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Abstract

Following Bernicot (2012) [7], we introduce a notion of paraproducts associated to a semigroup. We do not use Fourier transform
arguments and the background manifold is doubling, endowed with a sub-Laplacian structure. Our main result is a paralinearization
theorem in a non-Euclidean framework, with an application to the propagation of regularity for some nonlinear PDEs.
© 2013 Elsevier Masson SAS. All rights reserved.
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The theory of paradifferential calculus was introduced by Bony in [8] and developed by many others, particularly
Meyer in [28]. This tool is quite powerful in nonlinear analysis. The key idea relies on Meyer’s formula for a nonlinar-
ity F(f ) as M(x,D)f +R where F is smooth in its argument(s), f belongs to a Hölder or Sobolev space, M(x,D) is
a pseudo-differential operator (depending on f ) of type (1,1) and R is more regular than f and F(f ). This operation
is called “paralinearization”.

Such an approach has given many important results (or improvements of existing results): Moser estimates, elliptic
regularity estimates, Kato–Ponce inequalities, . . . and is the basis of microlocal analysis.

The notion of paradifferential operators is built on appropriate functional calculus and symbolic representation,
available on the Euclidean space. The Fourier transform is crucial for this point of view to study and define symbolic
classes. That is why this approach cannot be extended to Riemannian manifolds. More recently, Ivanovici and Plan-
chon have already extended this theory in the context of a self-adjoint semigroup (on a manifold) in [24, Appendix A],
where paraproducts are built by a C∞ functional calculus.
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However, for the last years, numerous works deal with nonlinear PDEs on manifolds, involving differential op-
erators which may be non-self-adjoint. So it seems important to try to extend this tool of “paralinearization” in a
non-Euclidean situation and without requiring self-adjointness of the semigroup.

First, on specific situations, namely on a Carnot group, it is possible to define a suitable Fourier transform, involving
irreducible representations. In this context, we can also define the notion of symbols and so of pseudo-differential
calculus (see the survey [4] of Bahouri, Fermanian-Kammerer and Gallagher for Heisenberg groups and [20] of
Gallagher and Sire for more general Carnot groups).

The aim of the present work is to define another suitable notion of paralinearization on a manifold, without requiring
use of Fourier transform. Since (nonlinear) PDEs on a manifold usually requires vector fields, we work on a manifold
having a sub-Riemannian structure. To define a suitable paralinearization, we use paraproducts defined via the heat
semigroup (introduced by Bernicot in [7], independently by Frey in [17,18] and already used by Badr, Bernicot and
Russ in [3] to get Leibniz-type estimates and algebra properties for Sobolev spaces) and look for a paralinearization
result. The semigroup is not assumed to be self-adjoint, so we aim to only use sectorial holomorphic functional
calculus (more precisely we only use the heat semigroup and its time-derivatives). However, a new phenomenon
appears due to the lack of flexibility of the method; the classical paralinearization result holds only for low regularity,
which appeared already in [24, Appendix A].

Since we are motivated by applications to nonlinear PDEs involving vector fields, we present our result in the
context of a sub-Laplacian operator: a finite sum of square of vector fields. Indeed, such operators naturally appear
and a systematic study of their properties has begun in recent years and still attract much attention. So we consider L =
−∑

i X
2
i associated to X = (X1, . . . ,Xκ) a finite collection of vector fields on a doubling Riemannian manifold M .

One of the most famous results concerning such operators is due to Hörmander in [22,23], where a condition is
assumed to ensure the hypoellipticity of L. More precisely, if X satisfies the Hörmander condition (i.e. the collection
at each point x ∈ M ((Xi)i , ([Xi,Xj ])i,j , . . . ), span the whole tangent space TxM) then L is locally hypoelliptic,
which means that if u is a solution of L(u) ∈ C∞ then u ∈ C∞. Note that such a result can be seen as a first result
of what we expect. Indeed paradifferential calculus aims to obtain regularity for u, a solution of a nonlinear PDE
involving L.

To consider a nonlinear PDE, we have first to describe a way to linearize it. This is our first result. First we define
and study Bessel-type Sobolev spaces (see Section 3) and then the notion of paraproduct Π (Section 4) associated
to L. Then we prove the following result:

Theorem 0.1. Assume that the manifold satisfies a Poincaré inequality, that the operator L generates a holomorphic
semigroup with pointwise estimates on its kernel and that the Riesz transforms are Lp-bounded (Assumtion 1.11).
Consider p ∈ (1,∞), s ∈ (d/p,1) and f ∈ Ws+ε,p for some ε > 0 (as small as we want). Then for every smooth
function F ∈ C∞(R) with F(0) = 0,

F(f ) = ΠF ′(f )(f ) + w (1)

with w ∈ W 2s−d/p,p .

The precise assumptions will be given later. We point out that we do not directly assume that the collection X

satisfies the Hörmander condition; however this information is in some sense encoded in the pointwise estimates for
the heat kernel (see [25,31]).

With respect to the well-known paralinearization results (existing in the Euclidean setting), the first point is that
we have only a gain of regularity at order s − d/p − ε and the main difference is that this result is only proved for
s < 1. This condition is in some sense inherent to our method and has already appeared in [3,24]: Fourier transform
allows to use an “exact” spectral decomposition although the paraproduct algorithm brings some error-terms which
are difficult to estimate. This assumption may seem very strong; we will explain in Theorem 5.4 how it is possible to
get larger regularity s > 1 modifying the definition of the paraproduct (then involving the higher-order derivatives of
the nonlinearity F ).

As in the Euclidean situation, we are able to obtain some applications concerning propagation of the regularity for
solutions of nonlinear PDEs. See Section 6 for a detailed statement: for u ∈ Ws+1,p a solution of a nonlinear PDE,
F(u,X1u, . . . ,Xκu) ∈ C∞, then u is more regular where the linearized equation can be inverted.



F. Bernicot, Y. Sire / Ann. I. H. Poincaré – AN 30 (2013) 935–958 937
1. Preliminaries: Riemannian structure with a sub-Laplacian operator

In this section, we aim to describe the framework and the required assumptions we will use. Let us precise the main
hypothesis about the manifold M and the operator L.

1.1. Structure of doubling Riemannian manifold

In all this paper, M denotes a complete Riemannian manifold. We write μ for the Riemannian measure on M ,
∇ for the Riemannian gradient, | · | for the length on the tangent space (forgetting the subscript x for simplicity) and
‖ · ‖Lp for the norm on Lp := Lp(M,μ), 1 � p � +∞. We denote by B(x, r) the open ball of center x ∈ M and
radius r > 0.

1.1.1. The doubling property

Definition 1.1 (Doubling property). Let M be a Riemannian manifold. One says that M satisfies the doubling prop-
erty (D) if there exists a constant C > 0, such that for all x ∈ M , r > 0 we have

μ
(
B(x,2r)

)
� Cμ

(
B(x, r)

)
. (D)

Lemma 1.2. Let M be a Riemannian manifold satisfying (D) and let d := log2 C. Then for all x, y ∈ M and θ � 1

μ
(
B(x, θR)

)
� Cθdμ

(
B(x,R)

)
. (2)

There also exist c and N � 0, so that for all x, y ∈ M and r > 0

μ
(
B(y, r)

)
� c

(
1 + d(x, y)

r

)N

μ
(
B(x, r)

)
. (3)

For example, if M is the Euclidean space M =R
d then N = 0 and c = 1.

Observe that if M satisfies (D) then

diam(M) < ∞ ⇔ μ(M) < ∞ (
see [1]

)
.

Therefore if M is a non-compact Riemannian manifold satisfying (D) then μ(M) = ∞.

Theorem 1.3 (Maximal theorem). (See [11].) Let M be a Riemannian manifold satisfying (D). Denote by M the
uncentered Hardy–Littlewood maximal function over open balls of M defined by

Mf (x) := sup
Qball
x∈Q

|f |Q

where fE := −
∫

E f dμ := 1
μ(E)

∫
E

f dμ. Then for every p ∈ (1,∞], M is Lp bounded and moreover of weak
type (1,1).

Consequently for s ∈ (0,∞), the operator Ms defined by

Msf (x) := [
M

(|f |s)(x)
]1/s

is of weak type (s, s) and Lp bounded for all p ∈ (s,∞].
The doubling property allows us to control the growth of volume of balls. However, it can be interesting to have a

lower bound too. So we will make the following assumption:

Assumption 1.4. We assume that there exists a constant c > 0 such that for all x ∈ M

μ
(
B(x,1)

)
� c. (4)

Due to the homogeneous type of the manifold M , this is equivalent to a control from below of the volume of balls

μ
(
B(x, r)

)
� rd (MVd )

for all 0 < r � 1.
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1.1.2. Poincaré inequality

Definition 1.5 (Poincaré inequality on M). We say that a complete Riemannian manifold M admits a Poincaré
inequality (Pq) for some q ∈ [1,∞) if there exists a constant C > 0 such that, for every function f ∈ W

1,q

loc (M) and
every ball Q of M of radius r > 0, we have(

−
∫
Q

|f − fQ|q dμ

)1/q

� Cr

(
−
∫
Q

|∇f |q dμ

)1/q

. (Pq )

Remark 1.6. By density of C∞
0 (M) in W

1,q

loc (M), we can replace W
1,q

loc (M) by C∞
0 (M).

Assumption 1.7. We assume that the considered manifold satisfies a Poincaré inequality (P1).

Remark 1.8. Indeed we could just assume a Poincaré inequality (Pσ ) for some σ < 2 and all of our results will remain
true for Lebesgue exponents bigger than σ .

1.2. Framework of sub-Laplacian operator

We will only consider operators L which are sub-Laplacians, which means: there exists X = {Xk}k=1,...,κ a finite
family of real-valued vector fields (so Xk is defined on M and Xk(x) ∈ TMx ) such that

L = −
κ∑

k=1

X2
k . (5)

We identify the Xk’s with the first-order differential operators acting on Lipschitz functions defined on M by the
formula

Xkf (x) = Xk(x) · ∇f (x),

and we set Xf = (X1f,X2f, . . . ,Xκf ) and

∣∣Xf (x)
∣∣ =

(
κ∑

k=1

∣∣Xkf (x)
∣∣2

)1/2

, x ∈ M.

Let us point out that the operator Xk is self-adjoint on L2(M,dμ) if and only if the vector field Xk satisfies
div(Xk) = 0.

We define also the higher-order differential operators as follows: for I ⊂ {1, . . . , κ}k , we set

XI :=
∏
i∈I

Xi.

We assume the following:

Assumption 1.9. For every subset I , the I -th local-Riesz transforms RI := XI (1 + L)−|I |/2 and RI := (1 +
L)−|I |/2XI are bounded on Lp for every p ∈ (1,∞).

Remark 1.10. It is easy to check that this last assumption is implied by the boundedness of each local-Riesz transform
Ri and Ri in Sobolev spaces Wk,p for every p ∈ (1,∞) and k ∈ N. Indeed for I = {i1, . . . , in}, we have

‖RI f ‖Lp �
∥∥Ri1(Xi2 · · ·Xinf )

∥∥
W |I |−1,p � ‖Ri2,...,inf ‖Lp .

Repeating this reasoning, we obtain that the Sobolev boundedness of the Riesz transforms imply the previous assump-
tion.
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1.3. Framework of heat semigroup

Let us recall the framework of [14,15], applied to our sub-Laplacian operator L.
Let ω ∈ [0,π/2). We define the closed sector in the complex plane C by

Sω := {
z ∈ C,

∣∣arg(z)
∣∣ � ω

} ∪ {0}
and denote the interior of Sω by S0

ω. We set H∞(S0
ω) for the set of bounded holomorphic functions b on S0

ω , equipped
with the norm

‖b‖H∞(S0
ω) := ‖b‖L∞(S0

ω).

We assume that L is injective and of type ω on L2, for some ω ∈ [0,π/2), which means that L is closed and its
spectrum σ(L) ⊂ Sω and for each ν > ω, there exists a constant cν such that∥∥(L − λ)−1

∥∥
L2→L2 � cν |λ|−1

for all λ /∈ Sν .
As a consequence, we know that L is densely defined on L2, i.e. its domain

D(L) := {
f ∈ L2, L(f ) ∈ L2}

is dense in L2.
In particular, it is well known that −L generates a holomorphic semigroup and we refer the reader to [14] and [27]

for more details concerning holomorphic calculus of such operators.
Let us now detail some other assumptions we make on the semigroup:

Assumption 1.11. There exists δ > 1 with:

• For every z ∈ Sπ/2−ω, the linear operator e−zL is given by a kernel pz satisfying

∣∣pz(x, y)
∣∣ � 1

μ(B(x, |z|1/2))

(
1 + d(x, y)

|z|1/2

)−d−2N−δ

(6)

where d is the homogeneous dimension of the space (see (2)) and N is the other dimension parameter (see (3));
N � 0 could be equal to 0.

• The operator L has a bounded H∞-calculus on L2. That is, there exists cν such that for b ∈ H∞(S0
ν ), we can

define b(L) as an L2-bounded linear operator and∥∥b(L)
∥∥

L2→L2 � cν‖b‖∞. (7)

• The Riesz transform R := ∇L−1/2 is bounded on Lp for every p ∈ (1,∞).

We note that assuming (6), the semigroup e−tL initially defined on L2, can be extended to Lp for every p ∈ [1,∞].

Remark 1.12. The bounded H∞-calculus on L2 allows us to deduce some extra properties (see [15] and [27]):

• Due to the Cauchy formula for complex differentiation, pointwise estimate (6) still holds for the kernel of
(tL)ke−tL with t > 0.

• For any holomorphic function ψ ∈ H(S0
ν ) such that for some s > 0, |ψ(z)| � |z|s

1+|z|2s , the quadratic functional

f →
( ∞∫

0

∣∣ψ(tL)f
∣∣2 dt

t

)1/2

is L2-bounded.
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Remark 1.13. It follows from the L2-boundedness of the Riesz transform that for every integer k � 0 the quadratic
functional

f →
( ∞∫

0

∣∣t1/2∇(tL)ke−tL(f )
∣∣2 dt

t

)1/2

(8)

is bounded on L2.

The spectral analysis associated to L relies on a suitable Calderón reproducing formula:

Proposition 1.14. (See [9, Thm. 2.3].) Since L is sectorial on L2 (and so densely defined on L2), Assumption 1.11
yields the following spectral decomposition: for every f ∈ Lp , p ∈ [1,∞] and n an integer

f = 1

(n − 1)!
∞∫

0

(tL)ne−tL(f )
dt

t
,

where the integral strongly converges in Lp .

This proposition guarantees us a rigorous sense of such spectral decomposition, which we later use in this work.
Moreover, let us define the set

S := {
f ∈ L1 ∩ L∞, ∀n � 1, Ln(f ) ∈ L1 ∩ L∞}

. (9)

Then for every function f ∈ L1 ∩ L∞, the pointwise estimate of the heat kernel and its time-derivative imply that for
every t > 0 and every integer p � 0, Lpe−tL(f ) ∈ S . So we have the following corollary:

Corollary 1.15. The set S is dense into Lp for every p ∈ (1,∞).

About square functions, we have the following proposition:

Proposition 1.16. Under these assumptions, we know that the quadratic functionals in Remark 1.12 or in (8) are
Lp-bounded for every p ∈ (1,∞).

Proof. We mainly follow the arguments developed in [2, Chapter 6, Theorem 6.1]. The results proved there are very
general, even if they are only written in the context of operators having a divergence form. Indeed, this theorem states
that the considered functionals (appearing in Remark 1.12) are Lp-bounded for every exponent p belonging to (1,∞)

the range for which the semigroup e−tL is Lp-bounded (and has off-diagonal decay). Composing with 2-valued
inequalities of the Riesz transform for p ∈ (1,∞) (due to its boundedness), we obtain the Lp boundedness for the
functionals of the form (8). These arguments are developed in [2] using Gaussian-type estimates, which means that
(6) is supposed with exponentially decreasing kernels.

Let us explain why such decay is not necessary and (6) is sufficient. Let T be one of the square functions in
Remark 1.12. The proof of [2, point 1, Theorem 6.1] relies on Theorems 1.1 and 1.2 there, which generalize usual
Calderón–Zygmund theory. Note that Theorem 1.1 was improved by [6, Theorem 5.5] as soon as we have (6). Using
this new version in [6] (when p < 2) and [2, Theorem 1.2] (when p > 2), the proposition is then reduced to the proof
of the following inequalities(

−
∫
Q1

∣∣T (
1 − e−tL

)
f

∣∣2
dμ

) 1
2

�
(

1 + d(Q1,Q2)

t
1
2

)−d−ε(
−
∫
Q2

|f |2 dμ

) 1
2

(10)

for some ε > 0, every balls Q1,Q2 of radius t and every function f ∈ L2(Q2).
A careful examination of Step 3 in the proof of [2, point 1, Theorem 6.1] allows us to conclude (10) as soon as we

have enough decay in (6) with δ > 0. �
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From now on, we will consider a doubling Riemannian manifold M satisfying Poincaré inequality (P1), lower
bound of the volume (Assumption 1.4) and a structure of sub-Laplacian generating a semigroup satisfying Assump-
tion 1.11 and with bounded Riesz transforms (Assumption 1.9).

2. Examples of such situations

In this section, we would like to give examples of situations where all these assumptions are satisfied. First we give
examples of Riemannian structure. Once the Riemannian structure is defined, we can consider any sum of square of
vector fields for L.

2.1. Examples of Riemannian structure

2.1.1. Carnot–Caratheodory spaces
Let Ω be an open connected subset of Rd and Y = {Yk}κk=1 a family of real-valued, infinitely differentiable vector

fields.

Definition 2.1. Let Ω and Y be as above. Y is said to satisfy Hörmander’s condition in Ω if the family of commutators
of vector fields in Y (Yi , [Yi, Yj ], . . . ) span R

d at every point of Ω .

Suppose that Y = {Yk}Mk=1 satisfies Hörmander’s condition in Ω . Let CY be the family of absolutely continuous
curves ζ : [a, b] → Ω , a � b, such that there exist measurable functions cj (t), a � t � b, j = 1, . . . ,M , satisfying∑M

j=1 cj (t)
2 � 1 and ζ ′(t) = ∑M

j=1 cj (t)Yj (ζ(t)) for almost every t ∈ [a, b]. If x, y ∈ Ω define

ρ(x, y) = inf
{
T > 0: there exists ζ ∈ CY with ζ(0) = x and ζ(T ) = 1

}
.

The function ρ is in fact a metric in Ω called the Carnot–Carathéodory metric associated to Y . This allows us to equip
the space Ω with a sub-Riemannian structure. Then every Yi are by definition self-adjoint.

2.1.2. Lie groups
Let M = G be a unimodular connected Lie group endowed with its Haar measure dμ = dx and assume that it

has a polynomial volume growth. Recall that “unimodular” means that dx is both left-invariant and right-invariant.
Denote by L the Lie algebra of G. Consider a family Y = {Y1, . . . , YM} of left-invariant vector fields on G satisfying
the Hörmander condition, which means that the Lie algebra generated by the Yi ’s is L. By “left-invariant” one means
that, for any g ∈ G and any f ∈ C∞

0 (G), Y(τgf ) = τg(Yf ), where τg is the left-translation operator. As previously,
we can build the Carnot–Carathéodory metric on G. The left-invariance of the Yi ’s implies the left-invariance of the
distance d . So that for every r , the volume of the ball B(x, r) does not depend on x ∈ G and also will be denoted
V (r). It is well known (see [21,29]) that (G,d) is then a space of homogeneous type. Particular cases are Carnot
groups, where the vector fields are given by a Jacobian basis of its Lie algebra and satisfy Hörmander condition. In
this situation, two cases may occur: either the manifold is doubling or the volume of the balls admit an exponential
growth [21]. For example, nilpotents Lie groups satisfy the doubling property [13].

We refer the reader to [30, Thm. 5.14] and [12, Section 3, Appendix 1] where properties of the heat semigroup are
studied: in particular the heat semigroup e−tL satisfies Gaussian upper-bounds and Assumption 1.11 on the higher-
order Riesz transforms (Assumption 1.9) is satisfied too.

2.1.3. Carnot groups
A nilpotent Lie group is called Carnot group, if it admits a stratification. A stratification on a Lie group G (whose

g is its Lie algebra) is a collection of linear subspaces V1, . . . , Vr of g such that

g = V1 ⊕ · · · ⊕ Vr

which satisfy [V1,Vi] = Vi+1 for i = 1, . . . , r −1 and [V1,Vr ] = 0. By [V1,Vi], we denote the subspace of g generated
by the elements [X,Y ] where X ∈ V1 and Y ∈ Vi . Consider ni the dimension of Vi , d := n1 + · · · + nr and dilations
{δλ}λ>0 of the form

δλ(x) = (
λx(1), λ2x(2), . . . , λrx(r)

)
, x(i) ∈ Vi.
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The couple G = (G, δλ) is called a homogeneous Carnot group (of step r and n1 generators) if δλ is an automorphism
of G for every λ > 0 and if the first n1 elements of the Jacobian basis of g, say Z1, . . . ,Zn1 , satisfy

rank
(
Lie[Z1, . . . ,Zn1 ](x)

) = d, for all x ∈ G, (11)

where Lie[Z1, . . . ,Zn1] is the Lie algebra generated by the vector fields Z1, . . . ,Zn1 . The number Q := ∑r
i=1 ini is

called the homogeneous dimension of G.
For example the Heisenberg group Hd is a Carnot group of dimension Q = 2d + 2. We refer the reader to [20] for

an introduction of pseudo-differential operators in this context using a kind of Fourier transform involving irreductible
representations and to [4] for a complete work about pseudo-differential calculus on Heisenberg groups.

2.1.4. Riemannian manifolds with a bounded geometry
We shall say that a Riemannian manifold M has a bounded geometry if

• the curvature tensor and all its derivatives are bounded,
• Ricci curvature is bounded from below,
• and M has a positive injectivity radius.

In such situations, Assumption 1.11 and Poincaré inequality are satisfied (see [12] and [32]).

2.2. Examples of nonlinear PDEs

Let X = (X1, . . . ,Xκ) be a collection of vector fields satisfying Hörmander condition. Then, it is well known that
the associated heat semigroup has a heat kernel with Gaussian bounds. This was proved by Varopoulos in the context
of Carnot groups [33] and then extended by Fefferman, Jerison and Sánchez-Calle [31,16,25] without an underlying
group structure.

If we consider a collection of vector fields X ⊂ Y , where Y was the one used to build the Riemannian structure
(see the last paragraphs) then by construction the vector fields Xi are self-adjoint and so is L. In this case, we can use
the C∞ functional calculus as done in [24]. If the collection X is independent of Y then there is no reason for L to be
self-adjoint and we are restricted to only use holomorphic sectorial functional calculus as we aim to do here.

A standard PDE (whose numerous works deal with) to which our paralinearization result would apply is the fol-
lowing quasilinear wave equation on a Riemannian manifold:

∂2
t u + Lu = |Xu|2F(u) (12)

where F ∈ C∞(R). Then the Strichartz estimates which can be found in [26] together with the paralinearization
theorem (Theorem 7.4) allow to prove local well-posedness in Hs Sobolev spaces with s large enough.

Other classical PDEs coming from fluids mechanic have a quadratic nonlinearity, which could be studied with the
paralinearization, for example Navier–Stokes equation, Euler equation with kinematic viscosity and more generally
Boussinesq systems.

3. The scale of Sobolev spaces

We use the Bessel-type Sobolev spaces, adapted to the operator L:

Definition 3.1. For p ∈ (1,∞) and s � 0, we define the Sobolev space Ws,p = W
s,p
L as

Ws,p = W
s,p
L := {

f ∈ Lp, (1 + L)s/2(f ) ∈ Lp
}
.

More precisely, since the subspace S defined in (9) is dense in every Lebesgue space, Ws,p denotes the closure of S
relatively to the norm

‖f ‖Ws,p := ‖f ‖Lp + ∥∥(1 + L)s/2(f )
∥∥

Lp .

Consequently the Sobolev spaces are Banach spaces and have a common dense subspace S , on which one can do
a priori computations, involving spectral decomposition or square functions.

First, we have this characterization:
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Proposition 3.2. For all p ∈ (1,∞) and s > 0, we have the following equivalence: for every f ∈ S
‖f ‖Lp + ∥∥Ls/2(f )

∥∥
Lp � ∥∥(1 + L)s/2f

∥∥
Lp .

Proof. This result is well known and can be proved using bounded holomorphic functional calculus in Lp . For the
sake of completeness, we detail a proof using the previous quadratic functionals. Set α = s/2 and write α = k + θ

with k ∈N and θ ∈ [0,1). We decompose (1 + L)α with the semigroup as follows

(1 + L)αf =
∞∫

0

e−t e−tL(1 + L)t1−θ dt

t
(1 + L)k(f )

=
∞∫

0

e−t e−tLt1−θ dt

t
(1 + L)k(f ) +

∞∫
0

e−t e−tL(tL)1−θ dt

t
Lθ (1 + L)k(f ).

The first integral operator is easily bounded on Lp since the semigroup e−tL is uniformly bounded. The second
integral operator is bounded using duality:〈 ∞∫

0

e−t e−tL(tL)1−θ (u)
dt

t
, g

〉
=

∞∫
0

e−t
〈
e−tL/2(tL)

1−θ
2 (u), e−tL∗/2(tL∗) 1−θ

2 g
〉dt

t

�
∫ ( ∞∫

0

∣∣e−tL/2(tL)
1−θ

2 (u)
∣∣2 dt

t

)1/2( ∞∫
0

∣∣e−tL∗/2(tL∗) 1−θ
2 (g)

∣∣2 dt

t

)1/2

dμ.

Since (1 − α)/2 > 0, then the two quadratic functionals are bounded in Lp and Lp′
(by Proposition 1.16) and that

concludes the proof of∥∥(1 + L)αf
∥∥

Lp �
∥∥(1 + L)kf

∥∥
Lp + ∥∥Lθ(1 + L)k(f )

∥∥
Lp .

Then, developing (1 + L)k , we have a finite sum of ‖Lz(f )‖Lp with z ∈ [0, α]. We decompose

Lz(f ) =
∞∫

0

e−tL(tL)α(f )t−z dt

t
=

1∫
0

e−tL(tL)α(f )t−z dt

t
+

∞∫
1

e−tL(tL)αt−z dt

t
.

The first quantity in Lp is controlled by ‖Lα(f )‖Lp and the second one by ‖f ‖Lp , which concludes the proof of∥∥(1 + L)s/2f
∥∥

Lp � ‖f ‖Lp + ∥∥Ls/2(f )
∥∥

Lp .

Let us now check the reverse inequality. As previously, for u = 0 or u = α we write

Luf =
∞∫

0

e−t (1+L)(1 + L)Lut1+α dt

t
(1 + L)αf.

By similar arguments as above, the operator
∫ ∞

0 e−t (1+L)(1 + L)Lut1+α dt
t

is easily bounded on Lp (splitting the
integral for t � 1 and t � 1) and we can also conclude to∥∥Lu(f )

∥∥
Lp �

∥∥(1 + L)αf
∥∥

Lp ,

which ends the proof. �
Corollary 3.3. For all p ∈ (1,∞) and 0 � t � s, we have the following inequality∥∥Ltf

∥∥
Lp �

∥∥(1 + L)sf
∥∥

Lp � ‖f ‖W 2s,p .

Let us then describe classical Sobolev embeddings in this setting (see [3] for a more general framework):
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Proposition 3.4. Under Assumption 1.4 (lower bound on the ball-volumes), let s � t � 0 be fixed and take p � q such
that

1

q
− t

d
>

1

p
− s

d
.

Then, we have the continuous embedding

Ws,p ↪→ Wt,q .

We refer the reader to [3, Proposition 3.3] for a precise proof. The proof is based on a spectral decomposition. Then
we write the resolvent with the semigroup and then use the off-diagonal estimates (here the pointwise estimates on
the heat kernel).

Corollary 3.5. Under the previous assumption, Ws,p ↪→ L∞ as soon as

s >
d

p
.

We now recall a result of [3], where a characterization of Sobolev spaces is obtained, involving some fractional
functionals.

Proposition 3.6. (See [3, Thm. 5.2].) Under Poincaré inequality (P1), for s ∈ (0,1) we have the following character-
ization: a function f ∈ Lp belongs to Ws,p if and only if

Sρ,loc
s f (x) =

( 1∫
0

[
1

rs

(
1

μ(B(x, r))

∫
B(x,r)

∣∣f (y) − f (x)
∣∣ρ dμ(y)

)1/ρ]2
dr

r

) 1
2

belong to Lp , for some ρ < min(2,p).

This characterization can be extended for s > 1, using the sub-Laplacian structure. Indeed, we have this first lemma:

Lemma 3.7. For every integer k and p ∈ (1,∞),

‖f ‖Wk,p �
∑

I⊂{1,...,κ}k

∥∥XI (f )
∥∥

Lp .

Proof. As pointed out in [12], this is consequence of Assumption 1.9 about the local Riesz transforms. Indeed, for
k � 1 and I a subset, we have assumed that the I -th Riesz transform RI are bounded on Lp , which is equivalent to∥∥XI (f )

∥∥
Lp � ‖f ‖W |I |/2,p .

Moreover, writing the Riesz transforms and the resolvent (which are all bounded on Lp) as follows

(1 + L)1/2 = (1 + L)−1/2(1 + L) = (1 + L)−1/2 −
κ∑

i=1

(1 + L)−1/2X2
i = (1 + L)−1/2 −

κ∑
i=1

RiXi,

we conclude to the reverse inequality and so we have proved the desired result for k = 1. We let the details for k � 2
to the reader, the reasoning being exactly the same (writing a finite sum of higher-order Riesz transforms . . . ). �

We also deduce the following characterization (see Proposition 19 in [12]):

Proposition 3.8. Let s := k + t > 1 (with k an integer and t ∈ (0,1)), then

f ∈ Ws,p ⇐⇒ f ∈ Lp and ∀I ⊂ {1, . . . , κ}k, XI (f ) ∈ Wt,p

⇐⇒ f ∈ Lp and ∀I ⊂ {1, . . . , κ}k, S
ρ
t

(
XI (f )

) ∈ Lp.
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We also deduce the following chain rule (see Theorem 22 in [12] for another proof by induction on k):

Proposition 3.9. If F ∈ C∞ with F(0) = 0 and let s := k + t > d
p

(with p ∈ (1,∞), k an integer and t ∈ (0,1)). Then∥∥F(f )
∥∥

Ws,p � ‖f ‖Ws,p + ‖f ‖k
Ws,p .

If F(0) �= 0, we still have such inequalities with localized Sobolev spaces.

Proof. We use the previous characterization of the Sobolev space with S
ρ
t for s = k + t . First using the differentiation

rule, it comes Xi(F (f )) = Xi(f )F ′(f ), then XjXi(F (f )) = XjXi(f )F ′(f ) + Xi(f )Xj (f )F ′′(f ). By iterating the
reasoning, for I ⊂ {1, . . . , κ}k , estimating XI (F (f )) in Wt,p is reduced to estimate quantities such as

h :=
[

l∏
α=1

Xiα

]
(f )F (n)(f )

where iα ⊂ I , n� k and
∑ |iα| = |I | � k. Then for x, y, we have∣∣h(x) − h(y)

∣∣ � ∑
β

∣∣Xiβ (f )(x) − Xiβ (f )(y)
∣∣ ∏
α �=β

sup
z=x,y

∣∣Xiα (f )(z)
∣∣∥∥F (n)(f )

∥∥
L∞

+
∏
α

sup
z=x,y

∣∣Xiα (f )(z)
∣∣∣∣F (n)(f )(x) − F (n)(f )(y)

∣∣.
Since ρ � p let us choose exponents ρα , pα such that

1

ρ
=

∑
α

1

ρα

, ρα � pα

and
1

p
=

∑
α

1

pα

.

Moreover we require that

1

pα

− |iα| + t

d
>

1

p
− s

d
. (13)

This is possible since
∑

α |iα| = |I | � s − t and s > d/p (indeed we let the reader check that pα = |I |+t
|iα |+t

p is a good
choice). Moreover, we chose exponents ρα,ρ, pα and p such that

1

ρ
=

∑
α

1

ρα

+ 1

ρ
, ρα � pα

and ρ � ρ � p with

1

p
=

∑
α

1

pα

+ 1

p
.

As previously, we require (13) with pα instead of pα and

1

p
>

1

p
− s

d
. (14)

Such exponents can be chosen by perturbing the previous construction with a small parameter since s > d/p. By
Hölder inequality, we deduce that

S
ρ
t (h) �

∑
β

S
ρβ

t

(
Xiβ (f )

) ∏
α �=β

Mρα

[
Xiα (f )

]∥∥F (n)(f )
∥∥

L∞

+
∏

Mρα

[
Xiα (f )

]
S

ρ
t

(
F (n)(f )

)
.

α
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Since F is supposed to be bounded in C∞, then F (n) is Lipschitz and so, we finally obtain

S
ρ
t (h) �

∑
β

S
ρβ

t

(
Xiβ (f )

) ∏
α �=β

Mρα

[
Xiα (f )

]∥∥F (n)(f )
∥∥

L∞

+
∏
α

Mρα

[
Xiα (f )

]
S

ρ
t (f ).

Then applying Hölder inequality, we get∥∥S
ρ
t (h)

∥∥
Lp �

∑
β

∥∥S
ρβ

t

(
Xiβ (f )

)∥∥
L

pβ

∏
α �=β

∥∥Mρα

[
Xiα (f )

]∥∥
Lpα

∥∥F (n)(f )
∥∥

L∞

+
∏
α

∥∥Mρα

[
Xiα (f )

]∥∥
Lpα

∥∥S
ρ
t (f )

∥∥
Lp .

By (13) with Sobolev embeddings (Proposition 3.4), we have∥∥Mρα

[
Xiα (f )

]∥∥
Lpα � ‖f ‖W |iα |,pα � ‖f ‖Ws,p

and ∥∥S
ρβ

t

(
Xiβ (f )

)∥∥
L

pβ � ‖f ‖
W

|iβ |+t,pβ � ‖f ‖Ws,p .

So with (13) and (14), we finally obtain∥∥S
ρ
t (h)

∥∥
Lp � ‖f ‖Ws,p + ‖f ‖k

Ws,p ,

where we used s > d/p and the Sobolev embedding Ws,p ⊂ L∞ with the smoothness of F to control ‖F (n)(f )‖L∞ .
Since F(0) = 0 and F is Lipschitz, we also deduce that F(f ) belongs to Lp , which allows us to get the expected

result ∥∥F(f )
∥∥

Ws,p �
∥∥F(f )

∥∥
Lp +

∑
I

∥∥S
ρ
t

(
F(f )

)∥∥
Lp � ‖f ‖Ws,p + ‖f ‖k

Ws,p . �

Remark 3.10. If F ∈ C∞ with F(0) = 0 and s > d/p then we obtain∥∥F(f )
∥∥

Ws,p � ‖f ‖Ws,p + ‖f ‖k
Ws,p .

It is sufficient to assume that F is locally bounded in C∞ and then the implicit constant will depend on ‖f ‖L∞ .
Indeed, using Sobolev embedding, we know that as soon as s > d/p, Ws,p is continuously embedded in L∞.

4. Paraproducts associated to a semigroup

Our aim is to describe a kind of “paralinearization” result. In the Euclidean case, this is performed by using
paraproducts (defined with the help of Fourier transform). Here, we cannot use such powerful tools, so we require
other kind of paraproducts, defined in terms of a semigroup. These paraproducts were introduced by the first author
in [7], already used in [3] and more recently extended in [17,18]. Let us recall these definitions.

4.1. Definitions and spectral decomposition

We consider a sub-Laplacian operator L satisfying the assumptions of the previous sections. We write for conve-
nience c0 for a suitably chosen constant, ψ(x) = c0x

Ne−x(1 − e−x) and so

ψt(L) := c0(tL)Ne−tL
(
1 − e−tL

)
,

with a large enough integer N > d/2. Let φ be the function

φ(x) := −c0

∞∫
x

yNe−y
(
1 − e−y

)
dy,

φ̃(x) := −c0

∞∫
yN−1e−y

(
1 − e−y

)
dy,
x
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and set φt (L) := φ(tL). Then we get a “spectral” decomposition of the identity as follows (choosing the appropriate
constant c0)

f = −
∞∫

0

φ′(tL)f
dt

t
.

So for two smooth functions, we have

fg := −
∫

s,u,v>0

φ′(sL)
[
φ′(uL)f φ′(vL)g

]ds dudv

suv
.

Since φ′(x) = ψ(x) := c0x
Ne−x(1 − e−x) and x(φ̃)′(x) = φ′(x), it comes that (by integrating according to t :=

min{s, u, v})

fg := −
∞∫

0

ψ(tL)
[
φ̃(tL)f φ̃(tL)g

]dt

t
−

∞∫
0

φ̃(tL)
[
ψ(tL)f φ̃(tL)g

]dt

t

−
∞∫

0

φ̃(tL)
[
φ̃(tL)f ψ(tL)g

]dt

t
. (15)

Let us now focus on the first term in (15):

I (f, g) =
∞∫

0

ψ(tL)
[
φ̃(tL)f φ̃(tL)g

]dt

t
.

Since N � 1, let us write ψ(z) = zψ̃ with ψ̃ (still vanishing at 0 and at infinity). Then using the structure of the
sub-Laplacian L, the following algebra rule holds

L(fg) = L(f )g + f L(g) − 2〈Xf · Xg〉,
where X is the collection of vector fields Xf := (X1f, . . . ,Xκf ). Hence, we get

I (f, g) =
∞∫

0

ψ̃(tL)(tL)
[
φ̃(tL)f φ̃(tL)g

]dt

t

=
∞∫

0

ψ̃(tL)
[
tLφ̃(tL)f φ̃(tL)g

]dt

t
+

∞∫
0

ψ̃(tL)
[
φ̃(tL)f tLφ̃(tL)g

]dt

t

− 2

∞∫
0

ψ̃(tL)t
〈
Xφ̃(tL)f · Xφ̃(tL)g

〉dt

t
.

Combining with (15), we define the paraproduct as follows:

Definition 4.1. With the previous notations, we define the paraproduct of f by g, by

Πg(f ) := −
∞∫

0

ψ̃(tL)
[
tLφ̃(tL)f φ̃(tL)g

]dt

t

−
∞∫

0

φ̃(tL)
[
ψ(tL)f φ̃(tL)g

]dt

t
.
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Remark 4.2. We first want to point out the difference with the initial definition in [7]. There, a general semigroup was
considered and the previous operation on the term I can be performed by computing the “carré du champ” introduced
by Bakry and Émery (see [5] for details)

Γ (f,g) := L(fg) − L(f )g − f L(g)

instead of the vector field X. However in [7], the paraproducts were only defined by the second term. This new
definition comes from the following observation: considering the quantity I (f, g) and distributing the Laplacian as
we have done (writing the “carré du champ”), three terms show up. The term ψ̃(tL)[tLφ̃(tL)f φ̃(tL)g] has the same
regularity properties as φ̃(tL)[ψ(tL)f φ̃(tL)g] (in the sense that tLφ̃(tL) can be considered as ψ(tL)). This also
legitimates to add this extra term in the definition of the paraproducts.

This new paraproduct is the “maximal” (in a certain sense) part of the product fg, where the regularity is given by
the regularity of f .

The following decomposition comes naturally:

Corollary 4.3. Let f,g be two smooth functions, then we have

fg = Πg(f ) + Πf (g) + Rest(f, g)

where the “rest” is given by

Rest(f, g) := 2

∞∫
0

ψ̃(tL)
〈
t1/2Xφ̃(tL)f, t1/2Xφ̃(tL)g

〉dt

t
.

4.2. Boundedness of paraproducts in Sobolev and Lebesgue spaces

Concerning estimates on these paraproducts in Lebesgue spaces, we refer to [7]:

Theorem 4.4 (Boundedness in Lebesgue spaces). For p,q ∈ (1,∞] with 0 < 1
r

:= 1
p

+ 1
q

then

(f, g) → Πg(f )

is bounded from Lp × Lq into Lr .

Let us now describe boundedness in the scale of Sobolev spaces.

Theorem 4.5 (Boundedness in Sobolev spaces). For p,q, r ∈ (1,∞) with 1
r

:= 1
p

+ 1
q

and s ∈ (0;2N − 4) then

(f, g) → Πg(f )

is bounded from Ws,p × Lq into Ws,r .

Proof. It is sufficient to prove the following homogeneous estimates: for every β ∈ [0,N − 2)∥∥LβΠg(f )
∥∥

Lr �
∥∥Lβ(f )

∥∥
Lp‖g‖Lq .

By density, we may only focus on functions f,g ∈ S (see (9)). For β = 0, this is the previous theorem so it remains
to check for β ∈ (0,N − 2). We recall that

Πg(f ) = −
∞∫

0

ψ̃(tL)
[
tLφ̃(tL)f φ̃(tL)g

]dt

t

−
∞∫

φ̃(tL)
[
ψ(tL)f φ̃(tL)g

]dt

t
,

0
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giving rise to two quantities, Π1
g (f ) and Π2

g (f ). Indeed, applying Lβ to the paraproduct Π2
g (f ), it yields

LβΠ2
g (f ) =

∞∫
0

Lβφ̃(tL)
[
ψ(tL)f φ̃(tL)g

]dt

t

=
∞∫

0

ψ(tL)
[
t−βψ(tL)f φ̃(tL)g

]dt

t

=
∞∫

0

ψ(tL)
[
ψ̃(tL)Lβf φ̃(tL)g

]dt

t
,

where we set ψ(z) = zβφ(z) and ψ̃(z) = z−βψ(z). So if the integer N in φ and ψ is taken sufficiently large, then ψ

and ψ̃ are still holomorphic functions with vanishing properties at 0 and at infinity. As a consequence, we get

LβΠg(f ) = Πg

(
Lβf

)
with the new paraproduct Π built with ψ and ψ̃ . We also apply the classical reasoning aiming to estimate this
paraproduct. By duality, for any function h ∈ S ⊂ Lr ′

we have (since Proposition 1.14)

〈
LβΠ2

g (f ),h
〉 = ∫ ∞∫

0

ψ
(
tL∗)hψ̃(tL)

(
Lβf

)
φ̃(tL)g

dt

t
dμ

�
∫ ( ∞∫

0

∣∣ψ(
tL∗)h∣∣2 dt

t

)1/2( ∞∫
0

∣∣ψ̃(tL)
(
Lβf

)∣∣2 dt

t

)1/2

sup
t

∣∣φ̃(tL)g
∣∣dμ.

From the pointwise decay on the semigroup (6), we know that

sup
t

∣∣φ̃(tL)g(x)
∣∣ �M(g)(x)

and so by Hölder inequality

∣∣〈LβΠ2
g (f ),h

〉∣∣ � ∥∥∥∥∥
( ∞∫

0

∣∣ψ(
tL∗)h∣∣2 dt

t

)1/2∥∥∥∥∥
Lr′

∥∥∥∥∥
( ∞∫

0

∣∣ψ̃(tL)
(
Lβf

)∣∣2 dt

t

)1/2∥∥∥∥∥
Lp

‖Mg‖Lq .

Since ψ and ψ̃ are holomorphic functions vanishing at 0 and having fast decay at infinity, we know from (1.16) that
the two square functions are bounded on Lebesgue spaces. We also conclude the proof by duality, since it comes∣∣〈LβΠ2

g (f ),h
〉∣∣ � ‖h‖

Lr′
∥∥Lβf

∥∥
Lp‖g‖Lq .

We let the reader check that the same arguments still holds for the first part Π1
g (f ) and so the proof is also finished. �

5. Paralinearization theorem

Theorem 5.1. Consider s ∈ (d/p,1) and f ∈ Ws+ε,p for some ε > 0. Then for every smooth function F ∈ C∞(R)

with F(0) = 0,

F(f ) = ΠF ′(f )(f ) + w (16)

with w ∈ W 2s−d/p,p .

We follow the proof in [10,28,8].
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Proof of Theorem 5.1. Let us refer the reader to the operators φ(tL) and ψ(tL), defined in Section 4.1: ψ(x) =
c0x

Ne−x(1 − e−x), φ is its primitive vanishing at infinity. Let us write ψ̃(z) = z−1ψ(z) and φ̃ its primitive vanishing
at infinity. Moreover, these functions are normalized by the suitable constant c0 such that φ̃(0) = 1.

First, since L is densely defined in L2, Eq. (6) yields that (e−tL)t>0 converges to the identity operator when t → 0,
in Lp (see the proof of [9, Theorem 2.3]). So by commuting with the Bessel potential (1 + L)

s+ε
2 it follows that for

f ∈ Ws+ε,p

f = lim
t→0

φ̃(tL)(f ) ∈ Ws+ε,p

and so we decompose

F(f ) = φ̃(L)F
(
φ̃(L)f

) −
1∫

0

d

dt
φ̃(tL)F

(
φ̃(tL)f

)
dt.

Since

t
d

dt
φ̃(tL)F

(
φ̃(tL)f

) = tLφ̃′(tL)F
(
φ̃(tL)f

) + φ̃(tL)
[(

tLφ̃′(tL)f
)
F ′(φ̃(tL)f

)]
= φ′(tL)F

(
φ̃(tL)f

) + φ̃(tL)
[(

φ′(tL)f
)
F ′(φ̃(tL)f

)]
,

we get

F(f ) = φ̃(L)F
(
φ̃(L)f

) −
1∫

0

φ̃′(tL)tL
[
F

(
φ̃(tL)f

)] + φ̃(tL)
[(

φ′(tL)f
)
F ′(φ̃(tL)f

)]dt

t

= φ̃(L)F
(
φ̃(L)f

) −
1∫

0

φ̃′(tL)
[
F ′′(φ̃(tL)f

)∣∣t1/2Xφ̃(tL)f
∣∣2 + F ′(φ̃(tL)f

)
tLφ̃(tL)f

]
+ φ̃(tL)

[(
φ′(tL)f

)
F ′(φ̃(tL)f

)]dt

t
,

where we used the differentiation rule for the composition with the vector fields X = (X1, . . . ,Xκ). We also set

w := I + II + III + IV + V

with

I := φ̃(L)F
(
φ̃(L)f

)
,

II := −
1∫

0

φ̃′(tL)
[
F ′′(φ̃(tL)f

)∣∣t1/2Xφ̃(tL)f
∣∣2]dt

t
,

III :=
1∫

0

φ̃′(tL)
[(

φ̃(tL)F ′(f ) − F ′(φ̃(tL)f
))

tLφ̃(tL)f
]dt

t
,

IV :=
1∫

0

φ̃(tL)
[(

φ′(tL)f
)(

φ̃(tL)F ′(f ) − F ′(φ̃(tL)f
))]dt

t
,

and

V :=
∞∫

1

ψ̃(tL)
[
tLφ̃(tL)f φ̃(tL)F ′(f )

]dt

t
+

∞∫
1

φ̃(tL)
[
ψ(tL)f φ̃(tL)F ′(f )

]dt

t

in order that (16) is satisfied. It remains to check that each term belongs to W 2s−d/p,p .
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Step 1: Term I .
Since f ∈ Ws+ε,p then φ̃(L)f belongs to Wρ,p for every ρ � s + ε and so Proposition 3.9 yields that∥∥φ̃(L)F

(
φ̃(L)f

)∥∥
W 2s−d/p,p � ‖f ‖Ws+ε,p .

Step 2: Term V .
We only treat the first term in V (the second one can be similarly estimated). Using duality, we have with some

g ∈ Lp′
and for α ∈ {0,2s − d/p} since α � 0 and t � 1

∥∥Lα/2V
∥∥

Lp �
∫ ∞∫

1

∣∣(tL)α/2ψ̃
(
tL∗)g∣∣∣∣tLφ̃(tL)f φ̃(tL)F ′(f )

∣∣dt dμ

t

�
∥∥∥∥∥
( ∞∫

1

∣∣tLφ̃(tL)f φ̃(tL)F ′(f )
∣∣2 dt

t

)1/2∥∥∥∥∥
Lp

� ‖f ‖Lp sup
t�1

∥∥φ̃(tL)F ′(f )
∥∥

L∞,

where we used the boundedness of the square function. Then we conclude since φ̃(tL)F ′(f ) is uniformly bounded
by ‖F ′(f )‖L∞ which is controlled by ‖f ‖Ws,p (due to Sobolev embedding with s > d/p and Proposition 3.9).

Indeed our problem is to gain some extra regularity (from s to 2s − d/p) so the main difficulty relies on the study
of the “high frequencies” and not on the lower ones.

Step 3: Term II.
By duality and previous arguments, we get

‖II‖W 2s−d/p,p �
∥∥∥∥∥
( 1∫

0

t−2s+d/p
∣∣t1/2Xφ̃(tL)f

∣∣4 dt

t

)1/2∥∥∥∥∥
Lp

+
∥∥∥∥∥
( 1∫

0

∣∣t1/2Xφ̃(tL)f
∣∣4 dt

t

)1/2∥∥∥∥∥
Lp

where we decomposed the norm in its homogeneous and inhomogeneous parts and then used uniform boundedness
of F ′′(φ̃(tL)f ). Since (using Lp-boundedness of the Riesz transforms, see Assumption 1.9 and Sobolev embedding)∥∥Xφ̃(tL)f

∥∥
L∞ �

∥∥Xφ̃(tL)f
∥∥

Wd/p+ε,p

�
∥∥L1/2φ̃(tL)f

∥∥
Lp + ∥∥L1/2+d/2p+ε/2φ̃(tL)f

∥∥
Lp

� t s/2−1/2‖f ‖Ws,p + t s/2−d/2p−ε/2−1/2‖f ‖Ws,p

� t s/2−d/2p−ε/2−1/2‖f ‖Ws,p

where we used t < 1. Finally it comes,

‖II‖W 2s−d/p,p �
∥∥∥∥∥
( 1∫

0

t−s−ε
∣∣t1/2Xφ̃(tL)f

∣∣2 dt

t

)1/2∥∥∥∥∥
Lp

�
∥∥∥∥∥
( 1∫

0

∣∣(tL)1/2−(s+ε)/2φ̃(tL)L(s+ε)/2f
∣∣2 dt

t

)1/2∥∥∥∥∥
Lp

� ‖f ‖Ws+ε,p ,

where we used s < 1 and the boundedness of the square function.

Step 4: Terms III and IV .
For these terms, we follow the reasoning of the Appendix of [10]. Using the Mean value Theorem, we have∣∣φ̃(tL)F ′(f ) − F ′(φ̃(tL)f

)∣∣ � ∣∣(φ̃(tL) − I
)
F ′(f )

∣∣ + ∣∣(φ̃(tL) − I
)
f

∣∣.
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So using similar arguments as previously, we get (with h = F ′(f ) and h = f )

‖III‖W 2s−d/p,p �
∥∥∥∥∥
( 1∫

0

∣∣φ̃(tL)F ′(f ) − F ′(φ̃(tL)f
)∣∣2∣∣tLφ̃(tL)f

∣∣2
t−s+d/(2p) dt

t

)1/2∥∥∥∥∥
Lp

�
∥∥∥∥∥
( 1∫

0

∣∣(φ̃(tL) − I
)
h
∣∣2∣∣tLφ̃(tL)f

∣∣2
t−2s+d/p dt

t

)1/2∥∥∥∥∥
Lp

�
∥∥∥∥∥
( 1∫

0

∣∣(φ̃(tL) − I
)
h
∣∣2

t−s dt

t

)1/2∥∥∥∥∥
Lp

�
∥∥∥∥∥
( 1∫

0

∣∣∣∣ φ̃(tL) − I

(tL)s
Lsh

∣∣∣∣2
dt

t

)1/2∥∥∥∥∥
Lp

�
∥∥Lsh

∥∥
Lp � ‖h‖Ws,p

where we used s < 2, which yields∥∥tLφ̃(tL)f
∥∥

L∞ �
∥∥(tL)1−s/2φ̃(tL)(tL)s/2f

∥∥
L∞ � t−d/(2p)

∥∥(tL)s/2f
∥∥

Lp � t−d/(2p)+s/2‖f ‖Ws,p (17)

and the boundedness of the quadratic functional associated to the function φ̃(z)−1
zs which is holomorphic and vanishing

at 0 and at ∞ (see Proposition 1.16). We conclude the estimate of III since h = f or h = F ′(f ) belongs to Ws,p . The
term IV is similarly estimated. �
Corollary 5.2. The diagonal term Rest (defined in Corollary 4.3) is bounded from Lp ×Lq into Lr as soon as p,q ∈
(1,∞] with 0 < 1

r
:= 1

p
+ 1

q
. Moreover for p ∈ (1,∞), ε > 0 as small as we want and s > d/p (with s < (N − 2)/2),

then ∥∥Rest(f, g)
∥∥

W 2s−d/p,p � ‖f ‖Ws+ε,p‖g‖Ws+ε,p .

Proof. Apply Theorem 5.1 to the quantities f + g and f − g with F(u) := u2. Then the polarization formulas give
that Rest(f, g) has the same regularity has w in Theorem 5.1. �
Remark 5.3. Usually, we have a gain of regularity of order s−d/p for this quantity. Here we have a gain of s−d/p−ε

for every ε > 0, as small as we want.

The previous result only holds for functions with low regularity since s ∈ ( d
p
,1), which is quite constraining

but inherent to the method employed here. We state below an extension for higher-order Sobolev spaces, with a
modification of the paraproduct operator.

To legitimate the definition of the paraproducts (just before Definition 4.1 and Remark 4.2), we have developed
(tL)(φ̃(tL)f φ̃(tL)F ′(f )) using the Leibniz rule of the Laplacian L(fg) = L(f )g − 2〈X(f ),X(g)〉 + f L(g). Now
for M << N , it is possible to do the same operation and develop powers of the Laplacian. Indeed, there exist multi-
linear differential operators (Tj )j such that for smooth functions F and h, we have

(L)MF(h) =
∑
j

Tj

(
h,F ′(h), . . . ,F (2M−1)(h)

)
+ F (2M)(h)

∣∣t1/2h
∣∣2M

.

Then, we may define a “higher-order” paraproduct as follows:
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ΠM
f,F ′(f ),...,F (2M−1)(f )

(f ) := −
∞∫

0

∑
j

ψ̃(tL)
[
tMTj

(
φ̃(tL)f, . . . , φ̃(tL)F (2M−1)(f )

)]dt

t

−
∞∫

0

φ̃(tL)
[
ψ(tL)f φ̃(tL)g

]dt

t
.

Reproducing the previous reasoning, we may prove

Theorem 5.4. Consider M << N , s ∈ ( d
p
,M) and f ∈ Ws+ε,p for some ε > 0. Then for every smooth function

F ∈ C∞(R) with F(0) = 0,

F(f ) = ΠM
f,F ′(f ),...,F (2M−1)(f )

(f ) + w

with w ∈ W 2s−d/p,p .

We let the detailed proof to the reader. Indeed the rest w should be decomposed as previously. Each term appearing
in the decomposition may be bounded, as we did for M = 1 since they only involve quantities as |φ̃(tL)F (k)(f ) −
F(k)(φ̃(tL)f )| and other differential operators on φ̃(tL)f . The key idea is that now the multilinearity of the operator
Tj will be sufficiently high to involve sufficiently such differential terms, each of them bringing a positive power of t

as shown in (17).
As explained in [10] (see its Appendix I.3, Theorem 38), a vector-valued version of the preceding result allows us

to prove the following theorem:

Theorem 5.5. Consider s ∈ (d/p,1), f ∈ Ws+k,p and a smooth function F(x,u1, . . . uN) ∈ C∞(M × R
N) with

F(x,0, . . . ,0) = 0. Then by identifying {1, . . . ,N} with a set of multi-indices {α1, . . . , αN } (and |αi | � k), we can
build

x ∈ M → F
(
x,Xα1f (x), . . . ,XαN

f (x)
)

(18)

which belongs to Ws,p . Moreover,

F
(
x,Xα1f (x), . . . ,XαN

f (x)
) =

N∑
i=1

Π[∂ui
F ](x,Xα1f (x),...,XαN

f (x))(Xαi
f )(x) + w(x) (19)

with w ∈ W 2s−d/p,p .

6. Propagation of low regularity for solutions of nonlinear PDEs

As in the Euclidean case, paralinearization is a powerful tool to study nonlinear PDEs and to prove the propagation
of regularity for solutions of such PDEs. Let us try to present some results in this direction in our setting of Riemannian
manifold.

Let us consider a specific case of nonlinear PDEs for simplifying the exposition: let F(x,u1, . . . , uκ+1) ∈ C∞(M ×
R

κ+1) be a smooth function with F(x,0, . . . ,0) = 0. Then by identifying {1, . . . , κ + 1} with a set of multi-indices
{0,1, . . . , κ}, we deal with the function

F(f,Xf ) := x ∈ M → F
(
x,f (x),X1f (x), . . . ,Xκf (x)

)
(20)

for some function f . That corresponds to the case N = κ + 1, k = 1 with α1 = 0 and αi = Xi−1 for i = 2, . . . ,N + 1
in (20).

Theorem 6.1. Consider s ∈ (d/p,1), f ∈ Ws+1,p and a smooth function (as above) F(x,u1, . . . , uN) ∈ C∞(M ×
R

N) with F(x,0, . . . ,0) = 0 and assume that f is a solution of

F(f,Xf )(x) = 0.
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Consider the vector field

Γ (x) :=
κ+1∑
i=2

[∂ui
F ](x,f (x),X1f (x), . . . ,Xκf (x)

)
Xi.

Then, locally around each point x0 ∈ M in “the direction Γ ”, the solution f has a regularity Ws+1+ρ,p for every
ρ > 0 such that

ρ < min{1, s − d/p}.
In the sense that

U(f ) :=
κ+1∑
i=2

[∂ui
F ](x,f (x),X1f (x), . . . ,Xκf (x)

)
L(s+ρ)/2Xi(f ) ∈ Lp.

Such results can be seen as a kind of directional “implicit function theorem”, where the regularity of F(f,Xf )

implies some directional regularity for f (in the suitable direction, where we can regularly “invert” the nonlinear
equation).

Proof of Theorem 6.1. The previous paralinearization result yields that

κ∑
i=1

Π[∂ui+1F ](f,Xf )

(
Xi(f )

) ∈ Ws+ρ,p,

which gives

TF (f ) :=
κ∑

i=1

Π̃[∂ui+1F ](f,Xf )

(
LαXif

) ∈ Lp,

where Π̃ is another paraproduct. Indeed

Π̃b(a) = −
∞∫

0

(tL)αψ̃(tL)
[
(tL)1−αφ̃(tL)aφ̃(tL)b

]dt

t

−
∞∫

0

(tL)αφ̃(tL)
[
t−αψ(tL)aφ̃(tL)b

]dt

t
,

where we have taken the notations of the definition for the initial paraproduct Π (see Definition 4.1). Then, we want
to compare this quantity to the main one: U(f ). So let us examine the difference. Since for every constant c, we have

cf = Πc(f ) = LαΠc

(
L−αf

) = Π̃c(f ),

it comes

U(f )(x) =
κ∑

i=1

Π̃[∂ui+1F ](f (x),Xf (x))

(
LαXif

)
(x),

hence

TF (f )(x) − U(f )(x) =
κ∑

i=1

Π̃λi,x

(
XiL

αf
)
(x)

with λi,x(·) = [∂ui+1F ](f,Xf ) − [∂ui+1F ](f (x),Xf (x)). It remains to check that for each integer i, the function
x → Π̃λi,x

(Xi(1 + L)αf )(x) belongs to Lp . Let us recall that
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Π̃λi,x

(
Xi(1 + L)αf

)
(x) = −

∞∫
0

(tL)αψ̃(tL)
[
(tL)1−αφ̃(tL)XiL

αf φ̃(tL)λi,x

]
(x)

dt

t

−
∞∫

0

(tL)αφ̃(tL)
[
t−αψ(tL)XiL

αf φ̃(tL)λi,x

]
(x)

dt

t
.

Let us study only the first term I (the second one being similar):

I :=
∣∣∣∣∣

∞∫
0

(tL)αψ̃(tL)
[
(tL)1−αφ̃(tL)XiL

αf φ̃(tL)λi,x

]
(x)

dt

t

∣∣∣∣∣
�

∞∫
0

∫
M

1

μ(B(x, t−1/2))

(
1 + d(x, y)

t−1/2

)−d−δ∣∣(tL)1−αφ̃(tL)XiL
αf (y)

∣∣∣∣φ̃(tL)λi,x(y)
∣∣dμ(y)dt

t

�
∞∫

0

∑
j�0

2−jδ −
∫

C(x,2j t−1/2)

∣∣(tL)1−αφ̃(tL)XiL
αf (y)

∣∣∣∣φ̃(tL)λi,x(y)
∣∣dμ(y)dt

t
.

where we set C(x,2j t−1/2) = B(x,2j+1t−1/2) \B(x,2j t−1/2) and by convention |C(x,2j t−1/2)| = |C(x,2j t−1/2)|.
Now, for y ∈ B(x,2j t−1/2), we have

∣∣φ̃(tL)λi,x(y)
∣∣ � 1

μ(B(y, t1/2))

∫ (
1 + d(y, z)

t1/2

)−d−δ∣∣[∂ui+1F ](f,Xf )(z) − [∂ui+1F ](f,Xf )(x)
∣∣dμ(z)

�
∑
k�0

2jd−δk −
∫

C(y,2k+j t1/2)

∣∣H(z) − H(x)
∣∣dμ(z)

�
∑
k�0

2jd−δk −
∫

C̃(x,2k+j t1/2)

∣∣H(z) − H(x)
∣∣dμ(z)

with H := [∂ui+1F ](f,Xf ) and C̃ another systems of coronas. So we get

I �
∑

k,j�0

2−kδ+j (d−δ)

∞∫
0

(
−
∫

B(x,2j t−1/2)

∣∣(tL)1−αφ̃(tL)XiL
αf (y)

∣∣dμ(y)

)

×
(

−
∫

B(x,2k+j t1/2)

∣∣H(z) − H(x)
∣∣dμ(z)

)
dt

t

�
∑

k,j�0

2−kδ+j (d−δ)

∞∫
0

M
[
t1/2

∣∣(tL)1−αφ̃(tL)XiL
αf

∣∣](x)

(
t−1/2 −

∫
B(x,2k+j t1/2)

∣∣H(z) − H(x)
∣∣dμ(z)

)
dt

t
.

Using Cauchy–Schwarz inequality, we also have

I �
∑

k,j�0

2−kδ+j (d−δ)

( ∞∫
0

M
[
t1/2(tL)1−αφ̃(tL)XiL

αf
]
(x)2 dt

t

)1/2

×
( ∞∫

0

t−1
(

−
∫
k+j 1/2

∣∣H(z) − H(x)
∣∣dμ(z)

)2
dt

t

)1/2
B(x,2 t )



956 F. Bernicot, Y. Sire / Ann. I. H. Poincaré – AN 30 (2013) 935–958
�
∑

k,j�0

2−k(δ−1)−j (d−δ−1)

( ∞∫
0

M
[
t1/2(tL)1−αφ̃(tL)XiL

αf
]
(x)2 dt

t

)1/2

×
( ∞∫

0

t−1
(

−
∫

B(x,t1/2)

∣∣H(z) − H(x)
∣∣dμ(z)

)2
dt

t

)1/2

�
( ∞∫

0

M
[
t1/2(tL)1−αφ̃(tL)Xi(1 + L)αf

]
(x)2 dt

t

)1/2

×
( ∞∫

0

t−1( −
∫

B(x,t1/2)

∣∣H(z) − H(x)
∣∣dμ(z)

)2 dt

t

)1/2

,

where we have used a change of variables and δ > d + 1. So using exponents q, r > p (later chosen) such that
1
p

= 1
q

+ 1
r
, boundedness of the quadratic functional on the one hand and on the other hand Fefferman–Stein inequality

for the maximal operator, it comes

‖I‖Lp � ‖f ‖W 2α,q

∥∥∥∥∥
( ∞∫

0

t−1
(

−
∫

B(x,t1/2)

∣∣H(z) − H(x)
∣∣dμ(z)

)2
dt

t

)1/2∥∥∥∥∥
Lr

.

Then, using the characterization of Sobolev norms (using this functional, see Proposition 3.6), we conclude to

‖I‖Lp � ‖f ‖W 2α,q ‖H‖W 1,r .

We also chose exponents q, r such that

1

q
− 2α

d
>

1

p
− s + 1

d
and

1

r
− 1

d
>

1

p
− s

d
,

which is possible since 1
p

<
s−ρ
d

because of the condition on ρ. Then Sobolev embedding (Proposition 3.4) yields

that Ws+1,p ↪→ W 2α,q and Ws,p ↪→ W 1,r . Finally, the proof is also concluded since we obtain

‖I‖Lp � ‖f ‖Ws+1,p‖H‖Ws,p ,

which is bounded by f ∈ Ws+1,p (due to H := [∂ui+1F ](f,Xf ) with Proposition 3.9). �
We let the reader write the analogous results for higher-order nonlinear PDEs.

Remark 6.2. Let us suppose that the geometry of the manifold allows us to use the following property: For α > 0, the
commutators [Xi, (1 + L)α] are operators of order 2α, which means that for all p ∈ (1,∞) and s > 0, [Xi, (1 + L)α]
is bounded from Ws+2α,p to Ws,p .

This property holds as soon as we can define a suitable pseudo-differential calculus with symbolic rules: in partic-
ular, this is the case of H-type Lie groups, using a notion of Fourier transforms based on irreductible representations,
see [4,20].

Under this property, we can commute the vector field X with any power of the Laplacian and so with the same
statement than in the previous theorem, we obtain that

Γ (1 − L)
s+ρ

2 f ∈ Lp.

This new formulation better describes the fact that f ∈ Ws+ρ+1,p along the vector field Γ .

7. Extension of results to Besov spaces

In this section, we aim to explain how the previous results can be extended to Besov spaces (instead of Sobolev
spaces).
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Definition 7.1. Let p, l ∈ (1,∞) and s � 0 then we define the Besov space Bs
p,l by its norm:

‖f ‖Bs
p,l

:= ∥∥e−L(f )
∥∥

Lp +
( 1∫

0

∥∥t−
s
2 (tL)Ne−tLf

∥∥l

Lp

dt

t

) 1
l

,

where the definition does not depend on the parameter N as soon as 2N > s (see [19, Proposition 12]). More precisely,
the Besov space is defined as the completion of the space S relatively to this norm.

We refer the reader to a recent work [9], where the authors present a general study of Besov spaces associated to a
semigroup of operator.

Using duality, we then have the following lemma:

Lemma 7.2. Consider a sequence of functions (fu)u∈(0,1) and formally define F := ∫ 1
0 (uL)Ne−uL(fu)

du
u

then for
s ∈ (0,N), we have

‖F‖Bs
p,l

�
( 1∫

0

∥∥u− s
2 fu

∥∥l

Lp

du

u

) 1
l

,

as soon as the right-hand side is finite.

Then, we let the reader check that the results can be proved with these spaces, using this technical lemma. It is even
more easy, since we have not to deal with quadratic functionals and just estimate each term appearing in the spectral
decomposition. We also have

Theorem 7.3 (Boundedness in Besov spaces). For p,q, r, l ∈ (1,∞) with 1
r

:= 1
p

+ 1
q

and s ∈ (0,1) then

(f, g) → Πg(f )

is bounded from Bs
p,l × Lq into Bs

p,l .

Theorem 7.4. Consider s ∈ (d/p,1) and f ∈ Bs+ε
p,l for some ε > 0. Then for every smooth function F ∈ C∞(R) with

F(0) = 0,

F(f ) = ΠF ′(f )(f ) + w

with w ∈ B
2s−d/p
p,l .
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