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Abstract

We study the problem of null controllability for viscous Hamilton–Jacobi equations in bounded domains of the Euclidean space
in any space dimension and with controls localized in an arbitrary open nonempty subset of the domain where the equation holds.
We prove the null controllability of the system in the sense that, every bounded (and in some cases uniformly continuous) initial
datum can be driven to the null state in a sufficiently large time. The proof combines decay properties of the solutions of the
uncontrolled system and local null controllability results for small data obtained by means of Carleman inequalities. We also show
that there exists a waiting time so that the time of control needs to be large enough, as a function of the norm of the initial data, for
the controllability property to hold. We give sharp asymptotic lower and upper bounds on this waiting time both as the size of the
data tends to zero and infinity. These results also establish a limit on the growth of nonlinearities that can be controlled uniformly
on a time independent of the initial data.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper we address the problem of null controllability for the so-called viscous Hamilton–Jacobi equations.
Focussing on a simple model example, we consider the system⎧⎨

⎩
yt − �y + |∇y|q = vχω in (0, T ) × Ω,

y = 0 on (0, T ) × ∂Ω,

y(0) = y0 in Ω

(1.1)

✩ A. Porretta was partially supported by Gnampa project (2010) “Proprietà di regolarità in EDP nonlineari legate a problemi di controllo”.
E. Zuazua was partially supported by Grants MTM2008-03541 and MTM2011-29306 of the MICINN, Spain, ERC Advanced Grant FP7-246775
NUMERIWAVES, ESF Research Networking Programme OPTPDE and Grant PI2010-04 of the Basque Government.

* Corresponding author.
E-mail addresses: porretta@mat.uniroma2.it (A. Porretta), zuazua@bcamath.org (E. Zuazua).
0294-1449/$ – see front matter © 2011 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.anihpc.2011.11.002



302 A. Porretta, E. Zuazua / Ann. I. H. Poincaré – AN 29 (2012) 301–333
where Ω is an open bounded set in R
N , N � 1. We assume that ω ⊂ Ω is an open set (ω �= Ω), the control v belongs

to L∞((0, T ) × ω), and the initial datum y0 belongs to L∞(Ω) if q � 2, or to C0(Ω) (i.e. y0 is continuous in Ω and
y0 = 0 on ∂Ω) if q > 2. Note that the sign of the nonlinearity in (1.1) could be reversed changing y into −y, so that
both cases are included in our analysis.

The problem of null controllability means, roughly speaking, that one can find a control v so that the evolution
leads the state y from the initial condition y0 to the final condition y(T ) = 0. In order to make this question precise,
we recall that there are significant differences between the cases q � 2 and q > 2 as far as the well-posedness of
(1.1) is concerned. We only give here a rough summary and refer to Section 2 for precise statements and references.
If 1 � q � 2, problem (1.1) can be dealt with by only using the notions of weak solution (y ∈ L2(0, T ;H 1

0 (Ω)) ∩
C0([0, T ];L2(Ω)) such that |∇y|q ∈ L1(QT ) and the equation holds weakly) or strong solution (a weak solution
such that y ∈ Lp(0, T ;W 2,p(Ω)) for every p < ∞ and y, |∇y| ∈ L∞(QT )). In particular, for every y0 ∈ L∞(Ω) and
every v ∈ L∞((0, T )×ω) there exists a unique bounded weak solution of (1.1) which is defined globally in time, and
is a strong solution for t > 0. Therefore, if 1 � q � 2, we will say that the initial datum y0 ∈ L∞(Ω) is controllable
at time T if there exists v ∈ L∞((0, T ) × ω) such that the corresponding bounded weak solution y satisfies y(T ) = 0.
The system (1.1) will be said to be null controllable at time T if every y0 ∈ L∞(Ω) is controllable at time T . Notice
that we are referring to a global controllability property of the system, namely that it can be controlled to zero in a
time which is uniform with respect to all initial data.

The situation is more delicate if q > 2 since, even if y0 is regular, weak or strong solutions may not exist globally
because of gradient blow-up (see [23]). On the other hand, if v = 0 and y0 ∈ C0(Ω), it is proved in [3] that a unique,
globally defined solution exists in the sense of generalized viscosity solutions (see Section 2). Therefore, in the case
q > 2 we define the property of null controllability in the following way. An initial data y0 ∈ C0(Ω) ∩ W 2,p(Ω) (for
every p < ∞) will be said to be controllable at time T > 0 if there exist v ∈ L∞((0, T )×ω) and a strong solution y of
(1.1) such that y(T ) = 0. Note that the strong solution, if it exists, is unique. Finally, for every y0 ∈ C0(Ω) we denote
by ŷ the unique generalized viscosity solution of (1.1) when v ≡ 0; then, we will say that y0 ∈ C0(Ω) is controllable
at time T if there exists t0 < T such that ŷ(t0) ∈ C0(Ω) ∩ W 2,p(Ω) and is controllable at time T . As before, the
system (1.1) will be said to be null controllable at time T if it is so for every y0 ∈ C0(Ω).

A wide literature exists nowadays concerning the problem of null controllability of parabolic equations. In partic-
ular, it is well known that the heat equation is (globally) null controllable at any time T , as well as a large class of
linear parabolic equations (see e.g. [14,17]). The null controllability of semilinear equations is a much more delicate
question. It was proved in [13,10] (see also [2], or [26] for the wave equation) that the semilinear equation⎧⎨

⎩
yt − �y + f (x, y,∇y) = vχω in (0, T ) × Ω,

y = 0 on (0, T ) × ∂Ω,

y(0) = y0 in Ω

(1.2)

is still globally null controllable at any time T whenever the function f (x, s, ξ) is locally Lipschitz continuous and
satisfies the growth condition∣∣f (x, s, ξ)

∣∣ � C
(
1 + |s|(log

(
1 + |s|))γ + |ξ |(log

(
1 + |ξ |))α)

for some γ < 3
2 and α < 1

2 . In particular, in this range of growth of the nonlinearity, the semilinear system behaves
very closely to the linear case, since not only every initial datum y0 can be controlled to zero but also the control time
can be any T > 0, independently of y0. Unfortunately, it is not known whether the above condition on the growth
of the nonlinearity f (x, s, ξ) is necessary for the null controllability property to hold. However, in [13] the authors
proved that the null controllability property fails for some f = f (y) such that f (y) ∼ |y| log(1 + |y|)γ as |y| → ∞
with γ > 2; in that case, there are initial data which can never be controlled since the control mechanism is unable to
avoid the blow-up of solutions. Similar counterexamples were missing as far as the growth of the nonlinearity with
respect to ∇y is concerned.

The aim of our paper is to give a more clear picture of what happens in the case f depends on ∇y but not on y,
and specifically for the model problem (1.1) when q > 1. On one hand, we prove that, for every q > 1, the null
controllability property for the system (1.1) fails for all T > 0, i.e. that the system cannot be controlled in a time
which is independent of the initial data. We actually prove, in more generality, that the same holds for the system
(1.2) for a large class of nonlinearities, including the case f = f (x,∇y) ∼ |∇y|(log(|∇y|))α with α > 1. Notice that
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some gap with the positive results proved in [10] still remains, since it is known that, if α < 1
2 , the null controllability

property holds at any time T , independently of the size of the initial datum. We recall that a similar gap (though with
different exponents (γ < 3/2 for positive results and γ > 2 for negative ones)) between negative and positive results
also exists as far as the case f = f (y) is concerned. Observe also that, as indicated in [11], the existing techniques for
the control of parabolic equations based on Carleman inequalities will hardly lead to positive results in a larger class
of nonlinearities, i.e. under a weaker restriction on γ .

On the other hand, as it happens in the case f = f (y) under suitable sign conditions on the nonlinearity, we prove
that any initial datum y0 can be driven to zero in large time (depending on the size of the initial datum to be controlled).
To this purpose, we use a typical strategy; on one hand, whatever T > 0 is, sufficiently small initial data are proved
to be controllable; on the other hand, the decay properties of the uncontrolled system make it possible to reduce the
problem, in a sufficiently large time, to the case of small data. As a consequence of this two-step argument, a waiting
time is needed for the controllability of (1.1) to hold, which we estimate in terms of the norm ‖y0‖∞ of the initial
datum y0 to be controlled.

Our analysis of problem (1.1) can be summarized in the following result, expressing both the existence and the
sharp estimates of the waiting time.

Theorem 1.1. Let us consider problem (1.1) with q > 1; we set

T (y0) := inf
{
t > 0: (1.1) is null controllable at time t

}
and

T (r) := sup
{
T (y0), ‖y0‖∞ � r

}
.

Then we have 0 < T (r) < ∞ for every r > 0, and there exist positive constants κ , K , λ, Λ (only depending on q ,
Ω , ω) such that

κ

ln( 1
r
)

� T (r) � K

ln( 1
r
)

as r → 0+ (1.3)

and

λr � T (r) � Λr as r → ∞. (1.4)

Comparing with the controllability of the semilinear system in the case f = f (y), which we mentioned before
(see [13]), two main features appear from our result. In both cases, a sufficiently fast superlinear growth destroys the
(global) null controllability property which is typical of the linear (or mildly superlinear) case. However, differently
than in the superlinear case when f = f (y), the maximum principle prevents the occurrence of blow-up in (1.1), and
all initial data will be eventually controlled, even if in a delayed time. Indeed, the existence of a waiting time for
the null controllability of (1.1) reminds of what happens in other cases of dissipative operators, e.g. when f = f (y)

has the “good sign” property (see [1]) or in the one-dimensional Burgers equation (see [12]), where a similar esti-
mate as (1.3) was proved. In our context, the lower bound on the waiting time is obtained through the construction
of barrier solutions, i.e. stationary solutions in a domain O which blow up at the boundary ∂O (sometimes called
large solutions). Let us mention that, in case of nonlinear systems and specifically in absorption type problems (when
the nonlinearity in (1.2) satisfies f (y,∇y)y � 0 for any y ∈ R), the existence of universal barriers has often been
used to construct some obstruction to controllability properties (see e.g. [1,14,9]). When dealing with (1.1), the exis-
tence of such barriers, and the failure of the controllability property, are strictly related to properties of the controlled
stochastic dynamics underlying the PDE. Indeed, the possibility to represent the solution of (1.1) as the value func-
tion of a stochastic control problem suggests a possible rough explanation of the above controllability results, see
Remark 4.3.

The construction of stationary barriers or, in an alternative viewpoint, the existence of universal local bounds, allow
us to prove that the existence of the waiting time and the estimates (1.3)–(1.4) also hold for different nonlinearities,
e.g. when f (x,∇y) = h(|∇y|); however, such a construction requires a restriction on the growth of h, relying on the
fact that

∫ ∞ 1
h(s)

ds < ∞. A significant example we deal with is the function h(s) = s(log(1 + s))α with α > 1. In
order to clearly state this extension, let us consider the problem
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⎧⎨
⎩

yt − �y + f (x,∇y) = vχω in (0, T ) × Ω,

y = 0 on (0, T ) × ∂Ω,

y(0) = y0 in Ω,

(1.5)

and let us restrict here to nonlinearities having at most a quadratic growth in the gradient, so that globally defined
weak solutions are known to exist. Given y0 ∈ L∞(Ω), we say that the system (1.5) is null controllable at time T if
there exist v ∈ L∞((0, T )×ω) and a bounded weak solution y of (1.5) such that y(T ) = 0. Then, T (y0) and T (r) are
defined as in Theorem 1.1.

Theorem 1.2. Assume that f ∈ C1(Ω × R
N,R) is such that f (x,0) = 0, |Dξf (x, ξ)| is uniformly bounded if ξ is in

a compact set, and there exist constants β , γ , γ0, γ1, L such that, for every x ∈ Ω and ξ ∈ R
N ,

∃α > 1: f (x, ξ) � γ |ξ |(ln
(|ξ |))α ∀ξ : |ξ | � L, (1.6)∣∣f (x, ξ)

∣∣ � β
(
1 + |ξ |2), (1.7)

f (x, ξ) − Dξf (x, ξ) · ξ � γ0, (1.8)∣∣Dxf (x, ξ)
∣∣ � γ1|ξ |. (1.9)

Then, the conclusion of Theorem 1.1 holds true.

As mentioned before, condition (1.6) is only one example of growth which ensures the lower bounds for the waiting
time, that will be proved in more generality (see Theorem 4.2 below). On the contrary, assumptions (1.7)–(1.9) will
be used for the positive result, namely the upper bounds of the waiting time. These latter ones strongly depend on the
decay properties of the system. Note that assumption (1.9), though it is not the most general possible, allows us at
least to include the presence of transport terms in the equation, as well as the case when f (x, ξ) = h(|ξ |) + g(x, ξ),
with g having a Lipschitz growth with respect to ξ .

Finally, the organization of the paper is the following. Section 2 is devoted to some preliminary notions and prop-
erties concerning viscous Hamilton–Jacobi equations which will be used later. In Section 3 we prove that the system
(1.1) is controllable in large time, possibly depending on the initial datum y0. To this purpose, a crucial role is played
by the long time behavior when v ≡ 0; we discuss this problem and the decay properties of y in Appendix A, which
may have its own interest. Actually, when q > 2 we prove not only that solutions of the uncontrolled system decay to
zero but that they eventually become smooth, which justifies our definition of controllability for this case. In fact, we
always let the control act only when solutions y(t) belong to W 1,∞(Ω) and are meant in a strong sense.

In Section 4 we prove the failure of the null controllability in arbitrary time T > 0, showing the necessity of some
waiting time. Such a proof also provides a first estimate of the waiting time, and specifically the lower bound in (1.4).
In Section 5, we refine our estimates for the short time range and we complete the proof of (1.3) and (1.4). Let us
mention that, in Remark 5.2, we also give an interesting explicit estimate of the constants λ, Λ appearing in (1.4)
for the case q = 2. We conclude Section 5 by proving Theorem 1.2 and discussing further generalizations for the
superquadratic case.

In Section 6 we spend some words for the problem of controllability to trajectories, see Theorem 6.1. In particular,
we prove that the system (1.1) is also exactly controllable to any trajectory. Moreover, similar estimates hold for the
control time, at least when the trajectory is smooth. Further comments and remarks are devoted to the problem of
approximate controllability and other open questions.

Last but not least, we give in Appendix A a direct proof of the exponential decay of solutions of the uncontrolled
system, obtaining with a different approach (and in a slightly more general context) a result recently proved in [6]
concerning the exact exponential decay rate for problem (1.1). Because of the importance of the long time behavior
in such type of problems, we also give a self-contained proof of the exponential decay for more general nonlineari-
ties.

2. Preliminaries

We recall a few definitions and preliminary results concerning problem (1.1). Set QT = (0, T ) × Ω , where Ω is a
bounded subset of R

N ; although it will be mostly unnecessary, we will assume Ω of class C2 in order to make use of
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the classical regularity results. We denote by C0(Ω) the functions which are continuous in Ω and zero at the boundary
∂Ω , and by Ck

0 (Ω) the subset of functions being Ck in Ω . Let us consider a boundary value problem of the type⎧⎨
⎩

yt − �y + f (t, x,∇y) = χ(t, x) in (0, T ) × Ω,

y = 0 on (0, T ) × ∂Ω,

y(0) = y0 in Ω.

(2.1)

We always assume, at least, that f (t, x, ξ) : QT × R
N → R is a Carathéodory function (i.e. measurable with respect

to (t, x) ∈ QT and continuous with respect to ξ ), χ ∈ L∞(QT ) and y0 ∈ L∞(Ω).
By a bounded weak solution of (2.1), we mean a function y ∈ L∞(QT ) such that y ∈ L2(0, T ;H 1

0 (Ω)) ∩
C0([0, T ];L2(Ω)), f (t, x,∇y) ∈ L1(QT ) and the equation is satisfied in the weak sense, i.e.

−
∫

QT

yϕt dx dt +
∫

QT

∇y∇ϕ dx dt +
∫

QT

f (t, x,∇y)ϕ dx dt =
∫

QT

χ(t, x)ϕ dx dt +
∫
Ω

y0ϕ(0) dx

for every ϕ ∈ C1
0([0, T ] × Ω) such that ϕ(T ) = 0.

By a strong solution of (2.1) we mean a weak solution which satisfies, in addition, |∇y| ∈ L∞(QT ), y ∈
Lp(0, T ;W 2,p(Ω)) for every p < ∞ and yt ∈ Lp(QT ). Finally, we call y a classical solution in the case y is C2

in the space variable, C1 in the time variable and the equation holds pointwise (of course, in this case the nonlinearity
f should be, at least, continuous).

When f is locally Lipschitz continuous with respect to ξ , the comparison principle and uniqueness hold in the
class of strong solutions; indeed, strong solutions are Lipschitz in the space variable and a linearization argument
yields easily a uniqueness result which is, of course, independent from the growth of f with respect to ξ . However,
the existence of strong, or weak solutions, may depend on this growth.

When the nonlinearity f satisfies∣∣f (t, x, ξ)
∣∣ � γ

(
1 + |ξ |2), γ > 0, (t, x) ∈ QT , ξ ∈ RN (2.2)

several well-posedness results exist for problem (2.1). If y0 ∈ C0(Ω)∩W 1,∞(Ω) and f is locally Lipschitz continuous
with respect to ξ , it is proved in [15, Chapter V, Thm. 6.3] that there exists a unique strong solution of (2.1). If
y0 ∈ L∞(Ω), the existence of a bounded weak solution is known even in much more generality (see e.g. [7,20]).
Moreover, from [15, Chapter V], we know that, under assumption (2.2), any bounded weak solution is locally Hölder
continuous, and even globally if y0 is a Hölder continuous function. The uniqueness in the class of bounded weak
solutions is more difficult to find in the literature. Let us give here a short, easy proof for the case that f (t, x, ξ) is
convex in the ξ variable, which in particular applies to problem (1.1). The following argument is taken from [4].

Proposition 2.1. Assume that f (t, x, ξ) satisfies (2.2) and in addition that f (t, x, ξ) is convex with respect to ξ . Let
χ ∈ L∞(QT ), y0 ∈ L∞(Ω). Then there exists a unique bounded weak solution of (2.1).

Moreover, if y1, y2 are solutions corresponding to data χ1, y01 and χ2, y02 respectively, then χ1 � χ2 and y01 � y02
imply y1 � y2 in QT .

Proof. Let ε ∈ (0,1), and consider the function uε := (1 − ε)y1, which satisfies

(uε)t − �uε + (1 − ε)f (t, x,∇y1) � (1 − ε)χ1.

Since f (t, x, ξ) is convex in ξ , we have

f (t, x,∇y2) � (1 − ε)f (t, x,∇y1) + εf

(
t, x,

∇y2 − (1 − ε)∇y1

ε

)
,

hence uε satisfies, in a weak sense,

(uε)t − �uε + f (t, x,∇y2) � (1 − ε)χ1 + εf

(
t, x,

∇y2 − (1 − ε)∇y1
)

.

ε
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Note that the right-hand side is an L1 function thanks to (2.2) and since y1, y2 ∈ L2(0, T ;H 1
0 (Ω)). Subtracting the

equation of y2, using that χ1 � χ2 we obtain

(uε − y2)t − �(uε − y2) � −εχ1 + εf

(
t, x,

∇y2 − (1 − ε)∇y1

ε

)
.

Set zε := uε−y2
ε

; then, using (2.2), we deduce that zε is a bounded weak solution of

(zε)t − �zε � −χ1 + γ
(
1 + |∇zε|2

)
.

Moreover, since y01 � y02, we have that zε(0) � −y01. If K = ‖χ1‖∞ + γ + ‖y01‖∞, the function zε − K(t + 1) is a
bounded weak solution of{

vt − �v � γ |∇v|2,
v(0) � 0, v(0,T )×∂Ω � 0

and we deduce that v � 0 (using eγ v+ − 1 as test function, which is justified by standard arguments). This means that
zε � K(t + 1), so we proved that

y1(1 − ε) − y2 � ε
[(‖χ1‖∞ + γ + ‖y01‖∞

)
(t + 1)

]
and letting ε → 0 we conclude that y1 � y2. �

As a consequence of Proposition 2.1, if 1 � q � 2 problem (1.1) is well posed in the class of bounded weak
solutions for any y0 ∈ L∞(Ω) and any control v ∈ L∞. Moreover, applying to the function ty(t, x) the results in [15,
Chapter V], one deduces that y is a strong solution for t > 0, and even classical if v = 0.

When (2.2) does not hold, the situation is different as far as the existence of solutions is concerned. It is known that,
even if the initial datum y0 is C1, it may not exist a global strong (or weak) solution because of a gradient blow-up
which may occur at the boundary (see [23,24]).

In [3], a well-posedness result for (1.1) is proved if v = 0 in the class of generalized viscosity solutions satisfying
the boundary condition in a relaxed sense. This means that y ∈ C(QT ), y(0) = y0, y is a viscosity solution in QT and
satisfies the boundary condition in the sense that

min
{
y, yt − �y + |∇y|q}

� 0 on (0, T ) × ∂Ω (2.3)

and

max
{
y, yt − �y + |∇y|q}

� 0 on (0, T ) × ∂Ω (2.4)

where the inequalities for the operator are meant in the viscosity sense. As pointed out in [3], in the particular case
of (1.1), every viscosity solution satisfies y � 0 at (0, T ) × ∂Ω (since y is a sub-solution of the heat equation), so
(2.3) is always satisfied and (2.4) is the only condition required at the boundary, which plays a role whenever y < 0
at (0, T ) × ∂Ω , a situation which may really happen (loss of classical boundary condition). We refer the reader to [3]
for a true discussion and related references, while the basic tools in viscosity solutions theory can be found in [8].

It is proved in [3] that a comparison principle holds in the class of generalized viscosity solutions (so-called strong
comparison result), and moreover there exists a unique generalized viscosity solution global in time. In the same paper,
this result is also extended to the more general problem (2.1) under some technical structure conditions; moreover, the
case q � 2 is also included, although in this situation viscosity solutions take (continuously) the boundary data and
the uniqueness result falls in the usual theory.

Unfortunately, the above mentioned well-posedness result is proved in [3] in case of continuous data, whereas we
need to consider controls v in (1.1) which are just bounded. As we will prove in Appendix A, the generalized vis-
cosity solution of the uncontrolled system (with v = 0) will eventually become smooth and, in particular, a standard
strong solution (note that strong solutions are still viscosity solutions). This justifies the definition of controllability
which is given in the Introduction for the case q > 2. In other words, we use the well-posedness result for the uncon-
trolled system so that we may work in arbitrary time T . On the other hand, we let the control act when solutions have
become sufficiently strong to use the Carleman estimates on the linearized problem. An alternative strategy could
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have been to extend the well-posedness result to Lp-viscosity solutions and to merely L∞ data, possibly discontin-
uous. This seems reasonable but, of course, is far beyond the spirit of our work. It is quite natural in the control
theory to use the regularizing properties of the uncontrolled system in order to reduce the problem to a smoother
context.

3. Null controllability for large time

We prove here that any initial datum is controllable in a sufficiently large time. We start by proving that small (and
smooth) initial data can be controlled to zero at time T , thanks to a fixed point argument relying on the controllability
of linear equations. This kind of argument is by now classical for the controllability of semilinear problems, see e.g.
[13,10].

Lemma 3.1. Let T > 0 be any finite control time for problem (1.1), and let y0 ∈ W 2,p(Ω), with p > N , and such that
y0 = 0 on ∂Ω . There exist positive constants c0, c1, M (independent of T ) such that if

‖y0‖W 2,p(Ω) + exp

[
c0

(
T + 1

T

)]
‖y0‖L2(Ω) � Me−c1T (3.1)

then y0 is controllable at time T .

Remark 3.1. Note that the smoothness of the initial datum, which in particular belongs to C1
0(Ω), and the smallness

condition on y0 in terms of T , will allow us here to obtain solutions of (1.1) in a strong sense, regardless whether
q � 2 or q > 2.

Proof. Let us set

X = {
z ∈ C0([0, T ];W 1,∞(Ω)

)
: ‖z‖C0([0,T ];W 1,∞(Ω)) � 1

}
.

Given z ∈ X, consider the linear null controllability problem:⎧⎪⎪⎨
⎪⎪⎩

yt − �y + ∇y · ∇z|∇z|q−2 = vχω in (0, T ) × Ω,

y = 0 on (0, T ) × ∂Ω,

y(0) = y0 in Ω,

y(T ) = 0 in Ω

(Pz,v)

where v belongs to

V =
{
v ∈ L∞(

(0, T ) × ω
)
: ‖v‖∞ � exp

[
c0

(
T + 1

T

)]
‖y0‖L2(Ω)

}
,

with c0 that will be defined below.
Using Theorem 3.1 in [10], there exists a constant c0 such that, for every z ∈ X, problem (Pz,v) admits a solution

for some v ∈ V . In other words, for every z ∈ X, the set

V (z) := {
v ∈ V : problem (Pz,v) admits a solution y

}
is not empty. Moreover, by linear estimates (see [15], and Lemma 2.1 in [10]) and using that ‖z(t)‖W 1,∞(Ω) � 1, we
have that there exists a constant c1 such that

‖y‖C0([0,T ];W 1,∞(Ω)) � exp
[
c1(1 + T )

](‖y0‖W 2,p(Ω) + ‖v‖∞
)

and also, for some constant CT depending on T ,

‖y‖L∞((0,T );W 2,p(Ω)) + ‖yt‖L∞((0,T );Lp(Ω)) � CT

(‖y0‖W 2,p(Ω) + ‖v‖∞
)
.

In particular, on account that v ∈ V , we have

‖y‖C0([0,T ];W 1,∞(Ω)) � exp
[
c1(1 + T )

](‖y0‖W 2,p(Ω) + exp

[
c0

(
T + 1

)]
‖y0‖L2(Ω)

)
(3.2)
T
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and also

‖y‖L∞((0,T );W 2,p(Ω)) + ‖yt‖L∞((0,T );Lp(Ω))

� CT

(
‖y0‖W 2,p(Ω) + exp

[
c0

(
T + 1

T

)]
‖y0‖L2(Ω)

)
. (3.3)

Let us take M = e−c1 . We define now the operator Φ : X → 2X so that

Φ(z) = {
y sol. of (Pz,v) for some v ∈ V (z)

}
.

The assumption (3.1) on y0 and (3.2) imply that, for every z ∈ X, Φ(z) is nonempty and is contained in X. We wish to
apply Kakutani’s fixed point theorem to the operator Φ . First of all, we recall that any y ∈ Φ(z) satisfies (3.3), hence
if we set

K = {
y ∈ L∞(

(0, T );W 2,p(Ω)
)
, yt ∈ L∞(

(0, T );Lp(Ω)
)
,

‖y‖L∞((0,T );W 2,p(Ω)) + ‖yt‖L∞((0,T );Lp(Ω)) � CT Me−c1T
}

we deduce by (3.1) that Φ(z) ⊂ K for every z ∈ X. Since W 2,p(Ω) is compactly embedded into W 1,∞(Ω) when
p > N , and obviously W 1,∞(Ω) ⊂ Lp(Ω), from well-known compactness results in parabolic spaces (see e.g. [22,
Corollary 4]) we have that K ∩ X is a compact subset of X, and Φ(z) ⊂ K ∩ X for all z ∈ X. It is easy to check that,
for every z ∈ X, Φ(z) is a closed convex set. The convexity of Φ(z) follows from the convexity of V and the fact that
a linear combination of solutions is a solution corresponding to the linear combinations of the corresponding controls.
The fact that Φ(z) is closed is consequence of stability results; let yn ⊂ Φ(z) be a sequence of solutions corresponding
to controls vn ∈ V (z) and converging to some y in X. There exists a subsequence (still denoted vn) which converges
to some v ∈ L∞((0, T ) × ω) in the weak-∗ topology, and v also belongs to V . Since yn ∈ K , extracting, if necessary,
a further subsequence, we have that yn will converge weakly in Lp((0, T );W 2,p(Ω)) and strongly in X, so that its
limit y will be a solution corresponding to the control v, hence y ∈ Φ(z). Therefore, we have proved that Φ(z) is a
nonempty, closed and convex set contained in the compact set K for all z ∈ X. To conclude with Kakutani’s theorem,
we are only left to prove that, for every μ ∈ X′, the mapping

z ∈ X �→ sup
y∈Φ(z)

〈μ,y〉

is upper semi-continuous. To this purpose, let zn → z in X; without loss of generality, assume that the sequence also
satisfies (this is always true for at least a subsequence)

lim
n→∞ sup

y∈Φ(zn)

〈μ,y〉 = lim sup
n→∞

sup
y∈Φ(zn)

〈μ,y〉. (3.4)

Let yn ∈ Φ(zn) be such that

〈μ,yn〉 � sup
y∈Φ(zn)

〈μ,y〉 − 1

n
, (3.5)

and let vn be the corresponding associated controls. As before, we can extract subsequences, not relabeled, such that
vn converges in the weak-∗ topology of L∞ and yn weakly converges in Lp((0, T );W 2,p(Ω)) and strongly converges
in X to some function ỹ. Using that zn strongly converges to z in X, it is possible to pass to the limit in the equation
and we deduce that y is a solution of (Pz,v), hence ỹ ∈ Φ(z). Since yn converges in X, from (3.4)–(3.5) we deduce
that

sup
y∈Φ(z)

〈μ,y〉 � 〈μ, ỹ〉 � lim sup
n→∞

sup
y∈Φ(zn)

〈μ,y〉

which proves the upper semi-continuity. Finally, we are in the position to apply Kakutani’s fixed point theorem, hence
Φ admits a fixed point, and we conclude. �
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Remark 3.2. The same proof works for a nonlinearity of the type f (t, x, ξ) which is C1 in the ξ -variable and such
that f (t, x,0) = 0 and ∂f

∂ξ
(t, x, ξ) is bounded in QT uniformly as |ξ | is bounded. In this case we write f (t, x,∇y) =

∇y · ∫ 1
0

∂f
∂ξ

(t, x, s∇y)ds and we follow the above fixed point argument replacing in (Pz,v) the term ∇z|∇z|q−2 with∫ 1
0

∂f
∂ξ

(t, x, s∇z) ds. This latter term is uniformly bounded for z ∈ X, and the above proof can be applied with no

differences. This shows that the controllability of W 2,p(Ω) small data holds in much generality, and moreover in the
class of strong solutions.

We will now need the following result on the decay of solutions when the system (1.1) evolves without any control.
Let us recall that, in case q > 2, the initial datum is assumed to belong to C0(Ω) in order to use the well-posedness
result in [3] which ensures the existence of a unique global generalized viscosity solution. Such a solution, in general,
need not be smooth and may even not assume the boundary data pointwise. Thus, in case q > 2 next theorem contains
at the same time both a regularity result (u becomes Lipschitz continuous and therefore a strong solution – actually
smooth) and the decay estimate. In case 1 � q � 2, of course we can take u0 ∈ L∞(Ω); it is known that in this case
u(t) will belong to C0(Ω), and is actually a smooth solution, as soon as t > 0.

Lemma 3.2. Let q > 1. Assume that u0 ∈ L∞(Ω) if 1 < q � 2, while u0 ∈ C0(Ω) if q > 2. There exist positive
constants K and λ, only depending on q and Ω , such that the solution u of⎧⎨

⎩
ut − �u + |∇u|q = 0 in (0, T ) × Ω,

u = 0 on (0, T ) × ∂Ω,

u(0) = u0 in Ω

(3.6)

satisfies, for every t � K‖u0‖∞,

u(t) ∈ W 1,∞(Ω) and
∥∥u(t)

∥∥∞ + ∥∥∇u(t)
∥∥∞ � Ce−λt (3.7)

where C = C(q,Ω).

Let us point out that, once u(t) ∈ W 1,∞(Ω), then u becomes a classical solution of (3.6) even for q > 2, which
explains the importance of the gradient estimate above. The proof of Lemma 3.2 will be given in Appendix A. As
far as the decay rate of the solution of (3.6) is concerned, a more precise result is proved in [6] assuming that either
1 < q � 2 or q > 2 and u0 � 0. Under these assumptions, it is proved in [6] that there exists κ = κ(u0,Ω,q) such
that the solution of (3.6) satisfies∥∥u(t)

∥∥∞ � κe−λ1t ,
∥∥∇u(t)

∥∥∞ � κ
(
1 + t−

1
2
)
e−λ1t (3.8)

where λ1 is the first eigenvalue of the Dirichlet problem for the Laplacian in Ω . However, in (3.8) there is no explicit
estimate in terms of the initial datum u0. For our next purposes, the statement of Lemma 3.2 is suitable to show that
there is some time to wait, proportional to ‖u0‖∞, in order to have a uniform exponential decay. On the other hand,
in Appendix A not only we give the proof of Lemma 3.2 but we also show how to get the sharp estimate (3.8) too;
moreover, we will also prove the exponential decay for different nonlinearities. Let us now see what we can deduce in
terms of controllability properties.

Theorem 3.1. Let q > 1. For every y0 ∈ L∞(Ω) if 1 < q � 2, respectively y0 ∈ C0(Ω) if q > 2, there exists T (y0)

such that (1.1) is controllable at time T (y0).

Proof. We know from Lemma 3.1 that there exist c0, c1, M > 0 such that the system is controllable at time T + δ if

∥∥y(T )
∥∥

W 2,p(Ω)
+ exp

[
c0

(
δ + 1

δ

)]∥∥y(T )
∥∥

L2(Ω)
� Me−c1δ.

We leave first the system evolve freely, taking v = 0 up to t = T . Using Lemma 3.2 we have∥∥y(T )
∥∥ + ∥∥∇y(T )

∥∥ � Ce−λT (3.9)
∞ ∞
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for any T � K‖y0‖∞. Once a global bound is established on y and ∇y, we can apply the estimates for the second
derivatives as well (see e.g. [15]); for example, for every s � 1 we have1

∥∥y(t + s)
∥∥

W 2,p � C sup
τ∈[t,t+s]

(‖y(τ)‖∞
s2

+ ‖∇y(τ)‖q∞
s

)
. (3.10)

We deduce from (3.9) and (3.10) that ‖y(t)‖W 2,p(Ω) also decays exponentially, hence it is possible to find T such that∥∥y(T )
∥∥

W 2,p(Ω)
+ exp[2c0]

∥∥y(T )
∥∥

L2(Ω)
� Me−c1

and therefore the system is controllable at time T + 1, taking v = ṽχ(T ,T + 1), where ṽ is provided by
Lemma 3.1. �

Finally, in view of the previous result, we define

T (y0) := inf
{
t > 0: (1.1) is null controllable at time t

}
. (3.11)

Thanks to Theorem 3.1, we know that T (y0) is finite. In the next section, we will see that T (y0) can actually be
positive, justifying the terminology of waiting time. It will be interesting then to consider the quantity

T (r) := sup
{
T (y0), ‖y0‖∞ � r

}
. (3.12)

4. On the necessity of waiting time

In this section we prove that the system (1.1) cannot be null controllable in any time T > 0, i.e. uniformly for all
initial data. We are going to give two different proofs of this result. The first one points out the relation between the
existence of stationary barrier functions and the failure of null controllability.

Theorem 4.1. For any r > 0, there exist y0 ∈ C0(Ω) such that ‖y0‖∞ = r and such that, regardless of the choice of
the control v, any solution of (1.1) satisfies y(t) �= 0 for every t < r/c0, where c0 = c0(q,Ω,ω).

In particular, for every q > 1 the system (1.1) fails to be null controllable at any T > 0.

Remark 4.1. We recall (see Section 2) that, when 1 < q � 2, by a solution of (1.1) we refer to the unique bounded
weak solution. When q > 2, we refer to any possible solution of (1.1) such that, for some t0 < T , v ≡ 0 in (0, t0) and
y is the unique generalized viscosity solution in (0, t0), y(t0) ∈ W 2,p(Ω) ∩ C0(Ω) and next y is a strong solution in
(t0, T ).

1 Estimate (3.10) can be deduced from [15] as follows. Applying [15, Chapter IV, Thm. 9.1] to the function τy(x, t + τ), for τ ∈ [0, s], one has

∥∥τyτ (t + τ)
∥∥
Lp((0,s)×Ω)

� C
[‖y‖L∞((t,t+s)×Ω) + s‖∇y‖q

L∞((t,t+s)×Ω)

]
.

Next, using the equation of w := τ2yτ (t + τ), which satisfies

wτ − �w + q|∇y|q−2∇y∇w = 2τyτ , τ ∈ (0, s)

it follows that, for a sufficiently large p,

‖w‖∞ � C
∥∥τyτ (t + τ)

∥∥
Lp((0,s)×Ω)

,

where C can be chosen independent of y if, for example, we have ‖∇y‖∞ � 1 (this can be assumed due to (3.9)). Since w(s) = s2yτ (t + s) we
deduce the pointwise estimate

∥∥yτ (t + s)
∥∥∞ � C sup

τ∈[t,t+s]

(‖y(τ)‖∞
s2

+ ‖∇y(τ)‖q∞
s

)

and then by elliptic Calderon–Zygmund regularity (since �y(t + s) = |∇y(t + s)|q +yτ (t + s)) one obtains (3.10). This is not the sharpest possible
estimate for the uncontrolled equation (1.1), but is largely sufficient to our purposes.
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We stress that the proof below shows a local obstruction to null controllability which is completely independent
from the control v and, in addition, applies to any notion of solution which satisfies a comparison principle, including
the notions which we use of weak, viscosity or strong solutions. Roughly speaking, no matter one could define the
null controllability at time T , there are initial data – which can be constructed as smooth as desired – for which it
might fail.

Proof. Let us first deal with the case 1 < q � 2. Take a smooth subset ω0 ⊂⊂ Ω such that ω0 ∩ ω = ∅. It is proved in
[16, Section VI] that there exists a unique constant c0 such that the problem{−�ϕ0 + |∇ϕ0|q + c0 = 0 in ω0,

lim
x→∂ω0

ϕ0(x) = +∞ (4.1)

admits a solution ϕ0 ∈ W
2,p

loc (ω0) for every p < ∞. Moreover, ϕ0 is unique up to an additive constant; in the following,
we fix ϕ0 so that

min
ω0

ϕ0 = 0.

In particular, we have that ϕ0 � 0 in ω0. Moreover, since ϕ0 attains its minimum inside, the strong maximum principle
(in this case, minimum!) implies that c0 > 0. Consider now the function

y0 = −rχ{x∈ω0: ϕ0<r}. (4.2)

Note that, since ϕ0 is C2 in ω0, the set {x ∈ ω0: ϕ0 < r} is a C2 open set compactly contained in ω0. Observe that y0
satisfies

y0 � ϕ0 − r in ω0. (4.3)

Since the function z(t, x) = ϕ0(x) − r + c0t satisfies⎧⎨
⎩

zt − �z + |∇z|q = 0 in (0, T ) × ω0,

z → +∞ on (0, T ) × ∂ω0,

z(0) = ϕ0 − r in ω0

we can use the comparison principle (see Proposition 2.1) in ω0 × (0, T ) between y and z, and using (4.3), we deduce
that z(t, x) � y(t, x), i.e.

y(t, x) � ϕ0(x) − r + c0t.

In particular, if x0 is such that ϕ0(x0) = minω0 ϕ0 = 0, we have y(t, x0) � c0t − r < 0 as long as t < r/c0. Similarly,
if one takes an initial datum ỹ0 ∈ C0(Ω) such that −r � ỹ0 � y0, then the corresponding weak solution ỹ satisfies
ỹ � y and the same conclusion holds for ỹ. This shows that the same example can be constructed with smooth initial
data.

Now, assume that q > 2. Still using the results in [16, Section VI], there exists a unique constant c0 and a unique
(up to addition of a constant) function ϕ0 ∈ C2(ω0) ∩ C0(ω0) which is solution of the equation

−�ϕ0 + |∇ϕ0|q + c0 = 0 in ω0, (4.4)

and also satisfies the so-called state constraint boundary condition:

for every ψ ∈ C2(ω0), ϕ0 − ψ cannot have a local minimum at x ∈ ∂ω0. (4.5)

As before, we normalize ϕ0 in a way that minω0 ϕ0 = 0 and we define z(t, x) = ϕ0(x) − r + c0t . Then we consider
an initial datum y0 ∈ C0(Ω) such that −r � y0 � 0 and y0 ≡ −r on ω0. Let y be a generalized viscosity solution
of (1.1) and, possibly, a strong solution in (t0, T ) for some t0 < T . In particular, y belongs to C([0, T ] × ω0) and is
a continuous viscosity solution in (0, T ) × ω0. Since z also belongs to C([0, T ] × ω0) and is a solution with state
constraint boundary condition due to (4.5), in particular z is a super-solution of the generalized Dirichlet problem
in (0, T ) × ω0 (actually, z is the maximal solution in (0, T ) × ω0). We can apply the comparison principle between
generalized viscosity solutions [3], and, since in ω0 we have y0 = −r � z(0, x), we deduce that y � z in (0, T ) × ω0.
Then we conclude as before.
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Finally, if we are given any T > 0, we choose r > c0T ; then the initial datum y0 defined before cannot be driven
to zero at time T . �
Remark 4.2. It is interesting to give a closer look at the above construction in the case q = 2. Changing the unknown,
setting z = e−y , the system is transformed into the bilinear control problem⎧⎨

⎩
zt − �z + zvχω = 0 in (0, T ) × Ω,

z = 1 on (0, T ) × ∂Ω,

z(0) = e−y0 in Ω

with the constraint that z > 0. The null controllability property for (1.1) means leading z to the constant state z1 ≡ 1.
The role of the barrier functions solutions of (4.1) is played here by eigenfunctions. The above argument becomes
the following: take any ω0 ⊂ Ω \ ω and ϕ1 the first eigenfunction in ω0 normalized with ‖ϕ1‖∞ = 1. Take y0 to be
strictly negative in ω0, e.g. let ε > 0 such that e−y0 > 1 + ε in ω0. We have that (1 + ε)ϕ1e

−λ1t is a sub-solution in
ω0 × (0, t), which vanishes on ∂ω0; we deduce by comparison that z > (1 + ε)ϕ1e

−λ1t , hence {z(t) > 1} has positive
measure for t < 1

λ1
log(1 + ε).

Note in the above construction that ω0 is an arbitrary subset of Ω \ω. In the following, for any C2 open set ω0 ⊂ Ω ,
we denote by c0(ω0) the unique ergodic constant in ω0 defined from (4.1) (if 1 < q � 2) or (4.4)–(4.5) (if q > 2). We
obtain then the following first estimate of the waiting time.

Corollary 4.1. Let T (r) be defined by (3.12). Then we have T (r) � r/c0(ω0) for every C2 open set ω0 ⊂ Ω \ ω. In
particular, if Ω and ω are of class C2, we have

T (r) � r

c0(Ω \ ω)
.

Proof. The first assertion follows from the construction of Theorem 4.1, on account of the fact that ω0 was an arbitrary
subset of Ω \ω. If Ω and ω are C2, then it is possible to define c0(Ω \ω) by solving (4.1) in Ω \ω. Since the ergodic
constant c(ω0) is nonincreasing as the domain ω0 increases (see e.g. [5,25]), we get

T (r)

r
� sup

ω0⊂Ω\ω
1

c0(ω0)
= 1

c0(Ω \ ω)
. �

We will see in the next section that the estimate provided above is far from optimal whenever r is small. On the
other hand, for r large, we will show that the waiting time has actually the rate given by the above corollary.

Remark 4.3. It is known, by the dynamic programming principle, that the solution of (1.1) can be represented as the
value function of a stochastic control problem. Precisely, if Bt is a standard Brownian motion in RN (on a probability
space (Θ, F , Ft , P )), let us denote by Xt the solution of the controlled stochastic differential equation{

dXt = at dt + √
2dBt ,

X0 = x ∈ Ω

where the control at belongs to a class A of admissible processes. Then the unique solution of (1.1) coincides, under
some assumptions on A, with the value function of the stochastic control problem, namely

y(t, x) = inf
at∈A

Ex

[ t∧τx∫
0

(
v(t − s,Xs)χ[Xs∈ω] + cq |as |

q
q−1

)
ds + y0(Xt )χ[t<τx ]

]
(4.6)

where Ex is the expectation conditioned to X0 = x, cq is a normalization constant and τx is the exit time variable

τx = inf{t > 0: Xt /∈ Ω}.
It is clear from the above representation that the controllability property relies on the possibility that the process Xt

reaches ω. However the dynamics is influenced by the optimization procedure (which reflects the nonlinear character
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of (1.1)). It is proved in [16] that it is possible to constrain a Brownian motion inside some domain ω0 using singular
drifts (blowing up at ∂ω0), and the stationary barriers in ω0 are the minimal cost to pay for realizing the constraint.
Recall that y, by (4.6), is the minimal cost over all drifts (defined in the whole Ω). This suggests a rough explanation
of the above result: namely, since there exist drifts which try to keep the process in Ω \ ω as long as possible, the null
controllability, if not avoided at all, will at least be delayed of some time.

We give now a different proof of Theorem 4.1 which does not use the results in [16] (in particular, it does not use
the explicit stationary barriers) and, moreover, applies to the larger class of problems⎧⎨

⎩
yt − �y + f (t, x,∇y) = vχω in (0, T ) × Ω,

y = 0 on (0, T ) × ∂Ω,

y(0) = y0 in Ω.

(4.7)

We refer to Section 2 for the definition of weak solution of (4.7). Let us show that the controllability in arbitrary time
fails depending on the behavior of f (t, x, ξ) when |ξ | → ∞. This kind of result is closer to the negative result proved
in [13] for nonlinearities depending on y, relying on some underlying ODE’s principle and the construction of test
functions. However, in the case of nonlinearities depending on y, there are initial data which can never be controlled,
while here the negative results mean that the control time cannot be uniform with respect to all data.

Theorem 4.2. Assume that f (t, x, ξ) satisfies

∀m > 0 ∃cm > 0: ∣∣f (t, x, ξ)
∣∣ � Cm ∀(t, x) ∈ QT , ξ ∈ R

N : |ξ | � m,

and moreover

∃L > 0: f (t, x, ξ) � h
(|ξ |) ∀(t, x) ∈ QT , ξ ∈ R

N : |ξ | � L, (4.8)

where h : R
+ → R

+ is some convex, increasing function such that

∞∫
dt

h(t)
< ∞, (4.9)

and in addition

lim sup
t→∞

t2h′′(t)
(th′(t) − h(t))

< ∞. (4.10)

Then, for every r > 0 there exists y0 ∈ C0(Ω) with ‖y0‖∞ = r such that, for every control v ∈ L∞((0, T ) × ω),
any weak solution y of (4.7) satisfies y(t) �= 0 for every t < C0r , where C0 = C0(Ω,ω,f ). In particular, the system
(4.7) fails to be null controllable at any time T > 0.

Remark 4.4. This result does not depend on the well-posedness of (4.7). Actually, the estimate is independent on what
the control v might be and, especially, applies to any weak solution of (4.7) (and, a fortiori, to any stronger notion of
solution). Moreover, the initial datum can also be chosen as smooth as desired.

Remark 4.5. Assumption (4.10) is only a technical condition that we will need in the construction of the test functions
below, and we believe it unnecessary. On the other hand, condition (4.9) plays a key role; such a condition is usually
required (and necessary) in order to have localized estimates in similar problems and existence of stationary barriers
(see e.g. [18]). Of course, (4.8)–(4.10) are satisfied by the main example f = |∇y|q . Note that (4.8) only concerns the
behavior at infinity and only asks a bound from below, hence faster growths than powers are also included. Finally, the
previous result includes the interesting case where f (∇y) ∼ |∇y|(log(1 + |∇y|))α as |∇y| → ∞, with α > 1, since
the function h(s) = s(log(1 + s))α satisfies (4.9)–(4.10) in this range. Notice that some gap with the positive results
proved in [10] still remains, since it is known that the null controllability property holds for any T (independently of
the initial datum) if α < 1/2.
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Proof. Take ω0 ⊂ Ω \ ω and let η ∈ C∞
c (Ω \ ω) be a cut-off function such that η ≡ 1 in ω0. Multiply Eq. (4.7) by

ψ(η), where ψ ∈ C1(R) is to be fixed later (with ψ(0) = 0). We obtain

∫
Ω

y(t)ψ(η)dx +
t∫

0

∫
Ω

f (τ, x,∇y)ψ(η)dx dτ =
∫
Ω

y0ψ(η)dx −
t∫

0

∫
Ω

∇y∇ηψ ′(η) dx dτ,

which yields, using (4.8),

∫
Ω

y(t)ψ(η)dx +
t∫

0

∫
Ω

h
(|∇y|)ψ(η)dx dτ � Kt

∫
Ω

ψ(η)dx +
∫
Ω

y0ψ(η)dx dτ −
t∫

0

∫
Ω

∇y∇ηψ ′(η) dx,

where K = h(L) + cL, being cL = supQT ×BL(0) |f |. Young’s inequality implies

∣∣∇y∇ηψ ′(η)
∣∣ � 1

2
h
(|∇y|)ψ(η) + 1

2
ψ(η)h∗

(
2|∇η|ψ

′(η)

ψ(η)

)

where h∗ is the Legendre transform of the function h. Then we have

−
t∫

0

∫
Ω

∇y∇ηψ ′(η) dx dτ � 1

2

t∫
0

∫
Ω

h
(|∇y|)ψ(η)dx dτ + 1

2
t

∫
Ω

ψ(η)h∗
(

2|∇η|ψ
′(η)

ψ(η)

)
dx.

Therefore we get∫
Ω

y(t)ψ(η)dx �
∫
Ω

y0ψ(η)dx + t

[
K

∫
Ω

ψ(η)dx + 1

2

∫
Ω

ψ(η)h∗
(

2|∇η|ψ
′(η)

ψ(η)

)
dx

]
,

hence we have obtained that∫
Ω

y(t)ψ(η)dx �
∫
Ω

y0ψ(η)dx + tcω0

where

cω0 =
[
K

∫
Ω

ψ(η)dx + 1

2

∫
Ω

ψ(η)h∗
(

2|∇η|ψ
′(η)

ψ(η)

)
dx

]
. (4.11)

Assume that there exists a cut-off function ψ(η) such that cω0 < ∞. Then if we take some y0 such that

I(y0) :=
∫
Ω

y0ψ(η)dx < 0

we deduce that∫
Ω

y(t)ψ(η)dx < 0 for t < T0 := |I(y0)|
cω0

, (4.12)

hence y(t) �= 0 for t < T0.
We are only left to show that, due to assumption (4.9), we can construct a ψ such that cω0 < ∞. To this purpose,

let us choose ψ as the solution of the ODE⎧⎨
⎩ψ ′ = 1

2‖∇η‖∞
ψ

(
h∗)−1

(
1

ψ

)
,

ψ(0) = 0.
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We point out that ψ is well defined thanks to (4.9)–(4.10), and given by the implicit relation

ψ(r)∫
0

ds

s(h∗)−1( 1
s
)

= r

2‖∇η‖∞
.

Note that, by properties of the Legendre transform, we have

∫
0

ds

s(h∗)−1( 1
s
)

=
∞∫

th′′(t)
(th′(t) − h(t))h′(t)

dt

hence, thanks to (4.10) and the convexity of h, we have

∫
0

ds

s(h∗)−1( 1
s
)

� C

∞∫
1

th′(t)
dt � C

∞∫
1

h(t)
dt < ∞.

Therefore this choice of ψ is allowed, and we have∫
Ω

ψ(η)h∗
(

2|∇η|ψ
′(η)

ψ(η)

)
dx � |Ω|

which implies that cω0 < ∞.
Therefore, we proved that (4.12) holds true, and in particular the system is not controllable for t <

− 1
cω0

∫
Ω

y0ψ(η)dx. Choosing y0 ∈ C0(Ω): −r � y0 � −rχω0 , we have ‖y0‖∞ = r , and

− 1

cω0

∫
Ω

y0ψ(η)dx � r

cω0

ψ(1)|ω0|.

We deduce that there exists a constant C0 only depending on Ω , ω, h such that T (r) � C0r . �
Remark 4.6. In the case h(ξ) = |ξ |q , we can take ψ(η) = |η|q ′

where q ′ = q
q−1 . The value of cω0 can be estimated

explicitly in this case, being cω0 � Cq

∫
Ω

|∇η|q ′
dx. In particular we obtain

T (y0) �
− ∫

Ω
y0η

q ′
dx

Cq

∫
Ω

|∇η|q ′
dx

.

In the special case that y0 � 0, we deduce

T (y0) �
‖y0‖L1(ω0)

Cq

∫
Ω

|∇η|q ′
dx

and since this is true for any η � χω0 we obtain the explicit estimate

T (y0) �
‖y0‖L1(ω0)

Cq capq ′(ω0,Ω \ ω)

where capq ′(B,E) denotes the q ′-capacity of a Borel set B with respect to a set E such that B ⊂ E. We recall that,
for r > 1, the r-capacity of an open set A with respect to E ⊃ A is defined as

capr (A,E) = inf
{‖ψ‖r

W
1,r
0 (E)

, ψ ∈ W
1,r
0 (E): ψ � χA a.e. in E

}
and then such definition is extended to Borel subsets as

capr (B,E) = inf
{
capr (A), A open: B ⊂ A ⊂ E

}
.
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Theorem 4.2 applies to weak solutions of (4.7). The following corollary is meant for the case when the growth of
f (t, x,∇u) with respect to ∇u does not allow to find global weak solutions but, on the contrary, there exists a global
generalized viscosity solution (like for the case q > 2 in (1.1)). Sufficient conditions for this are given in [3] and are
quite technical. We will just show, for completeness, that even if such a solution exists, it is not controllable. This also
includes the case where a strong solution exists.

Corollary 4.2. Assume that f (t, x, ξ) ∈ C(QT × R
N) satisfies f (t, x,0) = 0 and is locally Lipschitz continuous with

respect to ξ (uniformly in QT ), and moreover

∃L > 0: f (t, x, ξ) � γ |ξ |2 ∀(t, x) ∈ QT , ξ ∈ R
N : |ξ | � L. (4.13)

Let y be a solution of (4.7) in the sense that, for some t0 < T , v ≡ 0 in (0, t0) and y is a generalized viscosity solution
in (0, t0), y(t0) ∈ C0(Ω) ∩ W 2,p(Ω) for every p < ∞ and y is a strong solution in (t0, T ) for some control v.

For every r > 0, there exists y0 ∈ C0(Ω) such that ‖y0‖∞ = r and, if such a solution y exists, then y(t) �= 0 for
every t < C0r , where C0 = C0(Ω,ω,f ).

Proof. By the local Lipschitz continuity and (4.13), we have that f satisfies, for some constant β > 0,

f (t, x, ξ) � γ |ξ |2 − β|ξ | ∀(t, x, ξ) ∈ QT × R
N.

Consider the problem⎧⎨
⎩

zt − �z + γ |∇z|2 − β|∇z| = vχω in (0, T ) × Ω,

z = 0 on (0, T ) × ∂Ω,

z(0) = y0 in Ω.

(4.14)

There exists a unique global weak solution z of (4.14), and we can apply Theorem 4.2 to z. Then, for every r > 0
there exists y0 ∈ C0(Ω) such that ‖y0‖∞ = r and∫

Ω

z(t)ψ(η)dx < 0 ∀t < C0r, (4.15)

with the notations used in the proof of Theorem 4.2. Let now y be a solution of (4.7) as in the statement. If v = 0 in
(0, t0) and y is a generalized viscosity solution, then it is also a viscosity sub-solution of (4.14). Since y0 ∈ C0(Ω),
we also have that the weak solution z is continuous up to t = 0 and is a classical solution in (0, t0). By the comparison
principle between generalized viscosity sub/super-solutions, we deduce that y � z in (0, t0). Next, the comparison
also holds in (t0, T ) where y is a strong solution, and we conclude that y � z in (0, T ). Therefore, (4.15) implies∫

Ω

y(t)ψ(η)dx < 0 ∀t < C0r,

which yields the conclusion. �
Remark 4.7. If we define the waiting time T (r) as in (3.12) but with respect to problem (4.7) instead of (1.1), we can
deduce from Theorem 4.2 and Corollary 4.2 the estimate T (r) � C0r under either assumption (4.8)–(4.10) or (4.13).

Remark 4.8. Both Theorems 4.1 and 4.2 show that the waiting time is positive as soon as we choose initial data y0
such that y0 < 0 in some open set ω0 ⊂ Ω \ ω. It is an open question whether the null controllability property in
arbitrary time T holds for nonnegative initial data.

5. Sharp estimates on the waiting time

In this section we estimate the rate of the waiting time in terms of the L∞-norm of the initial data, in the two
different cases whether ‖y0‖∞ tends to zero or infinity. Recall that T (y0) and T (r) are defined in (3.11)–(3.12).
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We start by improving, for short time range, the lower bound on T (r) given in Corollary 4.1. The following
construction is inspired by [12], where the authors prove a similar lower bound for the one-dimensional Burgers
equation.

Proposition 5.1. Let T (r) be defined from (3.11)–(3.12). There exists a constant κ > 0 such that

T (r) � κ

ln( 1
r
)

as r → 0+.

Proof. Let ω0 be a smooth open subset of Ω \ ω, and let δ0 > 0 be such that the function dist(x, ∂ω0) is C2 in
{x ∈ ω0: dist(x, ∂ω0) < δ0}. Take some δ <

δ0
2 , to be fixed later small enough. We denote by d(x) a function which

is C2 in ω0, which coincides with dist(x, ∂ω0) in {x ∈ ω0: dist(x, ∂ω0) < δ} and with a positive constant in {x ∈
ω0: d(x) > 2δ} and such that d(x) � 1, |∇d(x)| � 1 in ω0. Such a choice is easily obtained through a smooth
truncation of the distance function.

Let us consider the function

v(t, x) := e
1

d(x) e− ζ(x)
t , (t, x) ∈ (0, T ) × ω0

where ζ ∈ C2(ω0) will be fixed later. Computing we have

vt − �v = v

[
ζ

t2
−

(∇d

d2
+ ∇ζ

t

)2

−
(

2|∇d|2
d3

− �d

d2
− �ζ

t

)]

which implies

vt − �v � v

[
ζ

t2
− 2

|∇ζ |2
t2

+ �ζ

t

]
− v

[
2
|∇d|2

d4
+ 2|∇d|2

d3
− �d

d2

]

and using that |∇d| � 1 and |�d| is bounded, and since d(x) � 1, we get

vt − �v � v

[
ζ

t2
− 2

|∇ζ |2
t2

+ �ζ

t
− C0

d4

]

for some constant C0 > 0. We fix now ζ = Φ(d(x)), for some smooth increasing function Φ such that Φ(0) = 0 and
in a way that ζ satisfies

|∇ζ |2 � ζ

4
, |�ζ | �

√
ζ

d2
, ζ = o

(
d2(x)

)
as d(x) → 0. (5.1)

To this purpose it is enough to ask that Φ satisfies Φ(s) = o(s2) as s → 0+, |Φ ′(s)|2 � Φ
4 and Φ ′′ = o(

√
Φ

s2 ), which is

the case taking for instance Φ(s) � s3. Thanks to (5.1) we have

2
|∇ζ |2

t2
+ |�ζ |

t
� 3

4

ζ

t2
+ 1

d4

and we estimate

vt − �v � v

[
1

4

ζ

t2
− C1

d4

]
.

On the other hand, since ∇ζ · ∇d � 0, we have

|∇v|2 = v2
(∇d

d2
+ ∇ζ

t

)2

� v2 |∇d|2
d4

� v2

d4
χ{d(x)<δ}

hence

vt − �v + |∇v|q � v

[
1 ζ

2
− C1

4

]
+ vq

2q
χ{d(x)<δ}.
4 t d d
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We claim now that the right-hand side is nonnegative. This is of course true in the subset {(x, t): C1
d4 � 1

4
ζ

t2 }. On the

other hand, in the complement of this set we have C1
d4 > 1

4
ζ

t2 , which means that d4ζ < 4C1t
2 hence

ζ

t
� 2

√
C1

√
ζ

d(x)2
.

Since ζ = Φ(d) = o(d2), we can choose δ small such that

ζ

t
� 1

2d(x)
∀x: d(x) < δ.

This implies that v � e
1

2d and so

v
C1

d4
� vq

d2q
∀x: d(x) < δ

provided δ is small enough. Assume now that t � K

ln( 1
r
)
. Then, whenever d4ζ < 4C1t

2 we have d4Φ(d) <

4C1K
2(ln( 1

r
))−2 and we can choose r small enough so that this implies d(x) < δ. In that way we conclude that

if
C1

d4
>

1

4

ζ

t2
, then v

C1

d4
� vq

d2q
χ{d(x)<δ}

if δ is fixed sufficiently small and r is small enough (depending on δ). All in all we have proved that

v

[
1

4

ζ

t2
− C1

d4

]
+ vq

d2q
χ{d(x)<δ} � 0

so that v satisfies vt − �v + |∇v|q � 0. Take now y0 ∈ C0(Ω) ∩ C2(Ω) such that −r � y0 � 0 and y0 = −r in ω0,
and let y be the corresponding solution of (1.1). We use the comparison principle2 in ω0 × (0, T ) and we deduce

y(t, x) � v(t, x) − r, (t, x) ∈ (0, T ) × ω0

and in particular

y � e
1

d(x)
− ζ

t − r � e
1
δ
− Φ(δ)

t − r ∀x: dist(x, ∂ω0) � δ.

If T = 1
2

Φ(δ)

ln( 1
r
)

then we have

e
1
δ
− Φ(δ)

t − r � e
1
δ r2 − r < 0

if r is sufficiently small, hence we have y(t, x) < 0 for every x: d(x) � δ and for every t � 1
2

Φ(δ)

ln( 1
r
)
, which means that

T (y0) � 1
2

Φ(δ)

ln( 1
r
)
. Since ‖y0‖∞ = r , this gives the conclusion. �

In order to show the generality of the above estimate, as well as of the construction used to prove it, we extend the
above result to general nonlinearities with similar growth as in Theorem 4.2.

Theorem 5.1. Let us consider problem (4.7). Assume that f (t, x,∇y) � h(|∇y|) for some function h(s) ∈ C1([0,∞))

such that h(0) = 0 and, for some L > 0, h(s) is positive, increasing in (L,∞) and satisfies
∫ ∞
L

ds
h(s)

ds < ∞. More-

over, assume that there exists a positive function ρ ∈ C2(0, s0) such that logρ is convex, ρ(s) → ∞ as s → 0+, and
4ρ′′ � h( 1

2 |ρ′|) in (0, s0) for some s0 > 0.
Then the conclusion of Proposition 5.1 holds true (replacing problem (1.1) with (4.7)).

2 More precisely, we can use the comparison principle with y0 = −r −ε in ω0 (so that y < v− r in a ε-neighborhood of t = 0), and then conclude
as ε → 0. This is to get rid of the singularity of v(t, x) at ∂ω0 ∩{t = 0}. We also recall that, in case q > 2, we use the comparison principle between
viscosity solutions (only the standard form is needed here, since comparison at the boundary holds trivially). In case q � 2, since y0 is smooth, the
solution y is classical, and we are just comparing classical solutions which are ordered at the boundary (the usual maximum principle suffices).



A. Porretta, E. Zuazua / Ann. I. H. Poincaré – AN 29 (2012) 301–333 319
Remark 5.1. Taking ρ(s) = e
1
s we see that f (t, x, ξ) = |ξ |q satisfies the above assumption for every q > 1, which

makes Proposition 5.1 a particular case of the present result. The assumption is also satisfied if h(s) ∼ s(log s)α

as s → ∞, with α > 1. In that case, the function ρ(s) = eλs
− 1

α−1 satisfies the required differential inequality for a
suitable λ. We also observe that the assumption

∫ ∞ ds
h(s)

ds < ∞ is a necessary condition for the existence of some
function ρ with the desired properties.

Proof. We proceed as in the previous proof. Let ω0 ⊂ Ω \ ω and d(x) be defined as in Proposition 5.1, and such
that d(x) < s0. We set ϕ(x) = ρ(d(x)), where ρ is given by the assumption, and ζ(x) = Φ(d(x)), where Φ is an
increasing smooth function, to be suitably chosen later, such that Φ(0) = 0. We consider the function

w(t, x) = ϕ(x)e− ζ(x)
t , (t, x) ∈ (0, T ) × ω0.

Now w satisfies

wt − �w = e− ζ
t

[
ϕ

ζ

t2
− �ϕ + 2

t
∇ϕ∇ζ + ϕ

�ζ

t
− ϕ

|∇ζ |2
t2

]
which yields

wt − �w � e− ζ
t

[
ϕ

ζ

t2
− �ϕ − |∇ϕ|2

ϕ
+ ϕ

�ζ

t
− 2ϕ

|∇ζ |2
t2

]
.

The assumptions on h imply that there exists L0 > 0 such that h(s) + L0s is increasing. On the other hand, since Φ

is increasing we have ∇ζ∇d(x) � 0, while ρ is decreasing and ∇ϕ = ρ′(d)∇d(x). Therefore, |∇w| � e− ζ
t |∇ϕ|, and

we have

h
(|∇w|) � −L0|∇w| + h

(
e− ζ

t |∇ϕ|) + L0e
− ζ

t |∇ϕ|,
and since |∇w| � e− ζ

t [|∇ϕ| + ϕ
t
|∇ζ |] we get

wt − �w + h
(|∇w|) � e− ζ

t

[
ϕ

ζ

t2
− �ϕ − |∇ϕ|2

ϕ
+ ϕ

�ζ

t
− 2ϕ

|∇ζ |2
t2

− L0

(
|∇ϕ| + ϕ

t
|∇ζ |

)]

+ h
(
e− ζ

t |∇ϕ|) + L0e
− ζ

t |∇ϕ|. (5.2)

Assume that ζ = Φ(d(x)) satisfies

|∇ζ |2 � ζ

4
, |�ζ |2 � 1

2
ζ

ρ′′(d)

ρ(d)
, ζ = o

(
ρ(d)

ρ′′(d)

)
as d → 0. (5.3)

Then, recalling that ϕ = ρ(d), we have

ϕ
�ζ

t
− 2ϕ

|∇ζ |2
t2

− L0
ϕ

t
|∇ζ | � −3

4
ϕ

ζ

t2
− 2ϕ

|�ζ |2
ζ

− L2
0

2
ϕ

� −3

4
ϕ

ζ

t2
− ρ′′(d) − L2

0

2
ρ(d).

Moreover, since logρ is convex, we have ρρ′′ � (ρ′)2, and in particular (since |(logρ)′| = |ρ′|
ρ

→ ∞) we have |ρ′| =
o(ρ′′), so that

�ϕ + |∇ϕ|2
ϕ

=
(

ρ′′ + (ρ′)2

ρ

)
|∇d|2 + ρ′�d � 2ρ′′ + ρ′�d = 2ρ′′ + o

(
ρ′′),

and as a whole we get

ϕ
ζ

t2
− �ϕ − |∇ϕ|2

ϕ
+ ϕ

�ζ

t
− 2ϕ

|∇ζ |2
t2

− L0

(
|∇ϕ| + ϕ

t
|∇ζ |

)

� 1
ϕ

ζ

2
− 3ρ′′(d) − L2

0 ρ(d) − L0
∣∣ρ′(d)

∣∣ + o
(
ρ′′(d)

)
.

4 t 2
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Since ρ = o(ρ′′(d)) as well as |ρ′| = o(ρ′′) as d → 0, up to choosing s0 eventually smaller we get from (5.2)

wt − �w + h
(|∇w|) � e− ζ

t

[
1

4
ϕ

ζ

t2
− 4ρ′′(d)

]
+ h

(
e− ζ

t |∇ϕ|) + L0e
− ζ

t |∇ϕ|

and then, using that |∇ϕ| = |ρ′(d)| if d(x) < δ,

wt − �w + h
(|∇w|) � e− ζ

t

[
1

4
ϕ

ζ

t2
− 4ρ′′(d)

]
+ {

h
(
e− ζ

t

∣∣ρ′(d)
∣∣) + L0e

− ζ
t

∣∣ρ′(d)
∣∣}χ{d(x)<δ}.

Now, if 4ρ′′(d) � 1
4ϕ

ζ

t2 , the right-hand side is positive. Otherwise, if 4ρ′′(d) > 1
4ϕ

ζ

t2 , this means that

ρ(d)

ρ′′(d)
Φ(d) < 16t2. (5.4)

On one hand this implies that ζ
t

� 4
√

ζ (
ρ′′
ρ

)
1
2 ; since by (5.3) ζ = o(

ρ
ρ′′ ) as d(x) → 0, we can find some δ in order to

have

ζ

t
� 1

2
� ln 2 ∀x: d(x) < δ

hence e− ζ
t � 1

2 . On the other hand, since t � K(ln(1/r))−1, we can choose r small enough in a way that (5.4) implies

d(x) < δ. Thus, we can deduce that, whenever 4ρ′′(d) > 1
4ϕ

ζ

t2 , we have (using also the assumption on ρ)

e− ζ
t 4ρ′′(d) � 4ρ′′(d) � h

(
1

2

∣∣ρ′(d)
∣∣) � h

(
e− ζ

t

∣∣ρ′(d)
∣∣)χ{d(x)<δ}.

Finally, we conclude that wt − �w + h(|∇w|) � 0, provided we choose ζ = Φ(d(x)) satisfying (5.3). The existence
of such a Φ can be proved as follows. Firstly, recall that ρ′′

ρ
→ ∞ (because ρ′′

ρ
� (

ρ′
ρ

)2 → ∞); now take some

positive increasing smooth function g(s) such that g(0) = 0 and g = o(
ρ
ρ′′ ), and let Φ(s) = e

− 1
g(s) . Clearly we have

Φ = o(g) hence ζ = o(
ρ
ρ′′ ). Moreover we have |∇ζ |2 � ζ 2(

g′
g2 ) = o(ζ ) and similarly (�ζ)2 = o(ζ ) which clearly

implies (�ζ)2 = o(ζ
ρ′′(d)
ρ(d)

). Therefore ζ satisfies (5.3). We have therefore constructed a positive function w which
blows up at ∂ω0 and is a super-solution of the equation wt − �w + h(|∇w|) = 0. Using the comparison principle on
this latter equation, we conclude as in Proposition 5.1. �

We conclude now the estimates of the waiting time by proving the upper bounds.

Proposition 5.2. Let us consider problem (1.1) with q > 1, and let T (r) be defined from (3.11)–(3.12). We have:

(i) There exists K > 0 such that T (r) � K

ln( 1
r
)

as r → 0+.

(ii) There exists Λ > 0 such that T (r) � Λr as r → ∞.

Proof. Consider first the case r → 0. We leave first the system evolve freely. Since ‖u0‖∞ � r , it is proved (see
Appendix A, (A.2)) that

∣∣∇u(t)
∣∣ � c

(‖u0‖∞
t − kr

) 1
q

(5.5)

for every t > kr , where c, k only depend on q , Ω . In particular, ‖∇u(t)‖∞ � c for every t � 2kr , and then u satisfies
a heat equation where the right-hand side is bounded. Therefore classical estimates apply, and in particular (3.10)
holds true, namely we have, for small s > 0,

∥∥u(t + s)
∥∥

W 2,p � C sup

(‖u(τ)‖∞
s2

+ ‖∇u(τ)‖q∞
s

)
. (5.6)
τ∈[t,t+s]
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Since ‖u‖∞ � r and, from (5.5), ‖∇u(τ)‖q∞ � c
‖u0‖∞
t−kr

for every τ � t , if we take some α < 1 and s = t = 1
2 rα we get∥∥u

(
rα

)∥∥
W 2,p � Cr1−2α

provided r is small. In particular, there exists α < 1 such that ‖u(rα)‖W 2,p � M
2 e−c1 , where M , c1 are given by

Lemma 3.1. Therefore, if T = K

ln( 1
r
)

we have

∥∥u
(
rα

)∥∥
W 2,p + exp

[
c0

(
T + 1

T

)]∥∥u
(
rα

)∥∥
L2(Ω)

� M

2
e−c1 + exp

[
c0

(
K

ln( 1
r
)

+ 1

K
ln

(
1

r

))]
|Ω| 1

2 r

� M

2
e−c1 + |Ω| 1

2 exp

[
c0

K

ln( 1
r
)

]
r1− c0

K .

Choosing K > c0 we obtain that, for small r , we have

∥∥u
(
rα

)∥∥
W 2,p + exp

[
c0

(
T + 1

T

)]∥∥u
(
rα

)∥∥
L2(Ω)

� Me−c1 � Me−c1T

hence the condition of Lemma 3.1 is satisfied and the system is controllable after a time rα +T . Since rα +T ∼ K

ln( 1
r
)

as r → 0+, this proves (i).
Let us now consider the case that ‖u0‖∞ � r , with r → ∞. Again, we first take v = 0 and consider the system

without control. Then, using Lemma 3.2 with t = 2Kr we have∥∥u(2Kr)
∥∥∞ � Ce−2μKr

for some μ > 0. Next, in view of the above result on the time of control for small data, we deduce that the system
is controllable after a time of the order of 1

ln( 1
Ce−2μKr

)
∼ c

r
, hence all in all the system is controllable after a time

T ∼ 2Kr + c
r

= O(r). This proves (ii). �
We deduce now from the previous results

Proof of Theorem 1.1. From Corollary 4.1, it follows the lower bound in (1.4). The lower bound in (1.3) is proved
in Proposition 5.1. Finally, Proposition 5.2 provides with the two bounds from above. �
Remark 5.2. It is interesting to consider the case q = 2 for which the decay estimate can be deduced from the linear
one. Indeed, u is a solution of (3.6) with q = 2 if and only if v = e−u − 1 is a solution of the heat equation with initial
datum e−u0 − 1. Consider the case u0 � 0, which is the interesting one for the waiting time. Then we have, by linear
theory,

0 � v(t) � Ce−λ1t
∥∥v(0)

∥∥∞ � Ce‖u0‖∞−λ1t

where C only depends on Ω . Hence∣∣u(t)
∣∣ = ln

(
1 + v(t)

)
� v(t) � Ce‖u0‖∞−λ1t

and in particular, if T � ‖u0‖∞
λ1−ε

, we have

∣∣u(T )
∣∣ � Ce−λ1T +‖u0‖∞ � Ce−εT

Assume now that ‖u0‖∞ � r with r → ∞ and set T = r
λ1−ε

. By Proposition 5.2 the system is controllable at time

T + K

ln( 1
e−εT C

)
(provided εT is large enough) so that

T (u0) � r + K
λ1 − ε εT − lnC
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hence

T (r) � r

λ1 − ε
+ K(λ1 − ε)

εr − (λ1 − ε) lnC

for any ε, r such that εr is large. Choosing some εr → 0 such that εrr → ∞ we deduce that

T (r) � r

λ1
+ o(r) as r → ∞

and in particular lim supr→∞
T (r)

r
� 1

λ1(Ω)
. Recall that Corollary 4.1 implies that T (r)

r
� 1

c0(Ω\ω)
, where c0(Ω \ ω) is

the ergodic constant of the state constraint problem set in Ω \ω (i.e. (4.1) in Ω \ω). However when q = 2 c0 coincides
with the first eigenvalue, therefore in this case we obtain overall the following explicit estimate for the waiting time:

1

λ1(Ω \ ω)
� T (r)

r
� 1

λ1(Ω)
+ o(1) as r → ∞. � (5.7)

Let us conclude by discussing how the estimates of Theorem 1.1 can be extended to problem (4.7) for different
nonlinearities f . Reviewing our previous results, we already established in more generality the two estimates from
below (Theorems 4.2 and 5.1). In both cases, such estimates are proved assuming that f (t, x, ξ) � h(|ξ |) for some
h such that

∫ ∞ ds
h(s)

< ∞, with some technical additional condition which applies to a large class of examples. The
estimates from above require a bit more care since they depend on the large time behavior of solutions. As a model
case, we consider the example where the nonlinearity is independent of time, has at most quadratic growth and
behaves at least like |∇y|(log |∇y|)α when |∇y| → ∞, with α > 1. Namely, we consider problem (1.5) and we prove
Theorem 1.2. Let us remind that, if f is convex in the ξ -variable, problem (1.5) is well-posed in the class of bounded
weak solutions from Proposition 2.1. However, even when f is not convex, globally defined weak solutions are known
to exist because of the natural growth condition.

Proof of Theorem 1.2. Thanks to (1.6), f satisfies the assumptions of Theorem 4.2 with h(s) = s(ln(1 + s))α ,
α > 1. Then we conclude that there exists c0 > 0 such that T (r) � c0r for every r > 0. Using again (1.6) and the
local Lipschitz character of f with respect to ξ , we have that f (x, ξ) � |ξ |(ln(1 + |ξ |))α − L0|ξ | for some L0 > 0. In
particular, the assumption of Theorem 5.1 is satisfied (see also Remark 5.1). Then, we conclude that, for some κ > 0,
T (r) � κ(ln(1/r))−1 as r → 0.

By means of Remark 3.2, the null controllability holds for suitably small W 2,p initial data. Moreover, thanks to
(1.7)–(1.9), we can use Proposition A.1 and we deduce that there exist C,K,λ > 0 such that ‖y(t)‖∞ +‖∇y(t)‖∞ �
Ce−λt for all t � Kr and for all weak solutions of (1.5) with ‖y0‖∞ � r and v = 0 in (0, t). Henceforth, we can
proceed exactly as in Proposition 5.2, leaving first the system evolve freely. Estimate (5.6) now takes the form

∥∥y(t + s)
∥∥

W 2,p � C sup
τ∈[t,t+s]

(‖y(τ)‖∞
s2

+ ‖f (x,∇y)(τ )‖∞
s

)
.

From (A.20) we know that, if t � Kr and s � 1, then∣∣∇y(t + s)
∣∣2 � C

s
max

{‖y0‖2∞,‖y0‖∞
}
.

Choosing t = s = 1
2 rα , we get |∇y(rα)|2 � Cr1−α , and since f is locally Lipschitz we get

‖f (x,∇y)(τ )‖∞
s

� Cr
1−3α

2 .

We deduce, as in Proposition 5.2, that there exists α > 0 such that ‖u(rα)‖W 2,p is suitably small. Then, we conclude
in the same way that T (r) � K(ln(1/r))−1 when r → 0. Next, using the exponential decay for large time, we also
obtain T (r) � Λr when r → ∞. �
Remark 5.3. The case when f (x, ξ) has a superquadratic growth with respect to ξ is more delicate because of the
large time decay of solutions. For a superquadratic nonlinearity, it is necessary to prove first some gradient estimate
in order to handle the lower order term and show that solutions are meant in a strong sense. In Proposition A.1, we
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give estimates for this purpose, and we indicate in Remark A.1 how to use such estimates for the case of viscosity
solutions. The complete proof given for problem (1.1) when q > 2 should provide a significant example to handle this
approach in detail.

6. Further results, extensions and final comments

6.1. Controllability to trajectories

Let us consider a trajectory ŷ solution of⎧⎨
⎩

ŷt − �ŷ + |∇ŷ|q = 0 in (0, T ) × Ω,

ŷ = 0 on (0, T ) × ∂Ω,

ŷ(0) = ŷ0 in Ω,

(6.1)

where ŷ0 ∈ L∞(Ω). A natural question is whether the system (1.1) can be controlled in a way that y(T ) = ŷ(T ). With
the tools developed so far, we can give an answer to this question. For simplicity, we only deal here with the case
1 < q � 2 (see Remark 6.1 concerning the case q > 2).

Similarly as before, we say that (1.1) is controllable to the trajectory ŷ at time T if there exists a control v such
that y(T ) = ŷ(T ). Then we define

T (y0) = inf
{
t > 0: (1.1) is controllable to the trajectory ŷ at time t

}
and

T (r) = sup
{
T (y0), ‖y0 − ŷ0‖∞ � r

}
. (6.2)

We point out that the two trajectories ŷ and y, if left free of control, will both tend to zero, hence it is reasonable that
one can be driven onto the other at least in long time. The interesting part of the next result lies in the estimate of the
control time, depending on the distance between y0 and ŷ0 and not on the single independent decay of each solution.
In order to get such estimate, we will assume that ŷ0 is smooth, so that ŷ is a classical solution of (6.1) since t = 0. In
the general case, one can use that, even if ŷ0 ∈ L∞(Ω), the solution ŷ will become classical as soon as t > 0.

Theorem 6.1. Assume that ŷ0 ∈ C2
0(Ω). Then T (y0) is finite for every y0, and moreover estimates (1.3) and (1.4) hold

for the waiting time T (r) defined in (6.2).

Proof. Let us set z = y − ŷ. Then z solves⎧⎨
⎩

zt − �z + |∇z + ∇ŷ|q − |∇ŷ|q = vχω in (0, T ) × Ω,

z = 0 on (0, T ) × ∂Ω,

z(0) = y0 − ŷ0 in Ω,

(6.3)

and we need to find a control v such that z(T ) = 0. We set

f (t, x,∇z) = ∣∣∇z + ∇ŷ(t, x)
∣∣q − ∣∣∇ŷ(t, x)

∣∣q . (6.4)

First of all, we observe that f satisfies, for some constant cq > 0 and γ = γ (‖∇ŷ‖∞),

f (t, x,∇z) � cq |∇z|q − γ |∇z|.
Note that ‖∇ŷ‖∞ is estimated only in terms of ŷ0, and uniformly in time due to Lemma 3.2. Therefore, f satisfies the
assumptions of Theorem 4.2 and of Theorem 5.1. Applying these results to z, we deduce the lower bounds for (6.2).

The upper bounds for the waiting time depend on the decay estimates. Let us suppose now that v = 0. Note that
the function f satisfies, for some positive constants β , δ:∣∣f (t, x,∇z)

∣∣ � β|∇z| + δ|∇z|q .

As a consequence of Step 1 of Proposition A.1 and the comparison principle, we deduce that there exist K , λ, C > 0
such that if t � K‖y0 − ŷ0‖∞, then we have∥∥z(t)

∥∥ � Ce−λt .
∞
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We reason now like in Step 2 of Lemma 3.2. We set w = (t − t0)
2
q |∇z|2

z+c
, with c = 2‖z0‖∞, where z0 = y0 − ŷ0. We

obtain

wt − �w � 2

q

w

t − t0
− ∇w · Dξf + 2

∇w · ∇z

(z + c)
+ (t − t0)

2
q

[
(f − Dξf · ∇z)

|∇z|2
(z + c)2

− 2
Dxf · ∇z

z + c

]

where f is computed at (t, x,∇z). Since f −Dξf ·ξ � − q−1
2 |ξ |q +cq |∇ŷ|q � − q−1

2 |ξ |q +γ and, similarly, |Dxf | �
cq |ξ |q−1 + γ , we have[

(f − Dξf · ∇z)
|∇z|2

(z + c)2
− 2

Dxf · ∇z

z + c

]
� −q − 1

2

|∇z|2
(z + c)2

(|∇z|q − γ
) + γ

|∇z|q + |∇z|
z + c

where we denote with γ possibly different constants depending on q and ‖∇ŷ‖∞. Now, assume that supw >

L‖z0‖
2
q
−1

∞ + M
1+‖z0‖∞
‖z0‖∞ (t − t0)

2
q for some large L, M . Then, on the maximum point, we have

|∇z|2 � M
(
1 + ‖z0‖∞

) + L

(‖z0‖∞
t − t0

) 2
q

(6.5)

and in particular, if M > 1, |∇z|2 � 1 + M
3 (z + c). Hence we have |∇z|q+|∇z|

z+c
� 2 |∇z|q

z+c
� 6

M
|∇z|q+2

(z+c)2 and, if M is large,
we have

−q − 1

2

|∇z|2
(z + c)2

(|∇z|q − γ
) + γ

|∇z|q + |∇z|
z + c

� −q − 1

4

|∇z|2+q

(z + c)2

so that

wt − �w + ∇w · Dξf − 2
∇w · ∇z

(z + c)
� 2

q

w

t − t0
− (q − 1)

4
(t − t0)

2
q
|∇z|2+q

(z + c)2
< 0

if the constant L in (6.5) is large enough. We deduce that such a maximum point cannot be in the interior, and, on
account of the boundary estimate, which is as in Lemma 3.2, we conclude that

w � L‖z0‖
2
q
−1

∞ + M
1 + ‖z0‖∞

‖z0‖∞
(t − t0)

2
q

which implies

|∇z|2 � 3L

(‖z0‖∞
t − t0

) 2
q + 3M

(
1 + ‖z0‖∞

)
. (6.6)

In particular, for every t0 � K‖z0‖∞ and every t � t0 + K‖z0‖∞, ∇z(t) is bounded and |∇z(t)|2 � M̃(1 + ‖z0‖∞).
Let us now suppose that ‖z0‖∞ = ‖y0 − ŷ0‖∞ � r , with r → 0. Then we proved that |∇z(t)| is bounded for

t � kr . The nonlinearity f (t, x,∇z) in (6.4) clearly satisfies (A.10) and (A.11) and, since ∇z is in a bounded set, then
(A.12) is also satisfied with θ = q − 1, and using that ŷ is C2. We can now apply the estimates of Proposition A.1; in
particular (A.21) implies that∣∣∇z(t + s)

∣∣2 � C0(γ s)
2

1−θ + C1

s

[‖z0‖2∞ + (1 + s)‖z0‖∞
]

for every t � kr . Taking t = s = 1
2 rα , using that ‖z0‖∞ � r and θ > 0, we can find some small α > 0 such that

|∇z(rα)| = o(rα) as r → 0. Then, as in the proof of Theorem 1.2, we deduce that ‖z(rα)‖W 2,p(Ω) = o(1) as r → 0,
which is enough to prove the controllability of (6.3) for T � C(ln(1/r))−1. We just point out that, since the W 2,p-
estimate also depends on the estimate on zt , in this case such estimate also relies on ft (t, x,∇z). However, using
that |ft (t, x,∇z)| � γ |∇z|q−1 (for some γ depending on ‖ŷt‖∞ and ‖∇ŷ‖∞), this term is estimated again with the
gradient bound.

Finally, if ‖y0 − ŷ0‖∞ � r , with r → ∞, we proceed similarly. Taking t � kr we have ‖z(t)‖∞ � Ce−λt , then
rescaling (6.6) to estimate ∇z(t) and using that the system can be controlled in small time, we conclude in the usual
way. �
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Remark 6.1. In the case q > 2, we can show that the exact controllability to trajectories holds at least in long time. In
fact, we know from Lemma 3.2 that the trajectory ŷ will eventually become smooth, and then we can reason as above
to deduce that T (y0) is finite for every y0 ∈ C0(Ω). On the other hand, in this way the control time will depend on
‖ŷ0‖∞ (because of the time needed to ŷ to become smooth), and it is less clear that one gets the estimates on T (r) as
in Theorem 6.1.

6.2. Approximate controllability

We just make a remark on the question of approximate controllability for the system (1.1), namely whether, given
some target function yd and ε > 0, it is possible to control the system (1.1) so that ‖y(T )−yd‖X � ε for some suitable
space X. A natural choice, for this kind of models, should be X = C0(Ω); even if we choose a larger space X (hence
a smaller norm), this problem is more delicate than controlling to trajectories. Of course, by density one can reason
assuming yd to be smooth. Even in this case, the results of Section 4 imply that the approximate controllability cannot
hold arbitrarily. Indeed, the comparison results of Theorem 4.1 or Theorem 4.2 give suitable estimates on the solution
y in Ω \ ω which allow to estimate ‖y(t) − yd‖L∞(Ω\ω) (as well as any other local norm) and to exclude that the
approximate controllability can hold in that case. Giving a more detailed picture of the approximate controllability
would anyway be an interesting fact.

6.3. Further comments and possible open problems

1. The case that ω = Ω has been excluded by our analysis, since in this case the nonlinear effect can be removed. In
fact, if ω = Ω , we can replace v with f (t, x,∇y)+ ṽ, reducing the problem to the controllability of the heat equation
through some control ṽ.

2. The estimate (5.7) in Remark 5.2 shows the precise role of the geometry of ω in the waiting time for large data.
It seems possible that a similar estimate could hold if q �= 2 with the ergodic constant c0 in place of λ1, namely that

1

c0(Ω \ ω)
� T (r)

r
� 1

c0(Ω)
+ o(1) as r → ∞,

where c0 is the ergodic constant introduced in Section 3. Note that the estimate from below is already established in
Corollary 4.1. Let us recall that if q = 2 we have c0 = λ1.

3. Our results do also apply for general second order parabolic equations provided enough regularity is imposed
to have Carleman inequalities. In particular, we can replace the Laplace operator with a linear second order operator
with Lipschitz coefficients.

4. As we mentioned at the beginning, the sign of the nonlinearity |∇y|q is not essential in our analysis, since one
can change y into −y in Eq. (1.1).

However, the necessity of the waiting time was proved, in Section 3, for data with suitable sign (see also Re-
mark 4.8). Referring to (1.1), where the nonlinearity has positive sign, we showed necessity of waiting time for
nonpositive data. It would be interesting to show the necessity of waiting time for positive data too. A similar feature
can be found in the case of dissipative semilinear equations, see [1]. In general, one should note that the sign of the
nonlinearity plays a role in the construction of universal positive or negative barriers.

Moreover, the coercivity and convexity of the Hamiltonian play somehow a role in the large time behavior of
solutions of the uncontrolled system. Therefore, a more difficult analysis would concern the case of a nonlinearity
changing sign (or convexity) as time–space vary.

Appendix A. The decay estimates

In this section we prove some estimates on the decay of the solutions of the uncontrolled system. We start by
proving Lemma 3.2.

Proof of Lemma 3.2. Step 1. There exists a constant K = K(q,Ω) such that ‖∇u(t)‖L∞(∂Ω) � c1
‖u0‖∞

t
for any

t � K‖u0‖∞, where c1 only depends on Ω .
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To prove this claim, take ζ ∈ H 1
0 (Ω): �ζ = −1 and consider v = −μζ + μ

2 (t − T ). Then v ∈ C2(Ω) and satisfies

vt − �v + |∇v|q = −μ

2
+ μq |∇ζ |q in (0, T ) × Ω.

Choose μ = 2‖u0‖∞
T

, then we have

v(0) = −μζ − ‖u0‖∞ � u0, v|∂Ω×(0,T )
� 0,

and v is a sub-solution provided μq−1‖∇ζ‖q∞ � 1
2 . By comparison principle, we deduce that u(x, t) � v(x, t), and in

particular

u(x,T ) � v(x,T ) = −2‖u0‖∞
T

ζ

provided ‖u0‖∞(2‖∇ζ‖∞)q
′ � T . On the other hand we have u � U where Ut − �U = 0 with U(0) = u0. This

means that

−2‖u0‖∞
T

ζ(x) � u(x,T ) � U(x,T ) ∀T � ‖u0‖∞
(
2‖∇ζ‖∞

)q ′
. (A.1)

In particular, if u ∈ C1
0(Ω) we deduce that

∣∣∇u(T )
∣∣ =

∣∣∣∣∂u(T )

∂ν

∣∣∣∣ � 2‖u0‖∞
T

|∇ζ | + ∣∣∇U(T )
∣∣ on ∂Ω.

Since, by classical estimates on the heat equation (see e.g. [21]), we have∣∣∇U(t)
∣∣ � C

(
1 + t−

1
2
)
e−λ1t‖u0‖∞ ∀t > 0

and since ζ is smooth, we deduce that

∣∣∇u(x,T )
∣∣ � c̃1

T
‖u0‖∞ ∀x ∈ ∂Ω, ∀T �

(
2‖∇ζ‖∞

)q ′ ‖u0‖∞

and the claim is proved with K = (2‖∇ζ‖∞)q
′
. A minor point is only left in the case q > 2, since a priori we could

not use the C1 regularity of the solution u; however we will recover it with an approximation argument, detailed later.

Step 2. Let t0 � K‖u0‖∞, where K is given by Step 1. We prove that

∣∣∇u(t)
∣∣ � c2

(‖u0‖∞
t − t0

) 1
q ∀t > t0 (A.2)

for some constant c2 only depending on q , Ω .

Here we proceed using a typical Bernstein’s type argument (see e.g. [19] in a similar context). Assume for the
moment that solutions are classical for t > t0 (which is certainly true if q � 2, but not obvious if q > 2). Set

w = (t − t0)
2
q

|∇u|2
(u + c)

where c = 2‖u0‖∞. Recall that, by maximum principle, we have ‖u‖∞ � ‖u0‖∞, hence the choice of c implies

1

3

1

‖u0‖∞
� 1

u + c
� 1

‖u0‖∞
. (A.3)

First of all observe that, since t � t0 � K‖u0‖∞, if x ∈ ∂Ω we have, by Step 1, and using that q > 1,

w � (t − t0)
2
q
(

c1
‖u0‖∞

)2

� 1
c2

1t
2
q
−2‖u0‖∞ � 1

c2
1K

2
q
−2‖u0‖

2
q
−1

∞ . (A.4)

2‖u0‖∞ t 2 2
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Now we compute

wt = 2

q
(t − t0)

2
q
−1 |∇u|2

(u + c)
− (t − t0)

2
q

|∇u|2
(u + c)2

ut + (t − t0)
2
q 2

∇u · ∇ut

(u + c)

and

�w � (t − t0)
2
q

[
2
∇(�u) · ∇u

(u + c)
− 2

∇(|∇u|2) · ∇u

(u + c)2
− |∇u|2

(u + c)2
�u + 2

|∇u|4
(u + c)3

]
hence using the equation of u

wt − �w � 2

q
(t − t0)

2
q
−1 |∇u|2

(u + c)

− (t − t0)
2
q

[
q

∇(|∇u|2) · ∇u

(u + c)
|∇u|q−2 − 2

∇(|∇u|2) · ∇u

(u + c)2
− |∇u|2+q

(u + c)2
+ 2

|∇u|4
(u + c)3

]
which implies

wt − �w � 2

q
(t − t0)

2
q
−1 |∇u|2

(u + c)

− q∇w · ∇u|∇u|q−2 + 2
∇w · ∇u

(u + c)
− (t − t0)

2
q (q − 1)

|∇u|2+q

(u + c)2
.

Therefore we get

wt − �w � −q∇w · ∇u|∇u|q−2 + 2
∇w · ∇u

(u + c)
− w

[
(q − 1)

|∇u|q
u + c

− 2

q

1

t − t0

]
. (A.5)

Now, assume that supw > L‖u0‖
2
q
−1

∞ , where L > 1
2c2

1K
2
q
−2; by (A.4) this means that the maximum of w is attained

inside Ω on some point where we have (t − t0)
2
q |∇u|2

u+c
> L‖u0‖

2
q
−1

∞ . Hence, at this point we have

wt − �w � −w

[
(q − 1)

|∇u|q
u + c

− 2

q

1

t − t0

]

< − w

t − t0

[
(q − 1)L

q
2

(‖u0‖∞
u + c

)1− q
2 − 2

q

]
.

Thanks to (A.3), if L is sufficiently large (only depending on q) we have wt − �w < 0 which is impossible on an

interior maximum point. This means that w � L‖u0‖
2
q
−1

∞ , which gives

|∇u|2 � L‖u0‖
2
q
−1

∞
(u + 2‖u0‖∞)

(t − t0)
2
q

� 3L
‖u0‖

2
q∞

(t − t0)
2
q

hence (A.2).
Now, if 1 < q � 2 the above computation is justified since the unique solution is smooth for any t > 0.
If q > 2, we proceed in the following way: we start by solving an approximating problem⎧⎨

⎩
(un)t − �un + Hn(∇un) = 0 in Ω × (0,∞),

un = 0 on ∂Ω × (0,∞),

un(0) = u0 in Ω

(A.6)

where Hn(ξ) = |ξ |2ψn(|ξ |q−2), being ψn some bounded increasing smooth function such that ψn(s) � s and
ψn(s) → s as s → ∞. Since Hn has quadratic growth, problem (A.6) admits a unique classical solution un which is
globally defined. Since 0 � Hn(∇un) � |∇un|q , the estimate obtained in the first step (see (A.1)) remains valid for un

and in particular the claim of Step 1 holds true. Next we use Bernstein’s argument for the function wn = (t − t0)
|∇un|2 ;

un+c
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this argument works similarly as before using that Hn(ξ) − DξHn · ξ � −|ξ |2ψn(|ξ |q−2). In this way3 one obtains
that un(t) is bounded in W 1,∞(Ω) if t > t0. Since Hn(∇un) is bounded, using classical estimates for the heat equation
we deduce that un is bounded in Lp((t, T );W 2,p(Ω)) for every p < ∞ and t0 < t < T , and all the stronger estimates
of the classical theory hold. In particular, un(t) is relatively compact in C1

0(Ω) for every t > t0. On the other hand,
by stability results of the viscosity solutions theory, namely the half-relaxed limits method (see e.g. [8] and references
therein), it can be proved that un converges (locally uniformly in (0, T ) × Ω) to the unique generalized viscosity
solution u of (3.6). We deduce that u(t) ∈ C1

0(Ω) for t > t0, so u is actually a classical solution for t > t0 and the
above computations are justified even if q > 2. In particular, u satisfies estimates (A.1) and (A.2) in a classical sense.

Step 3. By Step 2, we have, for any t > t0 � K‖u0‖∞,

0 = ut − �u + |∇u|q � ut − �u + |∇u|
(

c
q

2
‖u0‖∞
(t − t0)

) 1
q′

.

Take now any λ < λ1, where λ1 is the first eigenvalue of the Laplacian in Ω with Dirichlet boundary conditions. There
exists a (unique) positive ψ ∈ H 1

0 (Ω) such that

−�ψ = λψ + 1 in Ω.

We set v = −Λψe−λ(t−t1), where t1 = K̂‖u0‖∞ and Λ = 2
K̂

, with K̂ > K to be chosen below. First observe that,
using (A.1) from Step 1, we have

−u(t1)

ψ
� 2‖u0‖∞

t1

ζ

ψ

and since ψ � ζ we have, by the choice of t1 and Λ,

−u(t1)

ψ
� 2

K̂
= Λ

hence v(t1) = −Λψ � u(t1). Next, we have

vt − �v + |∇v|
(

c
q

2
‖u0‖∞
(t − t0)

) 1
q′

= −Λe−λ(t−t1)

[
−λψ − �ψ − |∇ψ |

(
c
q

2
‖u0‖∞
(t − t0)

) 1
q′ ]

hence, choosing t large such that |∇ψ |(cq

2
‖u0‖∞
(t−t0)

)
1
q′ � 1, we have that v is a sub-solution, and by comparison we

deduce that u(t) � −Λψe−λ(t−t1) for t > t1. This choice means that

|∇ψ |q ′
c
q

2‖u0‖∞ � (t − t0)

which holds for t � t1 = K̂‖u0‖∞ if e.g. we take t0 = K‖u0‖∞ and K̂ = K + c
q

2‖∇ψ‖q ′
∞. Therefore we proved that,

for this choice of K̂ , Λ (only depending on Ω,q,λ) we have

u(t) � −Ce−λ(t−t1) ∀t � t1 = K̂‖u0‖∞
where C = C(q,Ω,λ) > 0. In particular, we have

u(t) � −Ce− λ
2 t ∀t � 2K̂‖u0‖∞.

On the other hand we have, by comparison with the heat potential,

u(t) � C̃e−λ1t‖u0‖∞ � C̃
t

2K̂
e−λ1t ∀t � 2K̂‖u0‖∞

where C̃ only depends on Ω . Then we globally obtain the desired estimate on ‖u(t)‖∞. Since (A.2) implies

3 An alternative way is to prove estimate (A.8), as we do later, only using that Hn(ξ) − Dξ Hn · ξ � 0.
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∣∣∇u(t + s)
∣∣ � c2

( ‖u(s)‖∞
t − K‖u(s)‖∞

) 1
q ∀s > 0, t > K

∥∥u(s)
∥∥∞,

if t � 2K‖u0‖∞ then we also have t � 2K‖u(t)‖∞ and we can choose s = t obtaining

∣∣∇u(2t)
∣∣ � c2

(
2‖u(t)‖∞

t

) 1
q ∀t > 2K‖u0‖∞.

The estimate on u(t) then implies the exponential decay for ‖∇u(t)‖∞ as well. �
As a matter of fact, we obtained a stronger result in the above proof because, in Step 3, any λ < λ1 was admitted,

up to choosing the constant K̂ accordingly. Following this remark, we can prove the sharp asymptotic rate, which is
the same as for the heat equation. In this way we provide a new proof, with a different approach, of the following
result of [6]. More precisely, in the case q > 2, we extend their result by considering any u0 ∈ C0(Ω), with no sign or
smallness condition required.

Theorem A.1. Let q > 1, and let u0 ∈ C0(Ω). There exists a positive constant K such that the solution u of (3.6)
satisfies∥∥u(t)

∥∥∞ + √
t
∥∥∇u(t)

∥∥∞ � Ke−λ1t as t → ∞, (A.7)

where K = C(q,Ω,u0).

Proof. We proved above (see Step 3) that for any λ < λ1 there exist constants κ1, κ2, depending on Ω , λ, q such that∥∥u(t)
∥∥∞ � κ1e

−λt ∀t � κ2‖u0‖∞.

We refine now Bernstein’s estimate on ∇u, by proving that∣∣∇u(t)
∣∣ � c2

‖u0‖∞√
t − t0

∀t > t0, (A.8)

where t0 � K‖u0‖∞, K is given by Step 1 of the previous proof. Set

w = (t − t0)|∇u|2 + (
u − ‖u0‖∞

)2
.

First of all, since t � t0, we note that, by Step 1, if x ∈ ∂Ω we have

w � c2
1
t − t0

t2
‖u0‖2∞ + ‖u0‖2∞ � ‖u0‖2∞

(
c2

1

t0
+ 1

)
. (A.9)

Now we compute

wt = |∇u|2 + 2(t − t0)∇u∇ut + 2
(
u − ‖u0‖∞

)
ut

and

�w � 2(t − t0)∇u∇(�u) + 2
(
u − ‖u0‖∞

)
�u + 2|∇u|2

hence using the equation of u

wt − �w � −|∇u|2 − 2
(
u − ‖u0‖∞

)|∇u|q − 2(t − t0)∇u∇(|∇u|q)
= −|∇u|2 + 2(q − 1)

(
u − ‖u0‖∞

)|∇u|q − q|∇u|q−2∇u∇w

which implies, since u � ‖u0‖∞,

wt − �w + q|∇u|q−2∇u∇w � 0.

Applying the maximum principle and using (A.9) we deduce

w �
∥∥w(t0)

∥∥∞ + max w � ‖u0‖2∞
(

c2
1 + 5

)

∂Ω×(t0,T ) t0
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which implies (A.8) with c2 =
√

c2
1

t0
+ 5. Thanks to (A.8), if s is large enough we have |∇u(s + 1)| � c‖u(s)‖∞ and

so we deduce that, for any λ < λ1,∥∥∇u(t)
∥∥∞ � κ1e

−λt ∀t � κ2‖u0‖∞
for possibly different constants κ1, κ2 depending on λ. Since q > 1, now we fix λ < λ1 such that λq > λ1; then
|∇u(t)|q � C(e−μt ) as t → ∞ for some μ > λ1. Since ut − �u = −|∇u|q , by the classical representation of the heat
semigroup we deduce that u satisfies the same asymptotic estimates of the linear case. �

We conclude this appendix by showing how the method used provides an exponential decay for possibly different
nonlinearities.

Proposition A.1. Assume that f : R × Ω × R
N → R is a C1 function such that f (t, x,0) = 0, |Dξf (t, x, ξ)| is

bounded (uniformly in R × Ω) when ξ is in a compact set, and

∃σ > 0, q > 1: ∣∣f (t, x, ξ)
∣∣ � σ

(
1 + |ξ |q)

, (A.10)

∃δ � 0: f (t, x, ξ) − Dξf (t, x, ξ) · ξ � δ, (A.11)

∃γ � 0, θ ∈ (0,1]: ∣∣Dxf (t, x, ξ)
∣∣ � γ |ξ |θ , (A.12)

for every (t, x) ∈ R × Ω , ξ ∈ R
N .

Assume that u0 ∈ L∞(Ω) and u is a weak solution if q � 2 (respectively, u0 ∈ C1
0(Ω) and u is a strong solution if

q > 2) of⎧⎨
⎩

ut − �u + f (t, x,∇u) = 0 in (0,∞) × Ω,

u = 0 on (0,∞) × ∂Ω,

u(0) = u0 in Ω.

(A.13)

There exist positive constants C, K and λ, only depending on f and Ω , such that, for every t � K‖u0‖∞,∥∥u(t)
∥∥∞ + ∥∥∇u(t)

∥∥∞ � Ce−λt . (A.14)

The dependence of C, K , λ on f is through the constants σ , q , δ, γ , θ and sup{|Dξf (t, x, ξ)|, (t, x) ∈ R × Ω, |ξ | ∈
[0,1]}.

Remark A.1. In the superquadratic case, the statement can be used as an a priori estimate, and, whenever a strong
comparison result holds for generalized viscosity solutions of (A.13), then the estimate will hold for the unique
such solution. In fact, for any f satisfying (A.10)–(A.12), it is possible to construct an approximation fn which is
subquadratic and preserves the same assumptions with uniform constants. All weak solutions un corresponding to fn

will satisfy estimate (A.14) (uniform in n) and so is the case for any possible limit u. In particular, if (A.13) possesses a
unique generalized viscosity solution, then this solution is Lipschitz continuous for t > K‖u0‖∞ and satisfies (A.14).

In order to construct such an approximation, let us suppose that f � 0 (otherwise replace f with f + σ(1 + |ξ |q))

and take ϕ(s) = (1 + s2+)
1
2 − 1. Then ϕ ∈ C1(R), ϕ(s) ≡ 0 if s � 0 and ϕ(s) � s − 1; the function fn(t, x, ξ) =

f (t, x, ξ) − ϕ(f (t, x, ξ) − n|ξ |2) converges to f pointwise and satisfies all the required properties.

Proof. Step 1. The conclusion of Lemma 3.2 holds true for the model problem

vt − �v + a|∇v| + b|∇v|q = 0 in Ω × (0,∞), (A.15)

where a, b > 0, complemented with initial and Dirichlet boundary conditions.

We point out the only changes needed in the proof. The conclusion of Step 1 of Lemma 3.2 is obtained in the same
way except for using now the function ζ ∈ H 1

0 (Ω) ∩ L∞(Ω) which solves −�ζ = a|∇ζ | + 1 in Ω . For any a > 0,
such a function ζ exists and is unique, and satisfies ζ ∈ C1

0(Ω). Then, we have the pointwise estimate (A.1) which
yields the boundary gradient estimate. Step 2 of Lemma 3.2 is applied to the function v without significant changes.
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It is enough to remark that we derive the equation in a neighborhood of the maximum point of w = (t − t0)
2
q |∇v|2

(v+c)
,

hence |∇v| �= 0 and the term a|∇v| can be differentiated. The estimate (A.2) follows. Finally, we proceed as in Step 3
by choosing now ψ such that

−�ψ − a|∇ψ | = λψ + 1,

for some λ > 0. This is possible for some λ > 0 since the operator −�(·) − a|∇(·)| satisfies the maximum principle,
hence its first eigenvalue is positive. Therefore, we conclude that, for every a, b > 0, there exists some λ > 0 such that∣∣v(t)

∣∣ � Ce−λt ∀t � K‖u0‖∞
for any solution of the Cauchy–Dirichlet problem related to (A.15), where C, K λ only depend on q , a, b, Ω .

Step 2. Let us consider a general function f . Using (A.10) and the fact that f (t, x,0) = 0, we have |f (t, x, ξ)| �
a|ξ | + b|ξ |q for every ξ ∈ RN , for some constants a, b > 0, where a depends on sup{|Dξf (t, x, ξ)|, (t, x) ∈ R ×
Ω, |ξ | ∈ [0,1]}. Therefore, any solution of (A.13) is such that both u and −u are super-solutions of (A.15). Applying
the comparison principle, we have ±u � v, hence we deduce that u satisfies |u(x,T )| � 2‖u0‖∞

T
ζ(x) and we conclude

as in Step 1 of Lemma 3.2 that

∥∥∇u(t)
∥∥

L∞(∂Ω)
� c1

‖u0‖∞
t

∀t � K‖u0‖∞ (A.16)

where c1, K only depend on a, b, q , Ω .
Still using the comparison principle, and the exponential decay proved for (A.15), we have that there exists λ > 0

such that∥∥u(t)
∥∥∞ � Ce−λt ∀t � K‖u0‖∞. (A.17)

We are only left with the gradient estimate. To this purpose, we proceed as in Theorem A.1 applying Bernstein’s
argument to the function

w = (t − t0)|∇u|2 + μ
(
u − ‖u0‖∞

)2
,

with μ > 0 to be fixed. Note that (A.16) implies, for every t > t0 � K‖u0‖∞:

w � ‖u0‖2∞
(

c2
1

t0
+ μ

)
�

c2
1

K
‖u0‖∞ + μ‖u0‖2∞ ∀x ∈ ∂Ω. (A.18)

We consider the equation of w for t ∈ (t0, t0 + s). Using (A.13), we obtain now (we avoid to write the argument of f ,
which is (t, x,∇u))

wt − �w � (1 − 2μ)|∇u|2 − Dξf · ∇w − 2μ
(
u − ‖u0‖∞

)
(f − Dξf · ∇u) − 2(t − t0)∇u · Dxf

which yields, using (A.11) and (A.12),

wt − �w + Dξf · ∇w � (1 − 2μ)|∇u|2 + 4μδ‖u0‖∞ + 2γ (t − t0)|∇u|1+θ .

Since t � t0 + s, we have w � s|∇u|2 + 4μ‖u0‖2∞, hence we get

wt − �w + Dξf · ∇w + (2μ − 1)

s
w � 4μ(2μ − 1)

s
‖u0‖2∞ + 4μδ‖u0‖∞ + 2γ (t − t0)|∇u|1+θ , (A.19)

provided 2μ − 1 > 0. If θ = 1, last term is smaller than 2γw; we take μ = 1 + γ s and we deduce that w � 4μ(2μ −
1)‖u0‖2∞ + 4μδs‖u0‖∞ on any internal maximum point. On account of (A.18), the value at t = t0 and the choice
of μ, we conclude that

w � C(1 + γ s)2[‖u0‖2∞ + ‖u0‖∞
] ∀t ∈ [t0, t0 + s].

Since w � (t − t0)|∇u|2, when t = t0 + s we deduce∣∣∇u(t0 + s)
∣∣2 � C

(1 + γ s)2[‖u0‖2∞ + ‖u0‖∞
]
, (A.20)
s
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for every t0 � K‖u0‖∞. Rescaling the estimate for u(t + ·) we deduce that

∣∣∇u(t + t0 + s)
∣∣2 � C

s
(1 + γ s)2[∥∥u(t)

∥∥2
∞ + ∥∥u(t)

∥∥∞
]
,

for every t0 � K‖u(t)‖∞. In particular, if t > K‖u0‖∞, then t � K‖u(t)‖∞; taking t0 = t = s and using (A.17) we
deduce the exponential decay for |∇u|.

If θ < 1 in (A.12), we take μ = 1 and we deduce from (A.19) that

w � C
[
s(γ s)

2
1−θ + ‖u0‖2∞ + (1 + s)‖u0‖∞

] ∀t ∈ [t0, t0 + s],
which yields

∣∣∇u(t0 + s)
∣∣2 � C0(γ s)

2
1−θ + C1

s

[‖u0‖2∞ + (1 + s)‖u0‖∞
]
. (A.21)

Now, let t � 2K‖u0‖∞. We have

∣∣∇u(t + t0 + s)
∣∣2 � C0(γ s)

2
1−θ + C1

s

[∥∥u(t)
∥∥2

∞ + (1 + s)
∥∥u(t)

∥∥∞
]

for every t0 � K‖u(t)‖∞. Now, if t � KCe−λt + e− λ
2 t , then we are allowed to take t0 = t − e− λ

2 t (since t0 �
K‖u(t)‖∞) and s = e− λ

2 t , and we get∣∣∇u(2t)
∣∣2 � C̃0e

−λ̃t , (A.22)

for some λ̃ > 0. On the other hand, if t � KCe−λt + e− λ
2 t , this means that t as well as ‖u0‖∞ are bounded; using

(A.21) with t0 = K‖u0‖∞ and s = t − t0, and using that t − t0 � K‖u0‖∞, we obtain (A.22) again. In any case, we
have proved (A.14) for (possibly different) constants C, λ, K , only depending on f , Ω . �
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