4. We introduce the perturbation and use elementary geometry to obtain various geometric facts about the minimizer of
the average-distance problem corresponding to the discrete approximation of the perturbed measure: μq,δ,n. The result
of these efforts is that the minimizer must have a corner with a large turning angle (jump in the tangent direction).
Finally we take the limit n → ∞ to obtain that the minimizer for μq,δ has a corner too. In Section 5 we use a scaling
argument to show that the minimizers of the constrained problem (2) can have corners too.

2. Properties of the functional

Let A be the set of compact connected subsets of Rd . Given Σ ∈ A, for y ∈ Σ we define the region of influence
of y,

R(y) = {
x ∈R

d : (∀z ∈ Σ) d(x, z) � d(x, y)
}
. (3)

In the next two lemmas we study continuity properties of E with respect to dependence on Σ and μ.

Lemma 1. For any μ ∈ PR and any λ > 0, the functional Eμ : A → R is lower semicontinuous with respect to
Hausdorff convergence.

Proof. Assume that Σn ∈ A converge to Σ in Hausdorff metric, dH . Gołąb’s theorem (see [9]) gives the lower-
semicontinuity of the H1 measure. Thus it is enough to prove the continuity of the first term of the energy. Note that
for any x ∈ R

d ,

∣∣d(x,Σn) − d(x,Σ)
∣∣� dH (Σn,Σ).

To illustrate why, assume that for some x,

d(x,Σn) > d(x,Σ) + dH (Σn,Σ).

Considering y to be the closest point to x on Σ gives

d(x,Σn) > d(x, y) + inf
z∈Σn

d(y, z) � d(x,Σn)

which is a contradiction. Thus∣∣∣∣
∫

Rd

d(x,Σn)dμ(x) −
∫

Rd

d(x,Σ)dμ(x)

∣∣∣∣� dH (Σn,Σ)μ
(
R

d
)

which implies the claim. �
Lemma 2. Consider Σ ∈ A and λ > 0. The mapping μ �→ Eμ(Σ) is continuous with respect to weak-∗ convergence
of measures in PR .

Proof. We recall that the Wasserstein metric, dW , metrizes the weak-∗ convergence of measures on the set of measures

supported in B(0,R). Therefore if μn
∗
⇀ μ in PR then dW (μn,μ) → 0 as n → ∞. Hence there exists a coupling (i.e.

a transportation plan), Πn between μ and μn such that
∫

B(0,R)×B(0,R)

|x − y|2 dΠn(x, y) → 0 as n → ∞.
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Therefore∣∣∣∣
∫

Rd

d(x,Σ)dμn(x) −
∫

Rd

d(x,Σ)dμ(x)

∣∣∣∣ =
∣∣∣∣

∫

Rd×Rd

d(x,Σ) − d(y,Σ)dΠn(x, y)

∣∣∣∣

�
∫

Rd×Rd

|x − y|dΠn(x, y)

�
√

R dW(μn,μ) → 0 as n → ∞. � (4)

Lemma 3. If μn
∗
⇀ μ in the weak topology of measures in PR then Eμn

Γ→ Eμ with respect to Hausdorff convergence
of sets on A.

Proof. To prove the Γ -convergence we need to show the following

• Lower-semicontinuity. Assume μn
∗
⇀ μ and Σn → Σ in Hausdorff metric as n → ∞. Then

lim inf
n→∞ Eμn(Σn) � Eμ(Σ).

• Construction. Assume μn
∗
⇀ μ. For any Σ ∈ A there exists a sequence Σn ∈A, such that Σn → Σ in Hausdorff

metric and

lim
n→∞Eμn(Σn) = Eμ(Σ).

The construction claim follows from Lemma 2 by taking Σn = Σ .

Let us consider the lower-semicontinuity. As before, μn
∗
⇀ μ implies dW (μn,μ) → 0 as n → ∞. As in the estimate

(4) ∣∣∣∣
∫

Rd

d(x,Σn)dμn(x) −
∫

Rd

d(x,Σn)dμ(x)

∣∣∣∣ �
√

R dW(μn,μ) → 0 as n → ∞.

We note that the bound does not depend on Σn. Therefore, using Lemma 1,

lim inf
n→∞ Eμn(Σn) = lim inf

n→∞ Eμ(Σn) �Eμ(Σ). �

Corollary 4. Assume that μn
∗
⇀ μ in PR and that Σn is a minimizer of Eμn . Then along a subsequence Σn

dH→ Σ

where Σ is a minimizer of Eμ.

Proof. Since by Blaschke’s theorem (see [9]) the sequence Σn has a subsequence which converges in Hausdorff
metric the claim follows from the Γ convergence. �
Corollary 5. Assume Eμ has a unique minimizer Σ and that μn

∗
⇀ μ in PR . Then for every ε > 0 there exists n0 such

that for all n� n0 any minimizer Σn of Eμn satisfies dH (Σ,Σn) < ε.

Proof. Assume that the claim does not hold. Than there exists ε > 0 and a sequence Σnk
of minimizers of Eμnk

such that for each k, dH (Σ,Σnk
) � ε. By relabeling, we can assume nk = k for all k. By Blaschke’s theorem, there

exists Σ̃ ∈A such that, along a subsequence, Σn → Σ̃ as n → ∞ in Hausdorff metric. We can again assume that the
subsequence is the whole sequence. Furthermore Σ̃ is connected and thus belongs to A. We note that dH (Σ, Σ̃) � ε.
By the lower-semicontinuity part in the Γ -convergence, Σ̃ is a minimizer of Eμ, which contradicts the uniqueness
assumption. �
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Lemma 6. Let R > 0. Let γn : [0,1] → B(0,R) be a sequence of Lipschitz curves with constant-speed parameteriza-
tion (i.e. |γ ′

n(s)| = length(γn) for a.e. s ∈ [0,1]). Assume that supn length(γn) and supn‖γ ′
n‖BV are finite. Then along

a subsequence γn converges to a Lipschitz curve γ in the sense that

γn → γ in Cα as n → ∞, for any α ∈ [0,1),

γ ′
n → γ ′ in Lp as n → ∞, for any p ∈ [1,∞), and

γ ′′
n

∗
⇀ γ ′′ in the space of finite signed Borel measures as n → ∞.

Proof. The constant-speed assumption and the uniform bound on the lengths imply that ‖γ ′
n‖L∞ are uniformly

bounded and thus there is a uniform bound on the Lipschitz norm for the curves. The fact that γn converges along a
subsequence in Cα for any α ∈ [0,1) follows since the set of Lipschitz functions with values in B(0,R), is compactly
embedded in Cα . To obtain the convergence that holds for all α at the same time one also uses a diagonalization
argument.

From the embedding theorem of BV spaces (see [9,10]), it follows that for some g ∈ BV ([0,1],Rd), along a

further subsequence, γ ′
n → g in L1 as n → ∞ and γ ′′

n

∗
⇀ g′ in the space of signed measures as n → ∞. Using the

definition of the weak derivative it follows that g = γ ′. Since ‖γ ′
n‖L∞ are uniformly bound by interpolation it follows

that for all p ∈ [1,∞), γ ′
n → γ ′ in Lp as n → ∞. Furthermore |γ ′

n| → |γ ′| in L1 as n → ∞ and the constant-speed
assumption imply that and moreover |γ ′(s)| = length(γ ) for a.e. s ∈ [0,1] and in particular γ is a Lipschitz curve. �
2.1. Scaling of Eμ with respect to dilations of μ

Given a set A ⊂R
d and r > 0 we define A

r
= {x: rx ∈ A}.

Given a measure μ and r > 0 we define the dilation of μ to scale r to be the measure Drμ such that for any
μ-measurable set A

Drμ(A) = μ

(
A

r

)
.

We note that since both terms of E are scale linearly with respect to length

Eμ(Σ) = 1

r
EDrμ(rΣ).

Therefore if Σ is a minimizer of Eμ then rΣ is a minimizer of EDrμ.

3. Discrete data

In this section we consider the case that μ is a discrete (or particle) measure:

μ =
n∑

i=1

miδxi
(5)

where mi > 0 and xi ∈ R
d . The measures miδxi

are called particles. We denote the support of μ by X = {x1, . . . , xn}.

Lemma 7. If μ is discrete then every minimizer Σ is graph with straight edges.

Proof. Let ϕ : X → Σ be the mapping that assigns to each xi ∈ X a point on Σ which is the closest to xi (if the closest
point is nonunique, an arbitrary one is chosen). Let yi = ϕ(xi) and Y = {y1, . . . , yn} (the points are not necessarily
distinct). Let A be the Steiner tree containing the set Y . The Steiner tree is the connected graph with minimal total
length of edges containing the vertices in Y (it can have other vertices as well). We note that it is also the connected
set of minimal H1 measure containing Y . For further information on Steiner trees we refer to [11] and [12].

Furthermore note that E(A) �E(Σ) with equality holding only if Σ is also a Steiner tree, which proves the claim.
We remark that Σ may be different than A since Steiner trees are not necessarily unique. �
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Now that we know that Σ has straight edges, we can study it more carefully. We define the vertices, V as the set
of those points v in Σ for which there exists a point x in X such that v is the closest point to x in Σ :

V = {
v ∈ Σ : (∃x ∈ X) (∀z ∈ Σ) d(x, v)� d(x, z)

}
. (6)

Note that Y ⊂ V and that it is possible that at a vertex of degree two the angle is 180◦. Since, by above the segments
of Σ connecting the vertices must be line segments, we define edges, S, as follows: for v,w ∈ V , {v,w} ∈ S is an
edge if the line segment [v,w] ⊆ Σ . We note that since Σ is made of finitely many line segments, V must be finite.
Thus we can write V = {v1, . . . , vm}. Since

∫

Rd

d(x,Σ)dμ(x) =
n∑

i=1

mi d(xi,Σ) =
n∑

i=1

mi d(xi,V ),

Σ must be connected the graph of minimal total length containing the vertices V . That is Σ is a Steiner tree [11] for
the set V too.

The following facts on Steiner trees are available in the classical paper by Gilbert and Pollak [11].

Proposition 8. Let G = (V ,S) be as above. Then

(i) G is a tree, that is it does not contain a closed loop.
(ii) If {u,v} and {v,w} are edges then the angle � uvw � 120◦.

(iii) The maximal degree of a vertex is three.
(iv) If v is a vertex of degree three then the angles between edges at v are 120◦, and thus all three edges belong to a

2-dimensional plane.

We call the vertices of degree one the endpoints, the ones of degree two corners, and the ones of degree three triple
junctions. Given j = 1, . . . ,m let Ij be the set of indices of points in X for which vj is the closest point in V

Ij = {
i ∈ {1, . . . , n}: (∀k = 1, . . .m) d(xi, vj ) � d(xi, vk)

}
= {

i ∈ {1, . . . , n}: (∀y ∈ Σ) d(xi, vj ) � d(xi, y)
}
. (7)

If i ∈ Ij then we say that xi talks to vj . We say that a vertex vj is tied down if for some i, vj = xi . We then say that
vj is tied to xi . Note that if vj is tied to xi then i ∈ Ij and Tij = mi . A vertex which is not tied down is called free. We
show below that if xi talks to vj and vj is free then xi cannot talk to any other vertex.

Consider an n by m matrix T such that

Tij � 0,

m∑
j=1

Tij = mi, and Tij > 0 implies i ∈ Ij . (8)

Note that μ = ∑n
i=1

∑m
j=1 Tij δxi

. We define σ to be the projection of μ onto the set Σ , in the sense that the mass
from μ is transported to a closest point on Σ . That is

σ =
m∑

j=1

n∑
i=1

Tij δvj
. (9)

We note that the matrix T describes an optimal transportation plan between μ and σ with respect to any of the
transportation costs c(x, y) = |x − y|p , for p � 1. We claim that such matrix T exists. It is enough to consider
mapping ϕ from the proof of Lemma 7 and then define

Tij =
{

mi if ϕ(xi) = vj ,

0 otherwise.
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We note that in this discrete setting

E(Σ) =
n∑

i=1

mid(xi,Σ) + λ
∑

{v,w}∈S

|v − w|

=
m∑

j=1

∑
i∈Ij

Tij |xi − vj | + λ
∑

{vj ,vk}∈S

|vj − vk|. (10)

Lemma 9. Assume that Σ minimizes E for discrete μ defined in (5). Let V be the set of vertices as defined in (7) and
T be any matrix (transportation plan) satisfying (8). For any vertex vj :

(i) If vj is an endpoint then let w be the vertex such that {vj ,w} is an edge. If vj is free then

∑
i∈Ij

Tij

xi − vj

|xi − vj | + λ
w − vj

|w − vj | = 0. (11)

If vj is tied to xk then∣∣∣∣
∑

i∈Ij ,i �=k

Tij

xi − vj

|xi − vj | + λ
w − vj

|w − vj |
∣∣∣∣� mk. (12)

(ii) If vj is a corner then let {w1, vj } and {vj ,w2} be the edges at the corner. If vj is free then

∑
i∈Ij

Tij

xi − vj

|xi − vj | + λ

(
w1 − vj

|w1 − vj | + w2 − vj

|w2 − vj |
)

= 0. (13)

If vj is tied to xk then∣∣∣∣
∑

i∈Ij ,i �=k

Tij

xi − vj

|xi − vj | + λ

(
w1 − vj

|w1 − vj | + w2 − vj

|w2 − vj |
)∣∣∣∣� mk. (14)

(iii) If vj is a triple junction and if vj is free then

∑
i∈Ij

Tij

xi − vj

|xi − vj | = 0. (15)

If vj is tied to xk then∣∣∣∣
∑
i∈Ij

Tij

xi − vj

|xi − vj |
∣∣∣∣� mk. (16)

Proof. To prove (i) and (ii), consider now the configuration Σv which is obtained from Σ just by changing the
location of vj to v. Let Sv be the set of edges of the new graph. Formulation (10) provides

E(Σv) �
∑
i∈Ij

Tij |xi − v| + λ
∑

{v,vl}∈Sv

|v − vl | +
m∑

l=1,l �=j

∑
i∈Il

Til |xi − vl | + λ
∑

{vk,vl}∈Sv

|vk − vl |

=: F(v).

Note that F defined above maps Rd → R and that E(Σ) = F(vj ).
If vj is a free vertex then F is a smooth function near vj . The minimality of Σ thus implies that DF(vj ) = 0.

Straightforward computation of DF gives the conditions (11) and (13).
If on the other hand vj is tied to xk for some k, xk = vj then recall that k ∈ Ij and furthermore Tkj = mk . F is no

longer smooth at vj but it still has a minimum at vj . Therefore zero vector must belong to the subgradient of F at vj ,
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that is 0 ∈ ∂F (vj ). Using that the subgradient at 0 of z �→ |z| is B(0,1) we conclude that 0 ∈ ∂F (vj ) if the conditions
(12) and (14) hold at an endpoint and corner, respectively. More precisely if we define

F̃ (v) =
∑

i∈Ij , i �=k

Tij |xi − v| + λ
∑

{v,vl}∈Sv

|v − vl |.

Then, using vj = xk ,

F(v) = mk|vj − v| + F̃ (v) + const.

and hence

∂F (vj ) = B(0,mk) + DF̃(vj ).

Therefore 0 ∈ ∂F (vj ) if |DF̃ (vj )| � mk .
Obtaining (15) and (16) is analogous, only that one also needs the fact that the angles at triple junction are 120◦,

see Proposition 8. �
Corollary 10. Assume that conditions of the lemma are satisfied.

(i) In two dimensions, d = 2, if vj is a triple junction and is a free vertex then Ij = ∅.
(ii) If i talks to vj and vk (j �= k) then both vj and vk are tied down. Consequently if xi talks to vj and vj is free

then Tij = mi . Furthermore m� n.
(iii) If vj is an endpoint then∑

i∈Ij

Tij � λ. (17)

Hence at every endpoint, the measure σ defined in (9) has an atom of the mass at least equal to λ. Note that
this gives an upper bound on the number of endpoints. A further consequence is that if 2λ >

∑n
i=1 mi then the

minimizer Σ is just a single point (which is then a vertex of degree zero).

Proof. To prove (i) assume that i ∈ vj . Then B(xi, |vj − xi |) ∩ Σ = ∅. But this contradicts the fact that the angles at
triple junction are 120◦.

To prove (ii) assume that there exist i ∈ {1, . . . , n} and j, k distinct elements of {1, . . . ,m} such that i ∈ Ij and
i ∈ Ik . Let T be a matrix satisfying the condition (8). For s ∈ (0,1) consider the matrix T (s) obtained from T by
setting:

Tij (s) = mi(1 − s), Tik = mis and Til = 0 if l /∈ {j, k}.
Note that T (s) satisfies the condition (8).

We argue by contradiction: assume that vj is free. Let us consider first the case that vj is an endpoint. Let w be the
vertex for which {v,w} is an edge. The condition (11) must be satisfied for T (s) for all s ∈ [0,1]:

mi(1 − s)
xi − vj

|xi − vj | +
∑

l∈Ij ,l �=i

Tlj

xl − vj

|xl − vj | + λ
w − vj

|w − vj | = 0.

One arrives at a contradiction by taking the derivative in s.
The proofs for a corner and for a triple junction are analogous.
Let us explain why the above implies m � n. By definition of V , for each vj ∈ V , Ij �= ∅, that there is a particle

talking to vj . We claim that for every vj there is a particle talking only to vj . If vj is free then by above this is the
case with any particle in Ij . If vj is tied to xk then xk only talks to vj . Consequently there must be more particles then
vertices in V .

Let us now consider the claim of (iii). There are two cases. We first consider the case that vj is free. Then (11)

holds. Taking the inner product with
w−vj

|w−vj | and using (ii) above gives

−
∑
i∈I

mi

xi − vj

|xi − vj | · w − vj

|w − vj | = λ.
j
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Thus
∑
i∈Ij

mi �
∑
i∈Ij

mi

∣∣∣∣ xi − vj

|xi − vj | · w − vj

|w − vj |
∣∣∣∣ � λ.

If vj is tied to xk for some k then the condition (12) gives∣∣∣∣
∑

i∈Ij ,i �=k

Tij

xi − vj

|xi − vj | · w − vj

|w − vj | + λ

∣∣∣∣� mk.

Thus

λ� mk −
∑

i∈Ij ,i �=k

Tij

xi − vj

|xi − vj | · w − vj

|w − vj | �
∑
i∈Ij

Tij . �

3.1. Turning angle

If v is a corner with adjacent vertices w1 and w2 then the turning angle at v is TA(v) = π − � w1vw2. Basically
it describes the curvature at v. For A ⊂ Σ , the turning angle of A, TA(A) = ∑

v∈A∩V TA(v). The total turning angle,
TTA = TA(Σ).

Lemma 11. If Σ is a minimizer of E and A ⊂ Σ .

TA(A) � π

2λ

∑
i∈∪{Ij : vj ∈A}

mi. (18)

Proof. Let us first consider the case that A is a single corner, A = {vj }. Let w1 and w2 be the adjacent vertices.

Let α be the half of the turning angle: TA(vj ) = 2α. Then � w1vjw2 = π − 2α. Let θ1 = vj −w1
|vj −w1| and θ2 = w2−vj

|w2−vj | .
Elementary geometry yields that |θ2 − θ1| = 2 sinα.

Analogously to the proof of statement (iii) of Corollary 10, that is by using conditions (13) and (14) and taking
inner product with θ2−θ1|θ2−θ1| , one can show that

2λ sinα �
∑
i∈Ij

Tij . (19)

Therefore

α � max

{
π

2
, arcsin

(∑
i∈Ij

Tij

2λ

)}
� π

2

∑
i∈Ij

Tij

2λ

which establishes the claim.
For the general A ⊂ Σ it suffices to sum over the vertices it contains. �

3.2. Region of influence

Given orthogonal unit vectors ξ and b and an angle β ∈ [0, π
2 ], consider the wedge W , with bisector b and opening

2β , defined as follows:

W(ξ,b,β) = {
x ∈ R

d : |ξ · x| < b · x tanβ
}
. (20)

By �z1, . . . , zk � we denote the piecewise linear curve connecting the points z1, . . . , zk . Given three points v1, v2,
and v3 such that if they are collinear then v2 lies between v1 and v3 consider Σ = �v1, v2, v3 �. If the points are
collinear the region of influence of v2, defined in (3), is the hyperplane passing through v2, orthogonal to v3 − v2.
If points are not collinear then let θi = vi+1−vi

|vi+1−vi | for i = 1,2. The region of influence of v2 the translated wedge:

R(v2) = v2 +W(ξ,b,β) where ξ = θ1+θ2 , b = θ1−θ2 and β = TA(v2)/2. We denote the mapping above that outputs
|θ1+θ2| |θ1−θ2|
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Fig. 1. The basic configuration.

the Normal, Bisectris, and Angle given non-collinear points v1, v2, v3 by (ξ, b,β) = NBA(v1, v2, v3). Then we can
write R(v2) = v2 + W(NBA(v1, v2, v3)).

We note that if Σ = �v1, . . . , vm� then for all i = 2, . . . ,m−1, if TA(vi) > 0 R(vi) ⊆ vi +W(NBA(vi−1, vi, vi+1)).

3.3. Basic configuration

Here we describe the basic configuration μ̄, whose perturbation is used in the counterexample to regularity. While
the construction is rather flexible we choose a fixed configuration to make the number of parameters of the system
easier to manage.

Let m1 = m3 = 0.38, m2 = 0.24, and λ = 0.36. Let x̄1 = (−1,0), x̄2 = (0,1), and x̄3 = (1,0),

μ̄ = m1δx̄1 + m2δx̄2 + m3δx̄3 . (21)

Note that the total mass is one.
We now turn to characterizing the minimizer. We note that since λ is greater than one third of the total mass the

condition (17) implies that the minimizer can have at most two endpoints. Thus the minimizer is either a point or a
piecewise linear curve. We reindex the vertices v1, . . . , vm if needed so that the minimizer is �v1, . . . , vm�.

Let us note that for any point a ∈ R
2, E({a}) > E(�x̄1, a, x̄3 �) and thus a point cannot be a minimizer. Therefore

a minimizer is a piecewise linear curve with either one or two line segments. If it has two line segments then v2 �= x̄1
since then it would violate angle condition (ii) of Proposition 8, since we know the minimizer must stay in the
convex hull of the support of μ̄. If v1 �= x̄1 and vm �= x̄1 then E(�x̄1, v1, . . . , vm�) < E(�v1, . . . , vm�) since m1 > λ.
Analogously for x̄3. Therefore x̄1 and x̄3 must be endpoints of any minimizer. So without loss of generality we can
set v1 = x̄1 and vm = x̄3. If �v1, v2 � were a minimizer then x̄2 would talk to (0,0) so (0,0) would have to be a vertex
of the graph (as we defined it (6)). But then the condition (13) cannot hold. So the minimizer must be of the form
[x̄1, v̄2, x̄3].

The criticality condition (13) implies that the only minimizer is the symmetric configuration, Σ , presented on
Fig. 1. Elementary geometry gives:

v̄2 = (0,H), where H = 1

2
√

2
, L = 3

2
√

2
, and sinα = 1

3
. (22)

4. Construction of the counterexample

We start with the basic configuration μ̄ defined in (21), which we now consider as configuration in R
d by taking

the values of coordinates from 3 to d to be zero.
To smooth out the basic configuration, we use a standard mollifier η. That is, let η be smooth, radially symmetric,

positive on B(0,1), equal to zero outside of B(0,1), and such that
∫
Rd η(x) dx = 1. For δ > 0 let ηδ(z) = 1

δd η( z
δ
). Let

ρi,δ = miηδ(· − x̄i ) for i = 1,2,3 and let μδ be the measure with density ρ1,δ + ρ2,δ + ρ3,δ .
To have a measure with connected and convex support we introduce the background measure μ̃ to be the measure

with density η1.5. The smooth measure we consider is

μq,δ = (1 − q)μδ + qμ̃.

Theorem 12. There exist δ > 0 and 1 > q > 0 such that there is a minimizer of E for λ = 0.36 and μ = μq,δ which is
a Lipschitz curve such that if one considers its constant-speed parameterization γ : [0,1] → R

d (|γ ′(s)| = length(γ )



D. Slepčev / Ann. I. H. Poincaré – AN 31 (2014) 169–184 179
for a.e. s ∈ [0,1]) then γ ′ is an R
d valued BV function such that γ ′′ has an atom of size at least 1 at some s ∈ (0,1).

More precisely |γ ′′({s})| � 1.

Proof. Assume that ε satisfies the condition

(C1) 0 < ε < α
2000 .

Corollary 5 implies that for δ > 0 and q > 0 small enough any minimizer of Eμq,δ lies within ε ball of Σ in
Hausdorff metric. That is, we can impose

(C2) q > 0 and δ > 0 are small enough so that any minimizer Σq,δ of Eμq,δ satisfies dH (Σq,δ,Σ) < ε
2 .

We also require:

(C3) q < 2λ
π

α
20000 .

(C4) δ < 0.1ε.

The condition (C3) controls the part of the turning angle which is due to the background measure.

Step 1o. Discrete approximation. Let μq,δ,n be an approximation of μq,δ which is a particle measure such that the
Wasserstein distance dW (μq,δ,μq,δ,n) < 1

n
and furthermore that there exists an optimal coupling such that all of the

mass in the (1 − q)ρi,δ part of μq,δ is coupled with particles in B(x̄i , δ) for i = 1,2,3. This can be achieved by, say,
taking a fine square grid such that x̄1, x̄2, and x̄3 are cell centers and then constructing μq,δ,n by taking the mass of
μq,δ in each grid cell and concentrating it at the center of the grid cell.

Due to Corollary 4, along a subsequence, minimizers, Σq,δ,n (if nonunique then any minimizer can be chosen),
converge in Hausdorff metric to a minimizer Σq,δ of Eμq,δ . We can assume without loss of generality that the whole
sequence converges and that n is large enough so that

dH (Σq,δ,n,Σq,δ) <
ε

2

which implies, using (C2), that dH (Σq,δ,n,Σ) < ε.

Step 2o. Control of the optimal coupling. We claim that particles of μq,δ,n which lie in B(x̄2, δ) can only talk to
points on Σq,δ,n which lie above (in the direction of e2) the hyperplane P = {y: y · e2 = H − δ − ε

cos α
}.

To prove the claim consider xi ∈ B(x̄2, δ). Let x̃i be the projection of xi on the coordinate axis in the direction of
the vector e2. That is x̃i = (0, xi,2,0, . . . ,0). Let U = {z: d(z,Σ) < ε and z · e1 = 0}. We note that U ∩ Σq,δ,n �= ∅.
An elementary geometry argument shows that the furthest point to x̃2 on U is (0,H − ε

cos α
,0, . . . ,0). Thus

d(xi,Σq,δ,n)� d(xi, x̃i) + d(x̃i ,Σq,δ,n) < δ + xi,2 − H + ε

cosα
.

On the other hand

d(xi,P ) = xi,2 + δ − H + ε

cosα
.

Step 3o. Average tangent direction. Since Σq,δ,n has only two endpoints, and is piecewise linear, it can be repre-
sented by a constant-speed parameterized curve γq,δ,n : [0,1] → R

d . Due to the closeness to Σ (by Step 1) there are
points on Σq,δ,n which are within ε of x̄1 and x̄3.

We claim that the endpoints of the curve must lie within 2ε of x̄1 and x̄3. For if that was not the case then all of the
mass in, say, B(x̄1, δ) would not talk to an endpoint. But then there would not be enough available mass for the lower
bound on the mass talking to the endpoints (condition (17)) to be satisfied.

We can require that γq,δ,n(0) lies close to x̄1. We define

θ(s) = γ ′
q,δ,n(s)

|γ ′ (s)| = γ ′
q,δ,n(s)

length(γq,δ,n)
.

q,δ,n
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Fig. 2. Schematic illustration of minimizers of Eμ̄, Eμq,δ , and Eμq,δ,n . Some lengths are distorted to achieve better clarity of the illustration.

We note that θ ∈ BV ([0,1],Rd). Let

θ̄1 = v̄2 − x̄1

|v̄2 − x̄1| and θ̄2 = x̄3 − v̄2

|x̄3 − v̄2| .

Let Cyl1 = {x ∈ R
d : d(x,Σ) < ε and (x − x̄1) · θ̄1 ∈ [2ε,L − 11ε]} and Cyl2 = {x ∈ R

d : d(x,Σ) < ε and
− (x − v̄2) · θ̄2 ∈ [2ε,L − 11ε]}, as shown on Fig. 2. Let s1,1,n be the first time γq,δ,n enters Cyl1 and s1,2.n the
largest time γq,δ,n belongs to Cyl1. Analogously s2,1,n and s2,2,n are the corresponding times for the domain Cyl2.

Let θi,avg = γq,δ,n(si,2,n)−γq,δ,n(si,1,n)

|γq,δ,n(si,2,n)−γq,δ,n(si,1,n)| for i = 1,2. We claim that � θ̄iθi,avg < 0.01α for i = 1,2. To see this, note that

tan � θ̄iθi,avg is less than twice the width of the cylinder Cyli divided by its length: tan � θ̄iθi,avg < 2ε
L−13ε

< 4ε
L

<

0.005α by (C1), which implies the claim.

Step 4o. Tangent at the end of the cylinders. The cylinders Cyl1 and Cyl2 were defined so that they lie below the
hyperplane P , as can be verified by simple trigonometry. Step 2 then implies that no point that belongs to B(x̄i , δ)

for i = 1,2,3 talks to any point in the cylinders. Thus, using the turning angle estimate (18) and assumption (C3),
TA(Cyli ∩Σq,δ,n)� πq

2λ
< α

100 . Therefore the tangent at the any point in Cyli is close to the average tangent. Let

θ1 = γ ′
q,δ,n(s1,2,n+)

length(γq,δ,n)
:= lim

s↘s1,2,n

γ ′
q,δ,n(s)

length(γq,δ,n)
and θ2 = γ ′

q,δ,n(s2,1,n−)

length(γq,δ,n)

be the tangents as the curve exits Cyl1 and as it enters Cyl2. Then � θiθi,avg < 0.01α. Combining with estimates of
Step 3 we get

� θ̄iθi � � θ̄iθi,avg + � θi,avgθi < 0.02α for i = 1,2.

Step 5o. The turning angle at the first contact point. We now show that there exists a vertex at which the turning
angle is large (of size at least about α/2). This is the key point of the argument. Let us relabel the vertices if necessary,
so that their indices are increasing along γq,δ,n as s increases. Let vj be the first vertex of γq,δ,n that talks to any
particle of μq,δ,n in B(x̄2, δ), as illustrated on Fig. 3. The reason that the turning angle has to be “large” is that the
tangent cannot turn much prior to vj (because the vertices talk to very little mass), but for vj to be able to talk to a
point in B(x̄2, δ) the tangent must turn by at least by about α. Thus it has to turn by that amount precisely at vj .

Here is the detailed argument. Let

θ− = vj − vj−1

|vj − vj−1| and θ+ = vj+1 − vj

|vj+1 − vj | .

Let sn be the time at which γq,δ,n(sn) = vj . Since points on γq,δ,n|[s1,2,n,sn) can only talk to the background measure
qμ̃, it follows from (18) that TA(γq,δ,n([s1,2,n, sn))) <

πq
2λ

< 0.01α. Combining with Step 4 implies

� θ̄1θ− < 0.03α. (23)

Let K = {x: d(x,Σ) < ε, x · e2 > H − δ − ε
cos α

}. From Step 2 follows that vj ∈ K . Let y ∈ B(x̄2, δ). We can
decompose vectors in R

d into the component in the direction of e2 (vertical component) and the one in the orthogonal
complement of e2 (horizontal component). Elementary geometry implies using the assumptions (C1) and (C4) that
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Fig. 3. Details of the configuration and relevant angles near the tip.

the horizontal distance between y and any point in K is less than 6ε + 4δ < 7ε, while the vertical distance is greater
than 1 − H − ε − δ > 1

2 . Hence

� (y − vj )e2 � tan � (y − vj )e2 < 14ε < 0.01α. (24)

Using that � θ̄1 e2 = π
2 − α and � θ̄1θ− < 0.03α. We conclude that for all y ∈ B(x̄2, δ),

� (y − vj )θ− � � (y − vj )e2 + � e2θ̄1 + � θ̄1θ− <
π

2
− 0.96α.

Let Wj = W(NBA(vj−1, vj , vj+1)). Recall that R(vj ) ⊆ Wj . Note that θ− is orthogonal to one side of the wedge Wj .
Also note that by definition of vj , there exists y ∈ Wj ∩ B(x̄2, δ). Let 2β be the opening of the wedge. Then

TA(vj ) = 2β � π

2
− � θ−(y − vj ) > 0.96α.

Step 6o. Angle bisector estimate. As a consequence of the estimate we obtain that TA(vj ) > 1.88α.

The idea of this step is as follows: In the previous step we have shown that the turning angle at vj is “large”.
The criticality condition (13) shows that vj is thus talking to a large mass. Since the only large mass in the region
of influence lies within B(x̄2, δ) this implies that the bisector of the angle � vj−1vjvj+1 passes through, or close to,
B(x̄2, δ) which implies that the turning angle at vj is about 2α.

More precisely, let maux be the mass of the particle of μq,δ,n at vj if it is tied down and zero otherwise. We note
that maux � q < 0.001α by (C3). Therefore using (13), (14), and μq,δ,n = ∑

i miδxi
one obtains

∣∣∣∣
∑

i∈Ij ,xi �=vj

Tij

xi − vj

|xi − vj |
∣∣∣∣� λ|θ+ − θ−| − maux � λ

(
2 sin

TA(vj )

2

)
− 0.001α.

Using that TA(vj ) > 0.96α and that sinα = 1
3 and λ = 0.36 we conclude that

∑
i∈Ij

Tij > 0.08.

Let I = {i ∈ Ij : xi ∈ B(x̄2, δ)}, w1 = ∑
i∈I Tij

xi−vj

|xi−vj | , and w2 = ∑
i∈Ij \I Tij

xi−vj

|xi−vj | . Since for all i ∈ I ,
� (xi − vj )(x̄2 − vj ) < 0.01α we conclude that

|w1| �
∑
i∈I

Tij

xi − vj

|xi − vj | · x̄2 − vj

|x̄2 − vj | �
2

3

∑
i∈I

Tij > 0.05

and � w1(x̄2 − vj ) < 0.01α, where T is any matrix satisfying (8). By definition of w2:

|w2| � q.

Therefore, using the sine theorem, sin � ((w1 + w2),w1) <
q

0.05 . Conditions (13) and (14) give
∣∣w1 + w2 + λ(θ+ − θ−)

∣∣ � maux.
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Thus, by sine theorem,

� (w1 + w2)
(−(θ+ − θ−)

)
� maux

λ|θ+ − θ−| <
3q

λ
,

where we used that |θ̄2 − θ̄1| = 2 sinα = 2/3 to obtain lower bound |θ+ − θ−| > 1/3. Hence, using the condition
(C3), � (θ− − θ+)w1 � � (w1 + w2)w1 + 3q

λ
< π

2
q

0.05 + 3q
λ

< 0.01α. Hence for (ν, b,β) = NBA(vj−1, vj , vj+1) we
conclude that � b(x̄2 − vj ) � � bw1 + � w1(x̄2 − vj ) < 0.02α. Therefore, by using the estimates (23) and (24),

� bθ− � � b(x̄2 − vj ) + � (x̄2 − vj )e2 + � e2θ̄1 + � θ̄1θ− � π

2
− 0.94α.

Therefore

TA(vj ) = π − 2 � bθ− � 1.88α.

Step 7o. Symmetry argument. In Steps 5 and 6, we considered vj , the first vertex of γq,δ,n which talks to any particle
of μq,δ,n in B(x̄2, δ). The same arguments apply if one considers the last vertex of γq,δ,n, denote it be vk (with k � j ),
talking to any particle of μq,δ,n in B(x̄2, δ). Thus TA(vk) � 1.88α. We claim that k = j . For if one assumes that k > j

then

TA
(
γq,δ,n

([s1,2,n, s2,1,n]
))

> 3.76α.

However by estimate 18

TA
(
γq,δ,n

([s1,2,n, s2,1,n]
))

� π

2λ
(m2 + q) <

π

0.72
· 0.25 < 3.3α

which contradicts the statement above. Therefore k must equal j . That is vj is the only point on γq,δ,n talking to
particles in B(x̄2, δ). Furthermore analogously to (23) it holds that � θ̄2θ+ < 0.03α. Hence

TA(vj ) = � θ−θ+ � � θ̄1θ̄2 − � θ−θ̄1 − � θ+θ̄2 � 2α − 0.03α − 0.03α = 1.94α.

Step 8o. Convergence. By definition of the turning angle, using that γq,δ,n has constant-speed parameterization and
that |γ ′′

q,δ,n| is a measure, for any k it holds that:

∣∣γ ′′
q,δ,n

∣∣({tk,n}
) = ∣∣γ ′

q,δ,n(tk,n+) − γ ′
q,δ,n(tk,n−)

∣∣ = 2 length(γq,δ,n) sin
TA(vk)

2
(25)

where tk,n = γ −1
q,δ,n(vk). Therefore, using the estimate on the turning angle (18),∣∣γ ′′

q,δ,n

∣∣([s1,2,n, s2,1,n]\{sn}
)
� length(γq,δ,n)TA

(
γq,δ,n

([s1,2,n, s2,1,n]\{sn}
))

� length(γq,δ,n)
πq

2λ
< length(γq,δ,n) ∗ 0.01α. (26)

Given that length(γq,δ,n) is uniformly bounded from above and below in n, that distance between |γq,δ,n(s1,2,n) −
γq,δ,n(s2,1,n)| � d(Cyl1,Cyl2) > 0 and |γq,δ,n(sn)− γq,δ,n(s1,2,n)| � d(K,Cyl1) > 0 we conclude that along a subse-
quence s1,2,n → s1, s2,1,n → s2, and sn → s as n → ∞ with 0 < s1 < s < s2 < 1. By relabeling we can assume that
the subsequence is the whole sequence.

Let an = γ ′′
q,δ,n({sn}) and ζn be such that γ ′′

q,δ,n = anδsn
+ ζn. From Step 7 and (25) it follows that |an| >

2 length(γq,δ,n) sin 0.97α.

From Lemma 6 it follows that along a subsequence γ ′
q,δ,n → γ ′

q,δ in L1 and γ ′′
q,δ,n

∗
⇀ γ ′′

q,δ in the space of signed
measures as n → ∞. Along a further subsequence an → a as n → ∞. By relabeling we can assume that the subse-
quence is the whole sequence. The L1 convergence of gradients implies that length(γq,δ,n) → length(γq,δ) as n → ∞,

and thus |a| � 2 length(γq,δ) sin 0.97α. Furthermore anδsn

∗
⇀ aδs as n → ∞. Consequently ζn

∗
⇀ ζ for some vector

of measures ζ .
Let r > 0 be small enough so that [s − r, s + r] ⊂ (s1, s2). Then for all n large enough, (26) implies |ζn|([s − r,

s + r]) < length(γq,δ,n) ∗ 0.01α. Therefore |ζ |((s − r, s + r)) � length(γq,δ) ∗ 0.01α.
Consequently |γ ′′

q,δ({s})| � |a| − |ζ({s})| > length(γq,δ)(2 sin(0.97α) − 0.01α) > 2(L − 3ε) 3
2 sinα > 3 sinα = 1.

Therefore thus |γ ′′
q,δ| has an atom of size at least 1 at s. �
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5. The constrained problem

We now consider the original average-distance problem introduced in [1]. The task is to minimize

F(Σ) =
∫

Rd

d(x,Σ)dμ(x) over A1 := {
Σ ∈A: H1(Σ) � 1

}
. (27)

5.1. Construction of the counterexample

The existence of a measure μ for which the minimizer (27) is a Lipschitz curve which has a corner follows from
Theorem 12:

Corollary 13. There exist r > 0, δ > 0 and 1 > q > 0 such that there is a minimizer of (27) for μ = Drμq,δ which is
a Lipschitz curve such that if one considers its arc-length parameterization γ : [0,1] → R

d then γ ′ is an R
d valued

BV function such that γ ′′ has an atom of size at least 1/3 at some s ∈ (0,1). More precisely |γ ′′({s})| � 1/3.

Proof. Let λ = 0.36 and let μq,δ be as in the proof of Theorem 12. Let r = length(γq,δ). Thus H1( 1
r
Σq,δ) = 1 By the

scaling discussed in Section 2.1, 1
r
Σq,δ is a minimizer of EDrμq,δ . These facts imply that 1

r
Σq,δ is a minimizer of (27).

We claim that r < 3. The conclusion then follows from properties of Σq,δ established in the proof of Theorem 12.
To prove that r < 3 note that for energy (1) corresponding to μq,δ we have E(Σq,δ) � E(Σ) since Σq,δ is a

minimizer. By assumption (C2)∫
d(x,Σq,δ) dμq,δ �

∫
d(x,Σ) − ε dμq,δ =

∫
d(x,Σ)dμq,δ − ε.

Using (22), E(Σq,δ) � E(Σ) implies

r = length(γq,δ) �H1(Σ) + ε

λ
= 2 · 3

2
√

2
+ 0.01 < 3. �
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