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Abstract

In this article, we study the minimizing measures of the Tonelli Hamiltonians. More precisely, we study the relationships between
the so-called Green bundles and various notions as:

• the Lyapunov exponents of minimizing measures;
• the weak KAM solutions.

In particular, we deduce that the support of every minimizing measure μ, all of whose Lyapunov exponents are zero, is C1-regular
μ-almost everywhere.
© 2012 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article, on étudie les mesures minimisantes de Hamiltoniens de Tonelli. Plus précisément, on explique quelles relations
existent entre les fibrés de Green et différentes notions comme :

• les exposants de Lyapunov des mesures minimisantes ;
• les solutions KAM faibles.

On en déduit par exemple que si tous les exposants de Lyapunov d’une mesure minimisante μ sont nuls, alors le support de cette
mesure est C1-régulier en μ-presque tout point.
© 2012 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this article, M is a closed n-dimensional manifold and π : T ∗M → M its cotangent bundle. We consider a
Tonelli Hamiltonian H : T ∗M → R, i.e. a C2 function that is strictly C2-convex and superlinear in the fiber. The
Hamiltonian flow associated with such a function is denoted by (ϕt )t∈R or (ϕH

t )t∈R. To such a Hamiltonian, there
corresponds a Lagrangian function L : T M →R that has the same regularity as H and is also superlinear and strictly
convex in the fiber. The corresponding Euler–Lagrange flow is denoted by (ft )t∈R.

For such a Hamiltonian system, it is usual to study its “minimizing objects”; more precisely, a piece of orbit
(ϕt (q,p))t∈[a,b] = (qt ,pt )t∈[a,b] is minimizing if the arc (qt )t∈[a,b] minimizes the action functional AL defined by
AL(γ ) = ∫ b

a
L(γ (t), γ̇ (t)) dt among the C2-arcs joining qa to qb. More generally, if I is an interval and (ϕt )t∈I =

(qt ,pt )t∈I is an orbit piece, we say that it is minimizing if for every segment [a, b] ⊂ I , its restriction to [a, b] is
minimizing. Then we call the set of points of T ∗M whose (complete) orbit is minimizing the Mañé set. We denote it
by N ∗(H) and its projection, the projected Mañé set, is denoted by: N (H) = π(N ∗(H)). The Mañé set is non-empty,
compact and invariant by the Hamiltonian flow (see [10]). The first proof of the non-emptiness of the Mañé set is due
to J. Mather: he proved in the 90’s in [19] the existence of minimizing measures.

We are interested in invariant subsets of the Mañé set, i.e. subsets that are the union of some minimizing orbits.
More precisely, we would like to know if we can say something about the regularity of such subsets (we will be more
precise very soon. This is a kind of differentiability) and particularly if there is a link between the dynamics of the
flow restricted to such a set and the regularity of the set.

The oldest result in this direction concerns the time-dependent case: considering a symplectic twist map of the
annulus T ∗

S, G. Birkhoff proved in the 1920’s that any essential invariant curve is the graph of a Lipschitz map (see
[5] or [14]). It is easy to prove that such a curve is action minimizing. In the case of higher dimensions, M. Herman
proved in [15] that any C0-Lagrangian graph of T ∗

T
n that is invariant by a symplectic twist map is, in fact, the

graph of a Lipschitz map. A related result in the autonomous case is that any C1-Hamilton–Jacobi solution of a
Tonelli Hamiltonian is, in fact, C1,1 (see [11]). As Rademacher’s theorem says to us that any Lipschitz function is
differentiable Lebesgue almost everywhere, these results are a kind of regularity result.

In [1], we did, in fact, improve these results of regularity in the autonomous case, proving that if a C0-Lagrangian
graph is invariant by a Tonelli flow, and if one of the two following hypotheses is satisfied:

• dimM = 2 and all the singularities of H are non-degenerate;
• the dynamics of the restriction of the flow to the invariant graph is Lipschitz conjugate to a translations’ flow;

then the invariant graph is, in fact, C1 almost everywhere (this is stronger than just differentiable). Let us point out that
any of the two previous hypotheses implies that the dynamics of the restricted flow to the graph is soft on a certain
sense (our arguments are not very precise, but we only want to give a certain intuition of the forthcoming result);
indeed, when dimM = 2, if we reduce the dynamics modulo the vector field, we obtain a 1-dimension dynamics, and
it is known at least in the differentiable case that the Lyapunov exponents of a dynamics on the circle are zero. The
same is true for any dynamics that is Lipschitz conjugate to a translation.

We gave a similar results for the invariant curves of the twist maps of the annulus in [2], proving that Birkhoff’s
result can be improved: any essential invariant curve of a symplectic twist map of the annulus T ∗

S is the graph of a
Lipschitz map that is C1 Lebesgue almost everywhere.

Hence, it seems reasonable to try to find a relationship between the Lyapunov exponents of any minimizing measure
and the regularity of its support, where an invariant measure is minimizing if its support is in the Mañé set.

For a twist map of the annulus T ∗
S, we studied the ergodic minimizing measures in [3] and proved that the C1-

regularity (we will be more precise very soon) of its support is equivalent to the fact that the Lyapunov exponents are
zero. Hence, in a certain way, in this case, “C1-irregularity” is equivalent to non-vanishing Lyapunov exponents.
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The question that we ask now ourselves is the following: what can we say for higher dimensions? Is the irregu-
larity (in a sense we will soon specify) of the support of a minimizing ergodic measure equivalent to non-vanishing
exponents?

A first and obvious answer is: no. Indeed, let us consider the following example: (ψt ) is an Anosov flow defined on
the cotangent bundle T ∗S of a closed surface S . Let N = T ∗

1 S be its unitary cotangent bundle, which is a 3-manifold
invariant by (ψt ). Then a method due to Mañé (see [17]) allows us to define a Tonelli Hamiltonian H on T ∗N such
that the restriction of its flow (ϕt ) to the zero section N is (ψt ): the Lagrangian L associated with H is defined by:
L(q, v) = 1

2‖ψ̇(q)−v‖2 where ‖.‖ is any Riemannian metric on N . In this case, the zero section is very regular (even
C∞), but the Lyapunov exponents of every invariant measure whose support is contained in N are non-zero (except
two, the one corresponding to the flow direction and the one corresponding to the energy direction). Hence, it may
happen that some exponents are non-zero and the support of the measure is very regular. . .

In fact, the other implication is true: we will see that the nullity of the Lyapunov exponents implies the regularity
of the support of the considered measure.

Let us now explain in a detailed way in which kind of regularity we are interested:

Definition. Let A be a subset of a manifold M and let a belong to A. The contingent cone to A at a is the set of the
tangent vectors v ∈ TaM such that there exist a sequence (an) of elements of A and a sequence (λn) of positive real
numbers such that (we write everything in a chart, but this is independent of the chosen chart):

lim
n→∞

1

λn

(an − a) = v.

We denote it by: CaA.

This notion of contingent cone is due to Bouligand (see [7]). The contingent cone is never empty (it always contains
the null vector), and it is equal to the null vector if and only if a is an isolated point of A.

We will see later that the sets in which we are interested are contained in some (weak) Lagrangian manifolds. Our
definitions of 1-regularity and C1-regularity seems very natural for such sets:

Definition. Let A be a subset of a symplectic manifold M and let a belong to A. We say that A is 1-regular at a if the
contingent cone to A at a is contained in a Lagrangian subspace of TaM .

We say that A is C1-regular at a if there exists a Lagrangian subspace L of TaM such that: for every sequence
(an, vn ∈ CanA) such that limn→∞ an = a and the sequence (vn) converges to an element v of TaM , then v ∈ L.

Let us notice that this notion of C1-regularity is slightly different from the ones given in [2,1,3]: the notions given
in these former articles are a little stronger. This notion of C1-regularity is stronger than the notion of 1-regularity,
which is nothing else but the notion of differentiability for the C0-Lagrangian graphs (see [1] for a definition of
C0-Lagrangian graphs).

The measures that we study are the minimizing ones, that is the ones that are invariant and whose supports are
contained in the Mañé set. Then we prove:

Theorem 1. Let H : T ∗M → R be a Tonelli Hamiltonian and let μ be an ergodic minimizing probability measure all
of whose Lyapunov are zero. Then, at μ-almost every point of the support supp(μ) of μ, the set supp(μ) is C1-regular.

Hence:

• we succeed in proving that a kind of “soft dynamics” implies some C1-regularity;
• we know that we can have simultaneously a strong dynamics (for example hyperbolic) and a C∞-regularity.

In fact, we obtain more precise results than this theorem; for example, an interesting question is: what happens if
there are simultaneously some zero and non-zero exponents?

To explain what happens, we need to introduce some other notions. Let us begin by recalling what the Green
bundles are. These Lagrangian bundles were introduced by L. Green in 1958 in [13] for geodesic flows to prove some
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rigidity results. For the existence and the construction of these bundles, the reader is referred to [1,8] or [16]. We
recall:

Definition. Here, V (x) = kerDπ(x) designates the linear vertical.
Let (ϕt (q,p))t∈]−∞,0] be a minimizing negative orbit; then the positive Green bundle G+ is defined along this

orbit by: G+(x) = limt→+∞ Dϕt .V (ϕ−t x).
Let (ϕt (q,p))t∈[0,+∞[ be a minimizing positive orbit; then the negative Green bundle G− is defined along this

orbit by: G−(x) = limt→+∞ Dϕ−t .V (ϕtx).

Hence, at every point of the Mañé set, the two Green bundles are defined.
Let us recall that the two Green bundles are Lagrangian, invariant under the linearized flow Dϕt , transverse to the

vertical, that they depend semi-continuously on the considered point (see [1] for the definition of semi-continuity of
Lagrangian subspaces transverse to the vertical), that G− � G+ (see [1] for the definition of the order between two
Lagrangian subspaces that are transverse to the vertical; in coordinates, this corresponds to the usual order on the set
of symmetric matrices whose Lagrangian subspaces are the graphs). Hence, if μ is an ergodic minimizing probability
measure, the integer dim(G−(x) ∩ G+(x)) is constant μ-almost everywhere.

We obtain a result linking the dimension of the intersection of the two Green bundles to the number of non-zero
Lyapunov exponents:

Theorem 2. Let H : T ∗M → R be a Tonelli Hamiltonian and let μ be an ergodic minimizing probability measure.
Then the two following assertions are equivalent:

• at μ-almost every point, dim(G−(x) ∩ G+(x)) = p;
• μ has exactly 2p zero Lyapunov exponents, n − p positive ones and n − p negative ones.

Let us mention some former related results:

• in [8], the authors prove that the transversality of the two Green bundles along an energy level implies that the
restriction of the flow to this level is Anosov; they use some ideas about quasi-Anosov dynamics due to R. Mañé
that are contained in [18]; in [9], P. Eberlein gives the same statement for the geodesic flows;

• we proved in [3] that any quasi-hyperbolic symplectic cocycle above a compact set is hyperbolic; we can apply
this result to any minimizing compact invariant subset K contained in an energy level E without singularity:
considering the restricted/reduced dynamical system to the energy level E modulo the vector-field (see [1, p. 899]
for the construction), we deduce that the transversality of the Green bundles in the energy level above K is
equivalent to the partial hyperbolicity of the linearized flow along K with a center bundle’s dimension equal to 2;

• concerning the non-uniform case (i.e. the case of minimizing measures), the only known result was a formula
giving the entropy due to A. Freire and R. Mañé (see [12]). Roughly speaking, by integrating some functional
along one of the two Green bundles, they compute the sum of the positive Lyapunov exponents. This formula was
generalized in [8] to any Tonelli Hamiltonian. But this formula doesn’t say to us how many non-zero Lyapunov
exponents exist: it only gives the sum of the positive Lyapunov exponents. Let us mention too that G. Knieper
gives a nicer formula in his (non-published) thesis.

To prove Theorem 1, we recall in Section 3 some points of the recent weak KAM theory developed by A. Fathi in
[10]. In this section too, we give some statements concerning the relationships between weak KAM solutions and the
Green bundles. We don’t give them in the introduction because we would need all the notions that will be defined in
Section 3, but the interested reader can go to Section 3. Roughly speaking, the theorem asserts that along the support
of the minimizing measures, the contingent cones to the weak KAM pseudographs is not far from some cone delimited
by the two Green bundles.

Theorem 2 is proved in Section 2. The statement concerning the relationships between the weak KAM solutions
and the Green bundles are contained in Section 3 and the proofs are in Section 4.
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2. Green bundles and Lyapunov exponents

In this section, we prove Theorem 2. We consider an ergodic minimizing measure μ that is not the Dirac measure
at a critical point and we denote the integer such that we have μ-almost everywhere: dimG− ∩ G+ = p by p. Let us
recall the dynamical criterion that is proved in [1]:

Proposition 3 (Dynamical criterion). Let (xt ) be a minimizing and relatively compact orbit. Let v ∈ Tx0(T
∗M). Then:

– if v /∈ G−(x0), then limt→+∞ ‖Dπ ◦ Dϕt .v‖ = +∞;
– if v /∈ G+(x0), then limt→+∞ ‖Dπ ◦ Dϕ−t .v‖ = +∞.

and some direct consequences of this criterion:

Remark. 1) We deduce from the dynamical criterion that the Hamiltonian vector-field XH belongs to the two Green
bundles. This implies that p � 1. Because these two Green bundles are Lagrangian, this implies that G+ and G− are
tangent to the Hamiltonian levels {H = c}.

2) Moreover, we deduce also that if there is an Oseledet splitting (this will be precisely defined very soon)
T (T ∗M) = Es ⊕Ec ⊕Eu above a minimizing compact set K , then Es ⊂ G− and Eu ⊂ G+. Because the flow is sym-
plectic, Eu and Es are isotropic and orthogonal to Ec for the symplectic form (see [6]). Moreover, Es⊥ = Es ⊕ Ec

(where ⊥ designates the orthogonal subspace for the symplectic form) and Eu⊥ = Eu ⊕ Ec; we deduce that:
G−(x) = G−(x)⊥ ⊂ Es⊥ = Es ⊕ Ec and similarly that G+(x) ⊂ Eu(x) ⊕ Ec(x). Hence, finally:

Es(x) ⊂ G−(x) ⊂ Es(x) ⊕ Ec(x) and Eu(x) ⊂ G+(x) ⊂ Eu(x) ⊕ Ec(x)

and then: G−(x) ∩ G+(x) ⊂ Ec(x). Hence, G− ∩ G+ being an isotropic subspace of the symplectic subspace Ec,
we obtain: dimEc � 2 dim(G− ∩ G+). The dimension of the intersection of the two Green bundles gives a lower
bound to the number of zero Lyapunov exponents. Theorem 2 says to us that this inequality is, in fact, an equality. Let
us notice that when p = n, we directly have the conclusion of the theorem because dimEc � 2 dimM implies that
dimEc = 2n.

We have the same results for a hyperbolic or partially hyperbolic dynamics. Let us notice that in the hyperbolic
case, G− (resp. G+) is nothing else but the stable (resp. unstable) bundle Es (resp. Eu).

3) Let us consider the case of a KAM torus that is a graph (when M = T
n): the dynamics on this torus is C1 con-

jugated to a flow of irrational translations on the torus Tn; M. Herman proved in [15] that such a torus is Lagrangian,
and it is well-known that any invariant Lagrangian graph is locally minimizing. Then the orbit of every vector tangent
to the KAM torus is bounded, and belongs to G− ∩ G+. In this case, the two Green bundles are equal to the tangent
space to the invariant torus.

Let us introduce some notations:

Notations. Oseledet’s theorem implies that there exist an invariant subset N of T ∗M with full μ-measure, some real
numbers 0 < λ1 < λ2 < · · · < λq and a (measurable) splitting with constant dimensions above N :

Tx

(
T ∗M

) = Es
1(x) ⊕ Es

2(x) ⊕ · · · ⊕ Es
q(x) ⊕ Ec(x) ⊕ Eu

1 (x) ⊕ Eu
2 (x) ⊕ · · · ⊕ Eu

q (x)

such that:

• for every v ∈ Es
j (x)\{0}; limt→±∞ 1

t
log(‖Dϕt(x)v‖) = −λj ;

• for every v ∈ Ec(x)\{0}; limt→±∞ 1
t

log(‖Dϕt(x)v‖) = 0;
• for every v ∈ Eu

j (x)\{0}; limt→±∞ 1
t

log(‖Dϕt(x)v‖) = +λj .
We may ask, too, that: ∀x ∈ N , dim(G−(x) ∩ G+(x)) = p.

Let us recall that the stable bundle Es(x) = Es
1(x) ⊕ Es

2(x) ⊕ · · · ⊕ Es
q(x) and the unstable one Eu(x) = Eu

1 (x) ⊕
Eu

2 (x)⊕· · ·⊕Eu
q (x) are isotropic (for the symplectic form) and that Ec(x) is a symplectic subspace of Tx(T

∗M) that
is orthogonal (for ω) to Es(x) ⊕ Eu(x). Moreover, we have: dimEs = dimEu.
i i
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2.1. Reduction of the problem

As in the statement of Theorem 2, we assume that μ is a minimizing ergodic measure whose support is not reduced
to a point and that p ∈ [1, n] is so that at μ-almost every point x, the intersection of the Green bundles G+(x) and
G−(x) is p-dimensional. We deduce from the previous remark that for every x ∈ N : G+(x) ∩ G−(x) ⊂ Ec(x) and
Es(x) ⊕ Eu(x) = (Ec(x))⊥ ⊂ G+(x)⊥ + G−(x)⊥ = G−(x) + G+(x).

Notations. We introduce the two notations: E(x) = G−(x) + G+(x) and R(x) = G−(x) ∩ G+(x). We denote the
reduced space: F(x) = E(x)/R(x) by F(x) and we denote the canonical projection p : E → F by p. As G− and G+
are invariant by the linearized flow Dϕt , we may define a reduced cocycle Mt : F → F . But (Mt) is not continuous,
because G− and G+ don’t vary continuously.

Moreover, we introduce the notation: V(x) = V (x) ∩ E(x) is the trace of the linearized vertical on E(x) and
v(x) = p(V(x)) is the projection of V(x) on F(x). We introduce a notation for the images of the reduced vertical
v(x) by Mt : gt (ϕtx) = Mtv(x).

The subspace E(x) of Tx(T
∗M) is co-isotropic with E(x)⊥ = R(x). Hence F(x) is nothing else than the sym-

plectic space that is obtained by symplectic reduction of E(x). We denote its symplectic form by Ω . Hence we have:
∀(v,w) ∈ E(x)2, Ω(p(v),p(w)) = ω(v,w). Moreover, (Mt) is a symplectic cocycle.

We can notice, too, that dimE(x) = dim(G−(x)+G+(x)) = dimG−(x)+ dimG+(x)− dim(G−(x)∩G+(x)) =
2n − p and deduce that dimF(x) = dimE(x) − dim(G−(x) ∩ G+(x)) = 2(n − p).

Notations. If L is any Lagrangian subspace of Tx(T
∗M), we denote (L ∩ E(x)) + R(x) by L̃ and p(L̃) by l.

Lemma 4. If L ⊂ Tx(T
∗M) is Lagrangian, then L̃ is also Lagrangian and l = p(L̃) = p(L ∩ E(x)) is a Lagrangian

subspace of F(x). Moreover, p−1(l) = L̃. In particular, v(x) is a Lagrangian subspace of F(x) and p−1(v(x)) =
V(x) + R(x).

Proof. We just have to prove that L̃ is Lagrangian, the other assertions being easy consequences of this fact.
We begin by proving that L̃ is isotropic. If u,u′ ∈ L ∩ E(x) and v, v′ ∈ R(x), then ω(u + v,u′ + v′) = 0 because

L is Lagrangian and then ω(u,u′) = 0 and because R(x) ⊂ E(x)⊥.
Let us determine dim L̃. Let L′ be such that: L = (E(x)∩L)⊕L′. Then the dimension of L∩R(x) = (L+E(x))⊥

is: 2n − dim(L + E(x)) = 2n − (2n − p + dimL′) = p − dimL′. We deduce: dim L̃ = dim(L ∩ E(x)) + dimR(x) −
dim(L ∩ R(x)) = dim(L ∩ E(x)) + p − (p − dimL′) = dim(L ∩ E(x)) + dimL′ = dimL. �
Lemma 5. The subspace v(x) is a Lagrangian subspace of F(x). Moreover, for every t �= 0, gt (ϕtx) = Mtv(x) is
transverse to v(ϕt (x)).

Proof. The first sentence is contained in Lemma 4.
Let us consider t �= 0 and let us assume that Mtv(x) ∩ v(ϕtx) �= {0}. We may assume that t > 0 (or we replace x

by ϕt (x) and t by −t ).
Then there exists v ∈ V(x)\{0} such that Dϕt(x)v ∈ V(ϕtx) + (G−(ϕtx) ∩ G+(ϕtx)). Let us write Dϕt(x)v =

w + g with w ∈ V(ϕtx) and g ∈ R(ϕtx). We know that the orbit has no conjugate vectors (because the measure is
minimizing); hence g �= 0.

Moreover, we proved in [1] that DϕtV (x) is strictly above G−(ϕtx), i.e. that:

∀h ∈ G−(ϕtx),∀k ∈ V (ϕtx), h + k ∈ DϕtV (x)\{0} ⇒ ω(h,h + k) > 0.

We deduce that: ω(g,w + g) > 0.
This contradicts: Dϕt(x)v ∈ E(ϕtx) = (G+(ϕtx) ∩ G−(ϕtx))⊥ ⊂ (Rg)⊥. �
As in [1], we ask ourselves what the order between the different Lagrangian subspaces gt (x) = Mtv(ϕ−t x) is. Let

us recall how we define this order:
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Definition. Let g1 and g2 be two subspaces of F(x) that are transverse to the (reduced) vertical v(x). Let f (x) =
F(x)/v(x) be the reduced space and P(x) : F(x) → f (x) the canonical projection. Then to every w ∈ f (x), we can
associate a unique 	1(w) ∈ g1 (resp. 	2(w) ∈ g2) such that: P(	1(w)) = w (resp. P(	2(w)) = w). We then define the
altitude of g2 above g1, which is a quadratic form defined on f (x), by: q(g1, g2)(w) = Ω(	1(w), 	2(w)).

We say that g2 is above (resp. strictly above) g1 when q(g1, g2) is positive semi-definite (resp. positive definite).
We write g1 � g2 (resp. g1 < g2).

Lemma 6. Let L1, L2 be two Lagrangian subspaces of Tx(T
∗M) transverse to V (x) such that at least one of them

is contained in E(x). Then, if L1 < L2 (resp. L1 � L2), we have: l1 and l2 are transverse to v(x) and l1 < l2 (resp.
l1 � l2). We deduce that p(G−) < p(G+).

Proof. We assume that L2 ⊂ E(x) and that L1 < L2. Let v1 ∈ L1 ∩ E(x) be a non-zero vector of L1 ∩ E(x). As L1
and L2 are transverse to V (x), there exists a unique v2 ∈ L2 such that v2 − v1 ∈ V (x). Moreover, as v1, v2 ∈ E(x),
we have v2 − v1 ∈ V(x) and p(v2) − p(v1) ∈ v(x). Hence:

Ω
(
p(v1),p(v2)

) = ω(v1, v2) > 0.

This means exactly that l1 < l2.
To deduce the assertion for �, we can use a limit.
As G− � G+, we deduce that p(G−) � p(G+). Because of the definition of E(x), R(x) and F(x), p(G−) and

p(G+) are transverse and then p(G−) < p(G+). �
Lemma 7. If μ is a minimizing measure, for every x ∈ suppμ, for all 0 < t < s, we have:

g−t (x) < g−s(x) < gs(x) < gt (x).

Proof. The map (t ∈ R
∗ → gt (x)) is continuous; moreover, we know by Lemma 5 that if t �= s, then gt (x) is

transverse to gs(x). Hence, the index of q(gs(x), gt (x)) is constant for (s, t) ∈ E where E is one of the sets:
{(s, t); 0 < s < t}; {(s, t); s < 0 < t}, {(s, t); s < t < 0}. Hence, we only have to determine this index for one
point (s, t) of each of these three sets.

We prove the result only for the first set, the other inequalities being very similar. Let us fix s > 0 and introduce
the notation Gs(x) = DϕsV (ϕ−sx). Then G̃s(x) is a Lagrangian subspace of E(x) that is transverse to the vertical
because G̃s(x)∩V (x) = G̃s(x)∩V(x) = (G̃s(x)∩ Ṽ (x))∩V(x) = p−1(gs(x)∩ v(x))∩V(x) = R(x)∩V(x) = {0}.
We assume that t > 0 is very small and we work in a chart, with symplectic coordinates defined in [1] (p. 897) such
that the “horizontal” subspace of Tx(T

∗M) is G−(x). A vector of Gt(x) = Dϕt(ϕ−t x)V (ϕ−t x) is (h,S+
t (x)h) and it

is proved in [1] (p. 894) that S+
t (x) ∼ 1

t
D where D is a fixed positive definite matrix. Hence, for t > 0 small enough,

we have G̃s < Gt . We deduce from Lemma 6 that gs = p(G̃s) < p(Gt) = gt . �
Definition. As in [1], when t tends to ±∞, we find two Mt -invariant Lagrangian sub-bundles of F(x) that are:
g−(x) = limt→−∞ gt (x) and g+(x) = limt→+∞ gt (x); they are transverse to v(x) and satisfy: g−(x) � g+(x). We
call them the reduced Green bundles.

Remark. Then we have: ∀t > 0, g−t (x) < g−(x) � g+(x) < gt (x). If we use the notations G̃±(x) = p−1(g±(x)),
then G̃± are transverse to the vertical because G̃±(x)∩V (x) = G̃±(x)∩V(x) = (G̃± ∩ Ṽ (x))∩V(x) = p−1(g±(x)∩
v(x)) ∩ V(x) = R(x) ∩ V(x) = {0}. Moreover, G̃−(x) � G̃+(x) and the two bundles G̃−, G̃+, are invariant by the
linearized flow (Dϕt ). Theorem 3.11 of [1] asserts that any invariant Lagrangian bundle that is transverse to the
vertical is between the two Green bundles. We deduce that G−(x) � G̃−(x) � G̃+(x) � G+(x). We can then use
Lemma 6 and we obtain: p(G−(x)) � g−(x) � g+(x) � p(G+(x)).

Lemma 8. We have: ∀x ∈ suppμ, g−(x) = p(G−(x)) < p(G+(x)) = g+(x).

Proof. Because of the last remark, we just have to prove that on suppμ: g− � p(G−) < p(G+) � g+. Because of
Lemma 6, we just have to prove that g− � p(G−) and p(G+) � g+. But p(G±) is a Lagrangian subspace of F(x)
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whose orbit is transverse to the vertical. Proposition 3.11 of [1] asserts that any invariant Lagrangian sub-bundle along
an orbit that is transverse to the vertical has to be between the two Green bundles. A similar argument in the reduced
case implies the inequalities. �

Hence we have proved that G̃± = G±, the notation G̃± will disappear from now on.

2.2. Reduced Green bundles and Lyapunov exponents

We have to be careful because the bundles that we consider are not continuous and, as this is noted in [1], we don’t
use a continuous change of coordinates, but just a bounded one when we say that G− or G+ is the horizontal subspace
(the matrix P that is necessary to change the coordinates is uniformly bounded, as P −1).

We choose at every point x ∈ N some (linear) symplectic coordinates (Q,P ) of F(x) such that v(x) has for
equation: Q = 0 and g+(x) has for equation P = 0. We will be more precise on this choice later. Then the matrix
of Mt(x) in these coordinates is a symplectic matrix: Mt(x) = ( at (x) bt (x)

0 dt (x)

)
. As Mt(x)v(x) = gt (ϕtx) is a Lagrangian

subspace of E(ϕtx) that is transverse to the vertical, then detbt (x) �= 0 and there exists a symmetric matrix s+
t (ϕtx)

whose graph is gt (ϕtx), i.e.: dt (x) = s+
t (ϕt (x))bt (x). Moreover, the family (s+

t (x))t>0 being decreasing and tending
to zero (because by hypothesis the horizontal is g+), the symmetric matrix s+

t (ϕtx) is positive definite. Moreover, the
matrix Mt(x) being symplectic, we have:

(
Mt(x)

)−1 =
(

t dt (x) −t bt (x)

0 t at (x)

)

and by definition of g−t (x), if it is the graph of the matrix s−
t (x) (that is negative definite), then: t at (x) =

−s−
t (x)tbt (x) and finally:

Mt(x) =
(−bt (x)s−

t (x) bt (x)

0 s+
t (ϕtx)bt (x)

)
.

Let us be now more precise in the way we choose our coordinates; we may associate an almost complex structure J

and then a Riemannian metric (.,.)x defined by: (v,u)x = ω(x)(v, Ju) with the symplectic form ω of T ∗M ; from
now on, we work with this fixed Riemannian metric of T ∗M . We choose on G+(x) = p−1(g+(x)) an orthonormal
basis whose last vectors are in R(x) and complete it in a symplectic base whose last vectors are in V (x). We denote
the associated coordinates of Tx(T

∗M) by (q1, . . . , qn,p1, . . . , pn). These (linear) coordinates don’t depend in a
continuous way on the point x (because G+ doesn’t), but in a bounded way. Then G−(x) = p−1(g−(x)) is the graph
of a symmetric matrix whose kernel is R(x) and then on G−(x), we have: pn−p+1 = · · · = pn = 0. An element of
E(x) has coordinates such that pn−p+1 = · · · = pn = 0, and an element of F(x) = E(x)/R(x) may be identified
with an element with coordinates (q1, . . . , qn−p,0, . . . ,0,p1, . . . , pn−p,0, . . . ,0). We then use on F(x) the norm∑n−p

i=1 (q2
i + p2

i ), which is the norm for the Riemannian metric of the considered element of F(x). Then this norm
depends in a measurable way on x.

Let us now notice the following fact: μ being ergodic for the flow (ϕt ), there exists a dense Gδ subset A of R such
that, for every t ∈ A, the diffeomorphism ϕt is ergodic. As it is simpler for us to work with a diffeomorphism instead
of a flow, we fix such a t ∈ A. We assume that t = 1 (if not we replace H by 1

t
H ).

Lemma 9. For every ε > 0, there exists a measurable subset Jε of N such that:

• μ(Jε) � 1 − ε;
• on Jε , (s+

n ) and (s−
n ) converge uniformly;

• there exist two constants β = β(ε) > α = α(ε) > 0 such that: ∀x ∈ Jε , β1 � −s−(x) � α1 where g− is the graph
of s−.

Proof. This is a consequence of the Egorov theorem and of the fact that on N , g+ and g− are transverse and then
−s− is positive definite. �
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We deduce:

Lemma 10. Let Jε be as in the previous lemma. On the set {(n, x) ∈ N × Jε,ϕn(x) ∈ Jε}, the sequence of conorms
(m(bn(x))) converges uniformly to +∞, where m(bn) = ‖b−1

n ‖−1.

Proof. Let n, x be as in the lemma.

The matrix Mn(x) = ( −bn(x)s−
n (x) bn(x)

0 s+
n (ϕnx)bn(x)

)
being symplectic, we have: −s−

n (x)tbn(x)s+
n (ϕnx)bn(x) = 1 and

thus −bn(x)s−
n (x)tbn(x)s+

n (ϕnx) = 1 and bn(x)s−
n (x)tbn(x) = −(s+

n (ϕnx))−1.
We know that on Jε , (s+

n ) converges uniformly to zero. Hence, for every δ > 0, there exists N = N(δ) such that:

n � N ⇒ ‖s+
n (ϕnx)‖ � δ. Moreover, we know that ‖s−

n (x)‖ � β . Hence, if we choose δ′ = δ2

β
, for every n � N =

N(δ′) and x ∈ Jε such that ϕnx ∈ Jε , we obtain:

∀v ∈R
p, β

∥∥t bn(x)v
∥∥2 = t vbn(x)(β1)t bn(x)v � −t vbn(x)s−

n (x)tbn(x)v = t v
(
s+
n (ϕnx)

)−1
v

and we have: t v(s+
n (ϕnx))−1v � β

δ2 ‖v‖2 because s+
n (ϕnx) is a positive definite matrix that is less than δ2

β
1. We finally

obtain: ‖t bn(x)v‖� 1
δ
‖v‖ and then the result that we wanted. �

From now we fix a small constant ε > 0, associate a set Jε with ε via Lemma 9 and two constants 0 < α < β; then
there exists N � 0 such that

∀x ∈ Jε, ∀n � N, ϕn(x) ∈ Jε ⇒ m
(
bn(x)

)
� 2

α
.

Lemma 11. Let Jε be as in Lemma 9. For μ-almost every point x in Jε , there exists a sequence of integers (jn) =
(jn(x)) tending to +∞ such that:

∀n ∈N, m
(
bjn(x)sjn(x)

)
�

(
2

1−ε
2N

)jn .

Proof. As μ is ergodic for ϕ1, we deduce from the Birkhoff ergodic theorem that for almost every point x ∈ Jε , we
have:

lim
	→+∞

1

	
�
{
0 � k � 	 − 1; ϕk(x) ∈ Jε

} = μ(Jε)� 1 − ε.

We introduce the notation: N(	) = �{0 � k � 	 − 1; ϕk(x) ∈ Jε}.
For such an x and every 	 ∈N, we find a number n(	) of integers:

0 = k1 � k1 + N � k2 � k2 + N � k3 � k3 + N � · · ·� kn(	) � 	

such that ϕki
(x) ∈ Jε and n(	) � [N(	)

N
] � N(	)

N
− 1. In particular, we have: n(	)

	
� 1

N
(
N(	)

	
− N

	
), the right term

converging to μ(Jε)
N

� 1−ε
N

when 	 tends to +∞. Hence, for 	 large enough, we find: n(	) � 1 + 	 1−ε
2N

.
As ϕki

(x) ∈ Jε and ki+1 − ki � N , we have: m(bki+1−ki
(ϕki

(x))) � 2
α

. Moreover, we have: m(s−
ki+1−ki

(ϕki
x)) � α;

hence:

m
(
bki+1−ki

(ϕki
x)s−

ki+1−ki
(ϕki

x)
)
� 2.

But the matrix −bkn(	)
(x)s−

k(n(	))(x) is the product of n(	) − 1 such matrices. Hence:

m
(
bkn(	)

(x)s−
k(n(	))(x)

)
� 2n(	)−1 � 2	 1−ε

2N �
(
2

1−ε
2N

)kn(	) . �
Let us now come back to the whole tangent space Tx(T

∗M) with a slight change in the coordinates that we use.
We defined the symplectic coordinates (q1, . . . , qn,p1, . . . , qn) and now we use the non-symplectic ones:

(Q1, . . . ,Qn,P1, . . . ,Pn) = (qn−p+1, . . . , qn, q1, . . . , qn−p,p1, . . . , pn). Then:

• (Q1, . . . ,Qp) are coordinates in R(x);
• (Q1, . . . ,Qn) are coordinates in G+(x);
• (Q1, . . . ,Qn,P1, . . . ,Pn−p) are coordinates of E(x) = G+(x) + G−(x).
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We write then the matrix of Dϕt(x) in these coordinates (Q1, . . . ,Qn,P1, . . . ,Pn) (which are not symplectic):⎛
⎜⎜⎝

A1
t (x) A2

t (x) A3
t (x) A4

t (x)

0 bt (x)s−
t (x) bt (x) A5

t (x)

0 0 s+
t (ϕtx)bt (x) A6

t (x)

0 0 0 A9
t (x)

⎞
⎟⎟⎠

where the blocks correspond to the decomposition Tx(T
∗M) = E1(x) ⊕ E2(x) ⊕ E3(x) ⊕ E4(x) with dimE1(x) =

dimE4(x) = p and dimE2(x) = dimE3(x) = n − p.
We have noticed that E1(x) = E(x) ⊂ Ec(x) and that G+(x) = E1(x) ⊕ E2(x).
If x ∈ Jε , we have found a sequence (jn) of integers tending to +∞ so that:

∀n ∈N, m
(
bjn(x)s−

jn
(x)

)
�

(
2

1−ε
2N

)jn .

We deduce:

∀v ∈ E2(x)\{0}, 1

jn

log
(∥∥bjn(x)s−

jn
(x)v

∥∥)
� 1 − ε

2N
log 2 + ‖v‖

jn

;
and because E1(x) ⊂ Ec(x):

∀v ∈ G+(x)\E1(x), lim inf
n→∞

1

n
log

∥∥Dϕn(x)v
∥∥� 1 − ε

2N
log 2.

Hence there are at least n − p Lyapunov exponents bigger than 1−ε
2N

log 2 and then bigger than 0 for the linearized
flow. Because this flow is symplectic, we deduce that it has at least n − p negative Lyapunov exponents (see [6]).
As we noticed that the linearized flow has at least 2p zero Lyapunov exponents, we deduce that μ has exactly n − p

positive Lyapunov exponents, exactly n − p negative Lyapunov exponents and exactly 2p zero Lyapunov exponents.
This finishes the proof of Theorem 2.

Remark. Let us notice that we proved too that for x ∈ N (i.e. generic in the Oseledet’s sense), we have: Eu(x) ⊂
G+(x), and then G+(x) = Eu(x) ⊕ R(x).

3. Weak KAM solutions and Green bundles

In this section, we recall the weak KAM theory and give a relationship between some tangent cones to the pseu-
dographs of the weak KAM solutions and the Green bundles. These results imply Theorem 1. The proofs are given in
Section 4.

3.1. Weak KAM theory

We don’t give any proof in this section, but all the results that we give are proved in [10] or [4].

Notations. If t > 0, the function At : M × M →R is defined by:

At(q0, q1) = inf
γ

t∫
0

L
(
γ (s), γ̇ (s)

)
ds = min

γ

t∫
0

L
(
γ (s), γ̇ (s)

)
ds

where the infimum is taken on the set of C2 curves γ : [0, t] → M such that γ (0) = q0 and γ (t) = q1.

Definition.

1. A function v : V → R defined on a subset V of Rd is K-semi-concave if for every Q ∈ V , there exists a linear
form ψQ defined on R

d so that:

∀Q′ ∈ V, v
(
Q′) � v(Q) + ψQ

(
Q′ − Q

) + K
∥∥Q′ − Q

∥∥2
.

Then we say that ψQ is a K-super-differential of v at Q.
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2. Let us fix a finite atlas A of the manifold M ; a function u : M → R is K-semi-concave if for every chart (U,φ)

belonging to A, u ◦ φ−1 is K-semi-concave. Then a K-super-differential of u at q is ψQ ◦ Dφ(q) where ψQ is a
K-super-differential of u ◦ φ−1 at Q = φ(q).

A semi-concave function is always Lipschitz and then differentiable almost everywhere and for such a function, we
define its pseudograph: a pseudograph is the graph G(du) of du, where u : M → R is a semi-concave function.

A function u : M → R is K-semi-convex if −u is K-semi-concave. We have a notion of sub-differential and the
anti-pseudograph of a semi-convex function u is G(du).

It is proved in [4] that At is semi-concave and that for every minimizing curve γ : [0, t] → M between q0 and
q1, (− ∂L

∂v
(γ (0), γ̇ (0)), ∂L

∂v
(γ (t), γ̇ (t))) is a super-differential of At at (q0, q1). It is proved, too, that At(., q1) is

differentiable at q0 if and only if At(q0, .) is differentiable at q1 if and only if there exists a unique minimizing curve
γ : [0, t] → M joining q0 to q1.

We denote the two Lax–Oleinik semi-groups associated with L by (Tt )t>0 and (T̆t )t>0; for u ∈ C0(M,R), they are
defined by:

Ttu(q) = min
q ′∈M

(
u
(
q ′) + At

(
q ′, q

))
and T̆t u(q) = max

q ′∈M

(
u
(
q ′) − At

(
q, q ′)).

A function u : M → R is a negative (resp. positive) weak KAM solution if there exists c ∈ R such that: ∀t > 0,
Ttu = u − ct (resp. ∀t > 0, T̆tu = u + ct).

Then there exist at least one positive and one negative weak KAM solutions (see [10] or [4]). The constant c is
unique and is called Mañé’s critical value. If u− is a negative weak KAM solution and u+ a positive one, then u− is
semi-concave and u+ is semi-convex. Let us introduce the Mather set:

Definition. The Mather set, denoted by M∗(H), is the union of the supports of the minimizing measures. The pro-
jected Mather set is M(H) = π(M∗(H)).

J. Mather proved that M∗(H) is compact, non-empty and that it is a Lipschitz graph above a compact part of the
zero-section of T ∗M .

A. Fathi proved in [10] that if u− is a negative weak KAM solution, there exists a unique positive weak KAM
solution u+ such that u−|M(H) = u+|M(H). Such a pair (u−, u+) is called a pair of conjugate weak KAM solutions.
For such a pair, we have:

• ∀q ∈ M(H),u−(q) = u+(q); let us denote the set of equality: I(u−, u+) = {q; u−(q) = u+(q)} by I(u−, u+);
then M(H) ⊂ I(u−, u+);

• u− and u+ are differentiable at every point q ∈ I(u−, u+); for such a q we have (q, du−(q)) ∈ N ∗(H); when
q ∈ M(H) and (q,p) ∈M∗(H) is its lift to M∗(H), then du−(q) = du+(q) = p;

• u+ � u−.

Moreover, it is proved in [4] that if q is a point of differentiability of Ttu (resp. T̆tu), then the minimum (resp.
maximum) in the definition of Ttu(q) (resp. T̆t u) is attained at a unique q ′ and there is a unique curve γ : [0, t] → M

minimizing between q ′ and q (resp. q and q ′); in this case: ∂L
∂v

(q, γ̇ (t)) = dTtu(q) (resp. ∂L
∂v

(q, γ̇ (0)) = dT̆tu(q)).

3.2. Comparison between the weak KAM solutions and the Green bundles

If (u−, u+) is a pair of conjugate weak KAM solutions, if q ∈ I(u−, u+), we have seen that (q, du−(q)) =
(q, du+(q)) ∈N ∗(H). Hence, the two Green subspaces G−(q, du−(q)) and G+(q, du+(q)) exist.

We always have G− � G+, the bundle G− is lower semi-continuous and the bundle G+ is upper semi-continuous,
hence they are continuous at the points where G− = G+.

Notations. If the orbit of x is minimizing, G−(x) is the graph of a symmetric matrix s−(x) and G+(x) the graph of a
symmetric matrix s+(x). If �s(x) = s+(x) − s−(x), then �s(x) is positive semi-definite.
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Moreover, if s is a positive semi-definite matrix, we will denote by projs the orthogonal projection on its image
Im(s) and by ‖s‖ its greatest eigenvalue.

Let us recall that if x ∈ A ⊂ T ∗M , CxA designates the contingent cone to A at x, that was defined in the introduc-
tion.

Theorem 12. Let (u−, u+) be a pair of conjugate weak KAM solutions and let q belong to I(u−, u+). Then we have:
∀(Q,P ) ∈ C(q,du−(q))G(du−),

∥∥P − s−
(
q, du−(q)

)
Q

∥∥ � 2
∥∥�s

(
q, du−(q)

)∥∥.
∥∥proj�s(q,du−(q))(Q)

∥∥
and: ∀(Q,P ) ∈ C(q,du+(q))G(du+),

∥∥P − s+
(
q, du+(q)

)
Q

∥∥ � 2
∥∥�s

(
q, du+(q)

)∥∥.
∥∥proj�s(q,du+(q))(Q)

∥∥.

We postpone the proof of this theorem to Section 4.
As M∗(H) ⊂ G(du−) ∩ G(du+), we deduce:

Corollary 13. If x is an element of M∗(H), then we have: ∀(Q,P ) ∈ CxM∗(H),

max
{∥∥P − s−(x)Q

∥∥,
∥∥P − s+(x)Q

∥∥}
� 2

∥∥�s(x)
∥∥.

∥∥proj�s(x)(Q)
∥∥.

We now prove Theorem 1. We first use Theorem 2: if μ is an ergodic minimizing measure whose Lyapunov
exponents are zero, then we have μ-almost everywhere: G− = G+ i.e. �s = 0. We deduce from Corollary 13 that
Cx(suppμ) ⊂ G−(x) = G+(x) at μ-almost every point. This implies that suppμ is 1-regular at x, and even that it is
C1-regular at x. Indeed, if (xn) is a sequence of points of supp(μ) that converges to x and vn = (Qn,Pn) ∈ Cxn(suppμ)

converges to v = (Q,P ), we have for every n:

∥∥Pn − s−(xn)Qn

∥∥� 2�s(xn)
∥∥proj�s(xn)(Qn)

∥∥.

As G−(x) = G+(x), s− and �s are continuous at x. We deduce that ‖P − s−(x)Q‖ = 0 and then (Q,P ) ∈ G−(x).
We have then proved:

Corollary 14. If μ is an ergodic minimizing measure all of whose Lyapunov exponents are zero, then, suppμ is
C1-regular at μ-almost every point.

This is exactly Theorem 1.

Remark. Corollary 13 implies a result more precise than Theorem 1. It implies that above Dπ(G−(x) ∩ G+(x)) for
every x ∈M∗(H), the points of the contingent of M∗(H) at x are contained in G−(x) ∩ G+(x):

CxM∗(H) ∩ Dπ−1(Dπ
(
G−(x) ∩ G+(x)

)) ⊂ G−(x) ∩ G+(x).

4. Proof of the results of Section 3

In this section, we use the images of the physical verticals to obtain a control of the weak KAM solutions. More
precisely, we can choose a graph in the image of a vertical, the graph of da for a certain function a, and prove a certain
inequality between a and the considered weak KAM solution u. Then we deduce an inequality along some subset of
the Mañé set between the “second derivatives” of a and u. This gives a relationship between the Green bundles and
the Bouligand’s contingent cones to the pseudograph of any weak KAM solution along some subset of the Mañé set.
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4.1. Selection of some graphs in the images of the verticals

Notations.

• If q ∈ M , we denote the (physical) vertical π−1({q}) by V(q) ⊂ T ∗M .
• If t > 0, the function At : M × M →R is defined by:

At(q0, q1) = inf
γ

t∫
0

L
(
γ (s), γ̇ (s)

)
ds = min

γ

t∫
0

L
(
γ (s), γ̇ (s)

)
ds

where the infimum is taken on the set of C2 curves γ : [0, t] → M such that γ (0) = q0 and γ (t) = q1.
• if u : M → R is a Lipschitz function, then by Rademacher’s theorem, it is differentiable (Lebesgue) almost

everywhere and the graph of its derivative is denoted by:

G(du) = {(
q, du(q)

); u is differentiable at q
}
.

Tonelli’s theorem asserts that for every t �= 0, π ◦ ϕt (V(q)) = M (i.e. for every q ′ ∈ M there exists a solution to
the Euler–Lagrange equations γ such that γ (0) = q and γ (t) = q ′); but in general ϕt (V(q)) is not a graph. To select
a graph in ϕt (V(q)), we prove:

Proposition 15. Let H : T ∗M → R be a Tonelli Hamiltonian and L : T M → R be the associated Lagrangian. Then
for every t > 0 and every q ∈ M , the function vt

q = At(q, .) and v−t
q = At(., q) are semi-concave, and satisfy:

G
(
dvt

q

) ⊂ ϕt

(
V(q)

)
and G

(−dv−t
q

) ⊂ ϕ−t

(
V(q)

)
.

Proof. Because At is semi-concave, the two functions vt
q and v−t

q are semi-concave and then Lipschitz. By
Rademacher’s theorem they are differentiable almost everywhere.

Moreover, if q0 is a point where vt
q is differentiable, then vt

q has exactly one super-differential at this point, there
is only one minimizing arc γ joining (0, q) to (t, q0), and we have:

• dvt
q(q0) = ∂L

∂v
(γ (t), γ̇ (t));

• (γ (0), ∂L
∂v

(γ (0), γ̇ (0))) = (q, ∂L
∂v

(γ (0), γ̇ (0))) ∈ V(q);
• ϕt (q, ∂L

∂v
(γ (0), γ̇ (0))) = (γ (t), ∂L

∂v
(γ (t), γ̇ (t))) = (q0, dvt

q(q0)).

Then we have proved that: ϕt (V(q)) ⊃ G(dvt
q). Hence, we have selected a pseudograph in the image ϕt (V(q)) of the

vertical.
In a very similar way, we may see that the anti-pseudograph of the semi-convex function −v−t

q is a subset of
ϕ−t (V(q)): G(−dv−t

q ) ⊂ ϕ−t (V(q)). �
4.2. Local smoothness of some of these graphs

Notations. For every x ∈ T ∗M , we denote the linear vertical at x by V (x): V (x) = kerDπ(x) = TxV(π(x)) ⊂
Tx(T

∗M).
The images of the linear vertical are denoted by: Gt(x) = DϕtV (ϕ−t x).

We recall that an orbit piece (ϕt (x))t∈[a,b] has no conjugate vectors if:

∀s �= t ∈ [a, b], Gt−s(ϕtx) ∩ V (ϕtx) = Dϕt−s

(
V

(
ϕs(x)

)) ∩ V
(
ϕt (x)

) = {0}.

Notations. Let us now fix a minimizing arc γ : [−t,0] → M such that:

• there is only one minimizing arc between (−t, γ (−t)) and (0, γ (0)) (then it is γ );
• the orbit piece (γ (τ ), ∂L(γ (τ ), γ̇ (τ )))τ∈[−t,0] has no conjugate vectors.
∂v
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Let us notice that when (q,p) ∈ N ∗(H), then any piece of the curve (t → π ◦ ϕt (q,p)) satisfies the previous hy-
potheses.

We define a function a+
t : M → R by: a+

t (q) = vt
γ (−t)(q) = At(γ (−t), q) (this function depends on γ ). In a

similar way, we can consider x0 = (q0,p0) such that the orbit (ϕs(x0))s∈[0,t] has no conjugate points and so that there
is only one minimizing arc γ : [0, t] → M joining q0 to qt . We define a function a−

t : M → R by: a−
t = −v−t

qt
(q) =

−At(q, qt ).

Proposition 16. Let γ : [−t,0] → M (resp. γ : [0, t] → M) be a minimizing arc such that:

• γ is the only minimizing arc joining its two ends;
• the orbit piece (γ, ∂L

∂v
(γ, γ̇ )) has no conjugate vectors.

Then there exists a neighborhood V0 of q0 = γ (0) in M such that a+
t |V0

(resp. a−
t |V0

) is as regular as H is (then at

least C2).

Proof. We have seen that: G(da+
t ) ⊂ ϕt (V (q−t )). Let us now prove that a+

t is smooth near q0.
We use now the so-called “a priori compactness lemma” (see [10]) that says to us that there exists a constant

Kt = K > 0 such that the velocities (γ̇ (s))s∈[0,t] of any minimizing arc between any points q ∈ M and q ′ ∈ M

are bounded by K ; hence if we denote the set of the minimizing arcs that are parametrized by [0, t] by K, K is a
compact set for the C1 topology because it is the image by the projection π of a closed set of bounded orbits. Let
us denote the set of γ ∈ K such that γ (0) = q−t by K0; then K0 is compact. Let us introduce another notation:
K(q) = {γ ∈ K0;γ (t) = q}. Then K(q0) = {γ0} and hence, because K0 is closed, for q close enough to q0, all the
elements of K(q) are C1 close to γ0.

Moreover, ϕt (V(q−t )) is a sub-manifold of M that contains (q0,
∂L
∂v

(q0, γ̇0(0))) = (q0,p0). Its tangent space at
(q0,p0) is Gt(q0,p0), which is transverse to the vertical because (qs,ps)s∈[−t,0] has no conjugate vectors. Hence,
the manifold ϕt (V(q−t )) is, in a neighborhood U0 of (q0,p0), the graph of a C1 section of T ∗M defined on a neigh-
borhood V0 of q0 in M . Moreover, because this sub-manifold is Lagrangian (indeed, V(q−t ) is Lagrangian and ϕt is
symplectic), it is the graph of du0 where u0 : V0 → R is a C2 function.

Now, if q is close enough to q0, we know that all the elements γ of K(q) are C1 close to γ0, and then that
(q, ∂L

∂v
(γ (t), γ̇ (t))) belongs to the neighborhood U0 of (q0,p0) = (q0,

∂L
∂v

(γ0(t), γ̇0(t))) and to ϕt (V(q−t )). Because
ϕt (V(q−t )) ∩ U0 is a graph, this element is unique: K(q) has only one element and a+

t is differentiable at q , with
da+

t (q) = ∂L
∂v

(γ (t), γ̇ (t)) = du0(q). We deduce that near q0, on the set of differentiability of a+
t , da+

t is equal to
du0; because a+

t and u0 are Lipschitz on V0 and their differentials are equal almost everywhere, we deduce that on
V0, a+

t − u0 is constant. Hence, on a neighborhood V0 of q0, a+
t is C2.

In a similar way, using the fact that G(da−
t ) ⊂ ϕ−t (V (qt )), we obtain that a−

t is C2 near q0. �
Remark. If x0 = (q0,p0) is a point of the Mañé set, (qt ,pt )t∈R = (ϕt (q0,p0))t∈R has no conjugate vectors and for
every t < τ , there is only one minimizing arc γ : [t, τ ] → M joining qt to qτ , hence for every t > 0 the two functions
a+
x0,t

and a−
x0,t

are smooth near q0 (of course the neighborhood of q0 where they are smooth depends on t ).

4.3. Comparison between the weak KAM solutions and the maps a+
t and a−

t

Lemma 17. We assume that u− is a negative weak KAM solution and that u+ is a positive weak KAM solution.
Let q0 ∈ M be a point of differentiability of u− (resp. u+) and a+

t (resp. a−
t ) be the function built in the previous

subsection for the arc γ = (π ◦ ϕs(q0, du−(q0)))s∈[−t,0] (resp. γ = (π ◦ ϕs(q0, du+(q0)))s∈[0,t]). Then, in a chart:
u−(q)−u−(q0)−du−(q0)(q −q0) � a+

t (q)−a+
t (q0)−da+

t (q0)(q −q0) (resp. a−
t (q)−a−

t (q0)−da−
t (q0)(q −q0) �

u+(q) − u+(q0) − du+(q0)(q − q0)).

Proof. Let us consider q0 in M that is a point of differentiability of a weak KAM solution u− and let us denote the
point above q0 on the pseudograph G(du−) of u− by x0: x0 = (q0, du−(q0)). Then, for every t > 0, because Ttu− =
u− −ct is differentiable at q0, there is only one point q ∈ M such that u−(q0) = Ttu−(q0)+ct = u−(q)+At(q, q0)+
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ct and only one minimizing arc γ : [−t,0] → M joining q to q0. We introduce the notation: xt = (qt ,pt ) = ϕt (x0).
Then: Ttu−(q0) = u−(q−t ) + A(q−t , q0); moreover: Ttu−(q) � u−(q−t ) + A(q−t , q) = Ttu−(q0) + A(q−t , q) −
A(q−t , q0). Finally: u−(q) − u−(q0) � a+

t (q) − a+
t (q0). Because these two maps a+

t and u− are differentiable at
q0, they have the same differential at this point and we obtain (in chart): u−(q) − u−(q0) − du−(q0)(q − q0) �
a+
t (q) − a+

t (q0) − da+
t (q0)(q − q0).

Using the same argument for u+, we obtain: if q0 is a point of differentiability of u+:

a−
t (q) − a−

t (q0) − da−
t (q0)(q − q0)� u+(q) − u+(q0) − du+(q0)(q − q0). �

Now we would like to use these inequalities at different points q0; we have to be careful, because a+
t and a−

t depend
on the point q0 that we choose. That is why we change now our notation, replacing a+

t by a+
q0,t

if the considered point
is (q0, du−(q0)) and a−

t by a−
q0,t

if the considered point is (q0, du+(q0)).

Proposition 18. We assume that (u−, u+) is a pair of conjugate weak KAM solutions. Let q ∈ I(u−, u+) be a point,
(qn) be a sequence of points of M converging to q , and (λn) be a sequence of positive real numbers so that the two
limits (written in charts) limn→∞ qn−q

λn
= Q and P = limn→∞ du−(xn)−du−(y)

λn
(resp. limn→∞ du+(qn)−du+(q)

λn
) exist.

Then we have:

∀k ∈R
n, P .k � 1

2

(
d2a+

q,t (q)(k, k) + d2a+
q,t (q)(Q,Q) − d2a−

q,t (q)(Q − k,Q − k)
)

(resp.:

∀k ∈R
n,

1

2

(
d2a−

q,t (q)(k, k) + d2a−
q,t (q)(Q,Q) − d2a+

q,t (q)(k − Q,k − Q)
)
� P.k).

Proof. We work in a chart, and we have, if q ∈ I(u−, u+) and q ′ is a point of differentiability of u−:

• u−(q ′ + h) − u−(q ′) − du−(q ′)h � a+
q ′,t (q

′ + h) − a+
q ′,t (q

′) − da+
q ′,t (q

′)h;

• u−(q ′) − u−(q) − du−(q)(q ′ − q) � a+
q,t (q

′) − a+
q,t (q) − da+

q,t (q)(q ′ − q);
• a−

q,t (q
′ + h) − a−

q,t (q) − da−
q,t (q)(q ′ + h − q)� u+(q ′ + h) − u+(q) − du+(q)(q ′ + h − q).

Hence, by adding these three inequalities and using that u−(q) = u+(q), du−(q) = du+(q) and u+ � u−:(
du−(q) − du−

(
q ′))h� a+

q ′,t
(
q ′ + h

) − a+
q ′,t

(
q ′) − da+

q ′,t
(
q ′)h + a+

q,t

(
q ′) − a+

q,t (q)

− da+
q,t (q)

(
q ′ − q

) − a−
q,t

(
q ′ + h

) + a−
q,t (q) + da−

q,t (q)
(
q ′ + h − q

)
.

We now need to precise the regularity of the maps: q ′ → da−
q ′,t and q ′ → da+

q ′,t . To do that, we prove a lemma. We
fix a finite atlas of M to write that u− is K-semi-concave and that u+ is K-semi-convex. The proof is very similar to
the one given by A. Fathi in [10] to prove that the Aubry set is a Lipschitz graph.

Lemma 19. There exists a constant K > 0 such that, for every q ∈ I(u−, u+) and every q ′ ∈ M where u− (resp. u+)
is differentiable, then ‖du−(q) − du−(q ′)‖ � K‖q − q ′‖ (resp. ‖du+(q) − du+(q ′)‖ � K‖q − q ′‖). In particular,
du− and du+ are continuous at every point of I(u−, u+).

Proof. Because u+ � u−, u− is semi-concave and u+ is semi-convex, then u− is K-semi-convex at every point of
I(u−, u+); hence:

• u−(q ′ + h) − u−(q ′) − du−(q ′)h �K‖h‖2;
• u−(q ′) − u−(q) − du−(q)(q ′ − q) �K‖q ′ − q‖2;
• −K‖q ′ + h − q‖2 � u−(q ′ + h) − u−(q) − du−(q)(q ′ + h − q).

Adding these three inequalities, we obtain:(
du−(q) − du−(q ′)

)
h � K‖h‖2 + K

∥∥q ′ − q
∥∥2 + K

∥∥q ′ + h − q
∥∥2

.
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We choose h such that ‖h‖ = ‖q ′ − q‖:

(
du−(q) − du−

(
q ′)) h

‖h‖ � 6K
∥∥q ′ − q

∥∥
and then: ‖du−(q ′) − du−(q)‖ � 6K‖q ′ − q‖. We have found a constant for q close to q ′, this is enough to conclude
because I(u−, u+) is compact and du− is bounded on M . �

Let us now fix q ∈ I(u−, u+). For q ′ close to q that is a point of differentiability of u−, we have:

• a+
q ′,t (z) = At(π ◦ ϕ−t (q

′, du−(q ′)), z);
• {(z, da+

q ′,t (z))} = V(z) ∩ ϕt (Vloc(π ◦ ϕ−t (q
′, du−(q ′))));

• graph(d2a+
q ′,t (z)) = T(z,da+

q′,t (z))
Dϕt (V(π ◦ϕ−t (q

′, du−(q ′)))) = Gt(q
′, du−(q ′)) and then the previous intersec-

tion is transverse.

These three quantities depend on q ′ and z; because du− is continuous at q , we have: for every ε > 0, there exists
δ > 0 such that, if ‖q ′ − q‖ < δ and z is in the chart near q: ‖d2a+

q ′,t (z) − d2a+
q,t (z)‖ � ε.

Moreover, by the Taylor–Lagrange inequality, we have:∥∥∥∥a+
q ′,t

(
q ′ + h

) − a+
q ′,t

(
q ′) − da+

q ′,t
(
q ′)h − 1

2
d2a+

q ′,t
(
q ′)(h,h)

∥∥∥∥ � max
z∈[q ′,q ′+h]

∥∥d2a+
q ′,t (z) − d2a+

q ′,t
(
q ′)∥∥‖h‖2.

Hence, if q ′ is close enough to q and h small enough:∥∥∥∥a+
q ′,t

(
q ′ + h

) − a+
q ′,t

(
q ′) − da+

q ′,t
(
q ′)h − 1

2
d2a+

q,t

(
q ′)(h,h)

∥∥∥∥ � ε‖h‖2.

We have of course a similar result for a−
q ′,t and q ′ any differentiability point of u+.

Let us now consider a sequence (qn) of points of differentiability of u− that converges to q so that: ∀n, qn �= q ,
a vector k with fixed norm ‖k‖ = μ > 0 and (hn) = (λnk) where (λn) is a sequence of positive numbers tending to 0.
We have proved that:(

du−(q) − du−(qn)
)
hn � a+

qn,t (qn + hn) − a+
qn,t (qn) − da+

qn,t (qn)hn + a+
q,t (qn) − a+

q,t (q)

− daq,t (q)(qn − q) − a−
q,t (qn + hn) + a−

q,t (q) + da−
q,t (q)(qn + hn − q).

We assume that limn→∞ qn−q
λn

= Q and P = limn→∞ du−(qn)−du−(q)
λn

.

We divide by λ2
n the previous inequality and take the limit when n tends to +∞ and we obtain:

−P.k � 1

2

(
d2a+

q,t (q)(k, k) + d2a+
q,t (q)(Q,Q) − d2a−

q,t (q)(Q + k,Q + k)
)

changing k into −k, this gives the wanted result. In a similar way we obtain for u+:

∀k ∈R
n,

1

2

(
d2a−

q,t (q)(k, k) + d2a−
q,t (q)(Q,Q) − d2a+

q,t (q)(k − Q,k − Q)
)
� P.k. �

4.4. Links between the Green bundles and the weak KAM solutions

Notations. Near every point q ∈ M , we choose some coordinates (q1, . . . , qn) of M and associate to them their
dual coordinates (p1, . . . , pn) such that (q1, . . . , qn,p1, . . . , pn) are symplectic coordinates on T ∗M . Then we can
associate to these coordinates their infinitesimal coordinates (Q1, . . . ,Qn,P1, . . . ,Pn).

Then any Lagrangian subspace G of Tx(T
∗M) that is transverse to the vertical is the graph of a linear map whose

matrix s in the coordinates (Q1, . . . ,Qn,P1, . . . ,Pn) is symmetric. We can then associate to G the unique quadratic
form Q whose matrix (as a quadratic form) in coordinates (Q1, . . . ,Qn) is s.

For example, if q ∈ M is a point of differentiability of u− (resp. u+) then the Green bundle G+(q, du−(q)) (resp.
G−(q, du+(q))) is well defined and transverse to the vertical. We denote by Q− (resp. Q+) its associated quadratic
form and by s− (resp. s+) its matrix.
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Let us recall that if x ∈ A ⊂ T ∗M , CxA designates the contingent cone to A at x, that was defined in the introduc-
tion.

Proposition 20. We assume that (u−, u+) is a pair of conjugate weak KAM solutions. Let q ∈ I(u−, u+) be a point
and (Q,P ) ∈ C(q,du−(q))G(du−). Then we have:

∀k ∈R
n, P .k � 1

2

(
Q+(k, k) +Q+(Q,Q) −Q−(Q − k,Q − k)

)
and if (Q,P ) ∈ C(q,du+(q))G(du+):

∀k ∈R
n,

1

2

(
Q−(k, k) +Q−(Q,Q) −Q+(Q − k,Q − k)

)
� P.k.

Proof. We know that G+(q,p) = limt→+∞ Gt(q,p) (resp. G−(q,p) = limt→−∞ Gt(q,p)). Hence, if q is a point
of differentiability of u−, we have: Q+(q, du−(q)) = limt→+∞ d2g+

q,t (q) and if q is a point of differentiability of u+:
Q−(q, du+(q)) = limt→+∞ d2g−

q,t (q). If we use the inequalities that we proved in Proposition 18, we obtain for the
(Q,P ) that were described in this proposition:

∀k ∈R
n, P .k � 1

2

(
Q+(Q,Q) +Q+(k, k) −Q−(Q − k,Q − k)

)
.

Let us now look for the contingent cone to the pseudograph G(du−) at (q, du−(q)) ∈ I(u−, u+). Working in a
chart, we assume that (Q,P ) ∈ C(q,du−(q))G(du−) is not the null vector. Hence, there exist a sequence (λn) of positive
numbers that converges to 0+ and a sequence (qn) of points of differentiability of u− that converges to q so that:

(Q,P ) = lim
n→∞

1

λn

(
qn − q, du−(qn) − du−(q)

)
.

This corresponds exactly to the limit that we computed in Proposition 18. Hence, we proved:

If q ∈ I(u−, u+), if (Q,P ) is a vector of the contingent cone to G(du−) at (q, du−(q)), then:

∀k ∈R
n, P .k � 1

2

(
Q+(k, k) +Q+(Q,Q) −Q−(Q − k,Q − k)

)
.

In a similar way, we obtain:

If q ∈ I(u−, u+), if (Q,P ) is a vector of the contingent cone to G(du+) at (q, du+(q)), then:

∀k ∈R
n,

1

2

(
Q−(k, k) +Q−(Q,Q) −Q+(Q − k,Q − k)

)
� P.k. �

4.5. Proof of Theorem 12

Let (u−, u+) be a pair of conjugate weak KAM solutions and let q belong to I(u−, u+). We want to prove that:
∀(Q,P ) ∈ C(q,du−(q))G(du−),

∥∥P − s−
(
q, du−(q)

)
Q

∥∥ � 2
√∥∥�s

(
q, du−(q)

)∥∥.

√
�s

(
q, du−(q)

)
(Q,Q)

� 2
∥∥�s

(
q, du−(q)

)∥∥.
∥∥proj�s(q,du−(q))(Q)

∥∥.

We denote the quadratic form associated with G− (resp. G+) by Q− (resp. Q+). Let (Q,P ) ∈ C(q,du−(q))G(du−)

be a vector of the contingent cone. We have proved that:

∀k ∈R
n, P .k � 1

2

(
Q+(k, k) +Q+(Q,Q) −Q−(Q − k,Q − k)

)
.

Then we write: P = tQ+Q + �P and �Q=Q+ −Q−. The previous inequality can be rewritten as follows:

∀k ∈R
n, �P.k � 1

�Q(Q − k,Q − k). (∗)

2
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We have the following splitting: Rn = ker t�Q⊕ Imt�Q and �P = P1 +P2 with P1 ∈ ker t�Q and P2 ∈ Imt�Q.
We deduce from (∗):

∀k ∈ ker t�Q, P1.k � 1

2
�Q(Q,Q).

This implies: P1 = �0. Hence �P = P2 ∈ Im t�Q.
Let Q1 ∈ ker t�Q and Q2 ∈ Imt�Q be such that Q = Q1 + Q2. Then (∗) is equivalent to:

∀k ∈ Im t�Q, P2.k � 1

2
�Q(Q2 − k,Q2 − k). (∗∗)

If Q2 = �0, then P2 = �0. If not, we have for k := ‖Q2‖�u with �u unitary vector such that P2 = ‖P2‖�u:

• ‖Q2 − k‖� ‖Q2‖ + ‖k‖ = 2‖Q2‖;
• replacing in (∗∗):

‖P2‖.‖Q2‖� 1

2
�Q(Q2 − k,Q2 − k) � 1

2
‖�Q‖‖Q2 − k‖2 � 2‖Q‖‖Q2‖2.

We deduce: ‖P2‖� 2‖Q‖‖Q2‖ that is exactly:∥∥P − tQQ
∥∥� 2‖�Q‖.∥∥proj�Q(Q)

∥∥. �
Remark. It would be nice to deduce that in some sense, the contingent cone is between G− and G+. We would like
to have some statement that says that every vector of the contingent cone is contained in some Lagrangian subspace
(that depends on the considered vector) that is between G− and G+.

Even if we do not know any counter-example to that, it is easy to construct in R
2 an example of:

• two quadratic form Q− �Q+;
• two vectors Q, P ;

so that:

• the inequalities of Proposition 20 are satisfied;
• there exists no quadratic form Q such that Q− �Q�Q+ and P = tQQ.

This implies that we have to obtain some estimates more precise that those contained in Proposition 20 to hope to
prove such a result.

Let us describe our example: Q− = 0, Q+ is the standard Euclidean metric, Q = (1,0) and P = ( 1
2 ,

√
3

2 ). The fact
that this example satisfies the inequalities of Proposition 20 is straightforward. Let us assume that S is the matrix of

a quadratic form Q such that Q− �Q�Q+ and P = tQQ. Then S = ( 1
2

√
3

2√
3

2 b

)
� 0 and I2 − S = ( 1

2 −
√

3
2

−
√

3
2 1−b

)
� 0.

This implies that b ∈ [0,1], b
2 − 3

4 � 0 and 1−b
2 − 3

4 � 1, which is impossible.
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