Erratum

Erratum to "Fading absorption in non-linear elliptic equations" [Ann. I. H. Poincaré - AN 30 (2) (2013) 315-336] ${ }^{\text {T }}$

Moshe Marcus ${ }^{\text {a,** }}$, Andrey Shishkov ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Technion Haifa, Israel
${ }^{\mathrm{b}}$ Institute of Appl. Math. and Mech., NAS of Ukraine, Donetsk, Ukraine
Received 21 December 2012; accepted 22 December 2012
Available online 23 January 2013

The purpose of this note is to correct an error that occurred in the proof of Theorem 1.2 of the paper 'Fading absorption in non-linear elliptic equations' which appeared in Ann. I. H. Poincaré - AN, 2013.

The theorem itself is correct as stated. However Proposition 3.1 (used in its proof) and relation (3.18) are wrong. We restate Proposition 3.1 and provide a modified argument to replace the part of the proof from (3.18) to the end.

Let $U_{j}, j=1,2, \ldots$ be the unique solution of the boundary value problem

$$
\begin{array}{ll}
-\Delta U_{j}+\bar{h} U_{j}^{q}=0 & \text { in } \mathbb{R}_{+}^{N} \\
U_{j}\left(x^{\prime}, 0\right)=\gamma_{j}\left(x^{\prime}\right) & \text { for } x^{\prime} \in \mathbb{R}^{N-1} \tag{0.1}
\end{array}
$$

dominated by the harmonic function $\int_{\mathbb{R}^{N-1}} P\left(x, y^{\prime}\right) \gamma_{j}\left(y^{\prime}\right) d y^{\prime}$. Here \bar{h} and γ_{j} are given by (1.3) and (3.2) respectively. Proposition 3.1 is replaced by:

Proposition 3.1'. Under the assumptions of Theorem 1.2,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} U_{j}\left(0, x_{N}\right)=\infty \quad \forall x_{N}>0 \tag{0.2}
\end{equation*}
$$

Proof. The proof is based on (3.17) and the inequality $u_{j} \leqslant U_{j}$ in Ω_{j}. This inequality follows from the comparison principle and the fact that $\bar{h} \leqslant a_{j}$ in Ω_{j} while $u_{j} \leqslant U_{j}$ on $\partial \Omega_{j}$. This inequality and (3.17) yield

$$
u_{j-1}\left(x^{\prime}, 0\right) \leqslant U_{j}\left(x^{\prime}, \tau_{j}\right) \quad \forall j \geqslant j_{0},\left|x^{\prime}\right|<r_{j-1} .
$$

Therefore by the comparison principle applied in Ω_{j-1},

$$
\begin{equation*}
u_{j-1}\left(x^{\prime}, x_{N}\right) \leqslant U_{j}\left(x^{\prime}, x_{N}+\tau_{j}\right) \quad \forall j \geqslant j_{0}, x \in \Omega_{j-1} . \tag{0.3}
\end{equation*}
$$

Let $j>j_{0}$ and $0 \leqslant k \leqslant j-j_{0}$. Using (0.3), (3.17) and induction on k we obtain,

$$
\begin{equation*}
u_{j-k-1}\left(x^{\prime}, x_{N}\right) \leqslant U_{j}\left(x^{\prime}, x_{N}+\sum_{i=0}^{k} \tau_{j-i}\right) \quad \forall x \in \Omega_{j-k-1} . \tag{0.4}
\end{equation*}
$$

[^0]By (1.10) and (3.16) $\sum_{j=0}^{\infty} \tau_{j}=\infty$ and $\sup _{m \geqslant 0} \tau_{m}=\bar{\tau}<\infty$. Therefore, if $b>\bar{\tau}$ then, for every $j \geqslant j_{b}$, there exists an integer $\lambda_{j}=\lambda_{j}(b)$ such that $0 \leqslant b-\sum_{\lambda_{j}+1}^{j} \tau_{m}=: \delta_{j} \leqslant \tau_{\lambda_{j}}$ and $\lambda_{j} \rightarrow \infty$ as $j \rightarrow \infty$. Hence by (0.4)

$$
\begin{equation*}
u_{\lambda_{j}}\left(x^{\prime}, \delta_{j}\right) \leqslant U_{j}\left(x^{\prime}, \delta_{j}+\sum_{\lambda_{j}+1}^{j} \tau_{m}\right)=U_{j}\left(x^{\prime}, b\right) \quad \forall x^{\prime}:\left|x^{\prime}\right|<r_{\lambda_{j}} . \tag{0.5}
\end{equation*}
$$

Applying the comparison principle to $u_{\lambda_{j}}$ in $\Omega_{\lambda_{j}}$ and using (3.12) we find that the inequality $0 \leqslant \delta_{j} \leqslant \tau_{\lambda_{j}}$ implies $u_{\lambda_{j}}\left(0, \delta_{j}\right) \geqslant \frac{1}{4 \alpha} u_{\lambda_{j}}\left(0, \tau_{\lambda_{j}}\right)$. Therefore (0.5) and (3.17) imply,

$$
\frac{1}{4 \alpha} A_{\lambda_{j}-1}^{-1} \leqslant \frac{1}{4 \alpha} \gamma_{\lambda_{j}-1}(0) \leqslant \frac{1}{4 \alpha} u_{\lambda_{j}}\left(0, \tau_{\lambda_{j}}\right) \leqslant U_{j}(0, b)
$$

Finally, as $\lim _{k \rightarrow \infty} A_{k}=0$, this inequality implies (0.2) for $x_{N}>\bar{\tau}$. It is easy to see that if (0.2) fails for some $x_{N}>0$ then it fails for all larger values of x_{N}. Therefore (0.2) holds for every $x_{N}>0$.

Completion of proof of Theorem 1.2. Let v_{j} be the solution of (3.3) where γ_{j} is replaced by $\Gamma_{j}=A_{j}^{-1} r_{j}^{N-1} \delta_{0}$ on $\partial \Omega_{j} \cap\left[x_{N}=0\right]$. As in Section 3.1, the function \tilde{v}_{j} defined by $\tilde{v}_{j}(y)=A_{j} v_{j}\left(r_{j} y\right), y \in D_{0}$ satisfies the boundary value problem (3.9) with $\tilde{\gamma}$ replaced by $\tilde{\Gamma}=\delta_{0}$. Denote the solution of this problem by \tilde{v}. Next we apply Lemma 3.1 to \tilde{v} in $D_{0} \cap\left[x_{N}>b\right]$ (b a fixed positive number). We conclude that choosing $\beta>0$ sufficiently large $0<c(\beta) \leqslant$ $\frac{\tilde{v}\left(y^{\prime}, \beta\right)}{\phi_{1}\left(y^{\prime}\right)} \leqslant 1$ for $\left|y^{\prime}\right|<1$. Hence, if $\gamma_{j}^{\prime}\left(x^{\prime}\right):=v_{j}\left(x^{\prime}, r_{j} \beta\right)$ then $c(\beta) \leqslant \frac{\gamma_{j}^{\prime}\left(x^{\prime}\right)}{A_{j}^{-1} \phi_{1}\left(x^{\prime} / r_{j}\right)} \leqslant 1$ in the ball $\left|x^{\prime}\right|<r_{j}$. Obviously $u_{j}^{\prime}(x):=v_{j}\left(x^{\prime}, x_{N}+r_{j} \beta\right)$ satisfies (3.3) with γ_{j} replaced by γ_{j}^{\prime}. Proceeding as in Section 3.2 we obtain a sequence $\left\{\tau_{j}\right\}$ satisfying (3.16) and

$$
\gamma_{j-1}^{\prime}\left(x^{\prime}\right) \leqslant u_{j}^{\prime}\left(x^{\prime}, \tau_{j}\right), \quad\left|x^{\prime}\right| \leqslant r_{j}, j \geqslant j_{0} .
$$

Let U_{j}^{\prime} (resp. V_{j}) be defined in the same way as U_{j} except that γ_{j} is replaced by γ_{j}^{\prime} (respectively Γ_{j}) extended by zero for $\left|x^{\prime}\right| \geqslant r_{j}$. Then Proposition 3.1' applies to $\left\{U_{j}^{\prime}\right\}$ so that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} U_{j}^{\prime}\left(0, x_{N}\right)=\infty \tag{0.6}
\end{equation*}
$$

Furthermore $V_{j} \geqslant v_{j}$ in Ω_{j} so that $V_{j}\left(x^{\prime}, r_{j} \beta\right)>\gamma_{j}^{\prime}\left(x^{\prime}\right),\left|x^{\prime}\right|<r_{j}$. By the comparison principle, $V_{j}\left(x^{\prime}, x_{N}+r_{j} \beta\right) \geqslant$ $U_{j}^{\prime}(x)$ in \mathbb{R}_{+}^{N}. Hence

$$
\lim _{j \rightarrow \infty} V_{j}\left(0, x_{N}\right)=\infty \quad \forall x_{N}>0
$$

[^0]: DOI of original article: http://dx.doi.org/10.1016/j.anihpc.2012.08.002.
 is This research was supported by The Israel Science Foundation grant No. 91/10.

 * Corresponding author.

 E-mail addresses: marcusm@math.technion.ac.il (M. Marcus), shishkov@iamm.ac.donetsk.ua (A. Shishkov).

