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Abstract

In this paper we consider the motion of a rigid body in a viscous incompressible fluid when some Navier slip conditions are
prescribed on the body’s boundary. The whole system “viscous incompressible fluid + rigid body” is assumed to occupy the full
space R3. We start by proving the existence of global weak solutions to the Cauchy problem. Then, we exhibit several properties of
these solutions. First, we show that the added-mass effect can be computed which yields better-than-expected regularity (in time)
of the solid velocity-field. More precisely we prove that the solid translation and rotation velocities are in the Sobolev space H 1.
Second, we show that the case with the body fixed can be thought as the limit of infinite inertia of this system, that is when the
solid density is multiplied by a factor converging to +∞. Finally we prove the convergence in the energy space of weak solutions
“à la Leray” to smooth solutions of the system “inviscid incompressible fluid + rigid body” as the viscosity goes to zero, till the
lifetime T of the smooth solution of the inviscid system. Moreover we show that the rate of convergence is optimal with respect to
the viscosity and that the solid translation and rotation velocities converge in H 1(0, T ).
© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Recently several efforts have been made to establish a Cauchy theory for various models involving a fluid and an
immersed structure. In particular in the case where the structure is a rigid body and where the fluid is incompressible,
there now exists a quite satisfactory range of results, at least in view of what is known in the case of a fluid alone;
we may cite, among others, [35,43,30,29,44,46,54,25,28,26,29,27] for the case of inviscid fluid and [31,34,48,14,15,
8,47,17–19] for the case of viscous fluid.

In this paper we deal with the issue of the inviscid limit for the system “viscous incompressible fluid + rigid body”,
which involves an immersed rigid body moving into a viscous incompressible fluid driven by the Navier–Stokes
equations.
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Formally dropping the viscosity in the equations of the system yields the system “inviscid incompressible fluid +
rigid body”, which involves an immersed rigid body moving into an inviscid incompressible fluid driven by the Euler
equations.

This paper aims at giving a justification of this formal procedure.
It is expected that the issue of justifying the inviscid limit is at least as difficult in the case of a moving body as in

the case of a fixed body. Indeed the case of a fixed body can be seen as the limit case where the body’s inertia becomes
infinite, cf. Sections 3.5 and 4.4.

This is quite a bad news since the inviscid limit is already quite intricate in the case of a fixed boundary, because
of the boundary layers phenomenon. Moreover it is not clear a priori if it is possible to pass to the limit in the body’s
dynamics, with such singular variations in the neighborhood.

These boundary layers issues are particularly involved in the case where one prescribes the no-slip condition
on a fixed fluid–solid interface. In particular, it is not known at the time of writing if there is convergence in the
energy space. A longstanding approach in this domain is Prandtl’s theory, but this theory fails to model flows with
too small viscosity in general, see for instance [9,2,16,32,21,33]. However a necessary and sufficient condition for
the convergence to the Euler equations in the energy space has been given by Kato in [38]; it states that the energy
dissipation rate of the viscous flows in a boundary strip of width proportional to the viscosity vanishes. Even if little
is known about whether or not this condition is verified for a general given flow, this result gives a nice insight of the
scale for which the description of the flow is necessary to understand the inviscid limit.

In the paper [50] the second author proved an extension of Kato’s result in the case of the system “viscous incom-
pressible fluid + rigid body” with the no-slip condition on the fluid–solid interface: the convergence to the system
“inviscid incompressible fluid + rigid body” holds true in the energy space if and only if the energy dissipation rate
of the viscous flows in a boundary’s neighborhood of width proportional to the viscosity vanishes. As in the case of a
fixed boundary it is not clear how to check this condition but this result seems to indicate that the issue of the inviscid
limit in the case of a moving body is maybe not much harder than the one in the case of a fixed body.

In this paper we will prescribe some Navier conditions on the fluid–solid interface, which encode that the fluid
slips with some friction on this boundary. In the case of a fixed boundary it is by now well understood that the issue
of the inviscid limit is simplified compared to the no-slip conditions, at least when the friction coefficient is not too
big; in particular the convergence holds true in the energy space (cf. for instance [1,3,7,36,37,39,45]). We prove here
a similar result in the case of a moving body.

In fact we even prove a better convergence of the body’s dynamics (with respect to the fluid’s dynamics), i.e. a
convergence in the Sobolev space H 1. This surprising result uses a well-known phenomenon in the theory of the
systems involving an incompressible flow and a structure, namely the added-mass phenomenon, for which we refer
for instance to [6,20], and which can be computed in the present case of the Navier conditions.

Let us say here for sake of clarity that we will consider the case of a physical space of three dimensions and we
will assume that the system occupies the whole of R3 to avoid the extra difficulties which would be implied by an
exterior boundary.

After finishing this paper we became aware of the work [22] by Gérard-Varet and Hillairet, which established the
existence of weak solutions to the “viscous incompressible fluid + rigid body” system with Navier slip conditions in
the case where the whole system occupies a bounded domain of R3, rather than the full space R

3, up to collision. It
would be therefore interesting to look for some extensions of the properties exhibited here in such a case.

The paper is organized as follows.

• In Section 2 we introduce the system “viscous incompressible fluid + rigid body” with Navier conditions.
• In Section 3 we establish the existence of an appropriate notion of weak solutions “à la Leray” of this system,

after a change of variables. We will also establish a regularity property of the body’s dynamics and we will discuss
the infinite inertia limit for this system.

• In Section 4 we recall a result of [50] which establishes the existence of smooth local-in-time solutions of the
inviscid system and we also discuss the infinite inertia limit.

• In Section 5 we state the main result of this paper about the convergence of the system “viscous incompressible
fluid + rigid body” to the system “inviscid incompressible fluid + rigid body” as the viscosity goes to zero.

• Finally we give the proof of this result in Section 6.
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2. The system “viscous incompressible fluid + rigid body” with Navier conditions

We consider a rigid body initially occupying a closed, bounded, connected and simply connected subset S0 ⊂ R
3

with smooth boundary. It rigidly moves so that at time t it occupies an isometric domain denoted by S(t). More
precisely if we denote by h(t) the position of the center of mass of the body at time t , then there exists a rotation
matrix Q(t) ∈ SO(3), such that the position η(t, x) ∈ S(t) at the time t of the point fixed to the body with an initial
position x is

η(t, x) := h(t) + Q(t)
(
x − h(0)

)
.

Of course this yields that Q(0) = Id3.
Moreover since QT Q′(t) is skew symmetric there exists only one r(t) in R

3 such that for any x ∈ R
3,

QT Q′(t)x = r(t) ∧ x.

Accordingly, the solid velocity is given by

US(t, x) := h′(t) + R(t) ∧ (
x − h(t)

)
with R(t) := Q(t)r(t).

Given a positive function ρS0 , say in L∞(S0;R), describing the density in the solid initially: the solid mass m > 0,
the initial position h0 of the center of mass, and the initial value of the inertial matrix J0 can be computed by it first
moments:

m :=
∫
S0

ρS0(x) dx > 0, (1)

mh0 :=
∫
S0

xρS0(x) dx, (2)

J0 :=
∫
S0

ρS0(x)
(|x − h0|2 Id3 −(x − h0) ⊗ (x − h0)

)
dx. (3)

At time t > 0, the density in the solid is given, for x ∈ S(t), by

ρS(t, x) := ρS0

(
η(t, x)−1(x)

)
,

where η(t, x)−1 denotes the inverse at time t of the diffeomorphism x 	→ η(t, x); so that, of course, the mass is
preserved:

m =
∫

S(t)

ρS(t, x) dx.

Moreover, the position of the center of mass h(t) and the inertial matrix J (t) are given by

mh(t) :=
∫

S(t)

xρS(t, x) dx,

J (t) :=
∫

S(t)

ρS(t, x)
(∣∣x − h(t)

∣∣2 Id3 −(
x − h(t)

) ⊗ (
x − h(t)

))
dx,

so that J (t) is symmetric positive definite and satisfies Sylvester’s law:

J (t) = Q(t)J0Q
T (t).

Let us assume that in the rest of the space, that is, in the open set F(t) := R
3 \ S(t), there evolves a viscous

incompressible fluid. We denote correspondingly F0 := R
3 \ S0 the initial fluid domain.

The complete system driving the dynamics reads
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∂U

∂t
+ (U · ∇)U + ∇P = ν�U for x ∈F(t), (4)

divU = 0 for x ∈F(t), (5)

U · n = US · n for x ∈ ∂S(t), (6)(
D(U)n

) ∧ n = −α(U − US) ∧ n for x ∈ ∂S(t), (7)

mh′′(t) = −
∫

∂S(t)

Σnds, (8)

(JR)′(t) = −
∫

∂S(t)

(
x − h(t)

) ∧ Σnds, (9)

U |t=0 = U0, (10)

h(0) = 0, h′(0) = 	0, R(0) = r0. (11)

Here U and P denote the fluid velocity and pressure, which are defined on F(t) for each t , and ν > 0 is the fluid
viscosity. The fluid is supposed to be homogeneous of density 1, to simplify the notations and without any loss of
generality. The Cauchy stress tensor is defined by

Σ := −P Id3 +2νD(U),

where D(U) is the deformation tensor

D(U) :=
[

1

2
(∂jUi + ∂iUj )

]
1�i,j�3

.

Above n denotes the unit outward normal on the boundary of the fluid domain, ds denotes the integration element on
this boundary and α � 0 is a material constant (the friction coefficient). Let us precise that we choose here to consider
the case where α is constant but it will be possible to consider the more general case where α depends smoothly on t ,
x as well with only a few modifications.

Observe that, without loss of generality, we have assumed that h(0) = 0 which means that the body is centered at
the origin at the initial time t = 0.

In the sequel the integrals over open subsets of R3 will always be taken with respect to the Lebesgue measure dx

and the integrals over hypersurfaces of R3 will always be taken with respect to the surface measure.
Eqs. (4)–(5) are the incompressible Navier–Stokes equations.
Eqs. (8) and (9) are the Newton’s balance laws for linear and angular momenta: the fluid acts on the body through

pressure forces.
Eqs. (6)–(7) are referred to as the Navier conditions and encode that the body’s boundary is impermeable and that

the fluid slips with some friction on this boundary.
This condition was introduced phenomenologically by Navier in 1823, cf. [42]. Let us mention some recent results

about the derivation of such a condition, on the one hand from kinetic models (derivation from the Boltzmann equa-
tion with accommodation boundary conditions) see [10,40,1], and on the other hand from homogenization of rough
boundaries [13,23].

3. Weak solutions “à la Leray”

In this section we start by use the change of variables introduced by Serre in [48] in order to fix the fluid domain.
It is fair to point out that this change of variable is here particularly simple as there is no exterior boundary. Then we
establish the existence of an appropriate notion of weak solutions “à la Leray” of this system. We will observe that the
solid velocity benefits from extra regularity with respect to what is expected from the energy estimate. We will also
discuss the infinite inertia limit.
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3.1. A change of variables

In order to write the equations of the fluid in a fixed domain, we are going to use the following changes of variables:

	(t) := Q(t)T h′(t), u(t, x) := Q(t)T U
(
t,Q(t)x + h(t)

)
, p(t, x) := P

(
t,Q(t)x + h(t)

)
,

and we introduce

σ := −p Id3 +2νD(u), where D(u) :=
[

1

2
(∂jui + ∂iuj )

]
1�i,j�3

.

Therefore the system (4)–(11) now reads

∂u

∂t
+ (u − uS) · ∇u + r ∧ u + ∇p = ν�u for x ∈ F0, (12)

divu = 0 for x ∈F0, (13)

u · n = uS · n for x ∈ ∂S0, (14)(
D(u)n

) ∧ n = −α(u − uS) ∧ n for x ∈ ∂S0, (15)

m	′ = −
∫

∂S0

σnds + m	 ∧ r, (16)

J0r
′ = −

∫
∂S0

x ∧ σnds + (J0r) ∧ r, (17)

u|t=0 = u0, (18)

h(0) = 0, h′(0) = 	0, r(0) = r0, (19)

with

uS(t, x) := 	(t) + r(t) ∧ x. (20)

3.2. A weak formulation

With the purpose of writing a weak formulation of the system (12)–(19) we introduce the following space

H := {
φ ∈ L2(

R
3) ∣∣ divφ = 0 in R

3 and D(φ) = 0 in S0
}
.

According to Lemma 1.1 in [51, p. 18], for all φ ∈ H, there exist 	φ ∈ R
3 and rφ ∈ R

3 such that for any x ∈ S0,
φ(x) = 	φ + rφ ∧ x. Therefore we extend the initial data u0 by setting u0 := 	0 + r0 ∧ x for x ∈ S0.

Conversely, when φ ∈ H, we denote φS its restriction to S0.
Let us give here a result which will be useful in the sequel.

Lemma 1. For any u,v ∈H with u|F0 ∈ H 2 and v|F0 ∈ H 1,∫
F0

�u · v = −2
∫
F0

D(u) : D(v) + 2	v ·
∫

∂S0

D(u)nds + 2rv ·
∫

∂S0

x ∧ D(u)nds

+ 2
∫

∂S0

((
D(u)n

) ∧ n
) · ((v − vS) ∧ n

)
.

Proof. We have∫
�u · v = 2

∫ (
D(u)v

) · n − 2
∫

D(u) : D(v) = 2
∫ (

D(u)n
) · v − 2

∫
D(u) : D(v),
F0 ∂S0 F0 ∂S0 F0
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since D(u) is symmetric. Moreover∫
∂S0

(
D(u)n

) · v =
∫

∂S0

((
D(u)n

) · n)
(v · n) +

∫
∂S0

((
D(u)n

) ∧ n
) · (v ∧ n).

But ∫
∂S0

((
D(u)n

) · n)
(v · n) =

∫
∂S0

((
D(u)n

) · n)
(vS · n)

=
∫

∂S0

(((
D(u)n

) · n)
n
) · vS

=
∫

∂S0

(
D(u)n − (

D(u)n
)

tan

) · vS

= 	v ·
∫

∂S0

D(u)nds + rv ·
∫

∂S0

x ∧ D(u)nds −
∫

∂S0

(
D(u)n

)
tan · vS

= 	v ·
∫

∂S0

D(u)nds + rv ·
∫

∂S0

x ∧ D(u)nds −
∫

∂S0

(
D(u)n ∧ n

) · (vS ∧ n).

Above we use the index “tan” to denote the tangential part of a vector field defined on ∂S0. Gathering the previous
identities yields the result. �

Now we endow the space L2(R3) with the following inner product, which is equivalent to the usual one,

(φ,ψ)H :=
∫
F0

φ · ψ dx +
∫
S0

ρS0φ · ψ dx.

When φ, ψ are in H we obtain:

(φ,ψ)H =
∫
F0

φ · ψ dx + m	φ · 	ψ +J0rφ · rψ , (21)

by using (1)–(2)–(3). The spaces L2(R3) and H are clearly Hilbert spaces for the scalar product (·,·)H.

Proposition 1. A smooth solution u of (12)–(19) satisfies the following: for any v ∈ C∞([0, T ];H) such that its
restriction v|F0

is in C∞([0, T ];C∞
c (F0)), for all t ∈ [0, T ],

(u, v)H(t) − (u0, v|t=0)H =
t∫

0

[
(u, ∂t v)H + 2νa(u, v) + b(u,u, v)

]
, (22)

where

a(u, v) := −α

∫
∂S0

(u − uS) · (v − vS) −
∫
F0

D(u) : D(v),

b(u, v,w) := mdet(ru, 	v, 	w) + det(J0ru, rv, rw) +
∫
F0

([
(u − uS) · ∇w

] · v − det(ru, v,w)
)
.

Moreover this solution u satisfies the following energy equality: for almost any t ∈ [0, T ],
1

2

∥∥u(t, ·)∥∥2
H + 2ν

∫
(0,t)×F0

∣∣D(u)
∣∣2 + 2αν

t∫
0

∫
∂S0

|u − uS |2 = 1

2
‖u0‖2

H. (23)
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In the sequel we will consider several asymptotics with respect to the parameters α, ν, m and J0. Let us therefore
stress here that the forms a and b above depend respectively on α, S0 and on m, J0, S0.

Proof of Proposition 1. Let u be a smooth solution of (12)–(19) on [0, T ] and v ∈ C∞([0, T ];H) such that
v|F0

∈ C∞([0, T ];C∞
c (F0)). We first observe that the result of Proposition 1 will follow, by an integration by parts

in time, from the following claim: for any t ∈ [0, T ],
(∂tu, v)H = 2νa(u, v) + b(u,u, v). (24)

To prove the claim, we multiply Eq. (12) by v and integrate over F0:∫
F0

∂u

∂t
· v +

∫
F0

[(
(u − uS) · ∇)

u
] · v +

∫
F0

(
r(t) ∧ u

) · v +
∫
F0

∇p · v =
∫
F0

ν�u · v.

We then use some integrations by parts, taking into account (13) and (14), to get∫
F0

[(
(u − uS) · ∇)

u
] · v = −

∫
F0

u · ((u − uS) · ∇v
)
,

∫
F0

(
r(t) ∧ u

) · v =
∫
F0

det(r, u, v),

∫
F0

∇p · v =
∫

∂S0

pn · v.

Next, we observe that∫
∂S0

pn · v = 	v ·
∫

∂S0

pnds + rv ·
∫

∂S0

x ∧ pnds.

Therefore, using Lemma 1, the Navier conditions and (16)–(17), we obtain∫
∂S0

pn · v −
∫
F0

ν�u · v = −	v ·
∫

∂S0

σnds − rv ·
∫

∂S0

x ∧ σnds

+ 2αν

∫
∂S0

(u − uS) · (v − vS) + 2ν

∫
F0

D(u) : D(v)

= m	v · 	′ +J0rv · r ′ − det(m	, r, 	v) − det(J0r, r, rv)

+ 2αν

∫
∂S0

(u − uS) · (v − vS) + 2ν

∫
F0

D(u) : D(v).

Gathering all these equalities yields (24). Finally the energy equality (23) follows from (22) by specifying the test
function as v = u. �

Let us recall that according to Korn’s inequality, see for instance [41, Theorem 10.2], the energy equality (23)
yields that u ∈ L2(0, T ;V), where V is given by

V :=
{
φ ∈H

∣∣∣ ∫
F0

∣∣∇φ(y)
∣∣2

dy < +∞
}

with norm ‖φ‖V := ‖φ‖H + ‖∇φ‖L2(F0,dy).

We introduce now the concept of weak solutions “à la Leray”.

Definition 1. We say that

u ∈ Cw

([0, T ];H) ∩ L2(0, T ;V)
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is a weak solution of the system (12)–(19) if for all v ∈ C∞([0, T ];H) such that v|F0
∈ C∞([0, T ];C∞

c (F0)) and for
all t ∈ [0, T ], (22) holds true.

Let us remark that a standard density argument allows us to take less smooth test vector fields v in the above weak
formulation. More precisely, to enlarge the space of the test functions, we introduce the space

V :=
{
φ ∈ H

∣∣∣ ∫
F0

∣∣∇φ(y)
∣∣2(

1 + |y|2)dy < +∞
}
,

endowed with the norm

‖φ‖V := ‖φ‖H + ‖∇φ‖
L2(F0,(1+|y|2) 1

2 dy)
.

It is worth to notice from now on that b is a trilinear continuous form on V × V × V : there exists a constant C > 0
such that for any (u, v,w) ∈ V × V × V ,∣∣b(u, v,w)

∣∣� C‖u‖V‖v‖V‖w‖V . (25)

This follows easily from Hölder’s inequality and the following interpolation inequality

‖v‖L4(F0)
�

√
2‖v‖

1
4
L2(F0)

‖∇v‖
3
4
L2(F0)

. (26)

Observe in particular that the weight in the definition of V allows to handle the rotation part of uS .
Moreover the trilinear form b satisfies the following crucial property

(u, v) ∈ V × V implies b(u, v, v) = 0. (27)

On the other hand, for any u, v in V ,∣∣a(u, v)
∣∣� C‖u‖V‖v‖V . (28)

In fact, to deal with the boundary integral, we introduce a smooth cut-off function χ defined on F0 such that χ = 1 in
Γc and χ = 0 in F0 \ Γ2c , where

Γc := {
x ∈ F0

∣∣ d(x) < c
}

with d(x) := dist(x, ∂S0).

Let us denote

ψu
S(t, x) := 1

2

(
	u(t) ∧ x − ru(t)|x|2) and ũS := curl

(
χψu

S
)
,

and let us define similarly ṽS .
Thus, ũS and ṽS are equal respectively, to uS and vS near ∂S0, vanish away S0, and are divergence free. Moreover,

‖ũS‖H 1(F0)
� C(‖	u‖ + ‖ru‖), and a similar estimate holds for ṽS . Then, we apply the Hölder inequality and the

trace theorem, to arrive at∣∣∣∣ ∫
∂S0

(u − uS) · (v − vS)

∣∣∣∣ =
∣∣∣∣ ∫
∂S0

(u − ũS) · (v − ṽS)

∣∣∣∣
� C‖u − ũS‖H 1(F0)

‖v − ṽS‖H 1(F0)

� C
(‖u‖H 1(F0)

+ ‖	u‖ + ‖ru‖
)(‖v‖H 1(F0)

+ ‖	v‖ + ‖rv‖
)
,

so that, (28) follows.
These previous arguments allow us to take less smooth test vector fields v in the weak formulation (22), for instance,

belonging to H 1(0, T ;H) ∩ L4(0, T ;V).
Finally let us mention that to a weak solution we may associate a pressure such that the equations are satisfied

in the distribution sense, and prove that a regular weak solution is a solution in the classical sense; following for
instance [48, Section III] and [52] with a few straightforward adaptations.
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3.3. An extension of Leray’s theorem

The following result establishes the existence of global weak solutions of the system (12)–(19).

Theorem 1. Let be given u0 ∈ H and T > 0. Then there exists a weak solution u of (12)–(19) in Cw([0, T ];H) ∩
L2(0, T ;V). Moreover this solution satisfies the following energy inequality: for almost any t ∈ [0, T ],

1

2

∥∥u(t, ·)∥∥2
H + 2ν

∫
(0,t)×F0

∣∣D(u)
∣∣2 + 2αν

t∫
0

∫
∂S0

|u − uS |2 � 1

2
‖u0‖2

H. (29)

Theorem 1 is the counterpart of Theorem 4.5 of [48] for the Navier conditions instead of the no-slip conditions.

Proof of Theorem 1. We will proceed in several steps. In particular because the space of test functions V involves a
weight which makes it smaller than the space V involved by the energy estimates, we will first introduce a truncation
of the solid velocity far from the solid. This strategy was already used in [44] in a slightly different context.

Truncation. Let R0 > 0 be such that S0 ⊂ B(0,
R0
2 ). For R > R0, let χR :R3 → R

3 be a smooth vector field such that
r ∧ χR is divergence free, χR(x) = x for x ∈ B(0,R) and satisfying ‖χR‖L∞(R3;R3) � R. Indeed one may define for

example χR by the formula χR(x) = R
|x|x for x ∈ R

3 \ B(0,R).

Observe in particular that for any r ∈ R
3, for any w ∈ V ,

(r ∧ χR) · ∇w → (r ∧ x) · ∇w in L2(
R

3), when R → +∞, (30)

by Lebesgue’s dominated convergence theorem.
Then we truncate the solid velocity uS defined in (20) by uS,R(t, x) := 	(t) + r(t) ∧ χR(x), and we introduce the

form

bR(u, v,w) := mdet(ru, 	v, 	w) + det(J0ru, rv, rw) +
∫
F0

([
(u − uS,R) · ∇w

] · v − det(ru, v,w)
)
.

The interest of such a truncation bR of b is that it is now well-defined and trilinear on V × V × V (note that the third
argument is here taken not only in V but in the larger space V) and continuous in the sense that there exists a constant
C > 0 such that for any (u, v,w) ∈ V × V × V ,∣∣bR(u, v,w)

∣∣� C‖u‖V‖v‖V‖w‖V . (31)

Of course the constant C in (31) depends on R. However, when restricting bR to V × V × V , there exists C > 0 such
that for any R > R0, for any (u, v,w) ∈ V × V × V ,∣∣bR(u, v,w)

∣∣� C‖u‖V‖v‖V‖w‖V . (32)

We also have that there exists C > 0 such that for any R > R0, for any (u, v) ∈ V × V ,∣∣bR(u,u, v)
∣∣ � C

(‖u‖2
L4(F0)

+ ‖u‖2
H

)‖v‖V . (33)

Actually, estimates (32) and (33) are proved by proceeding in the same way as for the proof of (25).
Moreover the cancellation property (27) is still correct:

(u, v) ∈ V × V implies bR(u, v, v) = 0. (34)

Finally we deduce from (30) that for any (u, v,w) ∈ V × V × V ,

bR(u, v,w) → b(u, v,w) when R → +∞. (35)

Existence for the truncated system. Then, given u0 ∈H and T > 0, there exists uR in Cw([0, T ];H) ∩ L2(0, T ;V)

satisfying, for any v ∈ C∞([0, T ];H) such that v| ∈ C∞([0, T ];C∞
c (F0)), and for all t ∈ [0, T ],
F0
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(uR, v)H(t) − (u0, v|t=0)H =
t∫

0

[
(uR, ∂tv)H + 2νa(uR, v) + bR(uR,uR, v)

]
. (36)

Moreover uR verifies for almost any t ∈ [0, T ] the energy inequality (29).
This can be proved with very standard methods, by example considering some Faedo–Galerkin approximations

and passing to the limit. Let us therefore sketch a proof of it referring for example to [52] where a comprehensive
study of the Leray theorem for the classical case of a fixed boundary is treated.

Let (wj )j�1 be a Hilbert basis of V . For simplicity, since the set

Y := {
φ ∈ C∞

c

(
R

3) ∣∣ divφ = 0 in R
3 and D(φ) = 0 in S0

}
is dense in V , we take wj ∈ Y , for all j � 1.

We define an approximate solution uN := uN,R (in the sequel we will omit the dependence on R for the sake of
clarity) of the form uN = ∑N

i=1 giN(t)wi satisfying, for any j = 1, . . . ,N ,

(∂tuN ,wj )H = 2νa(uN,wj ) + bR(uN,uN,wj ), (37)

uN |t=0 = uN0, (38)

where uN0 is the orthogonal projection in H of u0 onto the space spanned by w1, . . . ,wN . Let us explain why such
(uN)N do exist. First we introduce the matrices:

MN := [
(wi,wj )H

]
1�i,j�N

, GN := [g1N . . . gNN

]
, AN := [

a(wi,wj )
]

1�i,j�N
,

and for any u,v ∈ R
N , BN(u, v) := [BNj (u, v)]1�j�N,where BNj (u, v) := ∑

1�i,k�N uivkbR(wi,wk,wj ). Then
Eq. (37) can be recast as the following nonlinear differential system for the functions (giN )1�i�N :

G′
N(t) =M−1

N

(
2νANGN +BN(GN,GN)

)
and the initial condition (38) is equivalent to an initial condition of the form GN(0) = GN,0. According to the Cauchy–
Lipschitz theorem this system has a maximal solution defined on some time interval [0, TN ] with TN > 0. Moreover
if TN < T then ‖uN‖H must tend to +∞ as t → TN .

The following energy estimate shows that this does not happen and therefore TN = T . For any j = 1, . . . ,N , we
multiply (37) by gjN(t) and we sum the resulting identities to obtain, thanks to (34), 1

2∂t‖uN‖2
H = 2νa(uN,uN), so

that, by integration in time, we have

1

2

∥∥uN(t, ·)∥∥2
H + 2ν

∫
(0,t)×R3

∣∣D(uN)
∣∣2 + 2αν

t∫
0

∫
∂S0

|uN − uN,S |2 � 1

2
‖uN0‖2

H � 1

2
‖u0‖2

H.

In particular, by the Korn inequality, the sequence (uN)N is bounded in L∞(0, T ;H) ∩ L2(0, T ;V). Therefore, there
exists a subsequence of (uN)N , relabelled the same, converging weakly-* in L∞(0, T ;H) and weakly in L2(0, T ;V)

to u ∈ L∞(0, T ;H)∩L2(0, T ;V), as N → +∞, which satisfies, for almost any t ∈ [0, T ], the energy inequality (29).
In order to pass to the limit in the nonlinear term in (37), we need a strong convergence. We will closely follow

the classical arguments in Chapter 3 of [52]. To this end, we are going to bound a fractional derivative in time of the
functions uN by applying the Fourier transform. We therefore first extend the functions uN to the whole time line as
follows. For any N > 1 let us now denote by ũN the function defined from R to H which is equal to uN on [0, T ] and
by 0 outside. We denote by ûN the Fourier transform of ũN , defined by ûN (τ ) := ∫

R
e−2iπtτ ũN (t) dt . Similarly we

extend the functions giN by 0 outside [0, T ] and we denote by ĝiN their respective Fourier transform.
According to Theorem 2.2 in [52] it is sufficient to prove that there exists γ > 0 such that (|τ |γ ûN (τ ))N is bounded

in L2(R;H) to deduce that the sequence (uN)N is relatively compact in L2(0, T ;L2
loc(R

3)).

Let us denote, for t ∈R, by f̃N (t) the linear form on V defined by〈
f̃N (t),w

〉 := 2νa
(
uN(t),w

) + bR

(
uN(t), uN(t),w

)
for t ∈ [0, T ] and f̃N (t) := 0 otherwise,

so that Eq. (37) becomes

(∂t ũN ,wj )H = −(uN0,wj )Hδ0(t) + (uN |t=T ,wj )HδT (t) + 〈f̃N ,wj 〉,
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and then, taking the Fourier transform in time, we get for any τ ∈R,

2πiτ(ûN ,wj )H = −(uN0,wj )H + (uN |t=T ,wj )He−2iπT τ + 〈f̂N ,wj 〉.
This yields, multiplying by ĝjN and summing over 1 � j �N , that, for any τ ∈R,

2πiτ
∥∥ûN (τ )

∥∥2
H = −(uN0, ûN )H + (uN |t=T , ûN )He−2iπT τ + 〈f̂N , ûN 〉.

Thanks to (28) and (31), there exists C > 0 such that for any t ∈ [0, T ], ‖fN(t)‖V ′ � C(‖uN(t)‖V + ‖uN(t)‖2
V ).

Moreover, for any τ ∈ R, ‖f̂N (τ )‖V ′ �
∫ T

0 ‖fN(t)‖V ′ dt . Thus, (supτ∈R ‖f̂N (τ )‖V ′) is bounded, and the initial and
final values uN0 and uN |t=T are bounded as well. Therefore there exists C > 0 such that τ‖ûN (τ )‖2

H � C‖ûN (τ )‖V .

Now, we observe that there exists C > 0 such that for any τ ∈R, |τ | 1
4 � C(1 + |τ |)(1 + |τ |)− 3

4 , to deduce that∫
R

|τ | 1
4
∥∥ûN (τ )

∥∥2
H dτ � C

∫
R

1 + |τ |
1 + |τ | 3

4

∥∥ûN (τ )
∥∥2
H dτ

� C

∫
R

1

1 + |τ | 3
4

∥∥ûN (τ )
∥∥
V dτ + C

∫
R

∥∥ûN (τ )
∥∥2
V dτ

� C

∫
R

∥∥ûN (τ )
∥∥2
V dτ,

by the Cauchy–Schwarz inequality. Then it follows from the Parseval identity that (|τ | 1
8 ûN (τ ))N is bounded in

L2(R;H).
Then, we can classically pass to the limit in (37) as N → ∞, and obtain that (36) is satisfied.

Endgame. Since the bounds given by the energy estimate (29) are uniform with respect to R > R0, there exists a
subsequence (uRk

)k converging to u ∈ Cw([0, T ];H) ∩ L2(0, T ;V) for the weak (or weak-*) topologies, satisfying
(29) for almost any t ∈ [0, T ]. This allows to pass to the limit in all the terms involved in (36) except for the trilinear
term.

On the other hand it is sufficient to prove for any v ∈ C∞([0, T ];H) such that v|
(0,T )×F0

∈ C∞
c ((0, T ) ×F0)

0 =
t∫

0

[
(u, ∂tv)H + 2νa(u, v) + b(u,u, v)

]
,

to deduce, by standard arguments, that u is a weak solution of (12)–(19).
It therefore only remains to prove that there exists a subsequence, still denoted (uRk

)k , such that for any v ∈
C∞([0, T ];H) with v|

(0,T )×F0
∈ C∞

c ((0, T ) ×F0), as k → ∞,

t∫
0

bRk
(uRk

, uRk
, v) →

t∫
0

b(u,u, v). (39)

First let us observe that to prove (39) it will be enough to show that the sequence (uRk
)k is relatively compact

in L2(0, T ;L2
loc(R

3)). Indeed this yields that there exists a subsequence, still denoted (uRk
)k , converging to u in

L2(0, T ;L2
loc(R

3)), and then we use the decomposition

bRk
(uRk

, uRk
, v) − b(u,u, v) = bRk

(u,u, v) − b(u,u, v) + bRk
(uRk

− u,uRk
, v) − bRk

(u,u − uRk
, v).

Observe that we can bound∣∣bRk
(u, ū, v)

∣∣� C‖u|K‖HK
‖ū|K‖HK

‖v‖Lip(K),

where C is independent of Rk , the set K is such that suppv ⊂ K and ‖ · ‖HK
is defined by

‖φ‖2
HK

:=
∫

F0∩K

|φ|2 dx +
∫

S0∩K

ρS0 |φ|2 dx.

Hence, (39) follows from the local strong convergence and (35).
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Now, with the purpose of proving that (uRk
)k is relatively compact in L2(0, T ;L2

loc(R
3)), we are going to establish

an a priori estimate of the time derivative of the functions uRk
. Of course we already have such an estimate thanks to

the Fourier transform in time applied above, but this estimate is not uniform in R, since we relied on the inequality

(31) which is not uniform in R. Instead we are going to prove that (∂tuRk
)k is bounded in L

4
3 (0, T ;V ′), relying on

the estimate (33), which is uniform in large R, rather than on (31). Then, by using a standard cut-off function, we can
apply the Aubin–Lions lemma, see for instance [49, Corollary 4], to conclude the desired compactness.

The bound of (∂tuRk
)k is obtained as follows. We first combine the interpolation inequality (26) with the energy

bounds, to see that (uRk
)k is bounded in L

8
3 (0, T ;L4(F0)). Next we use (33) and Hölder’s inequality to get that there

exists C > 0 such that for any k ∈ N, for any v ∈ L4(0, T ;V),∣∣∣∣∣
t∫

0

bRk
(uRk

, uRk
, v)

∣∣∣∣∣ � C‖v‖L4(0,T ;V).

Then we easily infer from (36) the desired estimate of (∂tuRk
)k , and therefore the proof of Theorem 1 is com-

plete. �
3.4. A regularity property

In the present case of the Navier conditions, the dynamics of the body benefits from a remarkable regularity
property stated in the proposition below. We will make use a slight variant of (25), which involves the space

V̂ := {
φ ∈ V

∣∣ φ|F0 ∈ Lip(F0)
}
, endowed with the norm ‖φ‖V̂ := ‖φ‖V + ‖φ‖Lip(F0)

.

Then one may extend b to H×H× V̂ such that there exists a constant C > 0 such that for any (u, v,w) ∈ H×H× V̂ ,∣∣b(u, v,w)
∣∣� C‖u‖H‖v‖H‖w‖V̂ . (40)

Let us emphasize for the comfort of the reader that V̂ ⊂ V ⊂ V .
Let us also denote by λi , i = 1,2,3, the eigenvalues of the inertial matrix J0, which is symmetric definite positive,

so that, λi > 0 for all i = 1,2,3. Moreover, we consider the spectral norms ‖J0‖ := max(λi) and ‖J −1
0 ‖−1 :=

min(λi).

Proposition 2. Let be given u0 ∈H and T > 0. Consider a weak solution u of (12)–(19) given by Theorem 1. Then 	

and r are in H 1(0, T ;R3) and satisfy the following: there exist

1. a 6 × 6 definite positive symmetric matrix M depending only on S0, m and J0 such that there exist m > 0 and
β > 0 depending only on S0 such that, for any F and T in R

3,∥∥∥∥M−1
[

F

T

]∥∥∥∥� 2
(
m−1‖F‖ + ∥∥J −1

0

∥∥‖T ‖) for m � m, and λi � β, i = 1,2,3, (41)

2. some functions (vi)i∈{1,...,6} in V̂ depending only on S0,

such that there holds in L2(0, T ):

M
[

	

r

]′
= [

2νa(u, vi) + b(u,u, vi)
]
i∈{1,...,6}. (42)

Proof. The matrix M is usually referred to as virtual inertia tensor, it incorporates the added mass of the solid M2,
and is defined by

M1 :=
[

m Id3 0
0 J0

]
, M2 :=

[∫
F0

∇Φi · ∇Φj dx

]
i,j∈{1,...,6}

and M := M1 +M2,

where the functions Φi , usually referred to as the Kirchhoff potentials, as the solutions of the following problems:
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−�Φi = 0 for x ∈F0,

Φi → 0 as |x| → ∞,

∂Φi

∂n
= Ki for x ∈ ∂S0,

where

Ki :=
{

ni if i = 1,2,3,

[x ∧ n]i−3 if i = 4,5,6.

We observe that the matrix M2 depends only on S0 and is nonnegative symmetric so that M depends only on S0, m

and J0, and is definite positive symmetric.
Now for any F and T in R

3, let[
x

y

]
:= M−1

[
F

T

]
=

[
m−1 Id3 0

0 J −1
0

]([
F

T

]
−M2

[
x

y

])
.

Since M2 depends only on S0, there exists C > 0 depending only on S0 such that ‖M2
[ x

y

]‖ � C‖[ x
y

]‖. Then, we
can estimate∥∥∥∥[

x

y

]∥∥∥∥� m−1‖F‖ + ∥∥J −1
0

∥∥‖T ‖ + max
{
m−1,

∥∥J −1
0

∥∥}
C

∥∥∥∥[
x

y

]∥∥∥∥.

It is therefore sufficient to take m = β = 2C to obtain (41).
For i = 1, . . . ,6, we introduce the function vi defined by

vi := ∇Φi in F0 and vi :=
{

ei if i = 1,2,3,

ei−3 ∧ x if i = 4,5,6,
in S0.

These functions only depend on S0. Moreover they are in V̂ . Observe in particular that ∇vi decays like 1/| · |4 at
infinity so that

∫
F0

|∇vi(y)|2(1 + |y|2) dy < +∞, see for instance [6, 4.3.1]. We can therefore take them as test
functions in (22). Indeed we apply (22) to v = vi and we derive in time to obtain, for all t ∈ [0, T ],

∂t (u, vi)H = 2νa(u, vi) + b(u,u, vi). (43)

Let us prove that[
(u, vi)H

]
i,j∈{1,...,6} =M

[
	

r

]
. (44)

To this end, we first use (21) to arrive at[
(u, vi)H

]
i,j∈{1,...,6} =

[∫
F0

u · ∇Φi

]
i,j∈{1,...,6}

+M1

[
	

r

]
. (45)

Then, using an integration by parts, we observe that∫
F0

u · ∇Φi =
∫

∂S0

(u · n)Φi =
∫

∂S0

(uS · n)Φi,

so that, expanding uS and using another integration by parts, give us[∫
F0

u · ∇Φi

]
i,j∈{1,...,6}

=M2

[
	

r

]
. (46)

Gathering (45) and (46) yields (44). Then combining (43) and (44) furnishes (42).
Therefore it only remains to prove that 	 and r are in H 1(0, T ;R3). Since the matrix M is time-independent it is

sufficient to prove that the right-hand side of (42) is in L2(0, T ;R3). Indeed this follows from (28), (40), from that
(vi)i∈{1,...,6} are in V̂ and that u is in Cw([0, T ];H) ∩ L2(0, T ;V). �
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Let us emphasize that this property seems to be a particularity of the case of the Navier conditions. In particular in
the case of the no-slip conditions, the corresponding weak formulation involves test functions continuous across the
body’s boundary, a feature which is not satisfied by the functions vi . To our knowledge the counterpart of Proposition 2
in the case of the no-slip conditions is not known.

The estimate (41) will be useful for the next section. It is also interesting for the sequel to observe that[
b(u,u, vi)

]
i∈{1,...,6} =

[
mr ∧ 	

(J0r) ∧ r

]
+

[ ∫
F0

([(
(u − uS) · ∇)∇Φi

] · u − det(ru, u,∇Φi)
)]

i∈{1,...,6}
. (47)

3.5. The infinite inertia limit

Let us also mention that Theorem 1 extends to the case of a moving body some earlier results, in particular see [7,
37], about the existence of Leray solutions in the case where Navier conditions are considered but on a fixed boundary.
In this case, the system reads

∂u

∂t
+ u · ∇u + ∇p = ν�u for x ∈ F0, (48)

divu = 0 for x ∈F0, (49)

u · n = 0 for x ∈ ∂S0, (50)(
D(u)n

) ∧ n = −αu ∧ n for x ∈ ∂S0, (51)

u|t=0 = u0, (52)

and a weak Leray solution of (48)–(52) is by definition a function

u ∈ Cw

([0, T ];L2
σ (F0)

) ∩ L2(0, T ;H 1(F0)
)
,

such that

1. for all v ∈ H 1(0, T ;L2
σ (F0)) ∩ L4(0, T ;H 1(F0)), and for all t ∈ [0, T ],

∫
F0

u(t, ·) · v(t, ·) dx −
∫
F0

u0 · v|t=0 dx =
t∫

0

[∫
F0

u · ∂tv dx + 2νa∗(u, v) + b∗(u,u, v)

]
, (53)

where

a∗(u, v) := −α

∫
∂S0

u · v −
∫
F0

D(u) : D(v), and b∗(u, v,w) :=
∫
F0

[u · ∇w] · v,

2. for any t ∈ [0, T ],

1

2

∥∥u(t, ·)∥∥2
L2(F0)

+ 2ν

∫
(0,t)×F0

∣∣D(u)
∣∣2 + 2αν

t∫
0

∫
∂S0

|u|2 � 1

2
‖u0‖2

L2(F0)
.

Here, L2
σ (F0) denotes the space of the divergence free vector fields in L2(F0) which are tangent to the solid’s

boundary ∂S0.
The following result shows that the case with the body fixed can be thought as the limit of infinite inertia, that is,

when m and the eigenvalues (λi)i=1,2,3 of J0 converge to +∞ with λi = O(λj ) for any i, j . Let us observe that the
eigenvalues of J0 are required to diverge at the same order. This last condition is quite natural if one thinks that the
solid density ρS0 is multiplied by a factor converging to +∞ in (1) and (3). This condition can alternatively be written
as ‖J0‖ = O(‖J −1‖−1) (using the spectral norms introduced in Section 3.4).
0
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Let us point out that ‖M−1‖R6×6 → 0 as m and (λi)i=1,2,3 converge to +∞, as a consequence of the estimate (41),
and therefore in particular ‖M−1‖R6×6 → 0 in the infinite inertia limit. Another observation that will be useful is that
there holds for any r ∈R

3,∥∥(J0r) ∧ r
∥∥ � C(J0r) · r, (54)

for a constant C > 0, uniform in the infinite inertia limit.
Indeed, introducing some normalized eigenvectors (ri)i=1,2,3, associated to (λi)i=1,2,3, respectively, we can write

for some real coefficients (αi)i=1,2,3, that r = ∑3
i=1 αiri and therefore (J0r) ∧ r = ∑

i,j αiαjλi(ri ∧ rj ). So that, for
some constants uniform in the infinite inertia limit, one has:∥∥(J0r) ∧ r

∥∥ � C
∑
i,j

|αi ||αj |λi � C′ ∑
i,j

|αi ||αj |
√

λi

√
λj � C′′

(∑
i

|αi |
√

λi

)2

� C′′′ ∑
i

α2
i λi

= C′′′(J0r) · r.

Theorem 2. Let be given u0 ∈ H with 	0 = r0 = 0 and T > 0. For any m and J0 we consider a weak solution u of
(12)–(19) in Cw([0, T ];H) ∩ L2(0, T ;V) given by Theorem 1. Then in the infinite inertia limit, u|F0 converges, up to
a subsequence, in L2(0, T ;L2

loc(F0)) to a weak solution of (48)–(52) and 	 and r converge to 0 in H 1(0, T ;R3).

Proof. We infer from (29) that u is bounded in L∞(0, T ;H) ∩ L2(0, T ;V) uniformly with respect to the inertia.
Not only that but we also obtain that 	 and r converge to 0 in L∞(0, T ;R3) in the infinite inertia limit, because
(J0r) · r � min(λi)‖r‖2.

The following lemma is quite simple to establish but will be useful in the sequel.

Lemma 2. Let u be as in Theorem 2. Then for any v ∈ H 1(0, T ;L2
σ (F0)) ∩ L4(0, T ; Ṽ), for any t ∈ [0, T ],∫

F0

u(t, ·) · v(t, ·) dx −
∫
F0

u0 · v|t=0 dx =
t∫

0

[∫
F0

u · ∂tv dx + 2νa∗(u, v) + b∗(u,u, v) + F(u, v)

]
, (55)

where

F(u, v) := 2αν

∫
∂S0

uS · v −
∫
F0

([uS · ∇v] · u − det(ru, u, v)
)
.

Above Ṽ denotes the space

Ṽ :=
{
φ ∈ L2

σ (F0)

∣∣∣ ∫
F0

∣∣∇φ(y)
∣∣2(1 + |y|2)dy < +∞

}
,

endowed with the norm

‖φ‖Ṽ := ‖φ‖L2(F0)
+ ‖∇φ‖

L2(F0,(1+|y|2)
1
2 dy)

.

Proof of Lemma 2. It is sufficient to extend v by 0 in S0 to obtain a function in H 1(0, T ;H) ∩ L4(0, T ;V) which is
used as a test function in (22). This provides (55). �

Then, proceeding as in Section 3.3, we obtain a bound of ∂tu|F0 in L
4
3 (0, T ; Ṽ ′) which is uniform in the infinite

inertia limit. We therefore deduce that the sequence of weak solutions u is relatively compact in L2(0, T ;L2
loc(F0)).

Thus the restrictions of u to F0 converge, up to a subsequence, to a limit u∗ weakly-* in L∞(0, T ;L2(F0)), weakly
in L2(0, T ;H 1(F0)) and strongly in L2(0, T ;L2

loc(F0)).
Let us now prove that u∗ is a weak solution of (48)–(52). We deduce from the above convergence that F(u, v)

converges to 0 in L1(0, T ), and passing to the limit in the other terms of (55) we can conclude that u∗ satisfies (53) for
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any v ∈ H 1(0, T ;L2
σ (F0)) ∩ L4(0, T ;H 1(F0)) such that

∫
F0

|∇v(y)|2(1 + |y|2) dy < +∞. Then one easily removes
this last condition by using Lebesgue’s dominated convergence theorem. Thus u∗ is a weak solution of (48)–(52).

In order to finish the proof of Theorem 2 it only remains to prove that 	′ and r ′ converge to 0 in L2(0, T ;R3). This
relies on the regularity property established in the previous section. Indeed we define, for i ∈ {1, . . . ,6},

T1,i :=
∫
F0

([(
(u − uS) · ∇)∇Φi

] · u − det(ru, u,∇Φi)
)
,

and T2 := [ mr∧	
(J0r)∧r

]
, so that from (42) and (47) we infer that[

	

r

]′
= 2νM−1[a(u, vi)

]
i∈{1,...,6} +M−1[T1,i]i∈{1,...,6} +M−1T2. (56)

Since u is bounded in L∞(0, T ;H) ∩ L2(0, T ;V), the functions (vi)i∈{1,...,6} are in V̂ and depend only on S0, and
‖M−1‖R6×6 → 0 in the infinite inertia limit, we infer easily from (28) that the first term of the right-hand side of (56)
vanishes in L2(0, T ;R6) in the infinite inertia limit.

On the other hand we can bound the second term as follows: for any i ∈ {1, . . . ,6}, for any t , ‖T1,i‖ �
C(‖u‖2

L2(F0)
+ ‖	‖2 + ‖r‖2). Hence, thanks to the energy bound, we get that T1,i is bounded in the infinite iner-

tia limit. Therefore the second term of the right-hand side of (56) also vanishes in L2(0, T ;R6) in the infinite inertia
limit.

Finally, in order to deal with the last term, we use the estimate (41) to bound, for any t ,∥∥M−1T2
∥∥� 2

(‖r ∧ 	‖ + (
min(λi)

)−1∥∥(J0r) ∧ r
∥∥)

� C
(‖	‖2 + ‖r‖2 + (

min(λi)
)−1

(J0r) · r),
thanks to (54). We thus deduce from the energy bound that the last term of the right-hand side of (56) also vanishes in
L2(0, T ;R6) in the infinite inertia limit.

The proof of Theorem 2 is then complete. �
4. Smooth local-in-time solutions of the inviscid system

In this section we consider the system “inviscid incompressible fluid + rigid body”.

4.1. The system “inviscid incompressible fluid + rigid body”

When the viscosity coefficient ν is set equal to 0, formally, the system (4)–(11) degenerates into the following
equations:

∂UE

∂t
+ (

UE · ∇)
UE + ∇P E = 0 for x ∈FE(t) =R

3 \ SE(t), (57)

divUE = 0 for x ∈ FE(t), (58)

UE · n = UE
S · n for x ∈ ∂SE(t), (59)

m
(
hE

)′′ =
∫

∂SE(t)

P Ends, (60)

(
J ERE

)′ =
∫

∂SE(t)

P E
(
x − hE(t)

) ∧ nds, (61)

UE
∣∣
t=0 = UE

0 , (62)

hE(0) = 0,
(
hE

)′
(0) = 	E

0 , RE(0) = rE
0 , (63)
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where the solid velocity is given by

UE
S (t, x) := (

hE
)′
(t) + RE(t) ∧ (

x − hE(t)
)
,

and

SE(t) := ηE(t, ·)(S0), with ηE(t, x) := hE(t) + QE(t)x,

where the matrix QE solves the differential equation(
QE

)′
x = RE ∧ (

QEx
)

with QE(0)x = x, for any x ∈ R
3.

Finally J E is given by

J E = QEJ0
(
QE

)T
.

Observe that we prescribe hE(0) = 0 so that the initial position SE(0) occupied by the solid also starts from S0
at t = 0. The mass m and the initial inertial matrix J0 are also the same as in the previous case of the Navier–Stokes
equations.

Let us emphasize that in the boundary condition (59) there is only an impermeability condition, the slip-with-
friction condition is no more prescribed. This loss of boundary condition generates a boundary layer which makes
difficult the issue of the inviscid limit of the system since the fluid flow is drastically modified in a neighborhood of
the body’s boundary of thickness proportional to

√
ν. The main goal of the paper is precisely to show that despite

these layers the solution of (4)–(11) converges in a rather good manner to the solution of (57)–(63) as ν → 0. This
will be achieved in the next section. Here we will first gather a few results about the inviscid system (57)–(63).

4.2. A change of variables

To write the system in a fixed domain, we perform the following change of coordinates:

	E(t) := QE(t)T
(
hE

)′
(t), RE(t) := QE(t)rE(t),

uE(t, x) := QE(t)T UE
(
t,QE(t)x + hE(t)

)
and pE(t, x) := P E

(
t,QE(t)x + hE(t)

)
,

where QE(t) is the rotation matrix associated to the motion of SE(t) defined in the previous section.
Observe that this change of variable is analogous to the one that we have used for the Navier–Stokes equations in

Section 3.1.
The system (57)–(63) now reads

∂uE

∂t
+ (

uE − uE
S
) · ∇uE + rE ∧ uE + ∇pE = 0 for x ∈F0, (64)

divuE = 0 for x ∈F0, (65)

uE · n = uE
S · n for x ∈ ∂S0, (66)

m
(
	E

)′ =
∫

∂S0

pEnds + (
m	E

) ∧ rE, (67)

J0
(
rE

)′ =
∫

∂S0

pEx ∧ nds + (
J0r

E
) ∧ rE, (68)

uE
∣∣
t=0 = uE

0 , (69)

hE(0) = 0,
(
hE

)′
(0) = 	E

0 , rE(0) = rE
0 , (70)

with

uE
S (t, x) := 	E(t) + rE(t) ∧ x. (71)
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4.3. Smooth local-in-time solutions

Let us recall the following result from [50] about the existence and uniqueness of classical solutions to
Eqs. (64)–(70), where, as previously, we extend the initial data uE

0 by setting uE
0 := 	E

0 + rE
0 ∧ x for x ∈ S0.

Theorem 3. Let be given λ ∈ (0,1) and uE
0 ∈ H such that uE

0 |F0 ∈ H 1 ∩ C1,λ and curluE
0 |F0 is compactly sup-

ported. Then there exist T > 0 and a unique solution uE of (64)–(70) in C1([0, T ];H) such that (∇uE)|[0,T ]×F0 ∈
C([0, T ];L2(F0, (1 + |x|2) 1

2 dx)) ∩ Cw∗([0, T ];C0,λ(F0)). Moreover for any t ∈ [0, T ],∥∥uE(t, ·)∥∥2
H = ∥∥uE

0

∥∥2
H. (72)

Here, Ck,λ(F0), k ∈ N, λ ∈ (0,1), denotes the usual Hölder space.
A few comments are in order.
It is worth to point out here that the solution uE given by Theorem 3 satisfies the following property: for any

t ∈ [0, T ], for any v ∈ V , there holds(
∂tu

E, v
)
H = −b

(
uE,v,uE

)
. (73)

To see that, multiply (64) by v and integrate by parts in space using (65)–(66).
It is useful for the sequel to recall that the proof given in [50] of Theorem 3 relies on the following vorticity

reformulation of (64)–(70):

∂tω
E + (

uE − uE
S
) · ∇ωE = (

ωE · ∇)(
uE − uE

S
)

in [0, T ] ×F0, (74)⎧⎪⎪⎨⎪⎪⎩
curluE = ωE in [0, T ] ×F0,

divuE = 0 in [0, T ] ×F0,

uE · n = uE
S · n on [0, T ] × ∂S0,

uE → 0 for |x| → ∞,

(75)

uE
S (t, x) := 	E(t) + rE(t) ∧ x in [0, T ] ×R

3, (76)

M
[

	E

rE

]′
= [

b
(
uE,uE, vi

)]
i∈{1,...,6}, (77)

where M and vi were introduced in Section 3.4.
The vorticity equation (74) can easily be inferred from (64), (65) and (71) whereas (77) is obtained from (27), (73)

and some integration by parts. Observe that (77) can be seen as the inviscid counterpart of (42), and recall that the
b(uE,uE, vi) can be computed thanks to the formula (47).

4.4. The infinite inertia limit

The following result is the counterpart of Theorem 2 for the inviscid system (64)–(70). It shows that in the limit of
infinite inertia, that is, when m and the eigenvalues (λi)i=1,2,3 of J0 converge to +∞ with λi = O(λj ) for any i, j ,
the system (64)–(70) degenerates into the following classical Euler equations in F0:

∂uE

∂t
+ uE · ∇uE + ∇pE = 0 for x ∈F0, (78)

divuE = 0 for x ∈ F0, (79)

uE · n = 0 for x ∈ ∂S0, (80)

uE
∣∣
t=0 = uE

0 . (81)

Theorem 4. Let be given λ ∈ (0,1) and uE
0 ∈ H such that 	E

0 = rE
0 = 0, uE

0 |F0 ∈ H 1 ∩ C1,λ and curluE
0 |F0 is

compactly supported. Let be given m > 0 and β > 0.
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Then there exists T > 0 such that for any m � m and for any symmetric positive 3 × 3 matrix J0 with eigenvalues
(λi)i=1,2,3 satisfying λi � β , the corresponding solution uE of (64)–(70) given by Theorem 3 is defined up to the
time T .

Moreover in the infinite inertia limit, uE |F0 converges in L∞(0, T ;C1,λ̃(F0)), for any λ̃ ∈ (0, λ), to the unique
smooth solution of (78)–(81) and 	E and rE converge to 0 in C1(0, T ;R3).

Proof. The key issue here is to obtain some estimates uniform in the infinite inertia limit. Let us stress in particular
that, a priori, Theorem 3 only provides, for some inertia m and J0, the existence of a smooth solution on a time
interval [0, Tm,J0] which may shrink when m and the eigenvalues (λi)i=1,2,3 of J0 go to infinity. However we are
going to see below that this is not the case. Actually revisiting the proof of Theorem 3 given in [50] we will provide a
time T common to any large enough inertia.

The first basic observation in this direction is that according to the energy identity (72), and because of the choice
of the initial data (which are somehow “well-prepared”) the energy ‖uE(t, ·)‖2

H does not depend on time nor on the
inertia:∫

F0

∣∣uE(t, ·)∣∣2
dx + m	E(t) · 	E(t) +J0r

E(t) · rE(t) =
∫
F0

∣∣uE
0

∣∣2
dx. (82)

Let us now show how to obtain a uniform estimate of the velocity in L∞(0, T ;C1,λ(F0)) for some T > 0, thanks
to the vorticity formulation (74)–(77).

By standard transport estimates (cf. [24, Corollary 2.4]) one infers from (74) the estimate

∥∥ωE(t)
∥∥

C0,λ(F0)
�

∥∥ωE
0

∥∥
C0,λ(F0)

exp

(
C

t∫
0

(∥∥uE
∥∥

C1,λ(F0)
(s) + ∥∥rE

∥∥(s)
)
ds

)

�
∥∥uE

0

∥∥
C1,λ(F0)

exp
(
C

∥∥rE
∥∥

L∞(0,T )
t
)

exp

(
C

t∫
0

∥∥uE
∥∥

C1,λ(F0)
(s) ds

)
, (83)

where C does not depend on the inertia.
On the other hand, by classical elliptic theory, one infers from (75) the following estimate, where time is omitted,∥∥uE

∥∥
C1,λ(F0)

� C
(∥∥ωE

∥∥
C0,λ(F0)

+ ∥∥	E
∥∥ + ∥∥rE

∥∥)
� C

(∥∥ωE
∥∥

C0,λ(F0)
+ ∥∥uE

0

∥∥
L2(F0)

)
, (84)

with C > 0 depending on m > 0 and β > 0.
Plugging (84) in (83) yields

∥∥ωE(t)
∥∥

C0,λ(F0)
�

∥∥uE
0

∥∥
C1,λ(F0)

exp
(
C

∥∥uE
0

∥∥
L2(F0)

t
)

exp

(
C

t∫
0

∥∥ωE
∥∥

C0,λ(F0)
(s) ds

)
,

with C > 0 depending on m > 0 and β > 0, from which one deduces the existence of a small time T > 0 and an
estimate of velocity in L∞(0, T ;C1,λ(F0)) both uniformly for any m � m and for any symmetric positive 3 × 3
matrix J0 with eigenvalues (λi)i=1,2,3 satisfying λi � β .

Let us now prove the second part of Theorem 4 about convergence of the fluid and solid velocities. First (82) yields
that 	E and rE converge to 0 in L∞(0, T ;R3) in the infinite inertia limit. Then, similarly as we proceed in the proof
of Theorem 2, by using (77) and (47) we write[

	E

rE

]′
=M−1[T E

1,i

]
i∈{1,...,6} +M−1T E

2 ,

where

T E
1,i :=

∫
F0

([((
uE − uE

S
) · ∇)∇Φi

] · uE − det
(
rE
u ,uE,∇Φi

))
, and T E

2 :=
[

mrE ∧ 	E

(J0r
E) ∧ rE

]
.

Thus, by using again the energy bound (82), we deduce that 	E and rE converge to 0 in C1(0, T ;R3).
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Finally it remains to prove that uE |F0 converges, up to a subsequence, in L∞(0, T ;C1,λ̃(F0)), for any λ̃ ∈ (0, λ).
Since we have some uniform estimates of uE |F0 in the space L∞(0, T ;C1,λ(F0)), it is sufficient to obtain a temporal
estimate uniform in infinite inertia limit and to use the Aubin–Lions lemma to conclude that a subsequence is con-
verging in L∞(0, T ;C1,λ̃(F0)), for any λ̃ ∈ (0, λ). This can be easily achieved by using (73) with some test functions
v compactly supported in F0.

These convergences are sufficient to yield that the limit is a smooth solution of (78)–(81) on [0, T ].
Since classical solutions of the Euler equations are unique we finally deduce that the whole sequence is converg-

ing. �
5. Inviscid limit

Let us now state the main result of this paper.

Theorem 5. The following holds true.

1. With the notations of Theorems 1 and 3, and assuming that u0 converges to uE
0 in H when ν tends to 0

and that α := αν satisfies αν converges to 0 when ν tends to 0, then u converges to uE in L∞(0, T ;H),√
ν‖u|F0‖L2(0,T ;H 1(F0))

and
√

αν‖u − uS‖L2((0,T )×∂S0)
converge to 0, where T > 0 is the lifetime of the smooth

solution uE of the inviscid system.
2. Moreover (	, r) converges to (	E, rE) in H 1(0, T ;R6).
3. Assuming that u0 = uE

0 and that α > 0 does not depend on ν, then there exists C > 0 (depending on T ) such that∥∥u − uE
∥∥

L∞(0,T ;H)
+ √

ν
∥∥u − uE

∥∥
L2(0,T ;H 1(F0))

� C(1 + α)ν3/4. (85)

A few remarks are in order.
Regarding the first part of Theorem 5, let us first mention again Refs. [10,40,1] for the relevance of considering

a friction coefficient depending on the viscosity, as a limit of accommodation boundary condition for the Boltzmann
equation. The first part of Theorem 5 extends earlier results where a fixed boundary was considered, see [36,45,1,
53]. Let us point out in particular that it could be possible to extend the first part of Theorem 5 to a weaker setting,
following the analysis of [1]. This will require to extend P.-L. Lions’ definition of dissipative solutions of the Euler
incompressible equations to the system (64)–(70), and to modify the proof of the first part of Theorem 5 below
following a by now classical method, the so-called relative entropy method or the modulated energy method depending
on the context and on the authors. We choose here to consider smooth solutions of the system (64)–(70) in order to
keep the unity of the theorem, since the other parts fail in a weaker context.

The second part of Theorem 5 is perhaps the most surprising. It shows that the convergence of the body’s dynamics
is better than the one implied by the convergence of u to uE in the energy space L∞(0, T ;H) stated in the first part.
Indeed the latter provides a convergence (	, r) to (	E, rE) in L∞(0, T ;R6). This last result relies on the possibility
to compute explicitly, in the present case of the Navier slip conditions, a well-known phenomenon in the theory of
the systems involving an incompressible flow and a structure, namely the added-mass phenomenon, cf. for instance
[6,17].

If we focus on the dependence on the viscosity the estimate (85) says that u converges strongly to uE in
L∞(0, T ;L2(F0)) with a rate of O(ν3/4) and in L2(0, T ;H 1(F0)) with a rate of O(ν1/4). We therefore recover the
optimal rate of convergence, with respect to ν, found in [37] in the case where the Navier conditions are prescribed
on a fixed boundary.

Theorem 5 may be useful for controllability issues, in particular for the global controllability of the system. In the
case of a fixed boundary a strategy initiated by Coron in [11] proved the global approximate controllability for the
2-D incompressible Navier–Stokes equations with Navier slip boundary conditions. His proof relies on another of his
earlier results about the global controllability of the incompressible Euler equations, see [12]. This strategy was used
later on by Chapouly in [5] to extend Coron’s result into a global null controllability result.

It is therefore possible that a similar strategy could be fruitful in the case of a moving rigid body. Note however that
in such a case little is known so far about the controllability of the inviscid system. Let us mention in that direction
the result [4] by Chambrion and Munnier in the irrotational case.
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6. Proof of Theorem 5

6.1. Two basic observations

Let us observe first that when u converges to uE in L∞(0, T ;H) then it follows straightforwardly from (29), (72)
and Korn inequality that

√
ν‖u|F0‖L2(0,T ;H 1(F0))

and
√

αν‖u − uS‖L2((0,T )×∂S0)
converge to 0.

Moreover the second part of Theorem 5 is quite easy to obtain once the first part has been proved. Indeed, using
that u converges to uE in L∞(0, T ;H), and that

√
ν‖u|F0‖L2(0,T ;H 1(F0))

and
√

αν‖u − uS‖L2((0,T )×∂S0)
converge

to 0 as ν tends to 0, (42), (77) and (47), we obtain that M
[

	
r

]′
converges to M

[
	E

rE

]′
in L2(0, T ). We then infer easily

the second part.

6.2. Proof of the first part

Let us now turn to the proof of the first part. In the following, C will denote a constant independent of ν and α that
may change from one relation to another.

Let us also introduce the difference

w := u − uE and similarly for the initial condition w0 := u0 − uE
0 .

In the solid we will use the notation

wS := uS − uE
S .

For any t ∈ [0, T ], we have, thanks to (29) and (72),

∥∥w(t, ·)∥∥2
H � ‖u0‖2

H + ∥∥uE
0

∥∥2
H − 2

(
u,uE

)
H(t) + 4ν

t∫
0

a(u,u).

We now apply (22) to v = uE to get

(
u,uE

)
H(t) − (

u0, u
E
0

)
H =

t∫
0

[(
u, ∂tu

E
)
H + 2νa

(
u,uE

) + b
(
u,u,uE

)]
ds

=
t∫

0

[
2νa

(
u,uE

) + b
(
u,u,uE

) − b
(
uE,u,uE

)]
ds,

using (73) with v = u.
Therefore,

∥∥w(t, ·)∥∥2
H � ‖w0‖2

H − 2

t∫
0

[
2νa

(
u,uE

) − 2νa(u,u) + b
(
u,u,uE

) − b
(
uE,u,uE

)]
ds

= ‖w0‖2
H − 2

t∫
0

[−2νa(u,w) + b
(
w,w,uE

)]
ds.

This can be recast as follows:

∥∥w(t, ·)∥∥2
H + 4αν

t∫
0

∫
∂S0

|w − wS |2 + 4ν

t∫
0

∫
F0

∣∣D(w)
∣∣2

� ‖w0‖2
H − 2

t∫ [−2νa
(
uE,w

) + b
(
w,w,uE

)]
ds. (86)
0
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Therefore it only remains to use the Cauchy–Schwarz and Young inequalities, (40) and finally the Gronwall Lemma
to achieve the first part of the theorem.

6.3. Proof of the last part

If one is interested in getting a better rate of convergence (for fixed α) a further treatment of the viscous part of the
right-hand side of (86) is needed. The underlying idea is somehow to put more derivatives on the inviscid solution uE .

We use Lemma 1 to obtain

a
(
uE,w

) = −α

∫
∂S0

(
uE − uE

S
) · (w − wS) −

∫
F0

D
(
uE

) · D(w)

= −α

∫
∂S0

(
uE − uE

S
) · (w − wS) + 1

2

∫
F0

�uE · w −
∫

∂S0

((
D

(
uE

)
n
) ∧ n

) · ((w − wS) ∧ n
)

− 	w ·
∫

∂S0

D
(
uE

)
nds − rw ·

∫
∂S0

x ∧ D
(
uE

)
nds.

Thus we infer from (86) the following inequality:

∥∥w(t, ·)∥∥2
H + 4αν

t∫
0

∫
∂S0

|w − wS |2 + 4ν

t∫
0

∫
F0

∣∣D(w)
∣∣2

� ‖w0‖2
H − 4αν

t∫
0

∫
∂S0

(
uE − uE

S
) · (w − wS)

+ 2ν

t∫
0

∫
F0

�uE · w − 4ν

t∫
0

∫
∂S0

((
D

(
uE

)
n
) ∧ n

) · ((w − wS) ∧ n
)

− 4ν

t∫
0

	w ·
∫

∂S0

D
(
uE

)
nds − 4ν

t∫
0

rw ·
∫

∂S0

x ∧ D
(
uE

)
nds − 2

t∫
0

b
(
w,w,uE

)

� ‖w0‖2
H +

6∑
i=1

Ii .

To deal with I1 and I3 we will use the following lemma:

Lemma 3. There exists C > 0 such that for any γ > 0 and for any smooth function f divergence free and tangent to
the boundary

‖f ‖L2(∂S0)
� Cγ 1/3‖f ‖2/3

L2(F0)
+ 1

4γ

∥∥D(f )
∥∥2

L2(F0)
+ C‖f ‖L2(F0)

.

Proof. We first apply the following standard trace inequality:

‖f ‖L2(∂S0)
� C‖f ‖1/2

L2(F0)
‖f ‖1/2

H 1(F0)
,

then the Korn inequality to find

‖f ‖L2(∂S0)
� C

(‖f ‖1/2
L2(F0)

∥∥D(f )
∥∥1/2

L2(F0)
+ ‖f ‖L2(F0)

)
and finally Young’s inequality to conclude. �
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In order to apply this lemma we are going to substitute to the vector fields uE
S and wS another divergence free

vector field with the same traces on ∂S0 but with a better decay at infinity, as we did in Section 3.2. Indeed let χ be a
smooth cut-off function defined on F0 such that χ = 1 in Γc and χ = 0 in F0 \ Γ2c , where

Γc := {
x ∈ F0

∣∣ d(x) < c
}

with d(x) := dist(x, ∂S0).

Let us denote

ψE
S (t, x) := 1

2

(
	E(t) ∧ x − rE(t)|x|2) and ũE

S := curl
(
χψE

S
)
,

and let us define similarly w̃S . By Cauchy–Schwarz inequality we obtain

I1 � 4αν

t∫
0

∥∥uE − ũE
S
∥∥

L2(∂S0)
‖w − w̃S‖L2(∂S0)

� ανC

t∫
0

‖w − w̃S‖L2(∂S0)

and then applying Lemma 3 with γ = αC
4

I1 � ν

t∫
0

∥∥D(w − w̃S)
∥∥2

L2(F0)
+ α4/3νC

t∫
0

‖w − w̃S‖2/3
L2(F0)

+ ανC

t∫
0

‖w − w̃S‖L2(F0)

� ν

t∫
0

∥∥D(w)
∥∥2

L2(F0)
+ νC

t∫
0

‖w‖2
H + α4/3νC

t∫
0

‖w‖2/3
H + ανC

t∫
0

‖w‖H.

Now, thanks again to Cauchy–Schwarz inequality and applying Lemma 3 but this time with γ = C
4 we get

I3 � 4ν

t∫
0

∥∥D
(
uE

)
n
∥∥

L2(∂S0)
‖w − w̃S‖L2(∂S0)

� νC

t∫
0

‖w − w̃S‖L2(∂S0)

� ν

t∫
0

∥∥D(w)
∥∥2

L2(F0)
+ νC

t∫
0

‖w‖2
H + νC

t∫
0

‖w‖2/3
H + νC

t∫
0

‖w‖H.

We simply estimate the following term by

I2 � 2ν

t∫
0

∥∥�uE
∥∥

L2(F0)
‖w‖L2(F0)

� νC

t∫
0

‖w‖L2(F0)
.

Finally it is straightforward that we can estimate the last terms by

I4 + I5 � νC

t∫
0

‖w‖H and I6 � C

t∫
0

‖w‖2
H

thanks to (40).
We deduce from the above relations that

∥∥w(t)
∥∥2
H + 2ν

t∫ ∥∥D(w)
∥∥2

L2(F0)
� β(t) + C

t∫
‖w‖2

H,
0 0



78 G. Planas, F. Sueur / Ann. I. H. Poincaré – AN 31 (2014) 55–80
with

β(t) := ‖w0‖2
H + νC

t∫
0

‖w‖2
H + (

1 + α4/3)νC

t∫
0

‖w‖2/3
H + (1 + α)νC

t∫
0

‖w‖H.

Since ‖w(t)‖H � C we can deduce that

β(t) � ‖w0‖2
H + (

1 + α + α4/3)νtC‖w‖2/3
L∞(0,T ;H)

,

and finally, the Gronwall Lemma implies that∥∥w(t)
∥∥2
H � ‖w0‖2

H + (
1 + α + α4/3)νtC‖w‖2/3

L∞(0,T ;H)

+ C

t∫
0

(‖w0‖2
H + s

(
1 + α + α4/3)νC‖w‖2/3

L∞(0,T ;H)

)
ds exp(Ct)

� C
(‖w0‖2

H + (
1 + α + α4/3)ν‖w‖2/3

L∞(0,T ;H)

)
,

where C is a constant depending on T .
By setting u0 = uE

0 , we obtain estimate (85).
The proof of Theorem 5 is then complete.
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