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Abstract

We establish a necessary and sufficient condition for decay of periodic entropy solutions to a multidimensional conservation law
with merely continuous flux vector.
© 2013 Elsevier Masson SAS. All rights reserved.

Résumé

Nous considérons les lois de conservation [hyperboliques] en plusieurs dimensions d’espace avec la fonction de flux seulement
continue. Nous établissons une condition nécessaire et suffisante pour la décroissance des solutions entropiques périodiques de ce
problème.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In the half-space Π =R+ ×R
n, R+ = (0,+∞), we consider a first order multidimensional conservation law

ut + divx ϕ(u) = 0, (1.1)

where the flux vector ϕ(u) is supposed to be only continuous: ϕ(u) = (ϕ1(u), . . . , ϕn(u)) ∈ C(R,Rn). Recall the
notion of entropy solution of (1.1) in the sense of S.N. Kruzhkov [4].

Definition 1. A bounded measurable function u = u(t, x) ∈ L∞(Π) is called an entropy solution (e.s. for short)
of (1.1) if for all k ∈R

|u − k|t + divx

[
sign(u − k)

(
ϕ(u) − ϕ(k)

)]
� 0 (1.2)

in the sense of distributions on Π (in D′(Π)).
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Condition (1.2) means that for all non-negative test functions f = f (t, x) ∈ C1
0(Π)∫

Π

[|u − k|ft + sign(u − k)
(
ϕ(u) − ϕ(k)

) · ∇xf
]
dt dx � 0

(here “·” denotes the inner product in Rn).
As was shown in [13] (see also [14]), an e.s. u(t, x) always admits a strong trace u0 = u0(x) ∈ L∞(Rn) on the

initial hyperspace t = 0 in the sense of relation

ess lim
t→0

u(t, ·) = u0 in L1
loc

(
R

n
)
, (1.3)

that is, u(t, x) is an e.s. to the Cauchy problem for Eq. (1.1) with initial data

u(0, x) = u0(x). (1.4)

Remark 1.1. It was also established in [13, Corollary 7.1] that, after possible correction on a set of null measure, an
e.s. u(t, x) is continuous on R+ as a map t �→ u(t, ·) of R+ into L1

loc(R
n).

When the flux vector is Lipschitz continuous, the existence and uniqueness of e.s. to the problem (1.1), (1.4)
are well-known (see [4]). In the case under consideration when the flux functions are merely continuous, the effect
of infinite speed of propagation for initial perturbations appears, which leads even to the nonuniqueness of e.s. to
problem (1.1), (1.4) if n > 1 (see examples in [5,6]).

But, if initial function is periodic (at least in n − 1 independent directions), the uniqueness holds: an e.s. of (1.1),
(1.4) is unique and space-periodic, see the proof in [11,12]. In the present paper we assume that the requirement of
space-periodicity holds: u(t, x + ei) = u(t, x) for almost all (t, x) ∈ Π and all i = 1, . . . , n, where {ei}ni=1 is a basis
of periods in R

n. We assume that this basis is fixed. Then, without loss of generality, we may suppose that {ei}ni=1
is the canonical basis. We denote by P = [0,1)n the corresponding fundamental parallelepiped (cube) (which can be
identified with a torus).

As was established by G.-Q. Chen and H. Frid [1], under the conditions ϕ(u) ∈ C2(R,Rn) and

∀(τ, ξ) ∈ R
n+1, (τ, ξ) 	= 0, meas

{
u ∈ R

∣∣ τ + ϕ′(u) · ξ = 0
} = 0, (1.5)

the following decay result holds for space-periodic e.s. u(t, x) of (1.1), (1.4):

ess lim
t→∞ u(t, ·) = const = 1

|P |
∫
P

u0(x) dx in L1(P ). (1.6)

Here |P | denotes the Lebesgue measure of P (in the case under consideration P is a unite cube and, therefore,
|P | = 1).

Definition 2. We will say that Eq. (1.1) satisfies the decay property if (1.6) holds for every periodic e.s.

In the present paper we propose the following necessary and sufficient condition for the decay property (by Z we
denote the set of integers)

∀(τ, ξ) ∈ R×Z
n, (τ, ξ) 	= 0, the function u �→ τu + ϕ(u) · ξ is not constant on non-empty intervals, (1.7)

in the general case of only continuous flux vector ϕ(u). Obviously, this condition is equivalent to the requirement that
∀ξ ∈ Z

n, ξ 	= 0, the functions u �→ ϕ(u) · ξ are not affine on non-empty intervals.
Thus, our main result is the following theorem.

Theorem 1.1. Eq. (1.1) satisfies the decay property if and only if condition (1.7) holds.

Remark 1.2. In the case of arbitrary basis of periods {ei}ni=1 one can make the linear change of variables x = x(y) =∑n
i=1 yiei . Then, as is easily verified, if u(t, x) is a periodic entropy solution of (1.1) then the function v(t, y) =

u(t, x(y)) is an entropy solution of the equation
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vt + divy ϕ̃(v) = 0,

where ϕ̃j (v) = ϕ(v) · e′
j , {e′

j }nj=1 being the dual basis:

e′
j · ei = δij =

{
1, i = j,

0, i 	= j.

Clearly, v(t, y) is a y-periodic function with the canonical basis of periods. By Theorem 1.1 the necessary and suffi-
cient condition for v(t, y) to satisfy the decay property is condition (1.7):

∀η ∈ Z
n, η 	= 0, the function v �→ ϕ̃(v) · η is not affine on non-empty intervals.

Observe that ϕ̃(v) · η = ϕ(v) · ξ , where ξ = ∑n
j=1 ηj e

′
j ∈ L′ and L′ = {∑n

j=1 ηj e
′
j | ηj ∈ Z} is the dual lattice to the

lattice of periods L = {∑n
i=1 ξiei | ξi ∈ Z}. It is obvious that the decay property for v(t, y) holds if and only if this

property holds for original solution u(t, x).
Therefore, in the case of arbitrary basis of periods, Theorem 1.1 remains valid after replacement of the lattice Z

n

in (1.7) by L′:

∀ξ ∈ L′, ξ 	= 0, the function u �→ ϕ(u) · ξ is not affine on non-empty intervals.

By Remark 1.2 in the case when the basis of periods is not fixed and may depend on a solution, the statement of
Theorem 1.1 remains valid after replacement of condition (1.7) by the following stronger one:

∀(τ, ξ) ∈ R×R
n, (τ, ξ) 	= 0, the function u �→ τu + ϕ(u) · ξ is not constant on non-empty intervals. (1.8)

Obviously, condition (1.8) is strictly weaker than (1.5) even in the case of smooth flux ϕ(u).

2. Preliminaries

To prove Theorem 1.1, we use, as in [1], the strong pre-compactness property for the self-similar scaling sequence
u(kt, kx), k ∈ N. This pre-compactness property will be obtained under condition (1.7) with the help of localization
principles for H -measures with “continuous indexes”, introduced in [8]. The strong pre-compactness property for
arbitrary sequences of e.s. of (1.1) under exact non-degeneracy condition (1.8) was derived in [9] (see also [10,15]
for the case of general flux vector ϕ = ϕ(t, x,u)). In the present paper we take into account the periodicity condition,
which allows to refine the localization principle.

First, we recall the original concept of H -measure introduced by L. Tartar [17] and P. Gerárd [3]. Let F(u)(ξ),
ξ ∈ RN , be the Fourier transform of a function u(x) ∈ L2(RN), S = SN−1 = {ξ ∈ R

N | |ξ | = 1} be the unit sphere
in R

N . Denote by u → u, u ∈ C the complex conjugation.
Let Ω be an open domain in R

N , l ∈ N, and let Uk(x) = (U1
k (x), . . . ,U l

k(x)) ∈ L2
loc(Ω,Rl ) be a sequence of

vector-functions weakly convergent to the zero vector.

Proposition 2.1. (See Theorem 1.1 in [17].) There exist a family of complex Borel measures μ = {μij }li,j=1 in Ω × S

and a subsequence Ur(x) = Uk(x), k = kr , such that

〈
μij ,Φ1(x)Φ2(x)ψ(ξ)

〉 = lim
r→∞

∫

RN

F
(
Φ1U

i
r

)
(ξ)F

(
Φ2U

j
r

)
(ξ)ψ

(
ξ

|ξ |
)

dξ (2.1)

for all Φ1(x),Φ2(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S).

The family μ = {μij }li,j=1 is called the H -measure corresponding to Ur(x).

Remark 2.1. In the case when the sequence Uk(x) is bounded in L∞(Ω) it follows from (2.1) and the Plancherel
identity that prx |μpq | � C meas, and that (2.1) remains valid for all Φ1(x),Φ2(x) ∈ L2(Ω), cf. [15, Remark 2(a)].
Here we denote by |μ| the variation of measure μ (it is a non-negative measure), and by meas the Lebesgue measure
on Ω .
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We need also the concept of measure-valued functions (Young measures). Let Ω ⊂R
N be an open domain. Recall

(see [2,16]) that a measure-valued function on Ω is a weakly measurable map x �→ νx of Ω into the space Prob0(R)

of probability Borel measures with compact support in R.
The weak measurability of νx means that for each continuous function g(λ) the function x → 〈νx, g(λ)〉 =∫

g(λ)dνx(λ) is measurable on Ω .
Measure-valued functions of the kind νx(λ) = δ(λ − u(x)), where u(x) ∈ L∞(Ω) and δ(λ − u∗) is the Dirac mea-

sure at u∗ ∈ R, are called regular. We identify these measure-valued functions and the corresponding functions u(x),
so that there is a natural embedding of L∞(Ω) into the set MV(Ω) of measure-valued functions on Ω .

Measure-valued functions naturally arise as weak limits of bounded sequences in L∞(Π) in the sense of the
following theorem by L. Tartar [16].

Theorem 2.1. Let um(x) ∈ L∞(Ω), m ∈ N, be a bounded sequence. Then there exist a subsequence (we keep the
notation um(x) for this subsequence) and a measure-valued function νx ∈ MV(Ω) such that

∀g(λ) ∈ C(R) g(um) →
m→∞

〈
νx, g(λ)

〉
weakly- ∗ in L∞(Ω). (2.2)

Besides, νx is regular, i.e., νx(λ) = δ(λ − u(x)) if and only if um(x) →m→∞ u(x) in L1
loc(Ω) (strongly).

In [8] the new concept of H -measures with “continuous indexes” was introduced, corresponding to sequences of
measure-valued functions. We describe this concept in the particular case of “usual” sequences in L∞(Ω). Let um(x)

be a bounded sequence in L∞(Ω). Passing to a subsequence if necessary, we can suppose that this sequence converges
to a measure-valued function νx ∈ MV(Ω) in the sense of relation (2.2). We introduce the measures γ m

x (λ) = δ(λ −
um(x)) − νx(λ) and the corresponding distribution functions Um(x,p) = γ m

x ((p,+∞)), u0(x,p) = νx((p,+∞)) on
Ω ×R. Observe that Um(x,p),u0(x,p) ∈ L∞(Ω) for all p ∈R, see [8, Lemma 2]. We define the set

E = E(νx) =
{
p0 ∈R

∣∣ u0(x,p) →
p→p0

u0(x,p0) in L1
loc(Ω)

}
.

As was shown in [8, Lemma 4], the complement R \ E is at most countable and if p ∈ E then Um(x,p) ⇀m→∞ 0
weakly-∗ in L∞(Ω).

The next result, similar to Proposition 2.1, has been established in [8, Theorem 3], [10, Proposition 2, Lemma 2].

Proposition 2.2.

(1) There exist a family of locally finite complex Borel measures {μpq}p,q∈E in Ω ×S and a subsequence Ur(x,p) =
Umr (x,p) such that for all Φ1(x),Φ2(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S)

〈
μpq,Φ1(x)Φ2(x)ψ(ξ)

〉 = lim
r→∞

∫

RN

F
(
Φ1Ur(·,p)

)
(ξ)F

(
Φ2Ur(·, q)

)
(ξ)ψ

(
ξ

|ξ |
)

dξ ; (2.3)

(2) The correspondence (p, q) → μpq is a continuous map from E × E into the space Mloc(Ω × S) of locally finite
Borel measures on Ω × S (with the standard locally convex topology);

(3) For any p1, . . . , pl ∈ E the matrix {μpipj }li,j=1 is Hermitian and positive semidefinite, that is, for all ζ1, . . . , ζl ∈
C the measure

l∑
i,j=1

μpipj ζiζj � 0.

Notice that assertion (3) readily follows from relation (2.3).
We call the family of measures {μpq}p,q∈E the H -measure corresponding to the subsequence ur(x) = umr (x).
As was demonstrated in [8], the H -measure μpq = 0 for all p,q ∈ E if and only if the subsequence ur(x) converges

as r → ∞ strongly (in L1
loc(Ω)). Observe also that assertion (3) in Proposition 2.2 implies that measures μpp � 0 for

all p ∈ E, and that
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∣∣μpq(A)
∣∣ � √

μpp(A)μqq(A) (2.4)

for any Borel set A ⊂ Ω × S and all p,q ∈ E. Indeed, this directly follows from the fact that the matrix(
μpp(A) μpq(A)

μqp(A) μqq(A)

)
is Hermitian and positive semidefinite.

3. Main results

We fix a periodic e.s. u = u(t, x) of (1.1). Without loss of generality, we may assume that u(t, ·) ∈ C(R+,L1(P ))

(see Remark 1.1 above).

Lemma 3.1. Let s(u) be a Lipschitz function, v(t, x) = s(u(t, x)), and

v(t, x) =
∑
κ∈Zn

aκ(t)e2πiκ·x

be the Fourier series of v(t, ·) in L2(P ), so that aκ(t) = ∫
P

e−2πiκ·xv(t, x) dx. Then this series converges to v(t, ·) in
L2(P ) uniformly with respect to t , that is, for each ε > 0 there exists a value N ∈N such that∑

|κ|>N

∣∣aκ(t)
∣∣2

< ε2 ∀t > 0. (3.1)

Proof. Let u0(x) ∈ L∞(Rn) be a strong trace of u(t, x) on the initial hyper-plane t = 0 (recall that its existence
follows from the results of [13,14]). Obviously, u0(x) is a periodic function. Since for each h ∈ R

n u(t, x + h) is
a periodic e.s. of the Cauchy problem for (1.1) with initial data u0(x + h) then for all t > 0∫

P

∣∣v(t, x + h) − v(t, x)
∣∣2

dx � 2L2‖u‖∞
∫
P

∣∣u(t, x + h) − u(t, x)
∣∣dx

� 2L2‖u‖∞
∫
P

∣∣u0(x + h) − u0(x)
∣∣dx (3.2)

by the L1-contraction property, see for example [7, Corollary 3.3]. Here L is a Lipschitz constant of s(u), i.e.,
|s(u2) − s(u1)|� L|u2 − u1| for every u1, u2 ∈R.

In view of (3.2), the set of functions F = {v(t, ·) | t > 0} is precompact in L2(P ). By Hausdorff’s compactness
criterion there exists a finite ε/2-net {gk(x)}mk=1 for F in L2(P ). Let bκ,k = ∫

P
e−2πiκ·xgk(x) dx, κ ∈ Z

n, be Fourier
coefficients of gk(x). Observe that∑

κ∈Zn

|bκ,k|2 = ‖gk‖2
L2(P )

< +∞.

Therefore, there exists an integer N such that∑
|κ|>N

|bκ,k|2 < ε2/4 (3.3)

for all k = 1, . . . ,m. Since {gk(x)}mk=1 is an ε/2-net for F then for each t > 0 one can find such k ∈ {1, . . . ,m} that
∑
κ∈Zn

∣∣aκ(t) − bκ,k

∣∣2 = ∥∥v(t, ·) − gk

∥∥2
L2(P )

< ε2/4. (3.4)

In view of (3.3), (3.4) and Minkowski inequality we find
( ∑

|κ|>N

∣∣aκ(t)
∣∣2

)1/2

�
( ∑

|κ|>N

∣∣aκ(t) − bκ,k

∣∣2
)1/2

+
( ∑

|κ|>N

|bκ,k|2
)1/2

< ε,

and (3.1) follows. �
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Let v = v(t, x) ∈ L∞(Π) be the function introduced in Lemma 3.1. We consider the sequence vk = v(kt, kx),
k ∈N, and the Tartar’s H -measure μ̂ corresponding to the scalar sequence vr − v∗, where vr = vkr (t, x) is a subse-
quence of vk , and v∗ = v∗(t, x) is a weak-∗ limit of vr as r → ∞ in L∞(Π).

Lemma 3.2.

(i) The function v∗(t, x) = v∗(t) does not depend on x;
(ii) supp μ̂ ⊂ Π × S0, where

S0 = {
ξ̂ /|ξ̂ | ∈ S

∣∣ ξ̂ = (τ, ξ) 	= 0, τ ∈R, ξ ∈ Z
n
}
.

Proof. For m ∈ N we introduce the sets

Sm = {
ξ̂ /|ξ̂ | ∈ S

∣∣ ξ̂ = (τ, ξ) 	= 0, τ ∈R, ξ ∈ Z
n, |ξ | �m

}
.

It is clear that Sm is a closed subset of the sphere S (it is the union of the finite set of circles {(p, qξ/|ξ |)|p2 +q2 = 1},
where ξ ∈ Z

n, 0 < |ξ |� m), and S0 = ⋃∞
m=1 Sm. Let

v(t, x) = s
(
u(t, x)

) =
∑
κ∈Zn

aκ(t)e2πiκ·x

be the Fourier series for v(t, ·) in L2(P ). Then

vr(t, x) = v(kr t, krx) =
∑
κ∈Zn

aκ(kr t)e
2πikrκ·x. (3.5)

It follows from (3.5) that the function v∗(t, x) does not actually depend on x: v∗(t, x) = v∗(t), and v∗(t) is the weak-∗
limit of the sequence a0(kr t), r ∈ N, in L∞(R+). Thus, statement (i) is proved.

We denote b0,r = a0(kr t) − v∗(t); bκ,r = aκ(kr t), where κ ∈ Z
n, κ 	= 0. Let α(t) ∈ C0(R+), and β(x) ∈ L2(Rn) ∩

C∞(Rn) be such that its Fourier transform is a continuous compactly supported function:

β̃(ξ) =
∫
Rn

e−2πiξ ·xβ(x) dx ∈ C0
(
R

n
)
. (3.6)

We take R = maxξ∈supp β̃ |ξ |. Let Φ(t, x) = α(t)β(x). By (3.5) we find that

(
vr(t, x) − v∗(t)

)
Φ(t, x) =

∑
κ∈Zn

bκ,r (t)α(t)e2πikr κ·xβ(x). (3.7)

Observe that the Fourier transform of e2πikrκ·xβ(x) in R
n coincides with β̃(ξ − krκ). Since for kr > 2R supports of

these functions do not intersect, then for such r the series
∑
κ∈Zn

bκ,r (t)α(t)β̃(ξ − krκ) (3.8)

is orthogonal in L2(Rn) for each t > 0. Besides, by the Plancherel equality ‖β̃(ξ − krκ)‖L2(Rn) = ‖β̃‖2 = ‖β‖2, and

∑
κ∈Zn

∣∣bκ,r (t)α(t)
∣∣2∥∥β̃(ξ − krκ)

∥∥2
L2(Rn)

= ∣∣α(t)
∣∣2‖β‖2

2

∑
κ∈Zn

∣∣bκ,r (t)
∣∣2

= ∣∣α(t)
∣∣2‖β‖2

2 · ∥∥v(kr t, ·) − v∗(t)
∥∥2

L2(P )
< +∞.

Therefore, orthogonal series (3.8) converges in L2(Rn) for each t > 0. Moreover, by Lemma 3.1
∑
n

∣∣bκ,r (t)
∣∣2 =

∑
n

∣∣aκ(kr t)
∣∣2 →

N→∞ 0

κ∈Z , |κ|>N κ∈Z , |κ|>N
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uniformly with respect to t > 0. Hence, series (3.8) converges in L2(Rn) uniformly with respect to t . Since the
Fourier transformation is an isomorphism on L2(Rn), we conclude that series (3.7) also converges in L2(Rn) (not
only in L2(P )) uniformly with respect to t . Since α(t) ∈ C0(R), this implies that (3.7) converges in L2(Π), and

F
(
(vr − v)Φ

)
(ξ̂ ) =

∑
κ∈Zn

F t (αbκ,r )(τ )β̃(ξ − krκ), ξ̂ = (τ, ξ), (3.9)

where F t (h)(τ ) = ∫
R

e−2πiτ th(t) dt denotes the Fourier transform over the time variable (we extend functions h(t) ∈
L2(R+) on the whole line R, setting h(t) = 0 for t < 0). It follows from (3.9) that for kr > 2R∫

Rn+1

∣∣F (
Φ

(
vr − v∗))(ξ̂ )

∣∣2
ψ

(
ξ̂ /|ξ̂ |)dξ̂

=
∑
κ∈Zn

∫

Rn+1

∣∣F t(αbκ,r )(τ )
∣∣2∣∣β̃(ξ − krκ)

∣∣2
ψ

(
ξ̂ /|ξ̂ |)dξ̂ , (3.10)

where ψ(ξ̂) ∈ C(S) is arbitrary. Now we fix ε > 0. Recall that bκ,r = aκ(kr t) for κ 	= 0, and by Lemma 3.1 there
exists m ∈N such that∑

κ∈Zn, |κ|>m

∫

Rn+1

∣∣F t(αbκ,r )(τ )
∣∣2∣∣β̃(ξ − krκ)

∣∣2
dξ̂

=
∑

κ∈Zn, |κ|>m

∫
Π

∣∣α(t)aκ(kr t)
∣∣2∣∣β(x)

∣∣2
dt dx

� ‖Φ‖2
2 · sup

t>0

∑
κ∈Zn, |κ|>m

∣∣aκ(t)
∣∣2

< ε. (3.11)

Now we suppose that ‖ψ‖∞ � 1 and ψ(ξ̂) = 0 on the set Sm. By (3.11)
∑

κ∈Zn, |κ|>m

∫

Rn+1

∣∣F t(αbκ,r )(τ )
∣∣2∣∣β̃(ξ − krκ)

∣∣2∣∣ψ(
ξ̂ /|ξ̂ |)∣∣dξ̂ � ε. (3.12)

Since continuous function ψ(ξ̂) is uniformly continuous on the compact S then we can find such δ > 0 that
|ψ(ξ̂1) − ψ(ξ̂2)| < ε whenever ξ̂1, ξ̂2 ∈ S, |ξ̂1 − ξ̂2| < δ. Suppose that κ 	= 0, β̃(ξ − krκ) 	= 0. Then |ξ − krκ| � R.
For a fixed τ ∈R we denote ξ̂ = (τ, ξ), η̂ = (τ, krκ). As is easy to compute,∣∣∣∣ ξ̂

|ξ̂ | − η̂

|η̂|
∣∣∣∣� 2|ξ̂ − η̂|

|η̂| = 2|ξ − krκ|
|η̂| � 2R/|η̂|. (3.13)

Observe that for each nonzero κ ∈ Z
n, |η̂| � kr . Then, by (3.13) we see that for all r ∈ N such that kr > 2R/δ and all

κ ∈ Z
n, 0 < |κ| � m,∣∣ψ(

ξ̂ /|ξ̂ |)∣∣ = ∣∣ψ(
ξ̂ /|ξ̂ |) − ψ

(
η̂/|η̂|)∣∣ < ε. (3.14)

We use here that η̂/|η̂| ∈ Sm and, therefore, ψ(η̂/|η̂|) = 0. In view of (3.14), for all kr > 2R/δ

∑
κ∈Zn,0<|κ|�m

∫

Rn+1

∣∣F t(αbκ,r )(τ )
∣∣2∣∣β̃(ξ − krκ)

∣∣2∣∣ψ(
ξ̂ /|ξ̂ |)∣∣dξ̂

� ε
∑

κ∈Zn,0<|κ|�m

∫

Rn+1

∣∣F t(αbκ,r )(τ )
∣∣2∣∣β̃(ξ − krκ)

∣∣2
dξ̂

� ε‖β‖2
2

∑
κ∈Zn

∫
R

∣∣α(t)bκ,r (t)
∣∣2

dt � ε‖Φ‖2
2 sup

t>0

∑
κ∈Zn

∣∣bκ,r (t)
∣∣2

= ε‖Φ‖2
2 sup

∥∥v(kr t, ·) − v∗(t)
∥∥2

L2(P )
� Cε‖Φ‖2

2, (3.15)

t>0
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where C = 4‖v‖2∞. Further, it follows from (3.13) with η̂ = (τ,0) that for |ξ | � R and |τ | > R1 = 2R/δ

∣∣ψ(
ξ̂ /|ξ̂ |)∣∣ = ∣∣ψ(

ξ̂ /|ξ̂ |) − ψ
(
τ/|τ |,0

)∣∣ < ε.

Therefore,∫

Rn+1

θ
(|τ | − R1

)∣∣F t (αb0,r )(τ )
∣∣2∣∣β̃(ξ)

∣∣2∣∣ψ(
ξ̂ /|ξ̂ |)∣∣dξ̂ � Cε‖Φ‖2

2. (3.16)

Here θ(r) = { 1, r>0,
0, r�0 is the Heaviside function.

For |τ | � R1 we are reasoning in the following way. Since α(t)b0,r (t) = α(t)(a0,r (t) − v∗(t)) ⇀ 0 as r → ∞, and
‖αb0,r‖1 � C1 = 2‖v‖∞‖α‖1, the Fourier transform F t (αb0,r )(τ ) →r→∞ 0 for all τ ∈ R and uniformly bounded:
|F t (αb0,r )(τ )| � C1. By Lebesgue dominated convergence theorem∫

R

θ
(
R1 − |τ |)∣∣F t (αb0,r )(τ )

∣∣2
dτ →

r→∞ 0.

Therefore (recall that ‖ψ‖∞ � 1),∫

Rn+1

θ
(
R1 − |τ |)∣∣F t (αb0,r )(τ )

∣∣2∣∣β̃(ξ)
∣∣2∣∣ψ(

ξ̂ /|ξ̂ |)∣∣dξ̂

� ‖β‖2

∫
R

θ
(
R1 − |τ |)∣∣F t (αb0,r )(τ )

∣∣2
dτ →

r→∞ 0. (3.17)

In view of (3.16), (3.17) we find

lim
r→∞

∫

Rn+1

∣∣F t (αb0,r )(τ )
∣∣2∣∣β̃(ξ)

∣∣2∣∣ψ(
ξ̂ /|ξ̂ |)∣∣dξ̂ � Cε‖Φ‖2

2. (3.18)

Using (3.10), (3.12), (3.15) and (3.18), we arrive at the relation

lim
r→∞

∫

Rn+1

∣∣F (
Φ

(
vr − v∗))(ξ̂ )

∣∣2∣∣ψ(
ξ̂ /|ξ̂ |)∣∣dξ̂ � C2ε, (3.19)

where C2 is a constant independent on ψ and m. By the definition of H -measure and Remark 2.1

lim
r→∞

∫

Rn+1

∣∣F (
Φ

(
vr − v∗))(ξ̂ )

∣∣2∣∣ψ(
ξ̂ /|ξ̂ |)∣∣dξ̂

= 〈
μ̂,

∣∣Φ(t, x)
∣∣2∣∣ψ(ξ̂)

∣∣〉 =
∫

Π×(S\Sm)

∣∣Φ(t, x)
∣∣2∣∣ψ(ξ̂)

∣∣dμ̂(t, x, ξ̂ ),

and (3.19) implies that∫
Π×(S\Sm)

∣∣Φ(t, x)
∣∣2

ψ(ξ̂) dμ̂(t, x, ξ̂ ) � C2ε

for all ψ(ξ̂) ∈ C0((S \ Sm)) such that 0 � ψ(ξ̂) � 1. Therefore, we can claim that∫
Π×(S\Sm)

∣∣Φ(t, x)
∣∣2

dμ̂(t, x, ξ̂ ) � C2ε,

and since S \ S0 ⊂ S \ Sm, we obtain the relation
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∫
Π×(S\S0)

∣∣Φ(t, x)
∣∣2

dμ̂(t, x, ξ̂ ) � C2ε,

which holds for arbitrary positive ε. Therefore,∫
Π×(S\S0)

∣∣Φ(t, x)
∣∣2

dμ̂(t, x, ξ̂ ) = 0. (3.20)

Since for every point (t0, x0) ∈ Π one can find functions α(t), β(x) with the prescribed above properties in such
a way that Φ(t, x) = α(t)β(x) 	= 0 in a neighborhood of (t0, x0), we derive from (3.20) the desired inclusion supp μ̂ ⊂
Π × S0. �

We consider the H -measure {μpq}p,q∈E corresponding to a subsequence ur = ukr (t, x) of the sequence uk(t, x) =
u(kt, kx), k ∈N, defined in accordance with Proposition 2.2.

Theorem 3.1. For every p,q ∈ E, suppμpq ⊂ Π × S0.

Proof. Let νt,x be a weak measure valued limit of the sequence ur . We introduce measures

γ r
t,x(λ) = δ

(
λ − ur(t, x)

) − νt,x(λ),

and set Ur(t, x,p) = γt,x((p,+∞)). Let s(u) ∈ C1(R) be such that its derivative s′(u) is compactly supported, and
vr(t, x) = s(ur(t, x)), r ∈ N. Then vr ⇀ v∗(t) = ∫

s(λ) dνt,x(λ) as r → ∞ weakly-∗ in L∞(Π) (by Lemma 3.2(i),
the limit function v∗(t) does not depend on x). Integrating by parts, we find that

vr(t, x) − v∗(t) =
∫

s(λ) dγ r
t,x(λ) =

∫
s′(λ)Ur(t, x, λ) dλ. (3.21)

Let Φ(t, x) ∈ C0(Π), ψ(ξ̂) ∈ C(S). Then, in view of (3.21), we find∫

Rn+1

∣∣F (
Φ

(
vr − v∗))(ξ̂ )

∣∣2
ψ

(
ξ̂ /|ξ̂ |)dξ̂

=
∫ ∫

s′(p)s′(q)

( ∫

Rn+1

F
(
ΦUr(·,p)

)
(ξ̂ )F

(
ΦUr(·, q)

)
(ξ̂ )ψ

(
ξ̂ /|ξ̂ |)dξ̂

)
dp dq. (3.22)

By the definition of H -measure, for each p,q ∈ E

lim
r→∞

∫

Rn+1

F
(
ΦUr(·,p)

)
(ξ̂ )F

(
ΦUr(·, q)

)
(ξ̂ )ψ

(
ξ̂ /|ξ̂ |)dξ̂ = 〈

μpq,
∣∣Φ(t, x)

∣∣2
ψ(ξ̂)

〉
.

Using Lebesgue dominated convergence theorem, we can pass to the limit as r → ∞ in equality (3.22) and arrive at

〈
μ̂,

∣∣Φ(t, x)
∣∣2

ψ(ξ̂)
〉 = lim

r→∞

∫

Rn+1

∣∣F (
Φ(vr − v)

)
(ξ̂ )

∣∣2
ψ

(
ξ̂ /|ξ̂ |)dξ̂

=
∫ ∫

s′(p)s′(q)
〈
μpq,

∣∣Φ(t, x)
∣∣2

ψ(ξ̂)
〉
dp dq, (3.23)

where μ̂ = μ̂(t, x, ξ̂ ) is the Tartar’s H -measure, corresponding to the scalar sequence vr − v∗. Clearly, the equality

〈
μ̂,

∣∣Φ(t, x)
∣∣2

ψ(ξ̂)
〉 =

∫ ∫
s′(p)s′(q)

〈
μpq,

∣∣Φ(t, x)
∣∣2

ψ(ξ̂)
〉
dp dq

remains valid for every Borel function ψ(ξ̂). Taking ψ(ξ̂) being the indicator function of the set S \ S0 and using
Lemma 3.2, we obtain the relation
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∫ ∫
s′(p)s′(q)

〈
μpq,

∣∣Φ(t, x)
∣∣2

ψ(ξ̂)
〉
dp dq = 0. (3.24)

Now we take in (3.24) s′(p) = lω(l(p −p0)), where p0 ∈ E, l ∈N, and ω(y) ∈ C0((0,1)) be a non-negative function
such that

∫
ω(y)dy = 1. Since the H -measure μpq is strongly continuous with respect to (p, q) at point (p0,p0), we

derive from (3.24) in the limit as l → ∞ that〈
μp0p0 ,

∣∣Φ(t, x)
∣∣2

ψ(ξ̂)
〉

= lim
l→∞ l2

∫ ∫
ω

(
l(p − p0)

)
ω

(
l(q − p0)

)〈
μpq,

∣∣Φ(t, x)
∣∣2

ψ(ξ̂)
〉
dp dq = 0.

Since Φ(t, x) ∈ C0(Π) is arbitrary, we conclude that μp0p0(Π × (S \ S0)) = 0 (remark that μp0p0 � 0). Hence, for
every p = p0 ∈ E, suppμpp ⊂ Π × S0. Finally, as directly follows from (2.4), for p,q ∈ E suppμpq ⊂ suppμpp ⊂
Π × S0. The proof is complete. �

Let us define the minimal linear subspace L = L(p) ⊂ R
n+1 such that suppμpp ⊂ Π × L. Since ur(t, x) is

a bounded sequence of e.s. of Eq. (1.1) from the results of [9] (see Lemma 2 with q = p0 and the proof of Theo-
rem 4) it follows the localization principle:

Theorem 3.2. There exists δ > 0 such that the function u �→ τu + ξ · ϕ(u) is constant on the interval (p − δ,p + δ)

for all ξ̂ = (τ, ξ) ∈ L.

Now we are ready to prove our main Theorem 1.1.

Proof of Theorem 1.1. We fix p ∈ E and assume that μpp 	= 0. Then the space L = L(p) is not trivial: dimL > 0.
By Theorem 3.1 there exists a nonzero vector ξ̂ = (τ, ξ) ∈ (R × Z

n) ∩ L. Then, by Theorem 3.2 the function u �→
τu + ξ · ϕ(u) is constant on some interval (p − δ,p + δ), which contradicts to condition (1.7). Hence μpp = 0 for
all p ∈ E. In view of (2.4) this implies that the H -measure μpq ≡ 0. Therefore the sequence ur(t, x) converges as
r → ∞ to a function u∗(t, x) ∈ L∞(Π) strongly, in L1

loc(Π). By Lemma 3.2(i) the limit function does not depend on
x: u∗(t, x) = u∗(t). Passing to the limit as r → ∞ in equalities (ur)t + divx ϕ(ur) = 0 in D′(Π) we derive, in view
of the strong convergence ur → u∗, ϕ(ur) → ϕ(u∗) as r → ∞, the relation (u∗)t + divx ϕ(u∗) = 0 in D′(Π). Since
u∗ = u∗(t) we find (u∗)′ = 0 in D′(R+), which yields u∗ = const. The relation ur(t, x) →r→∞ u∗ in L1

loc(Π) implies
that (after possible extraction of a subsequence) for a.e. t > 0, ur(t, x) →r→∞ u∗ in L1

loc(R
n). By the periodicity, this

reads ∫
P

∣∣u(kr t, krx) − u∗∣∣dx →
r→∞ 0.

Making the change of variables y = krx and using the space periodicity of u, we find that for a.e. t > 0∫
P

∣∣u(kr t, y) − u∗∣∣dy =
∫
P

∣∣u(kr t, krx) − u∗∣∣dx →
r→∞ 0. (3.25)

We fix such t = t0 > 0. Then for a.e. t > kr t0∫
P

∣∣u(t, y) − u∗∣∣dy �
∫
P

∣∣u(kr t0, y) − u∗∣∣dy, (3.26)

by the L1(P )-contraction property. In view of (3.25) it follows from (3.26) that ess limt→∞ u(t, x) = u∗ in L1(P ).
Finally, by the conservation of “mass” (see [11]), for a.e. t > 0∫

P

u(t, x) dx =
∫
P

u0(x) dx,

where u0(x) is a strong trace of u(t, x) on the initial hyper-space t = 0. Passing in this relation to the limit as t → ∞,
we obtain that
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u∗ = 1

|P |
∫
P

u0(x) dx =
∫
P

u0(x) dx.

Hence,

ess lim
t→∞ u(t, x) =

∫
P

u0(x) dx in L1(P ),

and decay property (1.6) holds.
Conversely, assume that Eq. (1.1) satisfies the decay property. Let us demonstrate that it satisfies condition (1.7).

Assuming the contrary, we can find the segment [a, b], a < b, and a nonzero point (τ, ξ) ∈ R × Z
n such that the

function u �→ τu + ξ · ϕ(u) is constant on the segment [a, b]. Then, as is easy to verify, the function

u(t, x) = a + b

2
+ b − a

2
sin

(
2π(τ t + ξ · x)

)
is a periodic e.s. of (1.1), which does not satisfy the decay property. The obtained contradiction shows that condi-
tion (1.7) holds. We conclude that this condition is necessary and sufficient for the decay property. �
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