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Abstract

The existence and uniqueness of weak solutions are studied to the initial Dirichlet problem of the equation

ut = div
(|∇u|p(x)−2∇u

) + f (x, t, u),

with infp(x) > 2. The problems describe the motion of generalized Newtonian fluids which were studied by some other authors in
which the exponent p was required to satisfy a logarithmic Hölder continuity condition. The authors in this paper use a difference
scheme to transform the parabolic problem to a sequence of elliptic problems and then obtain the existence of solutions with less
constraint to p(x). The uniqueness is also proved.
© 2012 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let Ω ⊂ RN be a bounded domain with Lipschitz continuous boundary ∂Ω . Consider the following problem

ut = div
(|∇u|p(x)−2∇u

) + f (x, t, u), x ∈ Ω, 0 < t < T, (1.1)

u|ΓT
= 0, u|t=0 = u0, (1.2)

where ΓT = ∂Ω × [0, T ] and p(x) is a measurable function.
In the case when p is a constant, there have been many results about the existence, uniqueness and the regularity

of the solutions. We refer the readers to the bibliography given in [5,11,12] and the references therein.
A new interesting kind of fluids of prominent technological interest has recently emerged: the so-called electrorhe-

ological fluids. This model includes parabolic equations which are nonlinear with respect to the gradient of the thought
solution, and with variable exponents of nonlinearity. The typical case is the so-called evolution p-Laplace equation
with exponent p as a function of the external electromagnetic field (see [1,2,10] and the references therein).
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In [13], Zhikov showed that

W
1,p(x)

0 (Ω) �= {
v ∈ W 1,p(x)(Ω)

∣∣ v|∂Ω = 0
} = W̊ 1,p(x)(Ω).

Hence, the property of the space is different from the case when p is a constant (see Section 2 for the definition of the
function spaces).

As we have known, when p is a constant, the non-degenerate problems have classical solutions and hence the
weak solutions exist. But to the case of p(x)-Laplace type, there is no results to the corresponding non-degenerate
problems. These will bring us some new difficulties in studying the weak solutions.

For more general p(x, t)-Laplace equation, the authors of [3] established the existence and uniqueness results with
the exponent p(x, t) satisfying the so-called logarithmic Hölder continuity condition, i.e.∣∣p(x) − p(y)

∣∣ � ω
(|x − y|), ∀x, y ∈ QT , |x − y| < 1

2
(1.3)

with

lim
s→0+ ω(s) ln

(
1

s

)
= C < ∞.

However if p(x, t) satisfies (1.3), then (see [14])

W
1,p(x)

0 (Ω) = W̊ 1,p(x)(Ω).

Therefore, we can ask whether the logarithmic Hölder continuity to p(x, t) is indispensable for the existence of
solutions to the problem.

In the present work, we will study the existence of the solutions to problem (1.1)–(1.2) without the condition (1.3).
Unlike [3] , we will, in this paper, adopt a method of difference in time. Note that the author in [9] considered
the p-Laplace equation without the term f (x, t, u) by using a similar method. To overcome the difficulties caused
by p(x), we will develop some new ideas and new techniques.

The outline of this paper is the following: In Section 2, we introduce some basic Lebesgue and Sobolev spaces and
state our main theorems. In Section 3, we give the existence of weak solutions to a difference equation (approximating
problem). In Section 4, we will prove the global existence of solutions to the problem (1.1)–(1.2). Section 5 will be
devoted to the proof of the local existence and the existence of weak solutions under some weaker conditions to the
initial function u0.

2. Basic spaces and the main results

To study our problems, we need to introduce some new function spaces.
Denote

p+ = ess sup
Ω

p(x), p− = ess inf
Ω

p(x).

Throughout the paper we assume that

2 < p− � p(x) � p+ < ∞, ∀x ∈ Ω. (2.1)

Set

Lp(x)(Ω) =
{
u

∣∣∣ u is a measurable real-valued function,

∫
Ω

∣∣u(x)
∣∣p(x)

dx < ∞
}
,

|u|Lp(x)(Ω) = inf

{
λ > 0

∣∣∣ ∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣
p(x)

dx � 1

}
,

W 1,p(x)(Ω) = {
u ∈ Lp(x)(Ω)

∣∣ |∇u| ∈ Lp(x)(Ω)
}
,

|u|W 1,p(x) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω), ∀u ∈ W 1,p(x)(Ω).

We use W
1,p(x)

0 (Ω) to denote the closure of C∞
0 (Ω) in W 1,p(x).

In the following, we state some of the properties of the function spaces introduced as above (see [6] and [7]).
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Proposition 2.1. (i) The space (Lp(x)(Ω), | · |Lp(x)(Ω)), (W 1,p(x)(Ω), | · |W 1,p(x)(Ω)) and W
1,p(x)

0 (Ω) are reflexive
Banach spaces.

(ii) Let q1(x) and q2(x) be real functions with 1/q1(x) + 1/q2(x) = 1 and q1(x) > 1. Then, the conjugate space of
Lq1(x)(Ω) is Lq2(x)(Ω). And for any u ∈ Lq1(x)(Ω) and v ∈ Lq2(x)(Ω), we have∣∣∣∣

∫
Ω

uv dx

∣∣∣∣ � 2|u|Lq1(x)(Ω)|v|Lq2(x)(Ω).

(iii)

|u|Lp(x)(Ω) = 1, then
∫
Ω

|u|p(x) dx = 1,

|u|Lp(x)(Ω) > 1, then |u|p−
Lp(x)(Ω)

�
∫
Ω

|u|p(x) dx � |u|p+
Lp(x)(Ω)

,

|u|Lp(x)(Ω) < 1, then |u|p+
Lp(x)(Ω)

�
∫
Ω

|u|p(x) dx � |u|p−
Lp(x)(Ω)

.

(iv) If p1(x) � p2(x), then Lp1(x) ⊃ Lp2(x).

Proposition 2.2. If p(x) ∈ C(Ω), then there is a constant C > 0, such that

|u|Lp(x)(Ω) � C|∇u|Lp(x)(Ω), ∀u ∈ W
1,p(x)

0 (Ω).

This implies that |∇u|Lp(x)(Ω) and |u|W 1,p(x)(Ω) are equivalent norms of W
1,p(x)

0 .

We now give the definition of the solutions to our problem.

Definition 2.1. A function u is said to be a weak solution of (1.1)–(1.2), if u satisfies the following:

u ∈ L2(QT ), f (x, t, u) ∈ L1(QT ), Diu ∈ Lp(x)(QT ),

u = 0 on ∂Ω × (0, T ) in the sense of traces,
T∫

0

∫
Ω

(
u

∂ϕ

∂t
− |∇u|p(x)−2∇u · ∇ϕ + f ϕ

)
dx dt = 0, (2.2)

for all ϕ ∈ C∞
0 (QT ) and

lim
t→0

∫
Ω

(
u(x, t) − u0(x)

)
ψ(x)dx = 0, (2.3)

for all ψ ∈ C∞
0 (Ω), where QT = Ω × (0, T ).

In the study of the global existence of solutions, we need the following hypotheses to the function f :

f (x, t, z) ∈ C1(Ω × [0, T ] × R
)

and
∣∣f (x, t, z)

∣∣ � C0
(
φ(x, t) + |z|α)

, (A)

where φ � 0, φ ∈ Lr(Ω × (0, T )), r > (N + p−)/p− and C0 > 0, α � 0 are constants.
Our main results are the following.

Theorem 2.1. Let u0 ∈ L∞(Ω) ∩ W
1,p(x)

0 (Ω) and (A) hold.
Assume that

α < p− − 1 or
α = p− − 1 and |Ω| is sufficiently small,

(B)
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where |Ω| denotes the Lebesgue measure of Ω . Then there exists a weak solution of (1.1)–(1.2) such that

u ∈ L∞(QT ) ∩ L∞(
0, T ;W 1,p(x)

0 (Ω)
)
, ut ∈ L2(Ω × (0, T )

)
.

Remark 2.1. In certain sense, the constrains to α in (B) is necessary even to the case when p is a constant (see [11]).

Theorem 2.2. If u0 ∈ L∞(Ω) ∩ W
1,p(x)

0 (Ω) and f (x, t, z) ∈ C1(Ω × [0, T ] × R). Then there exists a T ∗ > 0 such
that (1.1)–(1.2) has a solution u in QT ∗ .

Theorem 2.3. If f (x, t, z) ∈ C1(Ω × [0, T ] × R), then the solution of (1.1)–(1.2) with

u ∈ L∞(QT ), ut ∈ L2(Ω × (0, T )
)
,

is unique.

Remark 2.2. Combining Theorems 2.1 and 2.3, we can obtain the existence of global solutions.

We also consider the problem under a weaker condition for u0.

Theorem 2.4. Let u0 ∈ L∞(Ω).
(i) If (A) and (B) hold, then there exists a weak solution u of (1.1)–(1.2) such that

u ∈ L∞(QT ) ∩ L∞(
ε, T ;W 1,p(x)

0 (Ω)
)
, ut ∈ L2(Ω × (ε, T )

)
, (2.4)

where 0 < ε < T is a constant.
(ii) If f (x, t, z) ∈ C1(Ω × [0, T ] × R), then there exists a T ∗ > 0 such that (1.1)–(1.2) has a solution u in QT ∗

satisfying (2.4).

3. Existence of weak solutions to a difference equation

Let

F i(x,u) =
u∫

ui−1

(
1

h

(i+1)h∫
ih

f (x, τ, s) dτ

)
ds, (3.1)

and

ψi(u) =
∫
Ω

1

p(x)
|∇u|p(x) dx −

∫
Ω

F i(x,u)dx + 1

2h

∫
Ω

(u − ui−1)
2 dx, i = 1,2, . . . . (3.2)

Denote

p∗ =
⎧⎨
⎩

Np−
N−p− , if N > p−,

(
N+p−

N
)p−, if N � p−.

(3.3)

Lemma 3.1. Assume that p(x) ∈ C(Ω),ui−1(x) ∈ Lp∗
(Ω) and (A), (B) hold. Then the functional ψi(u) achieves its

minimum on the set

S = {
u ∈ W

1,p(x)

0 (Ω)
}
. (3.4)

Proof. We will show, in three steps, that ψi(u) satisfies the conditions which assure the existence of a minimum on
the set.

Step 1. S is weakly closed.
By Proposition 2.1(i) we know that W

1,p(x)

0 (Ω) is a reflexive Banach space and then by Mazur theorem it is weakly
closed.
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Step 2. ψi(u) satisfies the coerciveness conditions.
By (A) we have

ψi(u) �
∫
Ω

1

p(x)
|∇u|p(x) dx − C0

∫
Ω

(
1

h

(i+1)h∫
ih

φ(x, τ ) dτ

)
|u − ui−1|dx

− C1

∫
Ω

(|u|α+1 + |ui−1|α+1)dx + 1

2h

∫
Ω

(u − ui−1)
2 dx, (3.5)

where C1 > 0 is a constant.
We first estimate the second term on the right-hand side of the inequality.
Denote r1 = (N + p−)/p− and r2 = (N + p−)/N .
By (A) and the Hölder inequality, we get

I1 = C0

∫
Ω

(
1

h

(i+1)h∫
ih

φ(x, τ ) dτ

)
|u − ui−1|dx

� C0

(∫
Ω

(
1

h

(i+1)h∫
ih

φ(x, τ ) dτ

)r1

dx

)1/r1(∫
Ω

|u − ui−1|r2 dx

)1/r2

� C

(
1

h

∫
Ω

(i+1)h∫
ih

φr1(x, τ ) dτ dx

)1/r1(∫
Ω

|u − ui−1|r2 dx

)1/r2

� C‖u − ui−1‖Lr2 (Ω) � C
(‖u‖Lr2 (Ω) + ‖ui−1‖Lr2 (Ω)

)
.

Notice that r2 = (N + p−)/N < p∗ for N > p−. By the imbedding inequality and Young’s inequality, for all
N � 1, we have

I1 � 1

4

∫
Ω

|∇u|p−
dx + C � 1

4

∫
Ω

|∇u|p(x)

p(x)
dx + C.

Now, we estimate C1
∫
Ω

(|u|α+1 + |ui−1|α+1) dx in the following two cases.
(i) α < p− − 1.
By Young’s inequality and the Poincaré inequality, we get

C1

∫
Ω

(|u|α+1 + |ui−1|α+1)dx � ε

∫
Ω

|u|p−
dx + C

� 1

4

∫
Ω

|∇u|p−
dx + C � 1

4

∫
Ω

|∇u|p(x)

p(x)
dx + C.

(ii) α = p− − 1, but the Lebesgue measure of Ω is sufficiently small.
By the Poincaré inequality, we get

C1

∫
Ω

(|u|p− + |ui−1|p−)
dx � C1

∫
Ω

|u|p−
dx + C

� 1

4

∫
Ω

|∇u|p−
dx + C � 1

4

∫
Ω

|∇u|p(x)

p(x)
dx + C.

Summarizing up the above estimates and combining Proposition 2.2, we get
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ψi(u) � 1

2p+ |∇u|p−
Lp(x)(Ω)

− C

� 1

2Cp+ |u|p−
W 1,p(x)(Ω)

− C → ∞, as |u|W 1,p(x)(Ω) → ∞.

Step 3. ψi(u) is weakly lower semicontinuous.
At first, by the convexity of the functional, we know that for

∫
Ω

1
p(x)

|∇u|p(x) dx, weakly lower semicontinuous is
equivalent to lower semicontinuous (see [4]).

Let

vl → v, in W
1,p(x)

0 as l → ∞. (3.6)

Then by Proposition 2.1(iii), we have |vl |Lp(x)(Ω),
∫
Ω

|∇vl |p(x) dx � C, l = 1,2, . . . .
Now∣∣∣∣

∫
Ω

1

p(x)
|∇vl |p(x) dx −

∫
Ω

1

p(x)
|∇v|p(x) dx

∣∣∣∣

�
∫
Ω

1∫
0

∣∣s∇vl + (1 − s)∇v
∣∣p(x)−1 · |∇vl − ∇v|ds dx

=
1∫

0

∫
Ω

∣∣s∇vl + (1 − s)∇v
∣∣p(x)−1 · |∇vl − ∇v|dx ds.

Then combining Proposition 2.1(ii), (iii), we know that
∫
Ω

1
p(x)

|∇u|p(x) dx is a continuous functional. Therefore,∫
Ω

1
p(x)

|∇u|p(x) dx is weakly lower semicontinuous.
Now, consider the functional

I2 = −
∫
Ω

F i(x,u)dx + 1

2h

∫
Ω

(u − ui−1)
2 dx.

By (3.6), using (ii) and (iv) of Proposition 2.1, for any 0 < ε < p−, we have

vl
weak
⇀ v, in W

1,p−−ε

0 ,

and then using the Sobolev compact imbedding theorem we get

vl → v, in Lp∗
ε ,

where

p∗
ε =

⎧⎨
⎩

N(p−−ε)

N−(p−−ε)
, if N > p− − ε,

N+(p−−ε)
N

(p− − ε), if N � p− − ε.

For small enough ε, we have Lp∗
ε > max{r/(r − 1),2}. Combining (A), we may prove that the functional I2 is

continuous in Lp∗
ε . Hence I2 is weakly lower semicontinuous.

Obviously, the sum of two weakly lower semicontinuous functionals is weakly lower semicontinuous functional
and our conclusion follows.

By above results and a standard argument (see [4]), we know that the functional ψi(u) achieves its minimum on
the set S. �
Lemma 3.2. Let u+ = max{0, u}. Assume that u is a minima obtained in Lemma 3.1. Then for any constant k � 1,
both u and −u satisfy
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1

h

∫
Ω

(u − k)2+ dx +
∫
Dk

|∇u|p(x) dx

� 1

h

∫
Ω

(u − k)+

( (i+1)h∫
ih

∣∣f (x, τ,u)
∣∣dτ + |ui−1|

)
dx, (3.7)

where Dk = {x ∈ Ω: u(x) > k}.
Proof. For 0 � ε < 1, we have u − ε(u − k)+ ∈ S and then

g(−ε) = ψi
(
u − ε(u − k)+

)
� ψi(u) = g(0).

Therefore,

lim
ε→0, ε>0

g(−ε) − g(0)

−ε
� 0.

Plugging into the definition of g, we get

1

h

∫
Ω

(u − k)+(u − ui−1) dx +
∫
Ω

|∇u|p(x)−2∇u∇(u − k)+ dx

� 1

h

∫
Ω

(u − k)+

( (i+1)h∫
ih

f (x, τ, u) dτ

)
dx.

Notice that

(u − k)+(u − ui−1) = (u − k)2+ − (u − k)+(ui−1 − k) � (u − k)2+ − (u − k)+(ui−1 − k)+,

the conclusion of the lemma can be proved easily.
Also, by

ψi
(
u + ε(−u − k)+

)
� ψi(u),

we know that the conclusion of the lemma holds for −u. �
Remark 3.1. Moreover, if u ∈ L∞(Ω), we have∫

Ω

(u − k)
(q+1)
+

h
dx + q

∫
Ω

|∇u|p(x)(u − k)
(q−1)
+ dx

�
∫
Ω

(ui−1 − k)+(u − k)
q
+

h
dx + 1

h

∫
Ω

(u − k)
q
+

(i+1)h∫
ih

f (x, τ, u) dτ dx, (3.8)

where q � 1 is a constant.

Now we consider the following problem.

1

h
(ui − ui−1) = div

(|∇ui |p(x)−2∇ui

) + 1

h

(i+1)h∫
ih

f (x, τ, ui) dτ, x ∈ Ω, (3.9)

ui |∂Ω = 0, i = 1,2, . . . , (3.10)

where h > 0 is a constant.
By Lemma 3.1, similarly to Lemma 3.2, we get

Lemma 3.3. Let (A), (B) hold. Assume that p(x) ∈ C(Ω) and ui−1(x) ∈ Lp∗
(Ω). Then there exists a weak solution ui

of (3.9)–(3.10) such that ui ∈ W
1,p(x)

0 (Ω).



384 S. Lian et al. / Ann. I. H. Poincaré – AN 29 (2012) 377–399
4. Global existence of weak solutions

In the following we assume that

lh � T < (l + 1)h,

where l is an integer.
Define uh : Ω × [0,∞) → R such that

u(h)(·, t) = ui, for t ∈ [
ih, (i + 1)h

)
, i = 0,1, . . . , l (4.1)

where ui is a solution obtained in Lemma 3.3.
We will prove that a subsequence of u(h) converges and the limiting function is a solution of (1.1)–(1.2).
Denote

∂(−h)u(h)(·, t) = 1

−h

(
u(h)(·, t − h) − u(h)(·, t))

=
{ 1

h
(ui − ui−1)(·), for t ∈ [

ih, (i + 1)h
)
, 1 � i � l,

0, for t ∈ [0, h).
(4.2)

Define the following new functions f (h)(x, t) and φ(h)(x, t) as

f (h)(x, t) = 1

h

(i+1)h∫
ih

f
(
x, τ,ui(x)

)
dτ, for t ∈ [

ih, (i + 1)h
)
, i = 0,1, . . . , l (4.3)

φ(h)(x, t) = 1

h

(i+1)h∫
ih

φ(x, τ ) dτ, for t ∈ [
ih, (i + 1)h

)
, i = 0,1, . . . , l. (4.4)

By (A) we have∣∣f (h)(x, t)
∣∣ � C0

(
φ(h) + ∣∣u(h)

∣∣α)
. (A′)

Lemma 4.1. If φ ∈ Lr(QT ), then φ(h) ∈ Lr(QT ) and∫ ∫
QT

(
φ(h)

)r
dx dt �

∫ ∫
QT

φr dx dt,

where r is given in (A).

Proof. By Hölder’s inequality

∫ ∫
QT

(
φ(h)

)r
dx dt =

∑
i

(i+1)h∫
ih

∫
Ω

(
1

h

(i+1)h∫
ih

φ(x, τ ) dτ

)r

dx

= h

∫
Ω

∑
i

(
1

h

(i+1)h∫
ih

φ(x, τ ) dτ

)r

dx � h

∫
Ω

∑
i

(
1

h

(i+1)h∫
ih

φr(x, τ ) dτ

)
dx

=
∫
Ω

∑
i

( (i+1)h∫
ih

φr(x, τ ) dτ

)
dx =

∫ ∫
QT

φr dx dt. �

In the following, we will give the estimate to the maximum norm of the solution by adopting the method in [11].
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Lemma 4.2. Let (A), (B) hold. Assume that p(x) ∈ C(Ω) and u0 ∈ L∞(Ω) ∩ W
1,p(x)

0 (Ω). Then for any integer
1 � q < ∞, there is a constant C(q) > 0 independent of h such that∥∥u(h)

∥∥
Lq+1(QT )

� C(q), ∀h > 0.

Proof. Let u+ = max{0, u} and k be chosen so that ‖u0‖L∞(Ω) � k. Multiplying (3.9) by (q + 1)(ui − k)
q
+ and

integrating over Ω we get

(q + 1)

∫
Ω

(ui − k)
(q+1)
+

h
dx + q(q + 1)

∫
Ω

|∇ui |p(x)(ui − k)
(q−1)
+ dx

= (q + 1)

∫
Ω

(ui−1 − k)(ui − k)
q
+

h
dx + (q + 1)

∫
Ω

(ui − k)
q
+f (h)(x, ih) dx

� (q + 1)

∫
Ω

(ui−1 − k)+(ui − k)
q
+

h
dx + (q + 1)

∫
Ω

(ui − k)
q
+f (h)(x, ih) dx. (4.5)

By Young’s inequality

(ui−1 − k)+(ui − k)
q
+ � q

q + 1
(ui − k)

(q+1)
+ + 1

q + 1
(ui−1 − k)

(q+1)
+ .

Hence we have∫
Ω

(ui − k)
(q+1)
+

h
dx + q(q + 1)

∫
Ω

|∇ui |p(x)(ui − k)
(q−1)
+ dx

�
∫
Ω

(ui−1 − k)
(q+1)
+

h
dx + (q + 1)

∫
Ω

(ui − k)
q
+f (h)(x, ih) dx, i = 1, . . . , l. (4.6)

Summing over i in (4.6) and considering the definition of u(h), we have

∫
Ω

(
u(h) − k

)(q+1)

+ (·, t) dx + q(q + 1)

(l+1)h∫
h

∫
Ω

∣∣∇u(h)
∣∣p(x)(

u(h) − k
)(q−1)

+ dx dt

�
∫
Ω

(u0 − k)
(q+1)
+ dx + (q + 1)

(l+1)h∫
h

∫
Ω

(
u(h) − k

)q

+f (h) dx dt, (4.7)

where t ∈ [h, (l + 1)h). By Young’s inequality∣∣∇u(h)
∣∣p−

�
∣∣∇u(h)

∣∣p(x) + C.

Using ‖u0‖L∞(Ω) � k, we get

sup
t∈(h,(l+1)h)

∫
Ω

(
u(h) − k

)(q+1)

+ (·, t) dx + q(q + 1)

(l+1)h∫
h

∫
Ω

∣∣∇u(h)
∣∣p−(

u(h) − k
)(q−1)

+ dx dt

� Cq(q + 1)

(l+1)h∫
h

∫
Ω

(
u(h) − k

)(q−1)

+ dx dt + (q + 1)

(l+1)h∫
h

∫
Ω

(
u(h) − k

)q

+
∣∣f (h)

∣∣dx dt

= Cq(q + 1)I1 + (q + 1)I2. (4.8)
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Denote

μ(k) = ∣∣{(x, t) ∈ Ω × (
0, (l + 1)h

): u(h) � k
}∣∣.

By Young’s inequality and the Poincaré inequality, we get

I1 �
(l+1)h∫
h

∫
Ω

(
u(h) − k

)(q+p−−1)

+ dx dt + C(q)μ(k)

� C
(|Ω|)

(l+1)h∫
h

∫
Ω

∣∣∇(
u(h) − k

)(q+p−−1)/p− ∣∣p−
dx dt + C(q)μ(k). (4.9)

Now we estimate I2.
By the Hölder inequality and the Poincaré inequality

(l+1)h∫
h

∫
Ω

(
u(h) − k

)q+α

+ dx dt

� C

(l+1)h∫
h

(∫
Ω

(
u(h) − k

)q+p−−1
+ dx

)(q+α)/(q+p−−1)

dt

� C
(|Ω|)

(l+1)h∫
h

(∫
Ω

∣∣∇(
u(h) − k

)(q+p−−1)/p−
+

∣∣p−
dx

)(q+α)/(q+p−−1)

dt. (4.10)

Similarly to the above, using the imbedding theorem, we may prove (see Lemma 3.1 in [11]) that

(l+1)h∫
h

∫
Ω

(
u(h) − k

)q

+φ(h) dx dt

� C

(
sup

t∈(h,(l+1)h)

∫
Ω

(
u(h) − k

)(q+1)

+ (·, t) dx

+
(l+1)h∫
h

∫
Ω

∣∣∇(
u(h) − k

)(q+p−−1)/p−
+

∣∣p−
dx dt

)q1

, (4.11)

where q1 = q(N + p−)/(q(N + p−) + N(p− − 1 + p−/N)) < 1.
Combining (4.10), (4.11), Lemma 4.1 and (A′), we can obtain the estimate for I2.
Substituting it into (4.8), by |μ(k)| � 2|QT | and Young’s inequality, we get

sup
t∈(0,(l+1)h)

∫
Ω

(
u(h) − k

)(q+1)

+ (·, t) dx � C. (4.12)

Here we used the fact that (u(h) − k)+(·, t) = 0, for t ∈ [0, h).
If α = p− − 1 and |Ω| is sufficiently small, by the Poincaré inequality

C
(|Ω|) → 0, as |Ω| → 0,

in (4.9) and (4.10). Thus we can also obtain the estimate for I2. Substituting it into (4.8), we may prove (4.12).
Similarly, we may prove

sup
t∈(0,(l+1)h)

∫ (−u(h) − k
)(q+1)

+ (·, t) dx � C.
Ω
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Thus ∥∥u(h)
∥∥

Lq+1(QT )
� C(q). �

Remark 4.1. If we take k = 0 and q = 1 in Lemma 4.2, then

(l+1)h∫
h

∫
Ω

∣∣∇u(h)
∣∣p(x)

dx dt � C. (4.13)

Remark 4.2. For studying above problems, we have to study the terms like
∫ |∇ui |p(x)|ui |q dx (q � 0) for |∇ui | ∈

Lp(x) (see (4.5)). To insure that integrals to be well-defined, we need ui ∈ L∞. Actually, the solution that we get in
Lemma 3.1 can be considered as a bounded function (see Lemma 4.4).

Now, we give a uniform estimate to the maximum norm of the solution.
We shall need the following proposition.

Proposition 4.1. (See [5, p. 12].) Let {Yn}, n = 0,1,2, . . . , be a sequence of positive numbers, satisfying the recursive
inequalities

Yn+1 � BbnY 1+β
n

where B,b > 1 and β > 0 are given numbers. If

Y0 � B−1/βb−1/β2
, (4.14)

then {Yn} converges to zero as n → ∞.

Lemma 4.3. Let the assumptions of Lemma 4.2 hold. Then there is a constant M1 > 0 depending only on T , |Ω|, N ,
p−, r , ‖u0‖L∞(QT ) such that∥∥u(h)

∥∥
L∞(QT )

� M1, ∀h > 0.

Proof. Let k be chosen so that ‖u0‖L∞(Ω) � k and denote

Jk = sup
t∈(0,(l+1)h)

∫
Ω

(
u(h) − k

)2
+(·, t) dx +

(l+1)h∫
0

∫
Ω

∣∣∇(
u(h) − k

)
+
∣∣p−

dx dt.

Take q = 1 in (4.8), then by (A′)

Jk � C1

( (l+1)h∫
0

∫
Ω

(
φ(h) + ∣∣u(h)

∣∣α)(
u(h) − k

)
+ dx dt + μ(k)

)
. (4.15)

Now we estimate the integral of the right-hand side of the inequality.
By Lemma 4.1 and Hölder’s inequality, we get

(l+1)h∫
0

∫
Ω

φ(h)
(
u(h) − k

)
+ dx dt

� C2

( (l+1)h∫
0

∫
Ω

(
u(h) − k

)r/(r−1)

+ dx dt

)(r−1)/r

� C3

( (l+1)h∫ ∫ (
u(h) − k

)p−+2p−/N

+ dx dt

)N/(p−N+2p−)

μ(k)(r−1)/r−N/(p−N+2p−).
0 Ω
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Hence, by imbedding inequality (see [5, p. 7] or [8, p. 62]) we have

(l+1)h∫
0

∫
Ω

(
u(h) − k

)
+φ(h) dx dt � C4J

(N+p−)/(p−N+2p−)
k μ(k)(r−1)/r−N/(p−N+2p−). (4.16)

Also, by Lemma 4.2 we have

(l+1)h∫
0

∫
Ω

∣∣u(h)
∣∣α(

u(h) − k
)
+ dx dt

�
( (l+1)h∫

0

∫
Ω

(
u(h)

)αr
dx dt

)1/r( (l+1)h∫
0

∫
Ω

(
u(h) − k

)r/(r−1)

+ dx dt

)(r−1)/r

� C5

( (l+1)h∫
0

∫
Ω

(
u(h) − k

)r/(r−1)

+ dx dt

)(r−1)/r

� C6J
(N+p−)/(p−N+2p−)
k μ(k)(r−1)/r−N/(p−N+2p−). (4.17)

Substituting (4.16), (4.17) into (4.15), we get

Jk � C7J
(p−+N)/(p−N+2p−)
k μ(k)(r−1)/r−N/(p−N+2p−) + C7μ(k).

By Young’s inequality

Jk � C8
(
μ(k)1+(r−N−2)p−/(rN(p−−1)+rp−) + μ(k)

)
.

Hence, for all k(2) � k(1), we have(
k(2) − k(1)

)(
μ

(
k(2)

))N/(p−N+2p−)

� C9

( (l+1)h∫
0

∫
Ω

(
u(h) − k(1)

)(p−+2p−/N)

+

)N/(p−N+2p−)

� C9γ
N/(p−N+2p−)J

(N+p−)/(p−N+2p−)

k(1)

� C10
(
μ

(
k(1)

)1+(r−N−2)p−/(rN(p−−1)+rp−) + μ
(
k(1)

))(N+p−)/(p−N+2p−)
, (4.18)

where γ is a constant, depending only on N,p−, T , comes from imbedding inequality (see [5, p. 7] or [8, p. 62]).
If we take k(2) = ‖u0‖L∞(Ω) + j (j > 1) and k(1) = ‖u0‖L∞(Ω) + 1, then

μ
(
k(2)

)N/(p−N+2p−)

� C10

j − 1

((
(T + 1)|Ω|)1+(r−N−2)p−/(rN(p−−1)+rp−) + (T + 1)|Ω|)(N+p−)/(p−N+2p−)

.

Hence, there exists a constant j0 > 1 depending only on T , |Ω|, N , p−, r such that

μ
(
k(2)

)
� 1, as j � j0.

We take km = M̃(2 − 2−m), m = 0,1,2, . . . , where M̃ � ‖u0‖L∞(Ω) + j0 is a constant.
Then it is easy to see that

μ(km) � 1, for m = 0,1, . . . . (4.19)

Now we consider the following two cases.
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If

(i) 1 + (r − N − 2)p−/
(
rN

(
p− − 1

) + rp−)
� 1,

then by (4.18) and (4.19)

(km+1 − km)
(
μ(km+1)

)N/(p−N+2p−) � C11
(
μ(km)

)(N+p−)/(p−N+2p−)
,

i.e.

μ(km+1) �
(

2C11

M̃

)(p−N+2p−)/N

2m(p−N+2p−)/Nμ(km)1+p−/N .

If

(ii) 1 + (r − N − 2)p−/
(
rN

(
p− − 1

) + rp−)
< 1,

then

(km+1 − km)
(
μ(km+1)

)N/(p−N+2p−)

� C12
(
μ(km)1+(r−N−2)p−/(rN(p−−1)+rp−)

)(N+p−)/(p−N+2p−)
,

i.e.

μ(km+1) �
(

2C12

M̃

)(p−N+2p−)/N

2m(p−N+2p−)/Nμ(km)1+δ1 ,

where

δ1 = p−

N
+ (r − N − 2)p−(N + p−)

(rN(p− − 1) + rp−)N
> 0.

Now, take

M̃ = max
{
C112N/p−+1,C122N/p−δ1(N+2)+1,‖u0‖L∞(Ω) + j0

}
,

then in both cases (4.14) hold. Hence by Proposition 4.1 we have that

u(h) � 2M̃.

Similarly, we may derive a lower bound and this completes the proof of Lemma 4.3. �
Up to now we required that p(x) ∈ C(Ω). This is in fact not necessary. We have

Lemma 4.4. Assume that u0 ∈ L∞(Ω) ∩ W
1,p(x)

0 (Ω) and (A), (B) hold. Then the conclusions in Lemmas 3.1–3.3,
4.1–4.3 still hold.

Proof. Note that we need the condition p(x) ∈ C(Ω) only in Proposition 2.2. But, if the functions mentioned in the
proofs are uniformly bounded, then Proposition 2.2 will still holds without continuity condition.

Now, replace S in (3.4) by

S̃ = {
u ∈ W

1,p(x)

0

} ∩ {‖u‖L∞(Ω) � M1 + 1
}
, (4.20)

and still consider ψi(u), where M1 > ‖u0‖L∞(Ω) is a constant depending only on T , |Ω|, N , p−, r , ‖u0‖L∞(QT ) (the
same as that in Lemma 4.3).

Assume that

vl ∈ S̃ and vl
weak
⇀ v in W

1,p(x)

0 .

Then by (ii) and (iv) of Proposition 2.1, we have vl ⇀weak v in W 1,p−
. Hence, ‖v‖L∞(Ω) � M1 + 1 and S̃ is weakly

closed. So we can complete the proof of Lemma 3.1 without the condition p(x) ∈ C(Ω). On the other hand, the
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proof of Lemma 3.2 does not need any change. Note that by the definition of S̃, it is not clear whether the minima of
ψi(u) satisfies (3.9)or not. Hence, we need modify the proofs of Lemmas 4.2 and 4.3. Let ui be a minima of ψi(u)

in S̃. Then for 0 � ε < 1/(‖ui‖L∞(Ω) + 1)q−1, we have ‖ui − ε(ui − k)
q
+‖L∞(Ω) � M1 + 1 and ui − ε(ui − k)

q
+ ∈ S̃.

Similarly to Lemma 3.2, we get the estimate (3.8). This estimate is exactly the same as that in (4.5) in Lemma 4.2.
Then without any change in Lemmas 4.2 and 4.3, we get

‖ui‖L∞(Ω) � M1.

Thus for any φ ∈ C∞
0 (Ω), |φ| � 1 and −1 � ε � 1 we have that ui + εφ ∈ S̃ and then ψi(ui + εφ) � ψi(ui).

Similarly to Lemma 3.2, we may prove that ui is a weak solution of (3.9)–(3.10). We must point out that the test
function must satisfy |φ| � 1. Considering the form the test function appeared in the equality, the constrain to φ may
be removed. �
Lemma 4.5. Let the assumptions of Lemma 4.4 hold. Then for any integer 1 � l̃ � l, we have

1

2

(l̃+1)h∫
0

∫
Ω

∣∣∂(−h)u(h)
∣∣2

dx dt +
∫
Ω

1

p(x)

∣∣∇u(h)(x, l̃h)
∣∣p(x)

dx �
∫
Ω

1

p(x)
|∇u0|p(x) dx. (4.21)

Proof. From Lemma 4.4, we know that ui is the minima of ψi(u). Hence for ui−1 ∈ S̃,

ψi(ui) � ψi(ui−1),

and then∫
Ω

1

p(x)
|∇ui |p(x) dx +

∫
Ω

1

2h
|ui − ui−1|2 dx

�
∫
Ω

1

p(x)
|∇ui−1|p(x) dx +

∫
Ω

ui∫
ui−1

(
1

h

(i+1)h∫
ih

f (x, τ, s) dτ

)
ds dx, i = 1,2, . . . , l̃.

Summing over i, we have

∫
Ω

1

p(x)
|∇u

l̃
|p(x) dx +

l̃∑
i=1

1

2h

∫
Ω

|ui − ui−1|2 dx

�
∫
Ω

1

p(x)
|∇u0|p(x) dx +

l̃∑
i=1

∫
Ω

ui∫
ui−1

(
1

h

(i+1)h∫
ih

f (x, τ, s) dτ

)
ds dx. (4.22)

We estimate the second term in the inequality in the following.
By Lemma 4.2, Young’s inequality and the differentiability of f , we get

∫
Ω

ui∫
ui−1

(
1

h

(i+1)h∫
ih

f (x, τ, s) dτ

)
ds dx

� C

∫
Ω

|ui − ui−1|dx � 1

4h

∫
Ω

|ui − ui−1|2 dx + 4Ch.

Plugging into (4.22), we get
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∫
Ω

1

p(x)
|∇ul |p(x) dx +

l̃∑
i=1

1

4h

∫
Ω

|ui − ui−1|2 dx �
∫
Ω

1

p(x)
|∇u0|p(x) dx + 4CT . (4.23)

The conclusion of the lemma follows by noticing the definition of u(h). �
Define a new function:

w(h)(·, t) =
{

( t
h

− i)(ui − ui−1) + ui−1, t ∈ [ih, (i + 1)h), i = 1,2, . . . , l,

u0, t ∈ [0, h).

Then, we have

Lemma 4.6. Let the assumptions of Lemma 4.4 hold. Then

T∫
0

∫
Ω

∣∣w(h) − u(h)
∣∣2

dx dt → 0, as h → 0.

Proof. By direct calculation,

∫
Ω

(i+1)h∫
ih

∣∣w(h) − u(h)
∣∣2

dx dt

=
∫
Ω

(ui − ui−1)
2 dx

(i+1)h∫
ih

(
t

h
− i − 1

)2

dt

= h

3

∫
Ω

(ui − ui−1)
2 dx = h3

3

∫
Ω

(i+1)h∫
ih

(
∂−hu(h)

)2
dx dt.

Summing over i and using Lemma 4.5, we get

T∫
h

∫
Ω

∣∣w(h) − u(h)
∣∣2

dx dt → 0, as h → 0.

On the other hand,

h∫
0

∫
Ω

∣∣w(h) − u(h)
∣∣2

dx dt = 0.

The conclusion follows. �
Lemma 4.7. Let the assumptions of Lemma 4.4 hold. Then there exists a subsequence of {u(h)} denoted again by itself
for the sake of simplicity, and a function u such that

u(h) → u, in L2(QT ), (4.24)

u(h) → u, a.e. in QT , (4.25)

∂(−h)u(h) weak
⇀ ∂tu, in L2(QT ), (4.26)

∇u(h) weak
⇀ ∇u, in Lp(x)(QT ), (4.27)

as h → 0.
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Proof. By Lemma 4.5 and Young’s inequality,∫
Ω

∣∣∇u(h)(·, t)∣∣2
dx � C. (4.28)

By the Poincaré inequality,∫
Ω

∣∣u(h)(·, t)∣∣2
dx � C,

and then

T∫
0

∫
Ω

∣∣u(h)(·, t)∣∣2
dx � CT . (4.29)

Therefore, there exists a subsequence of u(h) (denoted again by itself) and a function u such that

u(h) weak
⇀ u, in L2(QT ). (4.30)

And then there exists a subsequence of u(h) such that (4.25) holds.
In the following, we consider w(h). Since

∇w(h) = (∇ui − ∇ui−1)

(
t

h
− i

)
+ ∇ui−1, as t ∈ [

ih, (i + 1)h
)
, i = 1,2, . . . , l

by (4.28), (4.29) and Lemma 4.6, we know that w(h) and ∇w(h) are uniformly bounded in L2(QT ). Since

w
(h)
t = ∂(−h)u(h) =

{ 1
h
(ui − ui−1), for t ∈ [ih, (i + 1)h), i = 1,2, . . . , l,

0, for t ∈ [0, h),

by Lemma 4.5, we have w
(h)
t ∈ L2(QT ). By the above estimates, we know that there exists a subsequence of w(h)

(denoted again by itself) and a function u∗ such that

w(h) → u∗, in L2(QT ),

∇w(h) weak
⇀ ∇u∗, in L2(QT ),

∂(−h)u(h) = w
(h)
t

weak
⇀ (u∗)t , in L2(QT ).

By Lemma 4.6, we get u = u∗. Using this, it is easy to prove (4.24) and (4.26).
By Proposition 2.1, (Lp(x), | · |p(x)) is weakly compact and hence by Lemma 4.5, (4.27) can be easily obtained. �

Remark 4.3. By (4.21), we know that u ∈ L∞(0, T ;W 1,p(x)

0 (Ω)).

Lemma 4.8. Let the assumptions of Lemma 4.4 hold. Then

f (h) → f (x, t, u), in L1(QT ), as h → 0. (4.31)

Proof. By Lemmas 4.3 and 4.7, we have∥∥u(h)
∥∥

L∞(QT )
,‖u‖L∞(QT ) � C, ∀h > 0.

Since f ∈ C1, by Hölder’s inequality,
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∫ ∫
QT

∣∣f (h) − f
∣∣dx dt

�
∑

i

(i+1)h∫
ih

∫
Ω

1

h

(i+1)h∫
ih

∣∣f (x, τ,ui) − f (x, t, u)
∣∣dτ dx dt

� C
∑

i

(i+1)h∫
ih

∫
Ω

1

h

(i+1)h∫
ih

(|τ − t | + |ui − u|)dτ dx dt

� C
∑

i

(i+1)h∫
ih

∫
Ω

1

h

(i+1)h∫
ih

hdτ dx dt + C
∑

i

(i+1)h∫
ih

∫
Ω

|ui − u|dx dt

� C

T∫
0

∫
Ω

hdx dt + C

T∫
0

∫
Ω

∣∣u(h) − u
∣∣dx dt → 0, as h → 0. �

Proof of Theorem 2.1. By Lemma 4.5 and the weak compactness of the space, there exists a subsequence such that∣∣∇u(h)
∣∣p(x)−2

u(h)
xi

weak
⇀ χi, in Lp(x)/(p(x)−1)(QT ).

The same as that in [11], we may prove that χi = |∇u|p(x)−2uxi
.

For test function φ(x, t) ∈ C∞
0 (QT ) and any constant τ̃ ∈ [0, T ], we have φ(x, τ̃ ) ∈ C∞

0 (Ω).
Hence, by Lemma 3.3,∫

Ω

∂(−h)u(h)φ(x, τ̃ ) dx =
∫
Ω

|∇ui |p(x)−2∇ui∇φ(x, τ̃ ) dx +
∫
Ω

f (h)φ(x, τ̃ ) dx.

Integrating for τ̃ , combining Lemmas 4.7, 4.8 and Remark 4.1, we may prove that u is a weak solution of Eq. (1.1).
Now we prove that u satisfies the initial condition, i.e. (2.3) holds.
In the problem (3.9)–(3.10), taking a test function ψ̃(x) ∈ C∞

0 (Ω), we get

∫
Ω

(ui − ui−1)ψ̃ dx +
(i+1)h∫
ih

dt

∫
Ω

|∇ui |p(x)−2∇ui · ∇ψ̃ dx

=
∫
Ω

( (i+1)h∫
ih

f (x, τ, ui) dτ

)
ψ̃ dx, i = 1,2, . . . . (4.32)

Summing over i, we get∫
Ω

(u
l̃
− u0)ψ̃ dx

= −
(l̃+1)h∫
h

∫
Ω

|∇ui |p(x)−2∇ui · ∇ψ̃ dx dt +
∑

i

h

∫
Ω

(i+1)h∫
ih

f (x, τ, ui) dτ ψ̃ dx,

where l̃ > 0 is an integer. Then by (4.13) and (ii), (iii) of Proposition 2.1, we have

∣∣∣∣∣
(l̃+1)h∫
h

∫
Ω

|∇ui |p(x)−2∇ui · ∇ψ̃ dx dt

∣∣∣∣∣ � C(sup∇ψ̃)|∇ui |p(x)|1|p(x) � C(l̃h)δ1 ,

where δ1 > 0 is a constant depending only on p+ and p−.
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By (A), combining Poincaré inequality and Hölder’s inequality∣∣∣∣
∫
Ω

(u
l̃
− u0)ψ̃ dx

∣∣∣∣ � C
(
(l̃h)δ1 + l̃h + (l̃h)N/(N+p−) + (l̃h)1−α/p−)

.

For l̃h < 1, there exists a constant δ2 > 0 depending only on α,p−,N and δ1 such that∣∣∣∣
∫
Ω

(u
l̃
− u0)ψ̃ dx

∣∣∣∣ � C(l̃h)δ2 .

Noticing the definition of the u(h), we have

sup
t∈[h,(l̃+1)h)

∣∣∣∣
∫
Ω

(
u(h)(x, t) − u0

)
ψ̃ dx

∣∣∣∣ � Ctδ2 . (4.33)

For t ∈ [0, h),∫
Ω

(
u(h)(x, t) − u0

)
ψ̃ dx = 0.

Hence for all 0 � t < 1, (4.33) holds. By (4.25), letting h → 0 in (4.33), we may easily get (2.3). �
5. Local existence

As what we mentioned in Lemma 4.4, we will use the lemmas in Sections 3 and 4 without the assumption p(x) ∈
C(Ω).

Since f ∈ C1, we know that there is a constant M such that for |z| � ‖u0‖L∞(Ω) + 1,∣∣f (x, t, z)
∣∣ � M,

∣∣fz(x, t, z)
∣∣ � M. (5.1)

Take T ∗ > 0 such that

T ∗M < 1/2. (5.2)

Without lose of generality, we may assume that T ∗ � h.
Consider the following problem

1

h
(u1 − u0) = div

(|∇u1|p(x)−2∇u1
) + 1

h

2h∫
h

f (x, τ,u1) dτ, (5.3)

u1|∂Ω = 0. (5.4)

We have

Lemma 5.1. Suppose that f and u0 satisfy the assumptions in Theorem 2.2, then (5.3)–(5.4) has a weak solution u1
such that ‖u1‖L∞(Ω) � ‖u0‖L∞(Ω) + 2hM .

Proof. We first consider the iteration problem,

1

h
(vm − u0) = div

(|∇vm|p(x)−2∇vm

) + 1

h

2h∫
h

f (x, τ, vm−1) dτ, (5.5)

vm|∂Ω = 0, m = 1,2, . . . , (5.6)

where v0 = u0.
Assume first m = 1. Since |f (x, t, u0)| is bounded, analogously to Lemmas 3.3 and 4.4, we may prove that (5.5)–

(5.6) has a solution vm in L∞(Ω) ∩ W
1,p(x).
0
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Now for any integer q > 0, we may take (v1 − Mh)
q
+ as a test function in (5.5) to get∫

Ω

1

h
(v1 − Mh)

(q+1)
+ dx + q

∫
Ω

∣∣∇(v1 − Mh)
p(x)
+

∣∣(v1 − Mh)
q−1
+ dx

=
∫
Ω

1

h
(v1 − Mh)

q
+u0 dx + 1

h

∫
Ω

2h∫
h

f (x, τ, v0) dτ (v1 − Mh)
q
+ dx.

By (5.1) and the Hölder inequality, we have∫
Ω

(v1 − Mh)
(q+1)
+ dx �

∫
Ω

(v1 − Mh)
q
+(u0 + hM)dx

�
(∫

Ω

(v1 − Mh)
(q+1)
+ dx

)q/(q+1)(∫
Ω

(u0 + hM)q+1 dx

)1/(q+1)

.

Hence∥∥(v1 − Mh)+
∥∥

Lq+1(Ω)
� ‖u0 + hM‖Lq+1(Ω).

Letting q → ∞, we get (v1)+ � ‖u0‖L∞(Ω) + 2hM . Consider −v1, we may get (v1)− � −‖u0‖L∞(Ω) − 2hM , i.e.
‖v1‖L∞(Ω) � ‖u0‖L∞(Ω) + 2hM .

Since for 2hM < 1, (5.1) holds, by induction, we may prove that there exist solutions {vm}, m = 1,2, . . . , of
(5.5)–(5.6) satisfy that

‖vm‖L∞(Ω) � ‖u0‖L∞(Ω) + 2hM. (5.7)

Now, we prove that {vm}, m = 1,2, . . . , is a contracting sequence. Taking vm −vm−1 as a test function in (5.5)–(5.6)
for m and m − 1 respectively and then subtracting one from the other, we get∫

Ω

1

h
(vm − vm−1)

2 dx +
∫
Ω

(|∇vm|p(x)−2∇vm dx − |∇vm−1|p(x)−2∇vm−1
)∇(vm − vm−1) dx

=
∫
Ω

1

h

2h∫
h

(
f (x, τ, vm−1) dx − f (x, τ, vm−2)

)
dτ (vm − vm−1) dx

=
∫
Ω

1

h

2h∫
h

fz(x, τ, vm−1) dτ (vm−1 − vm−2)(vm − vm−1) dx.

It is easy to see that∫
Ω

(|∇vm|p(x)−2∇vm dx − |∇vm−1|p(x)−2∇vm−1
)∇(vm − vm−1) dx � 0.

By (5.2) and Hölder inequality we have∫
Ω

(vm − vm−1)
2 dx

� 1

2

∫
Ω

|vm−1 − vm−2||vm − vm−1|dx

� 1‖vm−1 − vm−2‖L2(Ω)‖vm − vm−1‖L2(Ω),
2
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i.e.

‖vm − vm−1‖L2(Ω) � 1

2
‖vm−1 − vm−2‖L2(Ω).

This proves that {vm}, m = 1,2, . . . , is a contracting sequence. Therefore, there is a function u1 ∈ L2(Ω) such that
vm → u1 in L2(Ω) as m → ∞.

Next, taking vm as a test function in (5.5)–(5.6), we get∫
Ω

1

h
v2
m dx +

∫
Ω

|∇vm|p(x) dx

=
∫
Ω

1

h
u0vm dx +

∫
Ω

(
1

h

2h∫
h

f (x, τ, vm−1) dτ

)
vm dx.

Since {vm}, m = 1,2, . . . , is uniformly bounded, we get∫
Ω

|∇vm|p(x) dx � C,

where the constant C is independent of m.
Therefore, there is a subsequence mj such that ∇vmj

converges weakly to ∇u1 in Lp(x) and |∇vmj
|p(x)−2(vmj

)i

converges weakly to χi in Lp(x)/(p(x)−1). Since vm ∈ W
1,p(x)

0 , it is easy to prove that u1 ∈ W
1,p(x)

0 .
Finally, we prove that u1 is a solution of (5.3)–(5.4).
Taking a test function φ ∈ C∞

0 in (5.5) and letting i → ∞, we get

∫
Ω

1

h
(u1 − u0)φ dx +

∫
Ω

∑
i

χiφi dx =
∫
Ω

(
1

h

2h∫
h

f (x, τ,u1) dτ

)
φ dx.

The same as that in [11], we may prove that |∇u1|p(x)−2(u1)i = χi and hence u1 is a solution. The proof is complete.
From (5.7), we know that ‖u1‖L∞(Ω) � ‖u0‖L∞(Ω) + 2hM . �

Proof of Theorem 2.2. Consider the following problem

1

h
(ui − ui−1) = div

(|∇ui |p(x)−2∇ui

) + 1

h

(i+1)h∫
ih

f (x, τ, ui) dτ, (5.8)

ui |∂Ω = 0, (5.9)

where i = 1,2, . . . , l and lh � T ∗.
Similarly to Lemma 5.1, we may prove inductively that if ∇ui−1 ∈ Lp(x) and ‖ui−1‖L∞(Ω) � ‖u0‖L∞(Ω) + 2(i −

1)hM then there is a solution ui of (5.8)–(5.9) such that ‖ui‖L∞(Ω) � ‖u0‖L∞(Ω) + 2ihM .

Since lh � T ∗, we have ‖ui‖L∞(Ω) � ‖u0‖L∞(Ω) + 1 and then by (5.1) 1
h

∫ (i+1)h

ih
|f |dτ � M .

We should notice that the solutions ui , i = 1,2, . . . , may not be the minima of the functional mentioned in Theo-
rem 2.1 and hence, comparing to the previous proof, we have to give the L2 estimate to ∂−hu(h).

Taking (ui − ui−1)/h as a test function in (5.8)–(5.9), we get∫
Ω

(
1

h
(ui − ui−1)

)2

dx + 1

h

∫
Ω

(|∇ui |p(x) − |∇ui |p(x)−2∇ui∇ui−1
)
dx

= 1

h

∫ (
1

h

(i+1)h∫
f (x, τ,ui) dτ

)
(ui − ui−1) dx. (5.10)
Ω ih
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By Young’s inequality,

|a · b| � |a||b| � p(x) − 1

p(x)
|a|p(x)/(p(x)−1) + 1

p(x)
|b|p(x),

and by (5.10), we get∫
Ω

(
1

h
(ui − ui−1)

)2

dx + 1

h

∫
Ω

1

p(x)
|∇ui |p(x) dx

� 1

h

∫
Ω

1

p(x)
|∇ui−1|p(x) dx + 1

h

∫
Ω

M|ui − ui−1|dx

� 1

h

∫
Ω

1

p(x)
|∇ui−1|p(x) dx + 1

2

∫
Ω

(
1

h2
(ui − ui−1)

2 + M2
)

dx.

It follows that

(i+1)h∫
ih

dτ

∫
Ω

(
1

h
(ui − ui−1)

)2

dx + 2
∫
Ω

1

p(x)
|∇ui |p(x) dx

� 2
∫
Ω

1

p(x)
|∇ui−1|p(x) dx + 2hM2|Ω|.

Summing over i and using the definition of u(h), we get

(l+1)h∫
h

∫
Ω

(
∂−hu(h)

)2
dx dτ + 2

∫
Ω

1

p(x)
|∇ul |p(x) dx

� 2
∫
Ω

1

p(x)
|∇u0|p(x) dx + 2lhM2|Ω|

� C.

Since C is independent of h, we get a uniform L2 estimate to ∂−hu(h). Now, the same as the proof of Theorem 2.1,
we may get the existence of solutions to (1.1)–(1.2). �
Proof of Theorem 2.3. Let u,v be two solutions of (1.1)–(1.2). Taking u − v as a test function, we obtain that

1

2

∫
Ω

(u − v)2 dx +
∫ ∫
Qt

(|∇u|p(x)−2∇u − |∇v|p(x)−2∇v
)∇(u − v)dx dτ

=
∫ ∫
Qt

(
f (x, t, u) − f (x, t, v)

)
(u − v)dx.

Since u,v are bounded and f ∈ C1, we have∫
Ω

(u − v)2 dx � C

∫ ∫
Qt

(u − v)2 dx dτ.

Gronwall’s inequality imples that u = v. The proof is complete. �
Proof of Theorem 2.4. (i) Assume that u0,n ∈ C∞

0 (Ω), such that ‖u0,n‖L∞(Ω) � ‖u0‖L∞(Ω) + 1 and

u0,n → u0 in L2(Ω).
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Without any change in Lemmas 3.3 and 4.3, we may get the uniform boundedness of the solution ui,n. More over we
have (see Remark 4.1)

T∫
h

∫
Ω

∣∣∇u(h)
n

∣∣p(x)
dx dt � C. (5.11)

For the L2 estimate to ut , take (ui,n − ui−1,n)
∫ (i+1)h

ih
ξ(τ ) dτ/h2 as a test function in (3.9)–(3.10), where

ξ(τ ) ∈ C∞
0 (0, T ), ξ(τ ) � 0, and ξ(τ ) = 1 for τ � ε. (5.12)

Without loss of generality, we may assume that ε > h.
Similarly to the proof of Theorem 2.2, we have

(i+1)h∫
ih

ξ(τ ) dτ

∫
Ω

(
1

h
(ui,n − ui−1,n)

)2

dx + 2

h

∫
Ω

1

p(x)
|∇ui,n|p(x) dx

(i+1)h∫
ih

ξ(τ ) dτ

� 2

h

∫
Ω

1

p(x)
|∇ui−1,n|p(x) dx

(i+1)h∫
ih

ξ(τ ) dτ + hC.

Summing over i, by (5.11) and (5.12), we get

(l+1)h∫
h

∫
Ω

(
∂−hu(h)

n

)2
ξ(τ ) dx dτ + 2

∫
Ω

1

p(x)
|∇ul,n|p(x) dx

�
∑

i

2

h

∫
Ω

1

p(x)
|∇ui−1,n|p(x) dx

( (i+1)h∫
ih

ξ(τ ) dτ −
ih∫

(i−1)h

ξ(τ ) dτ

)
+ C

� C(ξτ )
∑
i�2

∫
Ω

1

p(x)
|∇ui−1,n|p(x) dx + C

� C(ξτ )

T∫
h

∫
Ω

∣∣∇u(h)
n

∣∣p(x)
dx dt + C � C.

Then, the same as the proof of Theorem 2.1 (with diagonal process), we may prove the existence of solutions.
(ii) For u0,n, by Lemma 5.1, there is a solution ui,n of (5.8)–(5.9) with uniform boundedness, and then similarly

to (i), we can complete the proof. �
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