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Abstract

In this paper, we deal with the existence of insensitizing controls for the Navier–Stokes equations in a bounded domain with
Dirichlet boundary conditions. We prove that there exist controls insensitizing the L2-norm of the observation of the solution in an
open subset O of the domain, under suitable assumptions on the data. This problem is equivalent to an exact controllability result
for a cascade system. First we prove a global Carleman inequality for the linearized Navier–Stokes system with right-hand side,
which leads to the null controllability at any time T > 0. Then, we deduce a local null controllability result for the cascade system.
© 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Ω ⊂ R
N (N = 2 or 3) be a bounded connected open set whose boundary ∂Ω is regular enough (for instance

of class C2). Let ω and O be two open and nonempty subsets of Ω (resp. the control domain and the observatory)
and let T > 0. We will use the notation Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ). C stands for a generic constant which
depends only on Ω , ω, O and T .

The Navier–Stokes equations describe the motion of an incompressible fluid such as water, air, oil. . . . They appear
in the study of many phenomena, either alone or coupled with other equations. For instance, they are used in theoret-
ical studies in meteorology, in aeronautical sciences, in environmental sciences, in plasma physics, in the petroleum
industry, etc.

First let us recall some usual spaces in the context of Navier–Stokes equations:

V = {
y ∈ H 1

0 (Ω)N ; ∇ · y = 0 in Ω
}
,

and

H = {
y ∈ L2(Ω)N ; ∇ · y = 0 in Ω, y · n = 0 on ∂Ω

}
.

To be more specific about the investigated problem, we introduce the following control system with incomplete
data
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
yt − �y + (y,∇)y + ∇p = f + v1ω in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y|t=0 = y0 + τ ŷ 0 in Ω.

(1)

Here, y(x, t) = (yi(x, t))1�i�N is the velocity of the particles of an incompressible fluid, v is a distributed control
localized in ω, f (x, t) = (fi(x, t))1�i�N ∈ L2(Q)N is a given, externally applied force, and the initial state y|t=0 is
partially unknown. We suppose that y0 ∈ H , ŷ 0 ∈ H is unknown with ‖ŷ 0‖L2(Ω)N = 1 and that τ is a small unknown
real number.

The aim of this paper is to prove the existence of controls that insensitize some functional Jτ (the sentinel) depend-
ing on the velocity field y. That is to say, we have to find a control v such that the influence of the unknown data τ ŷ 0

is not perceptible for our sentinel:

∂Jτ (y)

∂τ

∣∣∣∣
τ=0

= 0 ∀ ŷ 0 ∈ L2(Ω)N such that
∥∥ŷ 0

∥∥
L2(Ω)N

= 1. (2)

In the pioneering work [21], J.-L. Lions considers this kind of problem and introduces many related questions. One
of these questions, in non-classical terms, was the existence of insensitizing controls for the Navier–Stokes equations
(see [21, p. 56]).

In the literature the usual sentinel is given by the square of the local L2-norm of the state variable y (see [3,20,23]),
on which we will be interested here:

Jτ (y) = 1

2

∫ ∫
O×(0,T )

|y|2 dx dt. (3)

However, in [16], the author considers the gradient of the state for a linear heat system with potentials and more
recently in [17] the same author treats the case of the curl of the solution for a Stokes system. Here we will focus on
the nonlinear control problem of insensitizing the Navier–Stokes equations.

The special form of the sentinel Jτ allows us to reformulate our insensitizing problem as a controllability problem
of a cascade system (for more details, see [3], for instance). In particular, condition (2) is equivalent to z|t=0 = 0 in Ω ,
where z together with w solves the following coupled system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

wt − �w + (w,∇)w + ∇p0 = f + v1ω, ∇ · w = 0 in Q,

−zt − �z + (
z,∇ t

)
w − (w,∇)z + ∇q = w1O, ∇ · z = 0 in Q,

w = z = 0 on Σ,

w|t=0 = y0, z|t=T = 0 in Ω.

(4)

Here, (w,p0) is the solution of system (1) for τ = 0, the equation of z corresponds to a formal adjoint of the equation
satisfied by the derivative of y with respect to τ at τ = 0 (see (6) below) and we have denoted

((
z,∇ t

)
w

)
i
=

N∑
j=1

zj ∂iwj i = 1, . . . ,N.

Indeed, differentiating y solution of (1) with respect to τ and evaluating it at τ = 0, condition (2) reads∫ ∫
O×(0,T )

wyτ dx dt = 0 ∀ ŷ 0 ∈ L2(Ω)N such that
∥∥ŷ 0

∥∥
L2(Ω)N

= 1, (5)

where yτ is the derivative of y solution of (1) at τ = 0. Then, yτ solves⎧⎪⎪⎪⎨⎪⎪⎪⎩
yτ,t − �yτ + (yτ ,∇)y + (y,∇)yτ + ∇pτ = 0 in Q,

∇ · yτ = 0 in Q,

yτ = 0 on Σ,

y = ŷ 0 in Ω.

(6)
τ |t=0
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Hence, substituting w1O by the left-hand side of the equation of z in (4) and integrating by parts we obtain∫
Ω

z|t=0ŷ
0 dx =

∫ ∫
O×(0,T )

wyτ dx dt ∀ ŷ 0 ∈ L2(Ω)N such that
∥∥ŷ 0

∥∥
L2(Ω)N

= 1. (7)

We will prove the following controllability result for system (4):

Theorem 1.1. Let m > 5 be a real number and y0 = 0. Assume that ω ∩ O �= ∅. Then, there exist δ > 0 and C	 > 0
depending on ω, Ω , O and T such that for any f ∈ L2(Q)N satisfying ‖eC	/tmf ‖L2(Q)N < δ, there exists a control
v ∈ L2(ω × (0, T ))N and a corresponding solution (w, z) to (4) satisfying z|t=0 = 0 in Ω .

Remark 1.1. Furthermore, in addition to insensitizing the functional Jτ one can steer the state w to 0 at time t = T

just by paying an extra condition on f at time t = T∥∥eC	/tm(T −t)mf
∥∥

L2(Q)N
< +∞, (8)

for a constant C	 that maybe different to the one given in Theorem 1.1.

Remark 1.2. The condition y0 = 0 in the main theorem is due to the fact that the first equation in (4) is forward and
the second one is backward in time. Most of the insensitizing works in the parabolic case, even for linear equations,
assume this condition on the initial data. A study of the possible initial conditions which can be insensitized is made
for the heat equation in [9]. This work suggests that the answer is not obvious.

As announced, we have the following result.

Corollary 1. There exist insensitizing controls v for the functional Jτ given by (3).

Before going further, let us recall some of the results available in the literature. Most known results concerning
insensitizing controls are for parabolic systems. Nevertheless, one can cite the results in [6] for the 1-D wave equation.
In [23], the controllability of more general coupled wave equations is studied.

In order to get rid of the condition y0 = 0, in [3], the authors consider ε-insensitizing controls (i.e., v such that
|∂τ Jτ (y)|τ=0| � ε for all ε > 0) for the semilinear heat system, with C1 and globally Lipschitz nonlinearities, and
prove that this condition is equivalent to an approximate controllability result for a cascade system which is established
therein. In [9], condition y0 = 0 has been removed for the linear heat equation when O ⊂ ω and when O = Ω , if this
is not the case, some negative results are also given. In [8], the author proves the existence of insensitizing controls
for the same semilinear heat system. This last result is extended in [4] to super-linear nonlinearities.

For parabolic systems arising from fluids dynamics the first attempt to treat the insensitizing problem is [11] for a
large scale ocean circulation model (linear). In [17], as we have already mentioned, the author treats both the case of
a sentinel given by L2-norm of the state and L2-norm of the curl of the state of a linear Stokes system.

As long as insensitizing controls have been considered the condition ω∩O �= ∅ has always been imposed. But, from
[7] and [22], we see that this is not a necessary condition for ε-insensitizing controls. For instance, the authors have
proved in [22] that there exist ε-insensitizing controls of Jτ for linear heat equations with no intersecting observation
and control regions in one space dimension using the spectral theory.

Furthermore, the insensitizing problem, as we have seen in this special case, is directly related to control problems
for coupled systems. In particular, one could ask whether it is possible to control both states of a coupled system just
by acting on one equation. In this spirit, the authors in [5] show some controllability results for the Navier–Stokes
equations with controls having a vanishing component. In [17] and [16], as well as some insensitizing problems, the
author studied this problem respectively for Stokes and heat systems in a more general framework. Also, for more
general coupled parabolic systems with only one control force, some results are available in [15] and [2].

Finally, recently in [25] the existence of insensitizing controls for a forward stochastic heat equation was proved
by means of some global Carleman estimates.

The rest of the paper is organized as follows. In Section 2 we give some results which will be useful for our
purpose. In Section 3 we prove the Carleman estimate. In Section 4 we treat the linear case. Finally, in Section 5 we
prove Theorem 1.1.
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2. Technical results

In the context of the null controllability analysis of parabolic systems, Carleman estimates are a very powerful tool
(see [14,18,13], . . .). In order to state our Carleman estimate we need to define some weight functions. Let ω0 be a
nonempty open subset of ω ∩O, and set

αm(x, t) = exp(λk m+1
m

‖η0‖∞) − expλ(k‖η0‖∞ + η0(x))

tm(T − t)m
, ξm(x, t) = expλ(k‖η0‖∞ + η0(x))

tm(T − t)m
, (9)

for some parameter λ > 0. Here, m > 4 and k > m are fixed and η0 ∈ C2(Ω) stands for a function that satisfies∣∣∇η0
∣∣ �K > 0 in Ω\ω0, η0 > 0 in Ω and η0 = 0 on ∂Ω. (10)

The proof of the existence of such a function η0 can be found in [14]. This kind of weight functions was also used
in [18]. In the sequel, for convenience, we will fix m = 5 and k = 10. Thus, our weight functions read

α(x, t) = exp(12λ‖η0‖∞) − expλ(10‖η0‖∞ + η0(x))

t5(T − t)5
, ξ(x, t) = expλ(10‖η0‖∞ + η0(x))

t5(T − t)5
(11)

and we shall use the notation

α	(t) = max
x∈Ω

α(x, t), α̂(t) = min
x∈Ω

α(x, t), ξ 	(t) = min
x∈Ω

ξ(x, t), ξ̂ (t) = max
x∈Ω

ξ(x, t). (12)

We also introduce the following quantities:

I0(s, λ;u) = s3λ4
∫ ∫
Q

e−2sαξ3|u|2 dx dt + sλ2
∫ ∫
Q

e−2sαξ |∇u|2 dx dt, (13)

I1(s, λ;u) = s3λ4
∫ ∫
Q

e−5sαξ3|u|2 dx dt + sλ2
∫ ∫
Q

e−5sαξ |∇u|2 dx dt

+ s−1
∫ ∫
Q

e−5sα(ξ)−1|�u|2 dx dt, (14)

Ĩ (s, λ;u) = s3λ4
∫ ∫
Q

e−2sαe−2sα	

ξ3|u|2 dx dt + sλ2
∫ ∫
Q

e−2sαe−2sα	

ξ |∇u|2 dx dt, (15)

for some parameter s > 0.
First we state a Carleman-type estimate which holds for energy solutions of heat equations with non-homogeneous

Neumann boundary conditions:

Lemma 2.1. Let us assume that u0 ∈ L2(Ω), f1 ∈ L2(Q), f2 ∈ L2(Q)N , f3 ∈ L2(Σ). Then, there exists a constant
C(Ω,ω0) > 0 such that the (weak) solution of⎧⎪⎪⎨⎪⎪⎩

ut − �u = f1 + ∇ · f2 in Q,

∂u

∂n
+ f2 · n = f3 on Σ,

u|t=0 = u0 in Ω,

(16)

satisfies

I0(s, λ;u) � C

(
s3λ4

∫ ∫
ω0×(0,T )

e−2sαξ3|u|2 dx dt +
∫ ∫
Q

e−2sα|f1|2 dx dt

+ s2λ2
∫ ∫
Q

e−2sαξ2|f2|2 dx dt + sλ

∫ ∫
Σ

e−2sα	

ξ 	|f3|2 dσ dt

)
, (17)

for any λ� C and s � C(T 9 + T 10).
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In a similar form, this lemma was proved in [12], but with the weight defined in (9) for m = 1. In order to prove
Lemma 2.1, one can follow the steps of the proof in [12], just taking into account that

|αt |� KT ξ6/5,
∣∣α	

t

∣∣� KT
(
ξ	

)6/5
, |αtt | � KT 2ξ7/5, and

∣∣α	
tt

∣∣� KT 2(ξ	
)7/5

, (18)

for some constant K independent of s, λ and T .
The second estimate we give here holds for solutions of Stokes systems with homogeneous Dirichlet boundary

conditions:

Lemma 2.2. Let us assume that u0 ∈ V , f4 ∈ L2(Q)N . Then, there exists a constant C(Ω,ω0) > 0 such that the
solution (u,p) ∈ (L2(0, T ;H 2(Ω)N ∩ V ) ∩ L∞(0, T ;V ) × L2(0, T ;H 1(Ω)), with

∫
ω0

p(t, x)dx = 0, of⎧⎨⎩
ut − �u + ∇p = f4, ∇ · u = 0 in Q,

u = 0 on Σ,

u|t=0 = u0 in Ω,

(19)

satisfies

I0(s, λ;u) � C

(
s16λ40

∫ ∫
ω0×(0,T )

e−8sα̂+6sα	

(̂ξ )16|u|2 dx dt

+ s15/2λ20
∫ ∫
Q

e−4sα̂+2sα	

(̂ξ )15/2|f4|2 dx dt

)
, (20)

for any λ� C and s � C(T 5 + T 10).

This lemma, for the weight defined in (9) with m = 4, is the main result in [13]. Again, in order to prove it one can
follow the steps of the proof in [13], keeping in mind estimates (18).

The next result concerns the regularity of the solutions to the Stokes system which can be found in [19] (see
also [24]):

Lemma 2.3. For every T > 0 and every f ∈ L2(Q)N , there exists a unique solution

u ∈ L2(0, T ;H 2(Ω)N
) ∩ L∞(0, T ;V ) ∩ H 1(0, T ;H)

to the Stokes system⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut − �u + ∇p = f in Q,

∇ · u = 0 in Q,

u = 0 on Σ,

u(0) = 0 in Ω,

(21)

for some p ∈ L2(0, T ;H 1(Ω)), and there exists a constant C > 0 depending only on Ω such that

‖u‖2
L2(0,T ;H 2(Ω)N )

+ ‖u‖2
L∞(0,T ;V ) + ‖u‖2

H 1(0,T ;L2(Ω)N )
� C‖f ‖2

L2(Q)N
. (22)

To finish, we give further regularity result which will be very useful for our purpose.

Lemma 2.4. Let a ∈ R and B ∈ RN be constant and let us assume that f ∈ L2(0, T ;V ). Then, there exists a unique
solution u ∈ L2(0, T ;H 3(Ω)N ∩ V ) ∩ H 1(0, T ;V ), together with some p, to the Stokes system⎧⎨⎩

ut − �u + au + B · ∇u + ∇p = f, ∇ · u = 0 in Q,

u = 0 on Σ,

u|t=0 = 0 in Ω,

(23)

and there exists a constant C > 0 such that

‖u‖L2(0,T ;H 3(Ω)N ) + ‖u‖H 1(0,T ;H 1(Ω)N ) � C‖f ‖L2(0,T ;H 1(Ω)N ). (24)

This result can be found in [19]. A proof is also given in [17].
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3. Carleman estimate

In this section, we will prove a Carleman estimate which leads to an observability inequality, which in turn implies
the null controllability of a linear system, similar to the linearized system associated to (4). This inequality will be the
main tool in the proof of Theorem 1.1.

Here, we consider the following coupled Stokes system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ϕt − �ϕ + ∇π = ψ1O + g0, ∇ · ϕ = 0 in Q,

ψt − �ψ + ∇κ = g1, ∇ · ψ = 0 in Q,

ϕ = ψ = 0 on Σ,

ϕ|t=T = ϕ0, ψ|t=0 = ψ0 in Ω,

(25)

where g0, g1 ∈ L2(Q)N and ψ0, ϕ0 ∈ H .
System (25) is the non-homogeneous formal adjoint of the linearized of (4) around (0,0). We will be led to prove,

for an open set ω0 ⊂O ∩ ω, the following kind of observability inequality for (25):∫ ∫
Q

e−C1/tm
(|ϕ|2 + |ψ |2)dx dt � C

( ∫ ∫
ω0×(0,T )

|ϕ|2 dx dt +
∫ ∫
Q

e−C2/tm
(|g0|2 + |g1|2

)
dx dt

)
, (26)

for some m > 0 and certain positive constants C, C1, C2 depending on Ω , ω0 and T but independent of ψ0 and ϕ0.
To prove such an inequality, usually, we use a combination of observability inequalities for both ϕ and ψ and try to
eliminate the local term in ψ . Even in the simpler situation of the Stokes system (g0 ≡ g1 ≡ 0), due to the pressure
term, one cannot expect to achieve such an objective this way (see [17], for an explanation of this fact).

We will prove the following result:

Theorem 3.1. Assume that ω ∩ O �= ∅. Then, there exists a constant C > 0 which depends on Ω , ω, O and T such
that

Ĩ (s, λ;∇ × ψ) + I1(s, λ;ϕ)� C

(
s15λ16

∫ ∫
ω0×(0,T )

e−4sα	+sαξ15|ϕ|2 dx dt

+ s5λ6
∫ ∫
Q

e−2sα	−2sαξ5|g0|2 dx dt +
∫ ∫
Q

e−2sα	 |g1|2 dx dt

)
, (27)

for any λ � C, any s � C(T 5 + T 10), any ϕ0,ψ0 ∈ H and any g0, g1 ∈ L2(Q)N , where (ϕ,ψ) is the corresponding
solution to (25). Recall that Ĩ (s, λ; ·) and I1(s, λ; ·) were introduced in (15) and (14) respectively and ω0 � ω ∩O.

The proof of this theorem is divided in two steps. In the first step we derive a Carleman estimate for (∇ × ψ) with
a local term in ω0 using the fact that, applying the operator (∇ ×·) to the second equation of system (25), the resultant
system can be viewed as a system of 2N − 3 heat equations. In the second one, assuming that ψ is given, we apply
the Carleman estimate for Stokes systems given in Lemma 2.2. Finally we combine these two estimates and eliminate
the local term in (∇ × ψ) using the fact that ω0 ⊂O ∩ ω. Each step will be proved in a separate paragraph.

3.1. Carleman estimate for ψ

Observe that the equation of ψ is independent of ϕ:⎧⎨⎩
ψt − �ψ + ∇κ = g1, ∇ · ψ = 0 in Q,

ψ = 0 on Σ,

ψ|t=0 = ψ0 in Ω.

(28)

A Carleman inequality for (∇ ×ψ) has been established in [17] but for g1 ≡ 0. The same analysis as in [17] no longer
holds here since (∇ ×g1) /∈ L2(Q)2N−3. In order to get around this difficulty, we split ψ (up to a weight function) into
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two solutions of Stokes systems. Then, we apply to the more regular one the same analysis than in [17] and classical
regularity estimates for the Stokes system to the other one.

For system (28), we can prove the following result:

Proposition 3.1. There exists a positive constant C depending on Ω and ω0 such that

Ĩ (s, λ;∇ × ψ)� C

(
s3λ4

∫ ∫
ω0×(0,T )

e−2sαe−2sα	

ξ3|∇ × ψ |2 dx dt +
∫ ∫
Q

e−2sα	 |g1|2 dx dt

)
, (29)

for any λ� C and s � C(T 5 + T 10). Recall that Ĩ (s, λ; ·) was defined in (15).

Remark 3.1. The jump in the weight functions between the left-hand side and the global term in the right-hand side
is quite important. It can be interesting to reduce this jump. To do so see the proof below.

Proof of Proposition 3.1. Since ψ0 ∈ H and g1 ∈ L2(Q)N , there exists a unique solution (ψ, κ) ∈ L2(0, T ;V ) ×
D′(Q) of system (28). Now, let ρ(t) := e−sα	(t) ∈ C1([0, T ]). Then, since ρ verifies ρ(0) = 0, (ψ	, κ	) := (ρψ,ρκ)

solves the system⎧⎪⎨⎪⎩
ψ	

t − �ψ	 + ∇κ	 = ρg1 + ρtψ, ∇ · ψ	 = 0 in Q,

ψ	 = 0 on Σ,

ψ	|t=0 = 0 in Ω.

(30)

We decompose (ψ	, κ	) as follows: (ψ	, κ	) = (ψ̂, κ̂ ) + (ψ̃, κ̃ ), where (ψ̂, κ̂ ) and (ψ̃, κ̃ ) solve respectively⎧⎪⎨⎪⎩
ψ̃t − �ψ̃ + ∇κ̃ = ρg1, ∇ · ψ̃ = 0 in Q,

ψ̃ = 0 on Σ,

ψ̃|t=0 = 0 in Ω,

(31)

and ⎧⎪⎨⎪⎩
ψ̂t − �ψ̂ + ∇κ̂ = ρtψ, ∇ · ψ̂ = 0 in Q,

ψ̂ = 0 on Σ,

ψ̂|t=0 = 0 in Ω.

(32)

We apply the operator (∇ × ·) to the Stokes system satisfied by ψ̂ ,

(∇ × ψ̂ )t − �(∇ × ψ̂ ) = ∇ × (ρtψ) in Q.

Observe that we do not have any boundary conditions for (∇ × ψ̂ ). Nevertheless, we can apply Lemma 2.1:

I0(s, λ;∇ × ψ̂ ) � C

(
s3λ4

∫ ∫
ω0×(0,T )

e−2sαξ3|∇ × ψ̂ |2 dx dt +
∫ ∫
Q

e−2sα
(
e−sα	)2

t
|∇ × ψ |2 dx dt

+ sλ

∫ ∫
Σ

e−2sα	

ξ 	

∣∣∣∣∂(∇ × ψ̂ )

∂n

∣∣∣∣2

dσ dt

)
, (33)

for any λ� C and s � C(T 9 + T 10).
We recall that |α	

t |� CT (ξ	)6/5 (see (18)), so∫ ∫
Q

e−2sα
((

e−sα	)
t

)2|∇ × ψ |2 dx dt � Cs2T 2
∫ ∫
Q

e−2sαe−2sα	(
ξ	

)12/5|∇ × ψ |2 dx dt, (34)

which will be absorbed later on.
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Now, using that ψ̂ = ψ	 − ψ̃ and taking into account that (a − b)2 � a2

2 − b2, we obtain

I0(s, λ;∇ × ψ̂ ) � 1

2
s3λ4

∫ ∫
Q

e−2sαξ3
∣∣∇ × ψ	

∣∣2 dx dt + 1

2
sλ2

∫ ∫
Q

e−2sαξ
∣∣∇(∇ × ψ	

)∣∣2 dx dt

− s3λ4
∫ ∫
Q

e−2sαξ3|∇ × ψ̃ |2 dx dt − sλ2
∫ ∫
Q

e−2sαξ
∣∣∇(∇ × ψ̃)

∣∣2 dx dt. (35)

Observe that the first term in the right-hand side of (35) absorbs (34) as long as λ� 1 and s � CT 8.
We turn to the equation satisfied by ψ̃ . Using regularity results for system (31) (see [24, Proposition 2.2]) we

deduce that

s3λ4
∫ ∫
Q

e−2sαξ3|∇ × ψ̃ |2 dx dt � C

∫ ∫
Q

|∇ × ψ̃ |2 dx dt � C‖ψ̃‖2
L2(0,T ;H 1(Ω)N )

� C

∫ ∫
Q

e−2sα	 |g1|2 dx dt, (36)

and

sλ2
∫ ∫
Q

e−2sαξ
∣∣∇(∇ × ψ̃)

∣∣2 dx dt � C

∫ ∫
Q

∣∣∇(∇ × ψ̃)
∣∣2 dx dt � C‖ψ̃‖2

L2(0,T ;H 2(Ω)N )

� C

∫ ∫
Q

e−2sα	 |g1|2 dx dt, (37)

for λ � C and s � CT 10, with possibly differents constants C. Indeed, the above constants do not depend on T for
λ� C and s � CT 10.

The next step is to estimate the local term which appears in the right-hand side of (33). Again, we put ψ̂ in terms
of ψ	 and ψ̃ :

s3λ4
∫ ∫

ω0×(0,T )

e−2sαξ3
∣∣∇ × (

ψ	 − ψ̃
)∣∣2 dx dt � 2s3λ4

∫ ∫
ω0×(0,T )

e−2sαξ3
∣∣∇ × ψ	

∣∣2 dx dt

+ 2s3λ4
∫ ∫

ω0×(0,T )

e−2sαξ3|∇ × ψ̃ |2 dx dt.

Like previously

s3λ4
∫ ∫

ω0×(0,T )

e−2sαξ3|∇ × ψ̃ |2 dx dt � s3λ4
∫ ∫
Q

e−2sαξ3|∇ × ψ̃ |2 dx dt � C

∫ ∫
Q

e−2sα	 |g1|2 dx dt. (38)

At this point combining (33)–(38), we obtain

Ĩ (s, λ;∇ × ψ)� C

(
s3λ4

∫ ∫
ω0×(0,T )

e−2sαξ3
∣∣∇ × ψ	

∣∣2 dx dt +
∫ ∫
Q

e−2sα	 |g1|2 dx dt

+ sλ

∫ ∫
Σ

e−2sα	

ξ 	

∣∣∣∣∂(∇ × ψ̂ )

∂n

∣∣∣∣2

dσ dt

)
, (39)

for any λ� C and s � C(T 5 + T 10).
The last step will be to eliminate the boundary term in the right-hand side of (39). To this end, we introduce a

function θ ∈ C2(Ω) such that

∂θ = 1 and θ = constant on ∂Ω. (40)

∂n
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Integration by parts leads to

sλ

T∫
0

e−2sα	

ξ 	

( ∫
∂Ω

∣∣∣∣∂(∇ × ψ̂ )

∂n

∣∣∣∣2

dσ

)
dt = sλ

T∫
0

e−2sα	

ξ 	

(∫
Ω

�(∇ × ψ̂ )∇(∇ × ψ̂ ) · ∇θ dx

)
dt

+ sλ

T∫
0

e−2sα	

ξ 	

(∫
Ω

(∇∇θ∇(∇ × ψ̂ )
)∇(∇ × ψ̂ )dx

)
dt

+ sλ

2

T∫
0

e−2sα	

ξ 	

(∫
Ω

∇∣∣∇(∇ × ψ̂ )
∣∣2 · ∇θ dx

)
dt.

Thus, using Cauchy–Schwarz’s inequality, the above integral can be estimate as follows

sλ

T∫
0

e−2sα	

ξ 	

( ∫
∂Ω

∣∣∣∣∂(∇ × ψ̂ )

∂n

∣∣∣∣2

dσ

)
dt � Csλ

T∫
0

e−2sα	

ξ 	‖ψ̂‖H 3(Ω)N ‖ψ̂‖H 2(Ω)N dt. (41)

Thanks to the interpolation inequality ‖ψ̂‖H 2(Ω)N � ‖ψ̂‖1/2
H 1(Ω)N

‖ψ̂‖1/2
H 3(Ω)N

, we obtain

sλ

T∫
0

e−2sα	

ξ 	‖ψ̂‖H 3(Ω)N ‖ψ̂‖H 2(Ω)N dt � sλ

T∫
0

e−2sα	

ξ 	‖ψ̂‖3/2
H 3(Ω)N

‖ψ̂‖1/2
H 1(Ω)N

dt. (42)

Finally, using Young’s inequality (ab � ap

p
+ bp′

p′ with 1
p

+ 1
p′ = 1) for p = 4, the task reduces to estimate

s5/2λ

T∫
0

e−2sα	(
ξ	

)5/2‖ψ̂‖2
H 1(Ω)N

dt + s1/2λ

T∫
0

e−2sα	(
ξ	

)1/2‖ψ̂‖2
H 3(Ω)N

dt. (43)

For the first term, thanks to the fact that ∇ · ψ̂(t) = 0 in Ω and ψ̂ = ψ∗ − ψ̃ , we have∥∥ψ̂(t)
∥∥

H 1(Ω)N
� C

∥∥∇ × ψ̂(t)
∥∥

L2(Ω)2N−3 � C
(∥∥∇ × ψ̃(t)

∥∥
L2(Ω)2N−3 + ∥∥∇ × ψ	(t)

∥∥
L2(Ω)2N−3

)
.

The first term in the right-hand side is estimated like in (36) and the second one can be absorbed by the first term in
the left-hand side of (39), for λ� C and s � CT 10.

Let us estimate now the second term in (43). To this end, we introduce (ψ◦, κ◦) := (η(t)ψ̂, η(t )̂κ ), where

η(t) = s1/4λ1/2e−sα	(
ξ	

)1/4 in (0, T ).

Then, (ψ◦, κ◦) fulfills⎧⎪⎨⎪⎩
ψ◦

t − �ψ◦ + ∇κ◦ = ηρtψ + ηt ψ̂, ∇ · ψ◦ = 0 in Q,

ψ◦ = 0 on Σ,

ψ◦|t=0 = 0 in Ω.

(44)

Let us prove that the right-hand side of this system belongs to L2(0, T ;V ). Then, we will be able to apply Lemma 2.3.
For the first term in the right-hand side of (44), we use again that ψ is a divergence-free function and we get

‖ηρtψ‖L2(0,T ;H 1(Ω)N ) =
∥∥∥∥ηρtψ

	

ρ

∥∥∥∥
L2(0,T ;H 1(Ω)N )

� C

∥∥∥∥ηρt (∇ × ψ	)

ρ

∥∥∥∥
L2(Q)2N−3

.

Taking into account that∣∣∣∣ηρt

∣∣∣∣ � CT s5/4λ1/2e−sα	(
ξ	

)6/5+1/4
,

ρ
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for any s � CT 10, we deduce that

‖ηρtψ‖L2(0,T ;H 1(Ω)N )) � CT s5/4λ1/2
∥∥e−sα	(

ξ	
)29/20(∇ × ψ	

)∥∥
L2(Q)2N−3 . (45)

Thus, the square of this last quantity is small with respect to the first term in the left-hand side of (39) by taking λ� 1
and s � CT 6.

We turn to the second term in the right-hand side of (44). Similarly as before, we have

‖ηt ψ̂‖L2(0,T ;H 1(Ω)N ) � C
∥∥ηt (∇ × ψ̂ )

∥∥
L2(Q)2N−3 .

Using again that ψ̂ = ψ	 − ψ̃ , we obtain

‖ηt ψ̂‖L2(0,T ;H 1(Ω)N ) �
∥∥ηt

(∇ × ψ	
)∥∥

L2(Q)2N−3 + ∥∥ηt (∇ × ψ̃)
∥∥

L2(Q)2N−3 , (46)

with

|ηt | � CT s5/4λ1/2e−sα	(
ξ	

)29/20
,

for any s � CT 10.
Therefore, the first term is estimated like (45) and the second one can be estimated as in (36). Then it follows from

Lemma 2.3, that the solution of (44) satisfies ψ◦ ∈ L2(0, T ;H 3(Ω)N ∩ V ) and for all ε > 0 there exists Cε > 0 such
that

∥∥ψ◦∥∥2
L2(0,T ;H 3(Ω)N )

= s1/2λ

T∫
0

e−2sα	(
ξ	

)1/2‖ψ̂‖2
H 3(Ω)N

dt � εĨ (s, λ;∇ × ψ) + Cε

∫ ∫
Q

e−2sα	 |g1|2 dx dt.

This, combined with (39) and (41)–(43), concludes the proof of Proposition 3.1. �
3.2. Carleman estimate for ϕ and conclusion

Here we prove Theorem 3.1, combining the results of last section and Lemma 2.2. Assuming that ψ is given, we
turn to the solution of⎧⎨⎩

−ϕt − �ϕ + ∇π = ψ1O + g0, ∇ · ϕ = 0 in Q,

ϕ = 0 on Σ,

ϕ|t=T = ϕ0 in Ω.

(47)

We choose π such that
∫
ω0

π(t, x)dx = 0 and we apply the Carleman estimate given in Lemma 2.2, for the weight

function 5α
2 (instead of α). We obtain

I1(s, λ;ϕ)� C

(
s16λ40

∫ ∫
ω0×(0,T )

e−20sα̂+15sα	

(̂ξ )16|ϕ|2 dx dt + s15/2λ20
∫ ∫

O×(0,T )

e−10sα̂+5sα	

(̂ξ )15/2|ψ |2 dx dt

+ s15/2λ20
∫ ∫
Q

e−10sα̂+5sα	

(̂ξ )15/2|g0|2 dx dt

)
, (48)

for any λ� C and s � C(T 5 + T 10), where I1(s, λ; ·) is given by (14).
Then, the second integral in the right-hand side of (48) is bounded by Ĩ (s, λ;∇ ×ψ) for a suitable choice of λ � C

and s � CT 10.
Indeed,

s15/2λ20
∫ ∫

O×(0,T )

e−10sα̂+5sα	

(̂ξ )15/2|ψ |2 dx dt � Cs15/2λ20
∫ ∫
Q

e−10sα̂+5sα	

(̂ξ )15/2|∇ × ψ |2 dx dt

� εĨ (s, λ;∇ × ψ),
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where we have used the fact that ‖ψ‖L2(Ω)N � C‖∇ ×ψ‖L2(Ω)2N−3 and also that for all ε > 0 and M ∈R, there exists
Cε,M > 0 such that

esα	 � Cε,MsMλM(̂ξ )Mes(1+ε)̂α,

for any λ� C and any s � CT 10.
Now, combining the obtained inequality with (29) we get

Ĩ (s, λ;∇ × ψ) + I1(s, λ;ϕ)� C

(
s16λ40

∫ ∫
ω0×(0,T )

e−20sα̂+15sα	

(̂ξ )16|ϕ|2 dx dt

+ s3λ4
∫ ∫

ω0×(0,T )

e−2sαe−2sα	

ξ3|∇ × ψ |2 dx dt +
∫ ∫
Q

e−2sα	 |g1|2 dx dt

+ s15/2λ20
∫ ∫
Q

e−10sα̂+5sα	

(̂ξ )15/2|g0|2 dx dt

)
, (49)

for any λ� C and s � C(T 5 + T 10).
It remains to estimate the local term in (∇ ×ψ), in terms of ϕ. In order to do this, we use the first equation of (25),

where the coupling term appears. Since ω0 ⊂O, we have

∇ × ψ = −(∇ × ϕ)t − �(∇ × ϕ) − (∇ × g0), in ω0 × (0, T ). (50)

Thus, replacing in the second integral in right-hand side of (49), we obtain

s3λ4
∫ ∫

ω0×(0,T )

e−2sαe−2sα	

ξ3|∇ × ψ |2 dx dt

= −s3λ4
∫ ∫

ω0×(0,T )

e−2sαe−2sα	

ξ3(∇ × ψ)(∇ × ϕ)t dx dt

− s3λ4
∫ ∫

ω0×(0,T )

e−2sαe−2sα	

ξ3(∇ × ψ)
(
�(∇ × ϕ) + ∇ × g0

)
dx dt.

We introduce an open set ω1 � ω such that ω0 � ω1 and a positive function θ ∈ C2
c (ω1) such that θ ≡ 1 in ω0. Then

the task turns to estimate

s3λ4
∫ ∫

ω1×(0,T )

θe−2sαe−2sα	

ξ3(∇ × ψ)
(−(∇ × ϕ)t − �(∇ × ϕ) − ∇ × g0

)
dx dt. (51)

Performing several integration by parts, in order to get out all the derivatives of (∇ × ϕ), we get

s3λ4
∫ ∫

ω0×(0,T )

e−2sαe−2sα	

ξ3|∇ × ψ |2 dx dt � s3λ4
∫ ∫

ω1×(0,T )

θ
(
e−2sαe−2sα	

ξ3)
t
(∇ × ψ)(∇ × ϕ)dx dt

+ s3λ4
∫ ∫

ω1×(0,T )

θe−2sαe−2sα	

ξ3(∇ × ϕ)(∇ × g1)dx dt

− 2s3λ4
∫ ∫

ω1×(0,T )

∇(
θe−2sαe−2sα	

ξ3) · ∇(∇ × ψ)(∇ × ϕ)dx dt

− s3λ4
∫ ∫

ω1×(0,T )

�
(
θe−2sαe−2sα	

ξ3)(∇ × ψ)(∇ × ϕ)dx dt

− s3λ4
∫ ∫

θe−2sαe−2sα	

ξ3(∇ × ψ)(∇ × g0)dx dt. (52)
ω1×(0,T )
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Here, we have used the equation satisfied by (∇ × ψ) and the fact that θ has compact support in ω1. We perform
another integration by parts and use Young’s inequality to obtain

s3λ4
∫ ∫

ω1×(0,T )

θe−2sαe−2sα	

ξ3(∇ × ϕ)(∇ × g1)dx dt

= −s3λ4
∫ ∫

ω1×(0,T )

∇ × (
θe−2sαe−2sα	

ξ3(∇ × ϕ)
)
g1 dx dt

� C

(∫ ∫
Q

e−2sα	 |g1|2 dx dt + s6λ8
∫ ∫
Q

e−4sαe−2sα	

ξ6(s2λ2ξ2|∇ × ϕ|2 + ∣∣∇(∇ × ϕ)
∣∣2)dx dt

)
.

The last term in this inequality is estimated by εI1(s, λ;ϕ) for λ� C and s � CT 10. An analogous estimate holds for
the term containing (∇ × g0):

s3λ4
∫ ∫

ω1×(0,T )

θe−2sαe−2sα	

ξ3(∇ × ψ)(∇ × g0)dx dt = −s3λ4
∫ ∫

ω1×(0,T )

∇ × (
θe−2sαe−2sα	

ξ3(∇ × ψ)
)
g0 dx dt

� Cs5λ6
∫ ∫
Q

ξ5e−2sα−2sα	 |g0|2 dx dt + εĨ (s, λ;∇ × ψ).

On the other hand we have the following estimates for the weight functions:∣∣(e−2sαe−2sα	

ξ3)
t

∣∣� CT se−2sαe−2sα	

(ξ)4+1/5 and
∣∣�(

e−2sαe−2sα	

ξ3)∣∣� Cs2λ2e−2sαe−2sα	

ξ5,

for any s � CT 10.
Using these estimates for the first, third and fourth terms in the right-hand side of (52), we deduce that

s3λ4
∫ ∫

ω0×(0,T )

e−2sαe−2sα	

ξ3|∇ × ψ |2 dx dt

� ε
(
Ĩ (s, λ;∇ × ψ) + I1(s, λ;ϕ)

) + Cε

(
s7λ8

∫ ∫
ω1×(0,T )

e−2sαe−2sα	

ξ7|∇ × ϕ|2 dx dt

+
∫ ∫

ω1×(0,T )

e−2sα	 |g1|2 dx dt + s5λ6
∫ ∫
Q

e−2sα−sα	

ξ5|g0|2 dx dt

)
, (53)

for λ� C and s � C(T 5 + T 10).
Furthermore, considering an open set ω2 � ω such that ω1 � ω2, one can prove that

s7λ8
∫ ∫

ω1×(0,T )

e−2sαe−2sα	

ξ7|∇ × ϕ|2 dx dt � εs−1
∫ ∫
Q

e−5sαξ−1|�ϕ|2 dx dt

+ s15λ16
∫ ∫

ω2×(0,T )

e−4sα	+sαξ15|ϕ|2 dx dt.

This, combined with (53) and (49), gives the desired inequality (27).

4. Null controllability of the linear system

In this section we consider a linear coupled Stokes system with right-hand sides. More precisely, we look for a
control v ∈ L2(ω × (0, T ))N such that, under suitable decreasing properties on f1 and f2, the solution to
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
wt − �w + ∇p = f1 + v1ω, ∇ · w = 0 in Q,

−zt − �z + ∇q = f2 + w1O, ∇ · z = 0 in Q,

w = z = 0 on Σ,

w|t=0 = z|t=T = 0 in Ω,

(54)

satisfies

z|t=0 = 0 in Ω. (55)

As we have already mentioned, an observability inequality for (25) will imply the null controllability of (54) with de-
creasing properties for the state(s) and the control(s) (see [13]). Here, we present a null controllability result for (54)
where we look for a more regular solution (w, z). This will be done by solving the controllability problem in spaces
depending on the previous weight functions. Furthermore, this result will be useful to deduce the local null controlla-
bility of the nonlinear problem (4) in the last section.

First let us prove a modified Carleman inequality, from (27), with weight functions that do not vanish at t = T . To
be more specific, consider

l(t) =
{

t (T − t), 0 � t � T/2,

T 2

4 , T /2 � t � T ,
(56)

and the following associated weight functions:

β(x, t) = exp(12λ‖η0‖∞) − expλ(k‖η0‖∞ + η0(x))

l(t)5
, γ (x, t) = expλ(10‖η0‖∞ + η0(x))

l(t)5
(57)

β	(t) = max
x∈Ω

β(x, t), β̂(t) = min
x∈Ω

β(x, t), γ 	(t) = min
x∈Ω

γ (x, t), γ̂ (t) = max
x∈Ω

γ (x, t). (58)

With this definition we have the following

Lemma 4.1. Let s and λ like in Theorem 3.1. Then, there exists a positive constant C depending on Ω , ω, O, T , s

and λ such that∫ ∫
Q

e−4sβ	(
γ 	

)3|ψ |2 dx dt +
∫ ∫
Q

e−5sβ	(
γ 	

)3|ϕ|2 dx dt

� C

( ∫ ∫
ω×(0,T )

e−4sβ	+sβγ 15|ϕ|2 dx dt +
∫ ∫
Q

e−2sβ−2sβ	

γ 5|g0|2 dx dt +
∫ ∫
Q

e−2sβ	 |g1|2 dx dt

)
, (59)

for any ϕ0,ψ0 ∈ H , where (ϕ,ψ) is the associated solution to (25).

Proof. First by construction α = β and ξ = γ in Ω × (0, T /2), so that

T/2∫
0

∫
Ω

e−4sα	(
ξ	

)3|ψ |2 dx dt +
T/2∫
0

∫
Ω

e−5sα	(
ξ	

)3|ϕ|2 dx dt

=
T/2∫
0

∫
Ω

e−4sβ	(
γ 	

)3|ψ |2 dx dt +
T/2∫
0

∫
Ω

e−5sβ	(
γ 	

)3|ϕ|2 dx dt.

Therefore, it follows from (27) (observe that e−4sβ	
(γ 	)3 � e−2sβe−2sβ	

γ 3, e−5sβ	
(γ 	)3 � e−5sβγ 3 and ‖ψ‖L2(Ω)N �

C‖∇ × ψ‖L2(Ω)2N−3 )
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T/2∫
0

∫
Ω

e−4sβ	(
γ 	

)3|ψ |2 dx dt +
T/2∫
0

∫
Ω

e−5sβ	(
γ 	

)3|ϕ|2 dx dt

� C(T , s, λ)

( ∫ ∫
ω×(0,T )

e−4sα	+sαξ15|ϕ|2 dx dt +
∫ ∫
Q

e−2sα	 |g1|2 dx dt +
∫ ∫
Q

e−2sα−2sα	

ξ5|g0|2 dx dt

)
,

for any ψ0 ∈ H .
Thus, by definition of β,β	, γ and γ 	 we have

T/2∫
0

∫
Ω

e−4sβ	(
γ 	

)3|ψ |2 dx dt +
T/2∫
0

∫
Ω

e−5sβ	(
γ 	

)3|ϕ|2 dx dt

� C(T , s, λ)

( ∫ ∫
ω×(0,T )

e−4sβ	+sβγ 15|ϕ|2 dx dt +
∫ ∫
Q

e−2sβ	 |g1|2 dx dt

+
∫ ∫
Q

e−2sβ−2sβ	

γ 5|g0|2 dx dt

)
. (60)

We turn to the domain Ω × (T /2, T ). Here, we will use well-known a priori estimates for the Stokes system.
Indeed, let us introduce a function ζ ∈ C1([0, T ]) such that

ζ = 0 in [0, T /4], ζ = 1 in [T/2, T ], ∣∣ζ ′∣∣� C/T .

Using classical energy estimates for both ζϕ and ζψ (see, for instance, [19]), which solve the Stokes system (25), we
obtain

‖ζϕ‖2
L2(T /4,T ;H 1(Ω)N )

+ ‖ζϕ‖2
L∞(T /4,T ;H) � C

(
‖ζg0‖2

L2(T /4,T ;L2(Ω)N )
+ ‖ζψ‖2

L2(T /4,T ;L2(O)N )

+ 1

T 2
‖ϕ‖2

L2(T /4,T /2;L2(Ω)N )

)
and

‖ζψ‖2
L2(T /4,T ;H 1(Ω)N )

+ ‖ζψ‖2
L∞(T /4,T ;H) � C

(
‖ζg1‖2

L2(T /4,T ;L2(Ω)N )
+ 1

T 2
‖ψ‖2

L2(T /4,T /2;L2(Ω)N )

)
.

Combining these last two inequalities and keeping in mind the definition of ζ , we obtain

‖ϕ‖2
L2(T /2,T ;L2(Ω)N )

+ ‖ψ‖2
L2(T /2,T ;L2(Ω)N )

�
(

‖ζg0‖2
L2(T /4,T ;L2(Ω)N )

+ ‖ζg1‖2
L2(T /4,T ;L2(Ω)N )

+ 1

T 2
‖ψ‖2

L2(T /4,T ;L2(Ω)N )
+ 1

T 2
‖ϕ‖2

L2(T /4,T /2;L2(Ω)N )

)
.

Using (60) to estimate the last two terms and taking into account that the weight functions β and γ are bounded in
[T/4, T ], we get the following estimate

T∫
T/2

∫
Ω

e−4sβ	(
γ 	

)3|ψ |2 dx dt +
T∫

T/2

∫
Ω

e−5sβ	(
γ 	

)3|ϕ|2 dx dt

� C(T , s, λ)

( T∫
T/4

∫
Q

e−2sβ	 |g1|2 dx dt +
T∫

T/4

∫
Q

e−2sβ−2sβ	

γ 5|g0|2 dx dt

)
. (61)

This, together with (60), gives us the desired inequality (59). �
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Now, we will use this Carleman inequality to deduce a null controllability result for system (54). In the same
spirit of [13], where the local exact controllability of the Navier–Stokes system is proved, we introduce the following
weighted space:

E s,λ = {
(w, z,p, q, v): esβ+sβ	(

γ 	
)−5/2

w ∈ L2(Q)N, esβ	

z ∈ L2(Q)N, e2sβ	− 1
2 sβγ −15/2v1ω ∈ L2(Q)N,

e
3
2 sβ	

(γ̂ )−15/2w ∈ L2(0, T ;H 2(Ω)N
) ∩ L∞(0, T ;V ),

e
1
2 sβ	

(γ̂ )7z ∈ L2(0, T ;H 2(Ω)N
) ∩ L∞(0, T ;V ),

e
5
2 sβ	(

γ 	
)−3/2

(wt − �w + ∇p − v1ω) ∈ L2(Q)N,

e2sβ	(
γ 	

)−3/2
(−zt − �z + ∇q − w1O) ∈ L2(Q)N

}
. (62)

Defined as we have seen, E s,λ is a Banach space for the norm∥∥(w, z,p, q, v)
∥∥
Es,λ = (∥∥esβ+sβ	(

γ 	
)−5/2

w
∥∥2

L2(Q)N
+ ∥∥esβ	

z
∥∥2

L2(Q)N
+ ∥∥e2sβ	− 1

2 sβγ −15/2v1ω

∥∥2
L2(Q)N

+ ∥∥e
3
2 sβ	

(γ̂ )−15/2w
∥∥2

L2(0,T ;H 2(Ω)N )
+ ∥∥e

3
2 sβ	

(γ̂ )−15/2w
∥∥2

L∞(0,T ;V )

+ ∥∥e
1
2 sβ	

(γ̂ )7z
∥∥2

L2(0,T ;H 2(Ω)N )
+ ∥∥e

1
2 sβ	

(γ̂ )7z
∥∥2

L∞(0,T ;V )

+ ∥∥e
5
2 sβ	(

γ 	
)−3/2

(wt − �w + ∇p − v1ω)
∥∥2

L2(Q)N

+ ∥∥e2sβ	(
γ 	

)−3/2
(−zt − �z + ∇q − w1O)

∥∥2
L2(Q)N

)1/2
.

Remark 4.1. If (w, z,p, q, v) ∈ E s,λ, then z|t=0 = 0. But also notice that w|t=0 = 0. Moreover we have

e3sβ	

(γ̂ )−15(w,∇)w ∈ L2(Q)N, e2sβ	(
γ 	

)−3/2
(w,∇)z ∈ L2(Q)N,

e2sβ	(
γ 	

)−3/2(
z,∇ t

)
w ∈ L2(Q)N . (63)

We will prove the following result:

Proposition 4.1. Assume the hypothesis of Theorem 3.1 and let f1, f2 satisfy e
5
2 sβ	

(γ 	)−3/2f1 ∈ L2(Q)N and
e2sβ	

(γ 	)−3/2f2 ∈ L2(Q)N . Then, there exists v ∈ L2(ω × (0, T ))N such that, if (w, z,p, q) is the solution of (54),
one has (w, z,p, q, v) ∈ E s,λ.

Proof. Let us introduce the following constrained extremal problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
1

2

(∫ ∫
Q

e2sβ+2sβ	

γ −5|w|2 dx dt +
∫ ∫
Q

e2sβ	 |z|2 dx dt +
∫ ∫

ω×(0,T )

e4sβ	−sβγ −15|v|2 dx dt

)
subject to v ∈ L2(Q)N, suppv ⊂ ω × (0, T ) and⎧⎪⎪⎪⎨⎪⎪⎪⎩

wt − �w + ∇p = f1 + v1ω, ∇ · w = 0 in Q,

−zt − �z + ∇q = f2 + w1O, ∇ · z = 0 in Q,

w = z = 0 on Σ,

w|t=0 = z|t=T = z|t=0 = 0 in Ω.

(64)

Assume that this problem admits a unique solution (ŵ, ẑ, p̂, q̂, v̂ ). Then, in virtue of the Lagrange’s principle there
exist dual variables (w, z,p, q) such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

ŵ = e−2sβ−2sβ	

γ 5(−wt − �w + ∇p − z1O) in Q,

ẑ = e−2sβ	

(zt − �z + ∇q) in Q,

v̂ = e−4sβ	+sβγ 15w in ω × (0, T ),
(65)
ŵ = ẑ = 0 on Σ.
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Let us set

P0 =
{
(w, z,p, q) ∈ C∞(Q)2N+2; ∇ · w = ∇ · z = 0 in Q, w = z = 0 on Σ and

∫
ω0

q(x, t)dx = 0

}
and

a
(
(w, z,p, q), (w, z,p, q)

) =
∫ ∫
Q

e−2sβ−2sβ	

γ 5(−wt − �w + ∇p − z1O)(−wt − �w + ∇p − z1O)dx dt

+
∫ ∫
Q

e−2sβ	

(zt − �z + ∇q)(zt − �z + ∇q)dx dt

+
∫ ∫

ω×(0,T )

e−4sβ	+sβγ 15ww dx dt ∀(w, z,p, q) ∈P0. (66)

With this definition, one can see that, if the functions ŵ, ẑ and v̂ solve (64), we must have

a
(
(w, z,p, q), (w, z,p, q)

) = l(w, z,p, q) ∀(w, z,p, q) ∈ P0, (67)

where

l(w, z,p, q) =
∫ ∫
Q

f1w dx dt +
∫ ∫
Q

f2z dx dt. (68)

The main idea is to prove that there exists exactly one (w, z,p, q) satisfying (67). Then we will define (ŵ, ẑ, p̂, q̂, v̂ )

using (65) and we will check that it fulfills the desired properties.
Indeed, observe that the Carleman inequality (59) holds for (w, z,p, q) ∈P0,∫ ∫

Q

e−4sβ	(
γ 	

)3|w|2 dx dt +
∫ ∫
Q

e−5sβ	(
γ 	

)3|z|2 dx dt � Ca
(
(w, z,p, q), (w, z,p, q)

)
∀(w, z,p, q) ∈P0. (69)

In the linear space P0 we consider the bilinear form a(.,.) given by (66); from the unique continuation property
for Stokes-like systems (see [10]) we deduce that a(.,.) is a scalar product in P0. Let us now consider the space P ,
given by the completion of P0 for the norm associated to a(.,.). This is a Hilbert space and a(.,.) is a continuous and
coercive bilinear form on P .

We turn to the linear operator l, given by (68) for all (w, z,p, q) ∈ P , a simple computation leads to

l(w, z,p, q)�
∥∥e

5
2 sβ	(

γ 	
)−3/2

f1
∥∥

L2(Q)N

∥∥e− 5
2 sβ	(

γ 	
)3/2

w
∥∥

L2(Q)N

+ ∥∥e2sβ	(
γ 	

)−3/2
f2

∥∥
L2(Q)N

∥∥e−2sβ	(
γ 	

)3/2
z
∥∥

L2(Q)N
.

Then, using (69) and the density of P0 in P , we have

l(w, z,p, q)� C
(∥∥e

5
2 sβ	(

γ 	
)−3/2

f1
∥∥

L2(Q)N
+ ∥∥e2sβ	(

γ 	
)−3/2

f2
∥∥

L2(Q)N

)∥∥(w, z,p, q)
∥∥
P ∀(w, z,p, q) ∈ P .

Consequently l is a bounded linear operator on P . Then, in view of Lax–Milgram’s lemma, there exists one and only
one (w, z,p, q) satisfying{

a
(
(w, z,p, q), (w, z,p, q)

) = l(w, z,p, q) ∀(w, z,p, q) ∈P
(w, z,p, q) ∈ P.

(70)

We finally get the existence of (ŵ, ẑ, p̂, q̂, v̂ ), just setting

ŵ = e−2sβ−2sβ	

γ 5(−wt − �w + ∇p − z1O), ẑ = e−2sβ	

(zt − �z + ∇q) and v̂ = e−4sβ	+sβγ 15w.
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We readily see that (ŵ, ẑ, p̂, q̂, v̂ ) verifies∫ ∫
Q

e2sβ+2sβ	

γ −5|ŵ|2 dx dt +
∫ ∫
Q

e2sβ	 | ẑ |2 dx dt +
∫ ∫

ω×(0,T )

e4sβ	−sβγ −15 |̂v |2 dx dt < +∞

and solves the Stokes system in (64). The first point is easy to check, since (w, z,p, q) ∈ P and∫ ∫
Q

e2sβ+2sβ	

γ −5|ŵ|2 dx dt +
∫ ∫
Q

e2sβ	 | ẑ |2 dx dt +
∫ ∫

ω×(0,T )

e4sβ	−sβγ −15 |̂v |2 dx dt

= a
(
(w, z,p, q), (w, z,p, q)

)
< +∞.

In order to check the second point, we introduce the (weak) solution (w̃, z̃, p̃, q̃) to the Stokes system⎧⎪⎪⎪⎨⎪⎪⎪⎩
w̃t − �w̃ + ∇p̃ = f1 + v̂ 1ω, ∇ · w̃ = 0 in Q,

−̃zt − �̃z + ∇q̃ = f2 + w̃1O, ∇ · z̃ = 0 in Q,

w̃ = z̃ = 0 on Σ,

w̃|t=0 = z̃|t=T = 0 in Ω.

(71)

In particular, (w̃, z̃ ) is the unique solution by transposition of (71), in the following sense〈
(w̃, z̃ ), (a, b)

〉
L2(Q)2N = 〈

(f1 + v̂ 1ω,f2), (ϕ,ψ)
〉
L2(Q)2N ∀(a, b) ∈ L2(Q)2N, (72)

where (ϕ,ψ), together with some (π, κ), solves{
P 	(x, t;D)(ϕ,ψ) = (a, b) in Q,

∇ · ϕ = ∇ · ψ = 0 in Q, ϕ = ψ = 0 on Σ.
(73)

Here, we have denoted by P 	(x, t;D) the formal adjoint operator of P(x, t;D) given by

P(x, t;D)(w̃, z̃ ) = (w̃t − �w̃ + ∇p̃, −̃zt − �̃z + ∇q̃ − w̃1O)t .

From (70) and the definition of (ŵ, ẑ, v̂ ), we see that (ŵ, ẑ ) also satisfies (72). Consequently, (ŵ, ẑ ) = (w̃, z̃ ) and
(ŵ, ẑ, p̂, q̂ ) is the solution to the Stokes system (64).

It only remains to check that

e
3
2 sβ	

(γ̂ )−15/2w ∈ L2(0, T ;H 2(Ω)N
) ∩ L∞(0, T ;V ) and

e
1
2 sβ	

(γ̂ )7z ∈ L2(0, T ;H 2(Ω)N
) ∩ L∞(0, T ;V ).

To this purpose let us introduce ((w	,p	), (z	, q	)) = (e
3
2 sβ	

(γ̂ )−15/2(w,p), e
1
2 sβ	

(γ̂ )7(z, q)). Then (w	, z	,p	, q	)

solves⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w	

t − �w	 + ∇p	 = f 	
1 + v	1ω + (

e
3
2 sβ	

(γ̂ )−15/2)
t
w, ∇ · w	 = 0 in Q,

−z	
t − �z	 + ∇q	 = f 	

2 + w		1O − (
e

1
2 sβ	

(γ̂ )7)
t
z, ∇ · z	 = 0 in Q,

w	 = z	 = 0 on Σ,

w	|t=0 = z	|t=T = 0 in Ω,

(74)

where

f 	
1 = e

3
2 sβ	

(γ̂ )−15/2f1, f 	
2 = e

1
2 sβ	

(γ̂ )7f2, v	 = e
3
2 sβ	

(γ̂ )−15/2v and w		 = e
1
2 sβ	

(γ̂ )7w.

First we look to the equation satisfied by w	. We prove that the right-hand side of the first equation in (74) is in
L2(Q)N . Indeed, by the definition of β , β	, γ̂ and γ 	 we have

• |v	1ω| = e
3
2 sβ	

(γ̂ )−15/2|v1ω| � C(s,λ)e2sβ	− 1
2 sβγ −15/2|v|1ω ∈ L2(Q)N .

• |f 	
1 | = e

3
2 sβ	

(γ̂ )−15/2|f1| � C(s,λ)e
5
2 sβ(γ 	)−3/2|f1| ∈ L2(Q)N .

• |(e 3
2 sβ	

(γ̂ )−15/2)tw|� CT se
3
2 sβ	

(γ̂ )−63/10|w|� C(s,λ,T )esβ+sβ	
(γ 	)−5/2|w| ∈ L2(Q)N .

Here, we have used the fact that esβ	 � Cεe
s(1+ε)β̂ for all ε > 0 and some Cε(s, λ) > 0.
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Then, we can apply the regularity result for the Stokes system in Lemma 2.3, hence

w	 ∈ L2(0, T ;H 2(Ω)N
) ∩ L∞(

0, T ;H 1(Ω)N
)
. (75)

Now we turn to the equation satisfied by z	.

• |f 	
2 | = e

1
2 sβ	

(γ̂ )7|f2| � C(s,λ)e2sβ	
(γ 	)−3/2|f2| ∈ L2(Q)N .

• |w		1O| = e
1
2 sβ	

(γ̂ )7|w|1O � C(s,λ)esβ+sβ	
(γ 	)−5/2|w| ∈ L2(Q)N .

• |(e 1
2 sβ	

(γ̂ )7)t z| � CT se
1
2 sβ	

(γ̂ )41/5|z| � C(s,λ,T )esβ	 |z| ∈ L2(Q)N .

Again, we have used the fact that esβ	 � Cεe
s(1+ε)β̂ for all ε > 0 and some Cε(s, λ) > 0. We deduce that

z	 ∈ L2(0, T ;H 2(Ω)N
) ∩ L∞(

0, T ;H 1(Ω)N
)
. (76)

This concludes the proof of Proposition 4.1. �
5. Insensitizing controls for the Navier–Stokes system

In this section we give the proof of Theorem 1.1. Using similar arguments to those employed in [13], we will
see that the result obtained in the previous section allows us to locally invert a nonlinear operator associated to the
nonlinear system⎧⎪⎪⎪⎨⎪⎪⎪⎩

wt − �w + (w,∇)w + ∇p = f + v1ω, ∇ · w = 0 in Q,

−zt − �z + (
z,∇ t

)
w − (w,∇)z + ∇q = w1O, ∇ · z = 0 in Q,

w = z = 0 on Σ,

w|t=0 = 0, z|t=T = 0 in Ω.

(77)

We will use the following form of Lyusternik theorem (see [1]) which is in fact an inverse mapping theorem:

Theorem 5.1. Let E and G be two Banach spaces and let A : E �→ G satisfies A ∈ C1(E;G). Assume that e0 ∈ E ,
A(e0) = h0 and A′(e0) : E �→ G is surjective. Then there exists δ > 0 such that, for every h ∈ G satisfying ‖h −
h0‖G < δ, there exists a solution of the equation

A(e) = h, e ∈ E .

We will be led to use this theorem with the space E = E s,λ, with fixed s and λ like in Theorem 3.1 (so Lemma 4.1
holds),

G = G1 × G2 = L2(e 5
2 sβ	(

γ 	
)−3/2;L2(Ω)N

) × L2(e2sβ	(
γ 	

)−3/2;L2(Ω)N
)

and the operator

A(w, z,p, q, v) = (
wt − �w + (w,∇)w + ∇p − v1ω,−zt − �z + (

z,∇ t
)
w − (w,∇)z + ∇q − w1O

)
∀(w, z,p, q, v) ∈ E . (78)

Since all the terms arising in the definition of A are linear, except for (w,∇)w and (z,∇ t )w − (w,∇)z (which are
in fact bilinear), we only have to check that the terms (w,∇)w and (z,∇ t )w − (w,∇)z are well defined and depend
continuously on the data.

Proposition 5.1. A ∈ C1(E;G).

Proof. We will prove that the bilinear operator((
w1,p1, z1, q1, v1), (w2,p2, z2, q2, v2)) → (

w1 · ∇)
w2,
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is continuous from E × E to G1. If (w, z,p, q, v) ∈ E , notice that

e
3
2 sβ	

(γ̂ )−15/2w ∈ L2(0, T ;H 2(Ω)N
) ∩ L∞(0, T ;V ). (79)

Then, we deduce that

e
3
2 sβ	

(γ̂ )−15/2w1 ∈ L2(0, T ;H 2(Ω)N
) ⊂ L2(0, T ;L∞(Ω)N

)
and

e
3
2 sβ	

(γ̂ )−15/2∇w2 ∈ L∞(
0, T ;L2(Ω)N×N

)
thanks to the Sobolev embedding theorem. Consequently, we have∥∥e

5
2 sβ	(

γ 	
)−3/2(

w1,∇)
w2

∥∥
L2(Q)N

� C
∥∥e

3
2 sβ	

(γ̂ )−15/2w1
∥∥

L2(0,T ;L∞(Ω)N )

∥∥e
3
2 sβ	

(γ̂ )−15/2w2
∥∥

L∞(0,T ;H 1(Ω)N )
(80)

and (w,∇)w is bilinear continuous from E × E to G1.
Arguing as before we are able to prove that((

w1,p1, z1, q1, v1), (w2,p2, z2, q2, v2)) → (
w1 · ∇)

z2

and ((
w1,p1, z1, q1, v1), (w2,p2, z2, q2, v2)) → (

z1 · ∇ t
)
w2

are continuous from E × E to G2. Indeed, for (w, z,p, q, v) ∈ E we have

e
1
2 sβ	

(γ̂ )7∇z ∈ L∞(
0, T ;L2(Ω)N×N

)
and e

1
2 sβ	

(γ̂ )7z ∈ L2(0, T ;L∞(Ω)N
)
. (81)

Therefore,∥∥e2sβ	(
γ 	

)−3/2(
w1,∇)

z2
∥∥

L2(Q)N
� C

∥∥e
3
2 sβ	

(γ̂ )−15/2w1
∥∥

L2(0,T ;L∞(Ω)N )

∥∥e
1
2 sβ	

(γ̂ )7z2
∥∥

L∞(0,T ;H 1(Ω)N )

and ∥∥e2sβ	(
γ 	

)−3/2(
z1,∇ t

)
w2

∥∥
L2(Q)N

� C
∥∥e

1
2 sβ	

(γ̂ )7z1
∥∥

L2(0,T ;L∞(Ω)N )

∥∥e
3
2 sβ	

(γ̂ )−15/2w2
∥∥

L∞(0,T ;H 1(Ω)N )
,

since (
γ 	

)−3/2 � (γ̂ )−1/2.

Taking into account the continuous dependence with respect to the data, we have that these terms above are con-
tinuous from E × E to G2.

This ends the proof of Proposition 5.1. �
Finally, we can apply Theorem 5.1 for e0 = 0 ∈ E and h0 = 0 ∈ G. From the result obtained in Section 4, we deduce

that A′(0) : E �→ G, which is given by

A′(0)(w, z,p, q, v) = (wt − �w + ∇p − v1ω,−zt − �z + ∇q − w1O) ∀(w, z,p, q, v) ∈ E, (82)

is surjective, that is to say Im(A′(0)) = G.
In particular, since y0 = 0, there exists δ > 0 such that, if ‖eC	/tmf ‖L2(Q)N < δ, then we can find a control v and a

corresponding solution (w, z,p, q) to (1) satisfying z|t=0 = 0.
This concludes the proof of Theorem 1.1.
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