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Abstract

We consider nonlinear elliptic equations of p-Laplacian type that are not necessarily of variation form when the nonlinearity is
allowed to be discontinuous and the boundary of the domain can go beyond the Lipschitz category. Under smallness in the BMO
nonlinearity and sufficient flatness of the Reifenberg domain, we obtain the global weighted Lq estimates with q ∈ (p,∞) for the
gradient of weak solutions.
© 2012 Elsevier Masson SAS. All rights reserved.
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1. Introduction

This paper concerns the global higher regularity results of elliptic problems involving discontinuous operators in
divergence form of p-Laplacian type. In particular, we are interested in establishing an optimal Calderón–Zygmund
type theory for the gradient of weak solutions to such divergence structure nonlinear problems with the discontinuous
nonlinearity in the nonsmooth bounded domain. More precisely, we want to find minimal additional assumptions to
the primary structural conditions on the nonlinearity and the boundary of the domain under which the gradient of
solutions is as integrable as the nonhomogeneous term in the weighted Lq spaces for the full range q ∈ (p,∞).

There have been research activities on the gradient estimates in the weighted Lq spaces regarding elliptic and
parabolic problems, see [20,21,27]. One main advantage for these weighted Lq estimates is to provide higher regu-
larity results in Morrey and Hölder spaces by taking appropriate weight functions and applying the Sobolev–Morrey
Embedding Theorem. Our work was motivated by a series of works [20,21,27] by Mengesha and Phuc where the
authors obtained the global weighted gradient estimates for nonlinear elliptic operators either with linear growth as
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in [20] or of variational type as in [21,27]. The main approach in those works is to make use of harmonic analysis tools
such as the maximal function operator, as done in [6,8,9,12]. Here we extend their results to wider class of nonlinear
operators of nonvariational type by treating polynomial growth of rate p − 1 ∈ (0,∞). It is worth noticing that no
maximal function is associated with the proof in this paper. We will use Harmonic Analysis free approach to nonlinear
Calderón–Zygmund estimates which was first introduced in [2,22], developed [3,4] and later adapted to nonsmooth
domains for boundary regularity results as well as in the setting of Orlicz spaces, see [5,7,10,31]. We also would like
to point out that this work is a natural extension of the local gradient estimates in the Lebesgue spaces in the recent
paper [9] to the global gradient estimates in the weighted Lebesgue spaces.

This paper is organized as follows. We state some background and the main result in the next section. In Section 3
we obtain both local and global comparison estimates from perturbation results. In Section 4 we establish the a priori
estimates of the main result from the a priori regularity assumption. In Section 5, we complete the proof of the main
theorem by removing the a priori regularity assumption from a standard approximation procedure.

2. Background and main result

Let 1 < p < ∞ be fixed and Ω be a bounded open domain in Rn, n � 2, with its nonsmooth boundary ∂Ω . We
then consider the following Dirichlet boundary value problem for a divergence structure nonlinear PDE:{

div a(Du,x) = div
(|F |p−2F

)
in Ω,

u = 0 on ∂Ω,
(2.1)

where F = (f 1, . . . , f n) ∈ Lp(Ω;Rn) is the given vector-valued function and

a = a(ξ, x) = (
a1, . . . , an

)
(ξ, x) : Rn ×Rn →Rn

is a Carathéodory function, namely, it is measurable with respect to x for each ξ and continuous with respect to ξ

for each x. We denote Du = Dxu to mean the gradient vector with respect to the variables x = (x1, . . . , xn). Let us
hereafter assume that a satisfies the following primary structure conditions:

γ |ξ |p−2|η|2 � 〈
Dξ a(ξ, x)η, η

〉
(2.2)

and ∣∣a(ξ, x)
∣∣ + |ξ |∣∣Dξ a(ξ, x)

∣∣ �Λ|ξ |p−1, (2.3)

for each ξ, η ∈ Rn, for almost every x ∈ Rn, and for some positive constants γ,Λ, where Dξ a(ξ, x) is the Jacobian
matrix of a(ξ, x) with respect to ξ and 〈·,·〉 is the standard inner product in Rn. We would like to point out that these
primary conditions (2.2)–(2.3) imply the following monotonicity condition:⎧⎪⎪⎨

⎪⎪⎩

〈
a(ξ, x) − a(η, x), ξ − η

〉
� γ̃

{ |ξ − η|p if p � 2,

|ξ − η|2(1 + |ξ | + |η|)p−2 if 1 < p < 2,

(2.4)

where γ̃ depends only on γ,n and p.
The function u ∈ W

1,p

0 (Ω) is a weak solution of (2.1) if it satisfies∫
Ω

〈
a(Du,x),Dϕ

〉
dx =

∫
Ω

〈|F |p−2F,Dϕ
〉
dx for any ϕ ∈ W

1,p

0 (Ω).

According to Minty–Browder method in Lp , there exists a unique weak solution u of (2.1) with the estimate

‖Du‖Lp(Ω) � c‖F‖Lp(Ω) (2.5)

where c is a constant, depending only on ν, Λ, p and Ω .
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We now introduce the weighted Lebesgue space. To do this, we start with a concept of the so-called Mucken-
houpt class. A positive locally integrable function w on Rn is said to be a weight. Then the weight w belongs to a
Muckenhoupt class As , denoted by w ∈ As , for some 1 < s < ∞, if

[w]s := sup

(
1

|B|
∫
B

w(x)dx

)(
1

|B|
∫
B

w(x)
−1
s−1 dx

)s−1

< +∞, (2.6)

where the supremum is taken over all the balls B in Rn. We remark that the {As}1<s<∞ classes are nested, that is,
As1 ⊂ As2 if 1 < s1 � s2 < ∞. Let

wα(x) = |x|α, x ∈Rn.

Then wα ∈ As if and only if −n < α < n(s − 1). This wα is a typical weight which can be used in this paper.
We denote

A∞ =
⋃

1<s<∞
As. (2.7)

The weighted Lebesgue measure w is defined by

w(E) =
∫
E

w(x)dx, (2.8)

for any bounded measurable set E ⊂Rn.
We need the following properties of As weight later in this paper.

Lemma 2.1. (See [20,21,29].)

(1) If w ∈ As for some 1 < s < ∞, then w ∈ As−s for some s = s(s) > 0 small.
(2) Let w ∈ As for some 1 < s < ∞ and E be a measurable subset of a ball B ⊂Rn. Then

w(B) � [w]s
( |B|

|E|
)s

w(E). (2.9)

(3) A weight w ∈ A∞ if and only if there exist positive constants α and t such that

w(E)� α

( |E|
|B|

)t

w(B), (2.10)

for every ball B and every measurable subset E of B ⊂Rn.

Let U be a bounded domain in Rn and let 1 < q < ∞. Then given a weight w ∈ As for some 1 < s < ∞, the
weighted Lebesgue space L

q
w(U) is the set of all measurable functions v : U →R satisfying∫

U

∣∣v(x)
∣∣qw(x)dx < +∞. (2.11)

This weighted Lebesgue space L
q
w(U) is a Banach space equipped with the following norm

‖v‖L
q
w(U) =

(∫
U

|v|qw(x)dx

) 1
q

. (2.12)

Hereafter, we always assume that 1 < q < ∞ and w ∈ Aq . Under these assumptions one can easily check that

Lpq
w (U) ⊂ Lp(U), (2.13)

which implies the existence of a weak solution under the assumption F ∈ L
pq
w (U).

Our main purpose in this paper is to establish the optimal global W 1,q (Ω)-estimate regarding the nonlinear elliptic
problem (2.1). More precisely, we want to find a minimal regularity requirement on the nonlinearity and a lower level
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of geometric assumption on the boundary of the bounded domain to ensure that the gradient of the weak solution
of (2.1) is as regular as the nonhomogeneous term F in the weighted Lebesgue space L

q
w(Ω), by essentially proving

that

|F |p ∈ Lq
w(Ω) 
⇒ |Du|p ∈ Lq

w(Ω) (2.14)

for the full range 1 < q < ∞.
To state the main result we first need to describe the main assumptions on the nonlinearity a = a(ξ, x) and on the

domain Ω . Let ρ > 0 and y ∈Rn. We denote

Bρ(y) = {
x ∈ Rn: |x − y| < ρ

}
.

In order to measure the oscillation of a(ξ,x)

|ξ |p−1 in the variables x over Bρ(y) in the BMO sense, uniformly in ξ , we
introduce the following function:

θ
(
a;Bρ(y)

)
(x) = sup

ξ∈Rn\{0}
|a(ξ, x) − aBρ(y)(ξ)|

|ξ |p−1
, (2.15)

where

aBρ(y)(ξ) = −
∫

Bρ(y)

a(ξ, x) dx = 1

|Bρ(y)|
∫

Bρ(y)

a(ξ, x) dx

is the integral average of a(ξ, x) in the variables x over Bρ(y) for the fixed ξ ∈ Rn.
The function θ(a;Bρ(y)) provides a uniform measurement over Bρ(y) of how far a(ξ,x)

|ξ |p−1 is from its integral average
aBρ(y)(ξ)

|ξ |p−1 , uniformly in ξ ∈Rn\{0}.

Definition 2.2. We say that the vector field a is (δ,R)-vanishing if

sup
0<ρ�R

sup
y∈Rn

−
∫

Bρ(y)

θ
(
a;Bρ(y)

)
(x) dx � δ. (2.16)

In order to measure the deviation of ∂Ω from being an (n − 1)-dimensional affine space at each scale ρ > 0, we
use the following so-called Reifenberg flatness.

Definition 2.3. We say that Ω is (δ,R)-Reifenberg flat if for every x ∈ ∂Ω and every ρ ∈ (0,R], there exists a
coordinate system {y1, . . . , yn}, which can depend on ρ and x so that x = 0 in this coordinate system and that

Bρ(0) ∩ {yn > δρ} ⊂ Bρ(0) ∩ Ω ⊂ Bρ(0) ∩ {yn > −δρ}.

Remark 2.4. We remark that throughout this paper δ > 0 is a small positive constant, say, 0 < δ < 1
8 , being deter-

mined later so that (2.14) holds true for all q ∈ (1,∞). On the other hand, R can be any number which is bigger
than 1 by the scaling invariance of the problem (2.1), see Lemma 2.5. We would like to refer to [15,23,24,14,28,30]
and references therein, where the notions about Bounded Mean Oscillation and Reifenberg flatness are extensively
discussed, respectively.

We need to check that the problem (2.1) is invariant under a proper scaling and normalization. To do this we have
to confirm that the primary assumptions on a(ξ, x) and ∂Ω are still invariant under such scaling and normalization
with the same uniform constants γ,Λ and δ. The following lemma ensures this invariance.

Lemma 2.5. For each λ > 1 and 0 < r < 1, let us define the rescaled maps:

ã(ξ, x) = a(λξ, rx)

p−1
, Ω̃ =

{
1
x: x ∈ Ω

}
, ũ(x) = u(rx)

, F̃ (x) = F(rx)
.

λ r λr λ



S.-S. Byun, S. Ryu / Ann. I. H. Poincaré – AN 30 (2013) 291–313 295
Then

(1) ũ ∈ W
1,p

0 (Ω̃) is the weak solution of

div ã(Dũ, x) = div
(|F̃ |p−2F̃

)
in Ω̃.

(2) ã satisfies the primary structural assumptions (2.2)–(2.3) with the same constant γ,Λ.
(3) ã is (δ, R

r
)-vanishing.

(4) Ω̃ is (δ, R
r
)-Reifenberg flat.

Proof. The proof follows from a direct computation. We also refer to those of Lemmas 2.7 and 2.8 in [8] and
Lemma 3.3 in [9]. �

We now state the main result.

Theorem 2.6. Let u ∈ W
1,p

0 (Ω) be the weak solution of (2.1), where 1 < p < ∞. Assume that w ∈ Aq and |F |p ∈
L

q
w(Ω) for some q ∈ (1,∞). Then there exists a constant δ = δ(γ,Λ,n,p, q, [w]q) > 0 such that if a is (δ,R)-

vanishing and Ω is (δ,R)-Reifenberg flat, then there holds |Du|p ∈ L
q
w(Ω) with the estimate∫

Ω

|Du|pqw(x)dx � c

∫
Ω

|F |pqw(x)dx, (2.17)

where c = c(γ,Λ,n,p,q, [w]q, |Ω|) > 0.

We remark that if we take w(x) = 1 in the main result, then (2.17) is reduced to the global Calderón–Zygmund
estimate for the problem (2.1). Even in this special case, this sharp integrability result can provide a global version of
the work [9] where a local Calderón–Zygmund theory was established under a similar regularity assumption on the
nonlinearity. In the same spirit of that in Chapter 5 of the recent paper [20], we can find a finer regularity in Morrey
spaces and Hölder spaces from Theorem 2.6.

3. Approximations and comparison maps

In this section we shall first compare a weak solution u of (2.1) to a weak solution h of the corresponding homo-
geneous boundary-value problem in a simply scaled domain. We then compare this solution h to a weak solution v of
a reference problem in a smaller domain with the flat boundary, for which we have the Lipschitz regularity up to the
flat boundary.

For the sake of convenience and simplicity, we employ the letter c through this section to denote any constant
which can be explicitly computed in terms of known quantities such as γ,Λ,n,p, q, [w]q and the geometry of related
domains. Thus the exact value denoted by c may change from line to line in a given computation.

We start with interior comparison estimates in B6 � Ω , by considering a weak solution u ∈ W 1,p(B6) of

div a(Du,x) = div
(|F |p−2F

)
in B6, (3.1)

which means∫
B6

〈
a(Du,x),Dϕ

〉
dx =

∫
B6

|F |p−2〈F,Dϕ〉dx

for each ϕ ∈ W
1,p

0 (B6).
The following lemma is a sort of comparison estimates when dealing with interior Calderón–Zygmund theory, see

for instance [9].

Lemma 3.1. Let u ∈ W 1,p(B6) be a weak solution of (3.1) under the assumptions (2.2)–(2.3) and

−
∫

|Du|p dx � 1.
B6
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Then, there exists a constant n1 = n1(γ,Λ,n,p) > 1 so that for 0 < ε < 1 fixed, one can find a small δ = δ(ε) > 0
such that if

−
∫
Bρ

θ(a;Bρ)dx � δ for any ρ ∈ (0,6]

and

−
∫
B6

|F |p dx � δp

for such small δ, then there exists a weak solution v ∈ W 1,p(B4) of

div aB4(Dv) = 0 in B4

such that

−
∫
B2

∣∣D(u − v)
∣∣p dx � εp and ‖Dv‖L∞(B3) � n1.

We next want to find a boundary version of Lemma 3.1 with an approximation scheme allowing to approximate a
portion of the Reifenberg flat boundary by an (n − 1)-dimensional hyperplane. We use standard geometric notations:

B+
ρ = Bρ ∩ {xn > 0}, Ωρ = Bρ ∩ Ω, Tρ = Bρ ∩ {xn = 0}, ∂wΩρ = ∂Ω ∩ Bρ.

By a dilation argument and from the Reifenberg flatness assumption of the domain, we assume the following geometric
setting:

B+
ρ ⊂ Ωρ ⊂ Bρ ∩ {xn > −2ρδ} for any ρ ∈ (0,6]. (3.2)

From the BMO smallness of the nonlinearity, we further assume that

−
∫
B+

ρ

∣∣θ(
a;B+

ρ

)∣∣dx � δ for any ρ ∈ (0,6], (3.3)

and

−
∫
Ω6

|F |p dx � δp. (3.4)

We consider a weak solution u ∈ W 1,p(Ω6) of{
div a(Du,x) = div

(|F |p−2F
)

in Ω6,

u = 0 on ∂wΩ6,
(3.5)

with the assumption

−
∫
Ω6

|Du|p dx � 1. (3.6)

We then let h ∈ W 1,p(B5) be the unique weak solution of{
div a(Dh,x) = 0 in Ω5,

h = u on ∂Ω5.
(3.7)

From the standard Lp-estimate for (3.7) and (3.6), we find

−
∫
Ω5

|Dh|p dx � c −
∫
Ω5

|Du|p dx � c. (3.8)

The next lemma is a self-improving gradient integrability for nonlinear elliptic problems of p-Laplacian type near
the boundary, as is well known, see for instance [11,17].
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Lemma 3.2. Let h ∈ W 1,p(B5) be the weak solution of (3.7) under the assumptions with (3.2)–(3.4) and (3.6). Then
there exists a positive constant σ1 = σ1(γ,Λ,n,p) such that

h ∈ Lp+σ1(Ω4)

with the uniform bound

−
∫
Ω4

|Dh|p+σ1 dx � c. (3.9)

Proof. From the Reifenberg flatness condition (3.2), we find

∣∣Ω ∩ Bρ(y)
∣∣ � (

1 − δ

2

)n∣∣Bρ(y)
∣∣ (

y ∈ B6, ρ ∈ (0,6)
)
,

since we may as well assume 0 < δ < 1
8 . This measure density condition implies that B5 \ Ω5 satisfies the uniform

capacity density condition. Then according to the standard higher integrability result for (3.7), see for instance [17],
we find(

−
∫
Ω4

|Dh|p+σ1 dx

) 1
p+σ1 � c

(
1 +

(
−
∫
Ω5

|Dh|p dx

) 1
p
)

(3.10)

for some small positive constant σ1 depending on γ,Λ,n, and p. The lemma follows from (3.8) and (3.10). �
Remark 3.3. We would like to point out that the above higher integrability is a useful tool when treating nonlinear
elliptic and parabolic problems, see for instance [1,2,16,22] and references therein. It is also very useful when we make
a systematic analysis of the gradients of solutions of nonlinear elliptic and parabolic problems near the boundary of the
irregular domain which is assumed to satisfy the Reifenberg flatness condition, as in this work. In [11,17] the authors
proved that this higher integrability holds under very general geometric condition that the complement of the domain
satisfies the uniform capacity density condition, which turns out to be essentially sharp and cannot be relaxed in this
direction. Needless to say, the uniform capacity density condition is weaker than our Reifenberg flatness condition.
We refer to [11,25,26] and references therein for a further discussion on local and global integrability of gradients in
nonlinear problems.

We next consider a weak solution h ∈ W 1,p(Ω4) of{
div aB+

4
(Dh) = 0 in Ω4,

h = 0 on ∂wΩ4,
(3.11)

and its limiting problem:{
div aB+

4
(Dv) = 0 in B+

4 ,

v = 0 on T4.
(3.12)

The following classical lemma provides Lipschitz regularity for the reference problem (3.12), see for instance
[13,18,19]. This lemma is useful in order to prove the desired Lpq estimates for the gradients of the problem (3.5),
whose limit case is indeed given by the Lipschitz estimates for (3.12).

Lemma 3.4. Let v ∈ W 1,p(B+
4 ) be a weak solution of (3.12) under the primary assumptions (2.2)–(2.3). Then we

have

‖Dv‖p

L∞(B+
3 )

� c −
∫
B+

4

|Dv|p dx.
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Remark 3.5. Let v and Dv be the zero extensions of v and Dv from B+
4 to B4, respectively. Observe that v = 0 on

T4 = B4 ∩ {xn = 0} in the trace sense to see that v ∈ W 1,p(B4) and Dv = Dv a.e. in B4. Consequently, we have

‖Dv‖p

L∞(Ω3)
� c −

∫
B+

4

|Dv|p dx. (3.13)

The following lemma says that a solution of (3.11) is very close to a solution of (3.12) in Lp under the Reifenberg
flatness condition (3.2). The proof is based on the compactness method.

Lemma 3.6. Let h ∈ W 1,p(Ω4) be a weak solution of (3.11) under the assumption

−
∫
Ω4

|Dh|p dx � 1. (3.14)

Then for any ε > 0 fixed, there exists a small δ = δ(ε, γ,Λ,n,p) > 0 such that if

B+
4 ⊂ Ω4 ⊂ B4 ∩ {xn > −8δ} (3.15)

holds for such δ, then there exists a weak solution v ∈ W 1,p(B+
4 ) of (3.12) with

−
∫
B+

4

|Dv|p dx � 1

such that∫
B+

4

|h − v|p dx � εp. (3.16)

Proof. If not, there exist ε0 > 0, {hk}∞k=1 and {Ωk
4 }∞k=1 such that hk is a weak solution of{

div aB+
4
(Dhk) = 0 in Ωk

4 ,

hk = 0 on ∂wΩk
4 ,

(3.17)

with

−
∫
Ωk

4

|Dhk|p dx � 1, (3.18)

B+
4 ⊂ Ωk

4 ⊂ B4 ∩
{
xn > −8

k

}
, (3.19)

but ∫
B+

4

|hk − v|p dx > ε
p

0 (3.20)

for any weak solution v of{
div aB+

4
(Dv) = 0 in B+

4 ,

v = 0 on T4,
(3.21)

with

−
∫
B+

|Dv|p dx � 1. (3.22)
4
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From (3.18)–(3.19) and the fact that hk = 0 on ∂wΩk
4 , we see that {hk}∞k=1 is uniformly bounded in W 1,p(B+

4 ). So
there is a subsequence, which we still denote as {hk}, and h0 ∈ W 1,p(B+

4 ) such that

hk ⇀ h0 weakly in W 1,p
(
B+

4

)
and hk → h0 strongly in Lp

(
B+

4

)
. (3.23)

We next observe from (3.17), (3.19) and (3.23) that h0 = 0 on T4 in the trace sense. We then let k → ∞ on
(3.18)–(3.19) and use the method of Browder and Minty, see [8] for the details, to discover that h0 ∈ W 1,p(B+

4 )

is a weak solution of{
div aB+

4
(Dh0) = 0 in B+

4 ,

h0 = 0 on T4.
(3.24)

We derive from (3.18), (3.23) and weak lower semicontinuity property that

−
∫
B+

4

|Dh0|p dx � lim inf
k→∞ −

∫
Ωk

4

|Dhk|p dx � 1. (3.25)

We then reach a contradiction to (3.20) by taking k sufficiently large and comparing (3.21)–(3.22) with (3.24)–(3.25).
This completes the proof. �

We compare a solution u of (3.5) with a solution v of (3.12) and use the perturbation argument to have the following
Lp estimates for gradients.

Lemma 3.7. Let u ∈ W 1,p(Ω6) be a weak solution of (3.5) with the assumption (3.6). Then, there exists a constant
n2 = n2(γ,Λ,n,p) > 1 so that for any ε > 0 fixed, one can find a small δ = δ(ε) > 0 such that if (3.2), (3.3) and
(3.4) hold for such small δ, then there exists a weak solution v ∈ W 1,p(B+

4 ) of (3.12) such that

−
∫
Ω2

∣∣D(u − v)
∣∣p dx � εp

and

‖Dv‖L∞(Ω3) � n2,

where v is the zero extension of v from B+
4 to B4.

Proof. The proof will be divided into two cases.

Case 1. 1 < p < 2.
Let h be the weak solution of (3.7). We then take the test function ϕ = u − h for (3.5) and (3.7), to derive

−
∫
Ω5

〈
a(Du,x) − a(Dh,x),Du − Dh

〉
dx = −

∫
Ω5

〈|F |p−2F,Du − Dh
〉
dx.

But then, Young’s inequality with σ and (3.4) imply that for any σ > 0,

−
∫
Ω5

〈|F |p−2F,Du − Dh
〉
dx � σ −

∫
Ω5

∣∣D(u − h)
∣∣p dx + c(σ ) −

∫
Ω5

|F |p dx

� σ −
∫
Ω5

∣∣D(u − h)
∣∣p dx + c(σ )δp.

Hence we have

−
∫ 〈

a(Du,x) − a(Dh,x),Du − Dh
〉
dx � σ −

∫ ∣∣D(u − h)
∣∣p dx + c(σ )δp. (3.26)
Ω5 Ω5



300 S.-S. Byun, S. Ryu / Ann. I. H. Poincaré – AN 30 (2013) 291–313
Using Young’s inequality with τ1 > 0 and the monotonicity (2.4), we estimate

−
∫
Ω5

∣∣D(u − h)
∣∣p dx = −

∫
Ω5

(
1 + |Du| + |Dh|) p(2−p)

2
[(

1 + |Du| + |Dh|) p(p−2)
2

∣∣D(u − h)
∣∣p]

dx

� τ1 −
∫
Ω5

(
1 + |Du| + |Dh|)p

dx + c(τ1) −
∫
Ω5

(
1 + |Du| + |Dh|)p−2∣∣D(u − h)

∣∣2
dx

� τ1 −
∫
Ω5

(
1 + |Du| + |Dh|)p

dx + c(τ1)

γ
−
∫
Ω5

〈
a(Du,x) − a(Dh,x),Du − Dh

〉
dx

� c1τ1 + c(τ1)

γ

(
σ −

∫
Ω5

∣∣D(u − h)
∣∣p dx + c(σ )δp

)

for some constant c1 = c1(γ,Λ,n,p), where we have used (3.8) and (3.26) to find the last inequality. Consequently,
we have

−
∫
Ω5

∣∣D(u − h)
∣∣p dx � c1τ1 + c(τ1)

γ
σ −

∫
Ω5

∣∣D(u − h)
∣∣p dx + 1

γ
c(τ1)c(σ )δp. (3.27)

We first take

τ1 = 1

10 · 3p−1 · c1

(
2

5

)n

εp.

A direct computation yields c(τ1) = cεp−2. We next take σ = cε2−p , in order to get

c(τ1)

γ
σ = 1

2
.

Another computation yields that c(σ ) = cε
p−2
p−1 . Then we have

c(τ1)

γ
c(σ ) = cεp−2ε

p−2
p−1 = cε

p(p−2)
p−1 .

Therefore, we discover

−
∫
Ω2

∣∣D(u − h)
∣∣p dx � 2

(
5

2

)n

−
∫
Ω5

∣∣D(u − h)
∣∣p dx � 1

5 · 3p−1
εp + cε

p(p−2)
p−1 δp. (3.28)

Now let h be the unique weak solution of{
div aB+

4
(Dh) = 0 in Ω4,

h = h on ∂Ω4.
(3.29)

We then take the test function ϕ = h − h for (3.7) and (3.29), to write the resulting expression as

A = B (3.30)

for

A = −
∫
Ω4

〈
aB+

4
(Dh) − aB+

4
(Dh),Dh − Dh

〉
dx

and

B = −
∫ 〈

aB+
4
(Dh) − a(Dh,x),Dh − Dh

〉
dx.
Ω4
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We first estimate A by almost exactly the same way in the estimation for (3.27). After some calculations we find
that for any τ2 > 0,

−
∫
Ω2

∣∣D(h − h)
∣∣p dx � c −

∫
Ω4

∣∣D(h − h)
∣∣p dx � cτ2 + c(τ2)|A|. (3.31)

We next estimate B:

|B| � −
∫
Ω4

∣∣aB+
4
(Dh) − a(Dh,x)

∣∣|Dh − Dh|dx

(2.15)

� −
∫
Ω4

θ
(
a,B+

4

)|Dh|p−1|Dh − Dh|dx

Young’s inequality
� σ −

∫
Ω4

∣∣D(h − h)
∣∣p dx + c(σ ) −

∫
Ω4

θ
p

p−1 |Dh|p dx

� σ −
∫
Ω4

∣∣D(h − h)
∣∣p dx + c(σ )

(
−
∫
Ω4

θ
p(p+σ1)

(p−1)σ1 dx

) σ1
p+σ1

(
−
∫
Ω4

|Dh|p+σ1 dx

) p
p+σ1

(3.3), (3.9)

� σ −
∫
Ω4

∣∣D(h − h)
∣∣p dx + c(σ )δσ3 (3.32)

for any σ > 0 and for some σ3 = σ3(γ,Λ,n,p) > 0. We then combine (3.30), (3.31), and (3.32) to discover

−
∫
Ω4

∣∣D(h − h)
∣∣p dx � c2τ2 + σc(τ2) −

∫
Ω4

∣∣D(h − h)
∣∣p dx + c(τ2)c(σ )δσ3 (3.33)

for any σ, τ2 > 0 and for some c2 and σ3, depending only on γ,Λ,n and p.
We take

τ2 = 1

5 · 3p−1 · 2n+1 · c2
εp.

A direct computation yields c(τ2) = cεp−2. We next take σ = cε2−p , in order to get

c(τ2)σ = 1

2
.

Another computation yields that c(σ ) = cε
p−2
p−1 . Then we have

c(τ2)c(σ ) = cεp−2ε
p−2
p−1 = cε

p(p−2)
p−1 .

Thus, we find

−
∫
Ω2

∣∣D(h − h)
∣∣p dx � 2n+1 −

∫
Ω4

∣∣D(h − h)
∣∣p dx � 1

5 · 3p−1
εp + cε

p(p−2)
p−1 δσ3 (3.34)

for some σ3 = σ3(γ,Λ,n,p) > 0.
Now from the standard Lp estimates for (3.7) and (3.29), we deduce

−
∫
Ω4

|Dh|p dx � c −
∫
Ω4

|Dh|p dx � c −
∫
Ω4

|Du|p dx.

We then recall the assumption (3.6) to conclude from the invariance property under a proper normalization, see
Lemma 2.5, that

−
∫

|Dh|p dx � 1. (3.35)
Ω4
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Then according to Lemma 3.6, there exists a weak solution v of{
div aB+

4
(Dv) = 0 in B+

4 ,

v = 0 on T4,
(3.36)

with

−
∫
Ω4

|Dv|p dx � 1, (3.37)

such that∫
B+

4

|h − v|p dx � ηεp, (3.38)

where η > 0 is to be determined. We now recall Lipschitz regularity for (3.36), see Lemma 3.4, to find from (3.37)
that

‖Dv‖L∞(B+
3 ) � n2,

for some universal constant n2 = n2(γ,Λ,n,p) > 1. Let v be the zero extension of v from B+
4 to B4 and recall

Remark 3.5 to further find that

‖Dv‖L∞(Ω3) � n2. (3.39)

According to a direct computation, we see that v is a weak solution of{
div aB+

4
(Dv) = −Dn

(
an

B+
4

(
Dv

(
x′,0

))
χ{xn<0}

)
in Ω4,

v = 0 on ∂wΩ4,
(3.40)

where χ is standard characteristic function. Choose a cutoff function ζ ∈ C∞
0 (B3) such that

0 � ζ � 1, ζ ≡ 1 on B2, |Dζ | � 2. (3.41)

We then take the test function ϕ = ζp(h − v) for (3.40) and (3.29), to write the resulting expression as

A = B (3.42)

for

A = −
∫
Ω3

〈
aB+

3
(Dh) − aB+

4
(Dv),D

(
ζp(h − v)

)〉
dx

and

B = −
∫

Ω3\B+
3

an
B+

4

(
Dv

(
x′,0

))
Dn

(
ζp(h − v)

)
dx.

We write

A = −
∫
Ω3

ζp
〈
aB+

4
(Dh) − aB+

4
(Dv),Dh − Dv

〉
dx + −

∫
Ω3

pζp−1(h − v)
〈
aB+

4
(Dh) − aB+

4
(Dv),Dζ

〉
dx

= A1 + A2. (3.43)

Again, we estimate A1 to find that for any τ3 > 0,

−
∫
Ω3

ζp
∣∣D(h − v)

∣∣p dx � cτ3 + c(τ3)A1. (3.44)

We now estimate A2 as follows:
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|A2| � c −
∫
Ω3

∣∣aB+
4
(Dh) − aB+

4
(Dv)

∣∣|h − v|dx

(2.2)

� c −
∫
Ω3

(|Dh|p−1 + |Dv|p−1)|h − v|dx

� c

(
−
∫
Ω3

|Dh|p dx + −
∫
Ω3

|Dv|p dx

) p−1
p

(
−
∫
Ω3

|h − v|p dx

) 1
p

(3.35), (3.39)

� c

(
−
∫
Ω3

|h − v|p dx

) 1
p

(3.2)

� c

(
−
∫
B+

3

|h − v|p dx +
∫

Ω3\B+
3

|h − v|p dx

) 1
p

(3.38)

� c

(
ηεp +

∫
Ω3\B+

3

|h|p dx

) 1
p

� c

(
ηεp +

( ∫
Ω3\B+

3

|h| np
n−p dx

) n−p
np

( ∫
Ω3\B+

3

1dx

) 1
n
)

Sobolev inequality, (3.2)

� c

(
ηεp +

( ∫
Ω4

|Dh|p dx

) 1
p

δ
1
n

)

(3.35)

� c
(
ηεp + δ

1
n
)
. (3.45)

Here we assumed 1 < p < n. The case p � n is trivial in the above estimates.
We next estimate B as follows:

|B| � c −
∫

Ω3\B+
3

∣∣an
B+

4

(
Dv

(
x′,0

))∣∣∣∣Dn

(
ζp(h − v)

)∣∣dx

(2.3), (3.41)

� c

∫
Ω3\B+

3

∣∣Dv
(
x′,0

)∣∣p−1(|h| + |Dh|)dx

(3.39)

�
∫

Ω3\B+
3

(|h| + |Dh|)dx

� c

( ∫
Ω3\B+

3

(|h|p + |Dh|p)
dx

) 1
p
( ∫

Ω3\B+
3

1dx

)1− 1
p

Poincarè’s inequality
� c

( ∫
Ω3

|Dh|p dx

) 1
p
( ∫

Ω3\B+
3

1dx

)1− 1
p

(3.2), (3.35)

� cδ
1− 1

p . (3.46)
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In view of (3.42)–(3.46), we conclude that

−
∫
Ω3

ζp
∣∣D(h − v)

∣∣p dx � cτ3 + c(τ3)
(
ηεp + δ

1
n + δ

1− 1
p
)
.

Then it follows from (3.41) that

−
∫
Ω2

∣∣D(h − v)
∣∣p dx � c3τ3 + c(τ3)

(
ηεp + δ

1
n + δ

1− 1
p
)
. (3.47)

We take

τ3 = 1

5 · 3p−1 · c3
εp.

A direct computation yields c(τ3) = cεp−2. Take η = cε2−p so that

c(τ3)η = 1

5 · 3p−1
.

As a consequence, we have

−
∫
Ω2

∣∣D(h − v)
∣∣p dx � 2

5 · 3p−1
εp + cεp−2δσ4, (3.48)

where σ4 = min{ 1
n
,1 − 1

p
}.

We finally combine (3.28), (3.34) and (3.48), to discover

−
∫
Ω2

∣∣D(u − v)
∣∣p dx � 4

5
εp + c

(
ε

p(p−2)
p−1 δp + ε

p(p−2)
p−1 δσ3 + εp−2δσ4

) = εp,

by taking δ so that the last identity holds.

Case 2. p � 2.
The proof of the case 2 is similar to that of the case 1, even simpler in this degenerate case. In fact, from the

monotonicity (2.4), we can directly find the counterparts of (3.27), (3.33) and (3.47) without selecting τi (i = 1,2,3).
It’s worth noting that η > 0 in (3.38) can be chosen so that it is independent of ε. �
4. Global a priori estimates

In this section we will establish the a priori estimate∫
Ω

|Du|pqw(x)dx � c

∫
Ω

|F |pqw(x)dx, (4.1)

for every q ∈ (1,∞), under the a priori assumption:∫
Ω

|Du|pqw(x)dx < +∞. (4.2)

To do this, we further assume that F , a and ∂Ω to be of class C∞, in order to get

|Du| ∈ L∞(Ω).

These assumptions shall be removed in the next section by the standard approximation scheme. Hereafter we write

p = pq − μ0 (> p),
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where μ0 is a positive number which will be determined below in Remark 4.3. We now denote λ0 to mean the integral
average of |Du|p + 1

δp |F |p over Ω with respect to the weight measure w(·). That is,

λ0 = 1

w(Ω)

∫
Ω

[
|Du|p + 1

δp
|F |p

]
w(x)dx. (4.3)

We point out that δ ∈ (0, 1
8 ) is now fixed, but to be selected later in this section.

Although our problem is nonlinear, our problem (2.1) is invariant under scaling and normalization, see Lemma 2.5.
Then for the sake of simplicity we may assume that

[w]q ·
(

16

7

)nq

· w(Ω)

w(B1(y) ∩ Ω)
· λ0 < 1 for all y ∈ Ω, (4.4)

as we can control the problem (2.1) with a proper normalization and dilation so that the inequality in (4.4) holds true.
Given a fixed point y ∈ E(1) := {x ∈ Ω: |Du(x)| > 1} and for each r > 0, we define a continuous function

Θ = Θy : (0,∞) �→R by

Θ(r) = 1

w(Ωr(y))

∫
Ωr(y)

[
|Du|p + 1

δp
|F |p

]
w(x)dx, (4.5)

where Ωr(y) = Ω ∩ Br(y) = Ωr + y.

Remark 4.1. (See [29].) Observe that the measure w(·) is a nonnegative regular Borel measure on Rn, is finite on
bounded sets and has a doubling property, to find that for almost every y ∈ E(1)

Θ(0) = lim
r→0

Θ(r) = ∣∣Du(y)
∣∣p + 1

δp

∣∣F(y)
∣∣p > 1. (4.6)

Since the given domain Ω is bounded, we also see that

lim
r→∞Θ(r) = 1

w(Ω)

∫
Ω

[
|Du|p + 1

δp
|F |p

]
w(x)dx = λ0 < 1.

On the other hand, for r � 1,

Θ(r) = 1

w(Ωr(y))

∫
Ωr(y)

[
|Du|p + 1

δp
|F |p

]
w(x)dx

� w(Br(y))

w(Ωr(y))

w(Ω)

w(B1(y))

1

w(Ω)

∫
Ω

[
|Du|p + 1

δp
|F |p

]
w(x)dx

= w(Br(y))

w(Ωr(y))

w(Ω)

w(B1(y))
λ0.

We also see from Lemma 2.1 and Definition 2.3 that

w(Br(y))

w(Ωr(y))
� [w]q ·

( |Br(y)|
|Br(y) ∩ Ω|

)q

� [w]q ·
(

2

1 − δ

)nq

� [w]q ·
(

16

7

)nq

.

But then (4.4) implies that

Θ(r) < 1, ∀r � 1. (4.7)

Hence we deduce from (4.6) and (4.7) that for almost every y ∈ E(1) there exists a number r̃ = r̃(y) ∈ (0,1) such that

Θ(r̃) = 1 and Θ(r) < 1 for all r � r̃ .

We now apply Vitali’s covering lemma, to obtain the following lemma.
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Lemma 4.2. There exists a family of disjoint {Ωrk (yk)}k�1 with yk ∈ E(1) and 0 < rk = rk(yk) < 1 such that

Θyk
(rk) = 1, (4.8)

Θyk
(r) < 1 (r > rk), (4.9)

and

E(1) ⊂
⋃
k�1

Ω5rk (yk) ∪ negligible set. (4.10)

Remark 4.3. Recall that a weight w ∈ Aq for q > 1. Then in view of Lemma 2.1 we observe that w ∈ Aq for some
constant q = q(n, q, [w]q) ∈ (1, q). We next take a small positive number μ0 so that

0 < μ0 < p(q − q) < p(q − 1) < pq − 1. (4.11)

We now claim that

−
∫

Ωr(y)

|Du|p dx �
([w] pq−μ0

p

) p
pq−μ0

under the assumption

1

w(Ωr(y))

∫
Ωr(y)

|Du|pq−μ0w(x)dx � 1, (4.12)

for any number r > 0 and for any point y ∈ Ω .
Indeed, we use Hölder’s inequality to estimate

−
∫

Ωr(y)

|Du|p dx = −
∫

Ωr(y)

|Du|p · w(x)
p

pq−μ0 · w(x)
− p

pq−μ0 dx

(4.11)

�
(

−
∫

Ωr(y)

|Du|pq−μ0w(x)dx

) p
pq−μ0

(
−
∫

Ωr(y)

w(x)
− p

p(q−1)−μ0 dx

) p(q−1)−μ0
pq−μ0

(4.12)

�
(

w(Ωr(y))

|Ωr(y)|
) p

pq−μ0
(

−
∫

Ωr(y)

w(x)
− p

p(q−1)−μ0 dx

) p(q−1)−μ0
pq−μ0

(2.8)

�
(

−
∫

Ωr(y)

w(x)dx

) p
pq−μ0

(
−
∫

Ωr(y)

w(x)
− 1

pq−μ0
p −1

dx

)(
pq−μ0

p
−1)

p
pq−μ0

(4.11), (2.6)

�
([w] pq−μ0

p

) p
pq−μ0 .

By the same reason we have

−
∫

Ωr(y)

|F |p dx �
([w] pq−μ0

p

) p
pq−μ0 δp

under the assumption

1

w(Ωr(y))

∫
|F |pq−μ0w(x)dx � δpq−μ0 . (4.13)
Ωr(y)
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Therefore, under the assumptions (4.12) and (4.13), and with the invariance property under a proper normalization,
see Lemma 2.5, we assume that

−
∫

Ωr(y)

|Du|p dx � 1 and −
∫

Ωr(y)

|F |p dx � δp.

We now recall p = pq − μ0 and want to estimate the size of each member Ωrk (yk) of the covering of the upper
level set E(1), given in Lemma 4.2.

Lemma 4.4. Under the same hypothesis and results as in Lemma 4.2, we have

w
(
Ωrk (yk)

)
� c

( ∫
Ωrk

(yk)∩{|Du|> 1
2 }

|Du|pw(x)dx + 1

δp

∫
Ωrk

(yk)∩{|F |> δ
2 }

|F |pw(x)dx

)
.

Proof. It follows from (4.8) that

Θrk (yk) = 1.

Then we have

w
(
Ωrk (yk)

) =
∫

Ωrk
(yk)

[
|Du|p + 1

δp
|F |p

]
w(x)dx.

Now we split the two integrals in the right-hand side of the above inequality to estimate

w
(
Ωrk (yk)

)
�

∫
Ωrk

(yk)∩{|Du|> 1
2 }

|Du|pw(x)dx + 1

2p
w

(
Ωrk (yk)

)

+ 1

δp

∫
Ωrk

(yk)∩{|F |> δ
2 }

|F |pw(x)dx + 1

2p
w

(
Ωrk (yk)

)
.

This estimate and (4.11) yield conclusion. �
Lemma 4.5. Let λ > 1 and N = max{n1, n2}, where n1 and n2 are given in Lemmas 3.1 and 3.7, respectively. Under
the same notation and results as in Lemma 4.4, we have

w
({

x ∈ Ω:
∣∣Du(x)

∣∣ > 2Nλ
})

� c
εpt

λp

( ∫
{x∈Ω: |Du|> λ

2 }
|Du|pw(x)dx + 1

δp

∫
{x∈Ω: |F |> δλ

2 }
|F |pw(x)dx

)
,

where the positive constant t is given in Lemma 2.1.

Proof. In Lemma 4.2, we have found a family of disjoint covers {Ωrk (yk)}k�1 with yk ∈ E(1) and rk ∈ (0,1). We
will estimate the upper level set on each fixed member Ωrk (yk) of this covering, arguing on the comparison estimates
as in Lemmas 3.1 and 3.7 from the scaling invariant property of the problem (2.1).

We first consider the interior case B30rk (yk) ⊆ Ω . Define the scaled functions

ũk(x) = 1

5rk
u(yk + 5rkx), F̃k(x) = F(yk + 5rkx), ãk(ξ, x) = ak(ξ, yk + 5rkx)

for x ∈ B6 and ξ ∈Rn. Then ũk is a weak solution of

div ãk(Dũk, x) = div
(|F̃k|p−2F̃k

)
in B6.
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In view of Lemma 4.2 and Remark 4.3, we are under the hypotheses of Lemma 3.1, which implies that there exists a
constant n1 = n1(γ,Λ,n,p) > 1 so that for any ε > 0 fixed, we find a small δ = δ(ε, γ,Λ,n,p, q, [w]q) > 0 and a
weak solution ṽk of

div
(
ãkB4(Dṽk)

) = 0 in B4

such that

‖Dṽk‖L∞(B3) � n1

and

−
∫
B2

∣∣D(ũk − ṽk)
∣∣p dx � εp.

Now we define

vk(x) = 5rkṽk

(
x

5rk

) (
x ∈ B20rk (yk)

)
.

By change of variables, we see that

‖Dvk‖L∞(B15rk
(yk)) � n1 (4.14)

and

−
∫

B10rk
(yk)

∣∣D(u − vk)
∣∣p dx � εp. (4.15)

Consequently, in this interior case, we have

|{x ∈ B10rk (yk): |Du| > 2n1}|
|B10rk (yk)| � |{x ∈ B10rk (yk): |D(u − vk)| > n1}|

|B10rk (yk)| + |{y ∈ B10rk (yk): |Dvk| > n1}|
|B10rk (yk)|

(4.14)

� 1

n
p

1

−
∫

B10rk
(yk)

∣∣D(u − vk)
∣∣p dx

(4.15)

� 1

n
p

1

εp. (4.16)

We now consider the boundary case B30rk (yk) � Ω . In this case, for simplicity, we assume that Ω is (δ,108)-
Reifenberg flat. Then we find an appropriate coordinate system with

yk = xk

that

B+
108rk

⊂ Ω108rk ⊂ B108rk ∩ {xn > −216rkδ}
and

Ω5rk (xk) ⊂ Ω36rk = Ω36rk (0) ⊂ Ω108rk (0) ⊂ Ω120rk (xk).

We define the scaled functions

ũk(x) = 1

18rk
u(18rkx), F̃k(x) = F(18rkx), ãk(ξ, x) = ak(ξ,18rkx)

for x ∈ Ω6 and ξ ∈ Rn. Then ũk is a weak solution of

div
(
ãk(Dũk, x)

) = div
(|F̃k|p−2F̃k

)
in Ω6.
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Then thanks to Lemma 2.5, Lemma 4.2 and Remark 4.3, we apply Lemma 3.7, to ascertain that there exists a constant
n2 = n2(γ,Λ,n,p) > 1 so that for any ε > 0 fixed, we find a small δ = δ(ε, γ,Λ,n,p, q, [w]q) > 0 and a weak
solution ṽk of

div
(
ãkB+

4
(Dṽk)

) = 0 in B+
4 with ṽk = 0 on T4

such that

‖Dṽk‖L∞(Ω3) � n2

and

−
∫
Ω2

∣∣D(ũk − ṽk)
∣∣p dx � εp,

where ṽk is the zero extension of ṽk . Now we define

vk(x) = 18rkṽk

(
x

18rk

)
(x ∈ Ω72rk ).

By change of variables, eventually we see that

‖Dvk‖L∞(Ω54rk
) � n2 (4.17)

and

−
∫

Ω36rk

∣∣D(u − vk)
∣∣p dx � εp, (4.18)

where vk is the zero extension of vk which is a weak solution of

div aB+
72rk

(Dvk) = 0 in B+
72rk

with vk = 0 on T72rk .

Therefore, in this boundary case, we compute

|{x ∈ Ω36rk : |Du| > 2n2}|
|Ω36rk |

� |{x ∈ Ω36rk : |D(u − vk)| > n2}|
|Ω36rk |

+ |{x ∈ Ω36rk : |Dvk| > n1}|
|Ω36rk |

(4.17)

� 1

n
p

2

−
∫

Ω36rk

∣∣D(u − vk)
∣∣p dx

(4.18)

� 1

n
p

2

εp. (4.19)

Now we recall the measure density condition of a Reifenberg flat domain discussed previously in the proof
Lemma 3.2 and our setting that N = max{n1, n2}. We then combine (4.16) in the interior case with (4.19) in the
boundary case, to discover

|{x ∈ Ω5rk (yk): |Du(x)| > 2N}|
|Ωrk (yk)| � cεp,

where we point out that the constant c = c(γ,Λ,n,p) is independent of k. This estimate and (2.10) in Lemma 2.1
yield

w
({

x ∈ Ω5rk (yk):
∣∣Du(x)

∣∣ > 2N
})

� cεptw
(
Ωrk (yk)

)
. (4.20)

Recalling Lemma 4.2 and Lemma 4.4 and using (4.20), we estimate

w
({

x ∈ Ω:
∣∣Du(x)

∣∣ > 2N
})

�
∑
k�1

w
({

x ∈ Ω5rk (yk):
∣∣Du(x)

∣∣ > 2N
})

� cεpt
∑

w
(
Ωrk (yk)

)

k�1
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� cεpt
∑
k�1

( ∫
Ωrk

(yk)∩{|Du|> 1
2 }

|Du|pw dx + 1

δp

∫
Ωrk

(yk)∩{|F |> δ
2 }

|F |pw dx

)

� cεpt

( ∫
Ω∩{|Du|> 1

2 }
|Du|pw dx + 1

δp

∫
Ω∩{|F |> δ

2 }
|F |pw dx

)
.

Notice that the Dirichlet problem (2.1) is invariant under normalization, as one can take λ > 1 and r = 1 in Lemma 2.5,
to discover that for each λ > 1

w
({

x ∈ Ω:
∣∣Du(x)

∣∣ > 2Nλ
})

� cεpt 1

λp

( ∫
Ω∩{|Du|> λ

2 }
|Du|pw dx + 1

δp

∫
Ω∩{|F |> δλ

2 }
|F |pw dx

)
.

This completes the proof. �
Before proving the a priori estimate (4.1), we recall the following classical measure theory on weighted Lebesgue

spaces.

Lemma 4.6. Let Ω be a bounded domain in Rn. Let w be an Aq weight for some 1 < q < ∞. Then for all nonnegative

function g ∈ L
β
w(Ω) and any β > α > 1,

∫
Ω

|g|βw(x)dx = β

∞∫
0

λβ−1w
({

x ∈ Ω: g(x) > λ
})

dλ

= (β − α)

∞∫
0

λβ−α−1
( ∫

{|g|>λ}
|g|αw(x)dx

)
dλ.

We are now set to give a complete proof of the a priori estimate (4.1).

Proof. We first recall that the letter c means a universal positive constant being dependent only on γ,Λ,n,p, q, [w]q
and the geometry of the domain. The proof proceeds with Lemmas 4.5 and 4.6.

According to the first identity formula in Lemma 4.6 when g = |Du| and β = pq , we find

∫
Ω

|Du|pqw(x)dx = pq

∞∫
0

λpq−1w
({

x ∈ Ω: |Du| > λ
})

dλ

= pq

2N∫
0

λpq−1w
({

x ∈ Ω: |Du| > λ
})

dλ + pq

∞∫
2N

λpq−1w
({

x ∈ Ω:
∣∣Du(x)

∣∣ > λ
})

dλ

=: I1 + I2.

Estimate of I1: A direct computation finds

I1 � c · w(Ω).

Estimate of I2: It follows from the change of variables and Lemma 4.5 that

I2 = pq

∞∫
2N

λpq−1 w
({

x ∈ Ω: |Du| > λ
})

dλ

� c

∞∫
λpq−1w

({
x ∈ Ω: |Du| > 2Nλ

})
dλ
1
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� cεpt

∞∫
1

λpq−1

λp

[ ∫
Ω∩{|Du|> λ

2 }
|Du|pw(x)dx

]
dλ + c

εpt

δp

∞∫
1

λpq−1

λp

[ ∫
Ω∩{|F |> δλ

2 }
|F |pw(x)dx

]
dλ.

Apply the second identity formula in Lemma 4.6 when g = |Du| and g = |F | respectively, β = pq and α = p =
pq − μ0, to derive

I2 � cεpt

∫
Ω

|Du|pqw(x)dx + c(δ, ε)

∫
Ω

|F |pqw(x)dx.

We combine the estimate of I1 with the estimate of I2, to derive∫
Ω

|Du|pqw(x)dx � c + cεpt

∫
Ω

|Du|pqw(x)dx + c(δ, ε)

∫
Ω

|F |pqw(x)dx.

We then use the a priori assumption (4.2) and select ε > 0 small enough in order to get 0 < cεpt < 1, thereby
determining δ = δ(γ,Λ,n,p, q, [w]q) > 0 due to Lemmas 3.1 and 3.7, to finally get the required one∫

Ω

|Du|pqw(x)dx � c

( ∫
Ω

|F |pqw(x)dx + 1

)

for some positive and universal constant c = c(γ,Λ,n,p,q, [w]q, |Ω|). �
5. Approximation procedure

In the previous section we have established the a priori estimate (4.1) under the a priori regularity assumption (4.2).
In this section we will complete our proof of the main result, Theorem 2.6, by removing the assumption (4.2). Since
this procedure is similar to those made in the previous papers [5,10], we make a brief sketch for the completeness of
the proof.

Proof of Theorem 2.6. In view of Lemma 4.2 in [6] and by a standard approximation of a Lipschitz domain by
smooth domains, we can extract a sequence of smooth domains Ωm with the uniform (δ,R)-Reifenberg flatness
property such that

Ωm ⊂ Ωm+1 ⊂ Ω and dH

(
∂Ωm,∂Ω

) → 0 as m → ∞, (5.1)

where dH denotes the Hausdorff distance. We next select a sequence of smooth nonlinearities ak ∈ C∞(Rn ×Rn;Rn)

satisfying the basic structural conditions (2.2)–(2.4) and the regularity requirement (2.16) such that

ak(ξ, ·) → a(ξ, ·) strongly in La
(
Rn

)
as k → ∞, (5.2)

for each 1 < a < ∞ and uniformly at each ξ .
We also choose a sequence {Fk}∞k=1 of smooth functions on C∞(Ω;Rn) such that

Fk → F strongly in Lpq
w

(
Ω;Rn

)
as k → ∞. (5.3)

Then, since w ∈ Aq ,

Fk → F strongly in Lp
(
Ω;Rn

)
as k → ∞.

Now we fix any sufficiently large positive integer m. Then according to a standard theory for a nonlinear elliptic
equation on the fixed smooth domain Ωm with smooth data, ak and Fk , there exists a unique weak solution uk ∈
W

1,p

0 (Ωm) of{
div ak(Duk, x) = div

(|Fk|p−2Fk

)
in Ωm,

uk = 0 on ∂Ωm,
(5.4)

with the Lipschitz regularity Duk ∈ L∞(Ωm;Rn), see [13,18]. Needless to say, this weak solution satisfies our a
priori regularity assumption

|Duk|p ∈ Lq
w

(
Ωm

)
. (5.5)
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Then as in Section 4 with the assumption (5.5), we have∫
Ωm

|Duk|pqw(x)dx � c

∫
Ωm

|Fk|pqw(x)dx

where the constant c is independent of k. Then it follows from (5.1) and (5.3) that∫
Ωm

|Duk|pqw(x)dx � c

∫
Ω

|F |pqw(x)dx < ∞. (5.6)

Therefore, {uk}∞k=1 is uniformly bounded in W
1,pq

0 (Ωm,w(x)dx) which is the weighted Sobolev space with a

weight w like (2.11). So there is a subsequence, which we still denote as {uk}, and um in W
1,pq

0 (Ωm,w(x)dx)

such that{
uk ⇀ um weakly in W

1,pq

0

(
Ωm,w(x)dx

) ⊂ W
1,p

0

(
Ωm

)
,

uk → um strongly in L
pq
w

(
Ωm

) ⊂ Lp
(
Ωm

)
,

(5.7)

as k → ∞. Returning to (5.4) and letting k → ∞, it follows from (5.2), (5.3) and (5.7) that um is the unique weak
solution of{

div a
(
Dum,x

) = div
(|F |p−2F

)
in Ωm,

um = 0 on ∂Ωm.
(5.8)

In addition, we observe from the weak lower semicontinuity in (5.6) and (5.7) that∫
Ωm

∣∣Dum
∣∣pq

w(x)dx � c

∫
Ω

|F |pqw(x)dx. (5.9)

We next let um be the zero extension of um from Ωm to Ω . That is,

um(x) =
{

um(x) if x ∈ Ωm,

0 if x ∈ Ω \ Ωm.
(5.10)

Then, from (5.1), (5.9) and (5.10), we discover that um ∈ W
1,p

0 (Ω) with∫
Ω

∣∣Dum
∣∣pq

w(x)dx � c

∫
Ω

|F |pqw(x)dx < ∞. (5.11)

Hence we have, up to subsequences, that{
um ⇀ u weakly in W

1,pq

0

(
Ω,w(x)dx

) ⊂ W
1,p

0 (Ω),

um → u strongly in L
pq
w (Ω) ⊂ Lp(Ω),

(5.12)

for some u ∈ W
1,pq

0 (Ω,w(x)dx) ⊂ W
1,p

0 (Ω) as m → ∞. Then by (5.11) and (5.12), we have∫
Ω

|Du|pqw(x)dx � c

∫
Ω

|F |pqw(x)dx. (5.13)

On the other hand, it follows from (5.1), (5.8), (5.12), and the uniqueness of the weak solution of the original prob-
lem (2.1) that u = u. This completes the proof. �
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