Point-condensation phenomena and saturation effect for the one-dimensional Gierer-Meinhardt system

Kotaro Morimoto ${ }^{1}$
Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan Received 1 October 2009; received in revised form 11 December 2009; accepted 11 December 2009

Available online 7 January 2010

Abstract

In this paper, we are concerned with peak solutions to the following one-dimensional Gierer-Meinhardt system with saturation: $$
\begin{cases}0=\varepsilon^{2} A^{\prime \prime}-A+\frac{A^{2}}{H\left(1+\kappa A^{2}\right)}+\sigma, & A>0, x \in(-1,1) \\ 0=D H^{\prime \prime}-H+A^{2}, & H>0, x \in(-1,1) \\ A^{\prime}(\pm 1)=H^{\prime}(\pm 1)=0, & \end{cases}
$$ where $\varepsilon, D>0, \kappa \geqslant 0, \sigma \geqslant 0$. The saturation effect of the activator is given by the parameter κ. We will give a sufficient condition of κ for which point-condensation phenomena emerge. More precisely, for fixed $D>0$, we will show that the Gierer-Meinhardt system admits a peak solution when ε is sufficiently small under the assumption: κ depends on ε, namely, $\kappa=\kappa(\varepsilon)$, and there exists a limit $\lim _{\varepsilon \rightarrow 0} \kappa \varepsilon^{-2}=\kappa_{0}$ for certain $\kappa_{0} \in[0, \infty)$. © 2010 Elsevier Masson SAS. All rights reserved.

MSC: 35K57; 35Q80; 92C15
Keywords: Gierer-Meinhardt system; Saturation effect; Pattern formation; Nonlinear elliptic system

1. Introduction

In this paper, we are concerned with the following system of ordinary differential equations:

$$
\begin{cases}0=\varepsilon^{2} A^{\prime \prime}-A+\frac{A^{2}}{H\left(1+\kappa A^{2}\right)}+\sigma, & A>0, x \in(-1,1), \tag{1}\\ 0=D H^{\prime \prime}-H+A^{2}, & H>0, x \in(-1,1), \\ A^{\prime}(\pm 1)=H^{\prime}(\pm 1)=0, & \end{cases}
$$

[^0]where unknowns are $A=A(x)$ and $H=H(x) . \varepsilon>0, D>0, \kappa \geqslant 0$ and $\sigma \geqslant 0$ are constants. This system arises as a steady-state problem of the 1 -dimensional Gierer-Meinhardt system with saturation which was proposed by A. Gierer and H . Meinhardt [4]. The general Gierer-Meinhardt system is written by
\[

$$
\begin{cases}A_{t}=\varepsilon^{2} \Delta A-A+\frac{A^{p}}{H^{q}\left(1+\kappa A^{p}\right)}+\sigma, & A>0, x \in \Omega, t>0 \tag{2}\\ \tau H_{t}=D \Delta H-H+\frac{A^{r}}{H^{s}}, & H>0, x \in \Omega, t>0 \\ \frac{\partial A}{\partial v}=\frac{\partial H}{\partial v}=0, & x \in \partial \Omega, t>0, \\ A(x, 0)=A_{0}(x), \quad H(x, 0)=H_{0}(x), & x \in \Omega,\end{cases}
$$
\]

where $A=A(x, t)$ and $H=H(x, t), \tau>0, \Delta$ is the Laplace operator in \mathbb{R}^{N}, Ω is a bounded smooth domain in \mathbb{R}^{N}, v is the unit outer normal to $\partial \Omega$. The exponents satisfy the conditions $p>1, q, r>0, s \geqslant 0$, and $0<(p-1) / q<$ $r /(s+1)$. The unknowns $A(x, t)$ and $H(x, t)$ represent the concentrations of an activator and an inhibitor, respectively, at $x \in \Omega$ and time $t>0 . A_{0}$ and H_{0} are their initial data. One of the parameters of (2), κ stands for the degree of a saturation effect to the reaction term of the activator. The term $\sigma \geqslant 0$ is the source term. σ represent the source rate of the activator. This system expresses some models of biological pattern formation. It is known that (2) has various kinds of striking solutions when ε is small and D is large. In particular, we are mainly interested in a solution such that the activator A is concentrated at a finite number of points in $\bar{\Omega}$. Such a solution is called a "peak solution". Peak solutions represent point-condensation phenomena of the activator. When $\kappa=0$ (no saturation case), a lot of methods to construct peak solutions were established by many mathematicians. However, when $\kappa>0$, it is not trivial whether a peak solution also exists or not. When $\kappa>0$ is fixed independently of ε, due to the bistable nonlinearity, solutions with transition layers may exist. Indeed, M. del Pino [3] showed the existence of solutions with multiple layers when the domain Ω is a ball. See also $[1,16,7]$.

We introduce the shadow system of (2). Dividing the second equation in (2) by D and taking the limit $D \rightarrow \infty$ formally, we have $\Delta H=0$ in Ω and $\frac{\partial H}{\partial v}=0$ on $\partial \Omega$. This means that $H(x, t)$ does not depend on x, and hence we can regard $H(x, t)=\xi(t)$. Thus we have the following system which is called the shadow system of (2):

$$
\begin{cases}A_{t}=\varepsilon^{2} \Delta A-A+\frac{A^{p}}{\xi^{q}\left(1+\kappa A^{p}\right)}+\sigma, & A>0, x \in \Omega, t>0 \tag{3}\\ \tau \xi_{t}=\frac{1}{|\Omega|} \int_{\Omega}\left(-\xi+\frac{A^{r}}{\xi^{s}}\right) d x, & \xi>0, t>0 \\ \frac{\partial A}{\partial v}=0, & x \in \partial \Omega, t>0, \\ A(x, 0)=A_{0}(x), \quad \xi(0)=\xi_{0}, & x \in \Omega .\end{cases}
$$

For this shadow system, in the case (p, q, r, s) $=(2,1,2,0), \sigma=0, \kappa>0$, J. Wei and M. Winter [22] showed that the shadow system (3) admits a stationary solution concentrating at one point of the boundary for sufficiently small ε, and the stability was studied. In [8], multi-boundary peak stationary solutions to (3) has been constructed for sufficiently small ε in the case where $\Omega \subset \mathbb{R}^{N}$ is axially symmetric with respect to x_{N}-axis, $(p, q, r, s)=(2,1,2,0), \sigma=0$, $\kappa>0, N \leqslant 5$. Moreover, multi-boundary peak stationary solutions to the original Gierer-Meinhardt system (2) was constructed near the solution to the shadow system (3) for sufficiently large D by using the implicit function theorem. The result was extended to the case $\sigma>0$ in [10]. In [22,8,10], it was supposed that $\kappa \geqslant 0$ depends on ε, namely $\kappa=\kappa(\varepsilon)$, and there exists a limit $\kappa \varepsilon^{-2 N} \rightarrow \kappa_{0} \in[0, \infty)$ as $\varepsilon \rightarrow 0$ for certain κ_{0}. This condition is called a "weak saturation" condition. This condition gives one of the sufficient conditions for which peak solutions appear.

The method, namely, to find a stationary solution to (2) near the stationary solution to the shadow system (3) by the implicit function theorem, is one of the methods to construct a solution to the Gierer-Meinhardt system (2), which was developed from the work by W.-M. Ni and I. Takagi [14]. In general, the number D must be large enough in the method. However, the following question arises, "for $D>0$ given arbitrarily, does the Gierer-Meinhardt system (2) possess a peak solution under the weak saturation condition?". The purpose of this paper is to construct a 1-peak solution concentrating at $x=0$ to the 1 -dimensional Gierer-Meinhardt system (1) for any fixed finite D (which is called the strong coupling case) under the weak saturation condition.

We give remarks on other related results. For fixed $\kappa>0$, M. Mimura, M. Tabata and Y. Hosono [1] showed the existence of interior transition layers by using the singular perturbation method in the case $N=1$. Y. Nishiura [15] showed that, for some 1-dimensional reaction-diffusion systems including the Gierer-Meinhardt system (2), the bifurcating branch emanating from a uniform state continues to exist until it is connected to the singularly perturbed solutions when one of the diffusion constants is sufficiently large. Multi-peak stationary solutions to (2) were first constructed by I. Takagi [17] in the case $\kappa=0, N=1$. Moreover, its stability was discussed in [5]. In the case $\kappa=0$ and $N=1$, J. Wei and M. Winter [23] studied the existence and stability of symmetric and asymmetric multi-peak stationary solutions to (2), and they showed that multi-peak stationary solutions are generated by exactly two types of peaks if the peaks are separated. In the case $\kappa=0$ and $N=2$, multi-interior peak stationary solutions were constructed and the stability was discussed in [19-21]. With respect to the stability analysis for the Gierer-Meinhardt system and its shadow system, see [12,7,9], and the references therein. Some a priori estimate for a stationary solutions to (2) were given in $[6,2,13]$. For other results related to the Gierer-Meinhardt system, see [11,18,24] and the references therein.

Finally, we state remarks on our notation. For a domain $\Omega \subset \mathbb{R}$, we use standard Lebesgue spaces and Sobolev spaces $L^{2}(\Omega), L^{\infty}(\Omega), H^{2}(\Omega)$, and so on, with the usual norm. Throughout this paper, unless otherwise stated, we use the symbols $C, C^{\prime}, C^{\prime \prime}, c, c^{\prime}, c^{\prime \prime}$ as positive constants, but they need not have the same value in each situation.

This paper is composed as follows. In Section 2, we will state our main results, Theorem 1 and Theorem 2. In Section 3, we will prepare some lemmas and state an outline of our construction of a solution. In Section 4, we will give some estimates in order to prove the theorems. In Sections 5 and 6, we will give the proofs of Theorems 1 and 2.

2. Main results

We need some preliminaries to state our main results. We introduce a solution denoted by w_{δ} to the following problem:

$$
\begin{align*}
& \begin{cases}w^{\prime \prime}-w+f_{\delta}(w)=0, & w>0, \text { in } \mathbb{R}, \\
w(0)=\max _{y \in \mathbb{R}} w(y), & w(y) \rightarrow 0 \text { as }|y| \rightarrow \infty,\end{cases} \tag{4}\\
& f_{\delta}(w):=\frac{w^{2}}{1+\delta w^{2}} . \tag{5}
\end{align*}
$$

It is known that, there exists a constant $\delta_{*}>0$, the problem (4) has a unique solution w_{δ} for each $\delta \in\left[0, \delta_{*}\right)$, and w_{δ} is radially symmetric, namely, $w_{\delta}(y)=w_{\delta}(-y), y \in \mathbb{R}$. This fact was established in [22]. The number δ_{*} is given by

$$
\delta_{*}=\sup \left\{\delta>0 \text { : there exists } a>0 \text { such that } \int_{0}^{a}\left(-t+f_{\delta}(t)\right) d t=0\right\} .
$$

For fixed $D>0$, let $G_{D}(x, z)$ be Green's function to

$$
\left\{\begin{array}{l}
D G_{x x}(x, z)-G(x, z)=-\delta_{z}(x) \quad \text { in }(-1,1), \tag{6}\\
G_{x}(\pm 1, z)=0 .
\end{array}\right.
$$

$G_{D}(x, z)$ can be written explicitly

$$
G_{D}(x, z)= \begin{cases}\frac{\theta}{\sinh (2 \theta)} \cosh [\theta(1+x)] \cosh [\theta(1-z)], & -1<x<z, \tag{7}\\ \frac{\theta}{\sinh (2 \theta)} \cosh [\theta(1-x)] \cosh [\theta(1+z)], & z<x<1,\end{cases}
$$

where $\theta:=D^{-1 / 2}$. We put

$$
\begin{equation*}
\alpha_{D}:=\frac{1}{G_{D}(0,0)} . \tag{8}
\end{equation*}
$$

Moreover, the non-smooth part of $G_{D}(x, z)$ is given by

$$
\begin{equation*}
K_{D}(|x-z|)=\frac{1}{2 \sqrt{D}} e^{-\frac{1}{\sqrt{D}}|x-z|} \tag{9}
\end{equation*}
$$

Let $H_{D}(x, z)$ be the regular part of $G_{D}(x, z)$,

$$
G_{D}(x, z)=K_{D}(|x-z|)-H_{D}(x, z) .
$$

$H_{D}(x, z)$ is C^{∞} in both x and z.
Next, we prepare a cut-off function. Let $\chi \in C_{0}^{\infty}(\mathbb{R})$ be a function such that, $0 \leqslant \chi \leqslant 1, \chi(x)=0$ for $|x|<1$, $\chi(x)=1$ for $|x|>2$. Let r_{0} be a fixed constant such that $0<r_{0}<1 / 2$, for example, $r_{0}=1 / 10$. We will use a cut-off function in the form $\chi\left(\frac{x}{r_{0}}\right)$. Note that $\chi\left(\frac{x}{r_{0}}\right)=0$ for $|x|>2 r_{0}$.

We suppose the following assumption on the constant κ in (1).
(A) $\kappa \geqslant 0$ depends on ε, and there exists a limit

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \kappa \varepsilon^{-2}=\kappa_{0} \tag{10}
\end{equation*}
$$

for some $\kappa_{0} \in[0, \infty)$.
Let us state our main results. We first state a result in the case $\sigma=0$.
Theorem 1. Let $\sigma=0$. Fix $D>0$ arbitrarily. We suppose (A), and let the value $\kappa_{0} \alpha_{D}^{2}$ be sufficiently small. Then, for sufficiently small $\varepsilon>0$, (1) admits a 1-peak radially symmetric solution $\left(A_{\varepsilon}(x), H_{\varepsilon}(x)\right)$ such that $A_{\varepsilon}(x)$ concentrates at $x=0$. More precisely, there exists $\delta_{\varepsilon} \in\left[0, \delta_{*}\right)$ for each ε sufficiently small such that $\delta_{\varepsilon} \rightarrow \delta_{0}$ as $\varepsilon \rightarrow 0$ for some $\delta_{0} \in\left[0, \delta_{*}\right)$ which is decided by κ_{0} and D and satisfies

$$
\begin{equation*}
\delta_{0}\left(\int_{\mathbb{R}} w_{\delta_{0}}^{2}(y) d y\right)^{2}=\kappa_{0} \alpha_{D}^{2}, \tag{11}
\end{equation*}
$$

and A_{ε} takes the form:

$$
\begin{equation*}
A_{\varepsilon}(x)=\frac{1}{\varepsilon \int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}}\left\{\alpha_{D} w_{\delta_{\varepsilon}}\left(\frac{x}{\varepsilon}\right) \chi\left(\frac{x}{r_{0}}\right)+\varepsilon \phi_{\varepsilon}\left(\frac{x}{\varepsilon}\right)\right\}, \quad x \in(-1,1), \tag{12}
\end{equation*}
$$

where α_{D} is defined by (8), w_{δ} is the unique solution to (4), and $\phi_{\varepsilon}(y)$ is a radially symmetric function on $\Omega_{\varepsilon}:=$ $\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)$ such that

$$
\begin{equation*}
\left\|\phi_{\varepsilon}\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \leqslant C \tag{13}
\end{equation*}
$$

holds for some constant $C>0$ independent of ε. H_{ε} has the following property:

$$
\begin{equation*}
H_{\varepsilon}(0)=\frac{1}{\varepsilon \int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}}\left(\alpha_{D}+O(\varepsilon)\right) \quad \text { as } \varepsilon \rightarrow 0 \tag{14}
\end{equation*}
$$

Next, we state a result in the case $\sigma \neq 0$.
Theorem 2. Let $\sigma>0$. We assume the same assumption on κ as in Theorem 1. Then, (1) admits a radially symmetric solution provided ε is sufficiently small. More precisely, if we fix $\bar{\sigma}>0$ and $\gamma \in(0,1 / 2)$, there exists $\hat{\varepsilon}_{1}>0$ such that, for all $\varepsilon \in\left(0, \hat{\varepsilon}_{1}\right)$ and $\sigma \in(0, \bar{\sigma})$, (1) admits a radially symmetric solution $\left(A_{\varepsilon, \sigma}(x), H_{\varepsilon, \sigma}(x)\right)$, and $A_{\varepsilon, \sigma}$ takes the form:

$$
\begin{equation*}
A_{\varepsilon, \sigma}(x)=\frac{1}{\varepsilon \int_{\mathbb{R}} w_{\delta_{\varepsilon}}}\left\{\alpha_{D} w_{\delta_{\varepsilon}}\left(\frac{x}{\varepsilon}\right) \chi\left(\frac{x}{r_{0}}\right)+\varepsilon \phi_{\varepsilon}\left(\frac{x}{\varepsilon}\right)+\varepsilon^{\gamma} \phi_{\varepsilon, \sigma}\left(\frac{x}{\varepsilon}\right)\right\}+\sigma, \quad x \in(-1,1), \tag{15}
\end{equation*}
$$

where δ_{ε} and ϕ_{ε} are given in Theorem 1, and $\phi_{\varepsilon, \sigma}(y)$ is a radially symmetric function on Ω_{ε} such that

$$
\begin{equation*}
\left\|\phi_{\varepsilon, \sigma}\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \leqslant \bar{\sigma} \tag{16}
\end{equation*}
$$

holds, and $H_{\varepsilon, \sigma}$ satisfies

$$
\begin{equation*}
H_{\varepsilon, \sigma}(0)=\frac{1}{\varepsilon \int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}}\left(\alpha_{D}+O(\varepsilon)+\left(\bar{\sigma}+\bar{\sigma}^{2}\right) O\left(\varepsilon^{\gamma}\right)\right) \tag{17}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$, where $O(\varepsilon)$ and $O\left(\varepsilon^{\gamma}\right)$ are independent of σ.
Remark 3. The setting of the domain $(-1,1)$ is not essential. For given $k \in \mathbb{N}$, if we construct a 1-peak solution to (1) on smaller domain in advance, then we can obtain a k-peak symmetric solution to (1) by reflections.

Remark 4. The assumption " $\kappa_{0} \alpha_{D}^{2}$ is sufficiently small" in Theorem 1 is due to some technical reason. See Remark 14 stated later.

3. Basic analysis and preliminaries

In this section, we prepare some lemmas to prove Theorem 1 and state the outline of our construction. We first define some function spaces as follows:

$$
\begin{align*}
& L_{r}^{2}(\mathbb{R}):=\left\{u \in L^{2}(\mathbb{R}): u(x)=u(-x), x \in \mathbb{R}\right\}, \tag{18}\\
& H_{r}^{2}(\mathbb{R}):=H^{2}(\mathbb{R}) \cap L_{r}^{2}(\mathbb{R}), \tag{19}
\end{align*}
$$

and for a domain $(-a, a), a \in(0, \infty)$,

$$
\begin{align*}
& L_{r}^{2}(-a, a):=\left\{u \in L^{2}(-a, a): u(x)=u(-x), x \in(-a, a)\right\}, \tag{20}\\
& H_{r}^{2}(-a, a):=H^{2}(-a, a) \cap L_{r}^{2}(-a, a), \tag{21}\\
& H_{r, v}^{2}(-a, a):=\left\{u \in H_{r}^{2}(-a, a): u^{\prime}(\pm a)=0\right\} . \tag{22}
\end{align*}
$$

Because we will frequently use rescaling, we introduce the following notations.
Definition 5. Put $\Omega_{\varepsilon}:=\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)$.
For a function $u:(-1,1) \xrightarrow{\varepsilon} \mathbb{R}$, let $\bar{u}(y):=u(\varepsilon y), y \in \Omega_{\varepsilon}$.
Inversely, for a function $v: \Omega_{\varepsilon} \rightarrow \mathbb{R}$, let $\underline{v}(x):=v\left(\frac{x}{\varepsilon}\right), x \in(-1,1)$.

3.1. Basic analysis

For the unique solution w_{δ} to (4), let us state some known facts. After that, we state some new lemmas.
Lemma 6. For each $\delta \in\left[0, \delta_{*}\right)$, the unique radially symmetric solution w_{δ} has the following properties:
(i) $w_{\delta} \in C^{\infty}(\mathbb{R})$.
(ii) Let

$$
L_{\delta}:=\frac{d^{2}}{d x^{2}}-1+f_{\delta}^{\prime}\left(w_{\delta}\right): H^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

where $f_{\delta}^{\prime}\left(w_{\delta}\right)=2 w_{\delta} /\left(1+\delta w_{\delta}^{2}\right)$. Then, $\operatorname{Ker}\left(L_{\delta}\right)=\operatorname{span}\left\{w_{\delta}^{\prime}\right\}$.
(iii) If we restrict the domain to $\operatorname{Dom}\left(L_{\delta}\right)=H_{r}^{2}(\mathbb{R})$, then L_{δ} has a bounded inverse $L_{\delta}^{-1}: L_{r}^{2}(\mathbb{R}) \rightarrow H_{r}^{2}(\mathbb{R})$.
(iv) If we fix $\bar{\delta} \in\left(0, \delta_{*}\right)$, then there exist constants $C, c>0$ such that

$$
\begin{equation*}
w_{\delta}(y),\left|\frac{d^{n} w_{\delta}}{d y^{n}}(y)\right| \leqslant C e^{-c|y|}, \quad y \in \mathbb{R}, n=1,2, \tag{23}
\end{equation*}
$$

holds for any $\delta \in[0, \bar{\delta}]$.
Proof. (i)-(iii) have been proven in Lemma 2.2 of [22]. (iv) have been proven in Lemma 2.4 of [8].
We state continuity and differentiability of w_{δ} on δ.

Lemma 7. As a $C^{1}(\mathbb{R})$-valued function of δ, w_{δ} satisfies the following:
(i) w_{δ} is continuous in $\delta \in\left[0, \delta_{*}\right)$ with respect to the $C^{1}(\mathbb{R})$-norm.
(ii) w_{δ} is of class $C^{1}\left(\left(0, \delta_{*}\right), C^{1}(\mathbb{R})\right)$.

Proof. This fact was proven in Lemma 2.3 of [22] (see also Lemma 2.3 of [8]).
Let us denote the derivatives of w_{δ} in x and in δ by $w_{\delta}^{\prime}(x)$ and $\frac{d w_{\delta}}{d \delta}$, respectively. Next, we state some useful formulae.

Lemma 8. The following identities hold:

$$
\begin{align*}
& L_{\delta} w_{\delta}=f_{\delta}^{\prime}\left(w_{\delta}\right) w_{\delta}-f_{\delta}\left(w_{\delta}\right) \tag{24}\\
& L_{\delta} \frac{d w_{\delta}}{d \delta}=f_{\delta}^{2}\left(w_{\delta}\right) \tag{25}\\
& L_{\delta}\left(w_{\delta}+2 \delta \frac{d w_{\delta}}{d \delta}+\frac{1}{2} y \cdot w_{\delta}^{\prime}\right)=w_{\delta} \tag{26}\\
& L_{\delta}\left(w_{\delta}+2 \delta \frac{d w_{\delta}}{d \delta}\right)=f_{\delta}\left(w_{\delta}\right) \tag{27}
\end{align*}
$$

Proof. These facts were proven in Lemma 2.3 of [22].
Lemma 9. $w_{\delta} \rightarrow b$ in $C_{\mathrm{loc}}^{2}(\mathbb{R})$ holds as $\delta \rightarrow \delta_{*}$, where $b>0$ is the second positive root of $-t+f_{\delta_{*}}(t)=0, t \in \mathbb{R}$.
Proof. This fact was proven in Lemma 2.3 of [22].
Lemma 10. For any $\delta \in\left(0, \delta_{*}\right)$, it holds that

$$
\begin{equation*}
\frac{d}{d \delta}\left(\int_{-\infty}^{\infty} w_{\delta}^{2}(y) d y\right)>0 \tag{28}
\end{equation*}
$$

Proof. This fact was proven in Lemma 2.6 of [22].
Lemma 11. For fixed $\bar{\delta} \in\left(0, \delta_{*}\right)$, there exists constant $C>0$ such that

$$
\begin{equation*}
\left\|\frac{d w_{\delta}}{d \delta}\right\|_{H^{2}(\mathbb{R})} \leqslant C \tag{29}
\end{equation*}
$$

holds for any $\delta \in(0, \bar{\delta})$.
Proof. It is easy to see that L_{δ}^{-1} is bounded uniformly in $\delta \in[0, \bar{\delta}]$. By using (25) and Lemma 6(iv), we can estimate by some constants $C, C^{\prime}>0$ independent of $\delta \in[0, \bar{\delta}]$ as follows:

$$
\begin{equation*}
\left\|\frac{d w_{\delta}}{d \delta}\right\|_{H^{2}(\mathbb{R})}=\left\|L_{\delta}^{-1} f_{\delta}^{2}\left(w_{\delta}\right)\right\|_{H^{2}(\mathbb{R})} \leqslant C\left\|f_{\delta}^{2}\left(w_{\delta}\right)\right\|_{L^{2}(\mathbb{R})} \leqslant C^{\prime} \tag{30}
\end{equation*}
$$

Hence we complete the proof.

Lemma 12.

(i) For each $\delta \in\left[0, \delta_{*}\right)$, if $\phi \in H_{r}^{2}(\mathbb{R})$ satisfies the following:

$$
\begin{align*}
& \phi^{\prime \prime}-\phi+f_{\delta}^{\prime}\left(w_{\delta}\right) \phi-\gamma \frac{\int_{\mathbb{R}} w_{\delta} \phi}{\int_{\mathbb{R}} w_{\delta}^{2}} f_{\delta}\left(w_{\delta}\right)=0 \quad \text { in } \mathbb{R}, \tag{31}\\
& \gamma \neq \frac{\int_{\mathbb{R}} w_{\delta}^{2}}{\int_{\mathbb{R}} w_{\delta}^{2}+2 \delta \int_{\mathbb{R}} w_{\delta} \frac{d w_{\delta}}{d \delta}}, \tag{32}
\end{align*}
$$

then $\phi=0$.
(ii) There exists $\delta_{1} \in\left(0, \delta_{*}\right)$ such that, for $\delta \in\left[0, \delta_{1}\right)$, if $\phi \in H_{r}^{2}(\mathbb{R})$ satisfies the following:

$$
\begin{align*}
& \phi^{\prime \prime}-\phi+f_{\delta}^{\prime}\left(w_{\delta}\right) \phi-\gamma \frac{\int_{\mathbb{R}} f_{\delta}\left(w_{\delta}\right) \phi}{\int_{\mathbb{R}} w_{\delta}^{2}} w_{\delta}=0 \quad \text { in } \mathbb{R}, \tag{33}\\
& \gamma \neq \frac{\int_{\mathbb{R}} w_{\delta}^{2}}{\int_{\mathbb{R}} L_{\delta}^{-1}\left(w_{\delta}\right) f_{\delta}\left(w_{\delta}\right)}, \tag{34}
\end{align*}
$$

then $\phi=0$.
Before the proof, we state some remarks. Lemma 10 implies that $\int_{\mathbb{R}} w_{\delta} \frac{d w_{\delta}}{d \delta}>0$ for any $\delta \in\left(0, \delta_{*}\right)$. Hence, we first notice that

$$
\begin{equation*}
0<\frac{\int_{\mathbb{R}} w_{\delta}^{2}}{\int_{\mathbb{R}} w_{\delta}^{2}+2 \delta \int_{\mathbb{R}} w_{\delta} \frac{d w_{\delta}}{d \delta}} \leqslant 1, \quad \delta \in\left[0, \delta_{*}\right) . \tag{35}
\end{equation*}
$$

Secondly, we consider the value of $\int_{\mathbb{R}} L_{\delta}^{-1}\left(w_{\delta}\right) f_{\delta}\left(w_{\delta}\right)$. By using (26) and integration by parts, we have

$$
\begin{align*}
\lim _{\delta \rightarrow 0} \int_{\mathbb{R}} L_{\delta}^{-1}\left(w_{\delta}\right) f_{\delta}\left(w_{\delta}\right) & =\lim _{\delta \rightarrow 0} \int_{\mathbb{R}}\left(w_{\delta}(y)+2 \delta \frac{d w_{\delta}}{d \delta}(y)+\frac{1}{2} y \cdot w_{\delta}^{\prime}(y)\right) f_{\delta}\left(w_{\delta}(y)\right) d y \\
& =\int_{\mathbb{R}}\left(w_{0}^{3}(y)+\frac{1}{2} y \cdot w_{0}^{\prime}(y) w_{0}^{2}(y)\right) d y \\
& =\int_{\mathbb{R}}\left(w_{0}^{3}(y)-\frac{1}{6} w_{0}^{3}(y)\right) d y \\
& =\frac{5}{6} \int_{\mathbb{R}} w_{0}^{3}(y) d y>0 . \tag{36}
\end{align*}
$$

Here, we note that $\delta \int_{\mathbb{R}} \frac{d w_{\delta}}{d \delta} f_{\delta}\left(w_{\delta}\right) d y \rightarrow 0$ as $\delta \rightarrow 0$ by Lemma 11. Moreover, we see that

$$
\begin{equation*}
w_{0}^{\prime \prime}-w_{0}+w_{0}^{2}=0, \quad \int_{\mathbb{R}} w_{0}^{\prime \prime} w_{0}-\int_{\mathbb{R}} w_{0}^{2}+\int_{\mathbb{R}} w_{0}^{3}=0, \quad \int_{\mathbb{R}}\left(w_{0}^{\prime}\right)^{2}+\int_{\mathbb{R}} w_{0}^{2}=\int_{\mathbb{R}} w_{0}^{3} . \tag{37}
\end{equation*}
$$

Therefore, $\int_{\mathbb{R}} w_{0}^{3}>\int_{\mathbb{R}} w_{0}^{2}$. Thus we have

$$
\begin{equation*}
\left.\frac{\int_{\mathbb{R}} w_{\delta}^{2}}{\int_{\mathbb{R}} L_{\delta}^{-1}\left(w_{\delta}\right) f_{\delta}\left(w_{\delta}\right)}\right|_{\delta=0}=\frac{\int_{\mathbb{R}} w_{0}^{2}}{\frac{5}{6} \int_{\mathbb{R}} w_{0}^{3}}<\frac{6}{5} . \tag{38}
\end{equation*}
$$

Proof. (i) By using (27), the equation (31) can be written as follows:

$$
\begin{aligned}
& L_{\delta} \phi=\gamma \frac{\int_{\mathbb{R}} w_{\delta} \phi}{\int_{\mathbb{R}} w_{\delta}^{2}} f_{\delta}\left(w_{\delta}\right), \quad \phi=\gamma \frac{\int_{\mathbb{R}} w_{\delta} \phi}{\int_{\mathbb{R}} w_{\delta}^{2}} L_{\delta}^{-1}\left(f_{\delta}\left(w_{\delta}\right)\right), \\
& \int_{\mathbb{R}} w_{\delta} \phi=\gamma \frac{\int_{\mathbb{R}} w_{\delta} \phi}{\int_{\mathbb{R}} w_{\delta}^{2}}\left(\int_{\mathbb{R}} w_{\delta}^{2}+2 \delta \int_{\mathbb{R}} w_{\delta} \frac{d w_{\delta}}{d \delta}\right) .
\end{aligned}
$$

Hence, $\int_{\mathbb{R}} w_{\delta} \phi=0$ must be hold by (32). Thus we have $L_{\delta} \phi=0, \phi \in H_{r}^{2}(\mathbb{R})$, and hence $\phi=0$ by Lemma 6 (iii).
(ii) Define δ_{1} by

$$
\begin{equation*}
\delta_{1}:=\sup \left\{\delta \in\left(0, \delta_{*}\right): \int_{\mathbb{R}} L_{\delta^{\prime}}^{-1}\left(w_{\delta^{\prime}}\right) f_{\delta^{\prime}}^{\prime}\left(w_{\delta^{\prime}}\right)>0 \text { for } \delta^{\prime} \in(0, \delta)\right\} \tag{39}
\end{equation*}
$$

This δ_{1} is well defined by (36). Then we can prove by the same argument as in the proof of (i).
Now, we define an operator \mathcal{L}_{δ} on $L^{2}(\mathbb{R})$ with $\operatorname{Dom}\left(\mathcal{L}_{\delta}\right)=H^{2}(\mathbb{R})$ by

$$
\begin{equation*}
\mathcal{L}_{\delta} \phi=\phi^{\prime \prime}-\phi+f_{\delta}^{\prime}\left(w_{\delta}\right) \phi-2 \frac{\int_{\mathbb{R}} w_{\delta} \phi}{\int_{\mathbb{R}} w_{\delta}^{2}} f_{\delta}\left(w_{\delta}\right) \tag{40}
\end{equation*}
$$

Its conjugate operator is given by

$$
\begin{equation*}
\mathcal{L}_{\delta}^{*} \psi=\psi^{\prime \prime}-\psi+f_{\delta}^{\prime}\left(w_{\delta}\right) \psi-2 \frac{\int_{\mathbb{R}} f_{\delta}\left(w_{\delta}\right) \psi}{\int_{\mathbb{R}} w_{\delta}^{2}} w_{\delta}, \quad \psi \in H^{2}(\mathbb{R}) \tag{41}
\end{equation*}
$$

Let us define δ_{2} by

$$
\begin{equation*}
\delta_{2}=\sup \left\{\delta \in\left(0, \delta_{1}\right): \frac{\int_{\mathbb{R}} w_{\delta^{\prime}}^{2}}{\int_{\mathbb{R}} L_{\delta^{\prime}}^{-1}\left(w_{\delta^{\prime}}\right) f_{\delta^{\prime}}\left(w_{\delta^{\prime}}\right)}<2 \text { for } \delta^{\prime} \in(0, \delta)\right\} \tag{42}
\end{equation*}
$$

where δ_{1} is defined by (39). This δ_{2} is well defined by (38).
Lemma 13. For the operators \mathcal{L}_{δ} and \mathcal{L}_{δ}^{*}, and δ_{2} defined above, there hold that
(i) $\operatorname{Ker}\left(\mathcal{L}_{\delta}\right) \cap H_{r}^{2}(\mathbb{R})=\{0\}$ for any $\delta \in\left[0, \delta_{*}\right)$,
(ii) $\operatorname{Ker}\left(\mathcal{L}_{\delta}^{*}\right) \cap H_{r}^{2}(\mathbb{R})=\{0\}$ for any $\delta \in\left[0, \delta_{2}\right)$.

Proof. This lemma is a consequence of Lemma 12.
Remark 14. We do not know whether $\operatorname{Ker}\left(\mathcal{L}_{\delta}^{*}\right) \cap H_{r}^{2}(\mathbb{R})$ is trivial or not for δ near δ_{*}. If $\operatorname{Ker}\left(\mathcal{L}_{\delta}^{*}\right) \cap H_{r}^{2}(\mathbb{R})=\{0\}$ holds for all $\delta \in\left[0, \delta_{*}\right.$), then we can remove the assumption " $\kappa_{0} \alpha_{D}^{2}$ is sufficiently small" in Theorem 1. However, it seems to be a difficult problem.

3.2. Outline of our construction

We state an outline of our construction. We see by Lemmas 9-11 that there exists unique $\delta_{\varepsilon} \in\left[0, \delta_{*}\right)$ such that

$$
\begin{equation*}
\delta_{\varepsilon}\left(\int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}\right)^{2}=\kappa \varepsilon^{-2} \alpha_{D}^{2} \tag{43}
\end{equation*}
$$

holds for each $\varepsilon>0$. By the assumption (A), in the limit $\varepsilon \rightarrow 0$, there hold that

$$
\begin{equation*}
\delta_{\varepsilon} \rightarrow \delta_{0}, \quad \delta_{0}\left(\int_{\mathbb{R}} w_{\delta_{0}}^{2}\right)^{2}=\kappa_{0} \alpha_{D}^{2} \tag{44}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$, for some $\delta_{0} \in\left[0, \delta_{*}\right)$. We assume henceforth that $\kappa_{0} \alpha_{D}^{2} \geqslant 0$ is small enough so that $\delta_{0} \in\left[0, \delta_{2}\right)$, where δ_{2} is given by (42). Then we note that there exists $\bar{\delta} \in\left(0, \delta_{2}\right)$ such that $\delta_{\varepsilon} \in[0, \bar{\delta}]$ holds for all $\varepsilon>0$ sufficiently small. Hence, we may assume that $c<\int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}(y) d y<C$ holds for all ε sufficiently small, the constants $c, C>0$ are independent of ε.

Put

$$
\begin{equation*}
c_{\varepsilon}:=\frac{1}{\varepsilon \int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}} \tag{45}
\end{equation*}
$$

We consider the following problem for a and h :

$$
\begin{cases}\varepsilon^{2} a^{\prime \prime}-a+\frac{a^{2}}{h\left(1+\delta_{\varepsilon} \alpha_{D}^{-2} a^{2}\right)}+\sigma_{\varepsilon}=0, & a>0, x \in(-1,1), \tag{46}\\ D h^{\prime \prime}-h+c_{\varepsilon} a^{2}=0, & h>0, x \in(-1,1), \\ a^{\prime}(\pm 1)=h^{\prime}(\pm 1)=0, & \end{cases}
$$

where

$$
\begin{equation*}
\sigma_{\varepsilon}:=\frac{\sigma}{c_{\varepsilon}} . \tag{47}
\end{equation*}
$$

If we obtain a solution to (46), then we obtain a solution to (1) by putting $A(x)=c_{\varepsilon} a(x)$ and $H(x)=c_{\varepsilon} h(x)$. For $U \in H_{r, v}^{2}\left(\Omega_{\varepsilon}\right)$, let $T[\underline{U}]$ be a unique solution to the following problem for v :

$$
\left\{\begin{array}{l}
D v^{\prime \prime}-v+c_{\varepsilon} \underline{U}^{2}=0, \quad x \in(-1,1) \tag{48}\\
v^{\prime}(\pm 1)=0
\end{array}\right.
$$

Here, the under-bar and over-bar notation is due to Definition 5. Moreover, we put

$$
\begin{equation*}
S[U](y):=U^{\prime \prime}(y)-U(y)+\frac{U^{2}(y)}{\overline{T[\underline{U}]}(y)\left(1+\delta_{\varepsilon} \alpha_{D}^{-2} U^{2}(y)\right)}, \quad y \in \Omega_{\varepsilon} . \tag{49}
\end{equation*}
$$

If we can find $U \in H_{r, v}^{2}\left(\Omega_{\varepsilon}\right)$ such that, $S[U]+\sigma_{\varepsilon}=0, U>0$ in Ω_{ε}, then we obtain a solution to (46) by putting $a(x)=\underline{U}(x)$ and $h(x)=T[\underline{U}](x)$.

Here, we note that $T[\underline{U}]$ is written by using Green's function as follows:

$$
\begin{equation*}
T[\underline{U}](x)=c_{\varepsilon} \int_{-1}^{1} G_{D}(x, z) \underline{U}^{2}(z) d z, \quad x \in(-1,1), \tag{50}
\end{equation*}
$$

for $U \in L^{2}\left(\Omega_{\varepsilon}\right)$. In particular, $T[\underline{U}]$ is radially symmetric provided U is radially symmetric. Now, let us define an approximate function w_{ε} as follows:

$$
\begin{equation*}
w_{\varepsilon}(x):=\alpha_{D} w_{\delta_{\varepsilon}}\left(\frac{x}{\varepsilon}\right) \times\left(\frac{x}{r_{0}}\right), \tag{51}
\end{equation*}
$$

where $\alpha_{D}=G_{D}(0,0)^{-1}, w_{\delta_{\varepsilon}}$ is the unique solution to (4) for $\delta=\delta_{\varepsilon}, \chi$ is the cut-off function defined in the previous section. We will first consider the case $\sigma=0$ and prove Theorem 1 in Section 5. For the purpose, we will seek $U \in H_{r, v}^{2}\left(\Omega_{\varepsilon}\right)$ such that $S[U]=0, U>0$ in Ω_{ε} in the form $U(y)=\bar{w}_{\varepsilon}(y)+\varepsilon \phi(y)$ for some $\phi \in H_{r, v}^{2}\left(\Omega_{\varepsilon}\right)$. Next, we will consider the case $\sigma \neq 0$ in Section 6. Note that ($\sigma_{\varepsilon}=$) $\sigma / c_{\varepsilon} \leqslant C \sigma \varepsilon$ holds for some constant $C>0$ independent of ε sufficiently small. Therefore, we can prove Theorem 2 by a perturbation argument.

4. Basic estimates

In this section, we show some basic estimates.
Lemma 15. There exists $c_{1}>0$ such that $T\left[w_{\varepsilon}\right](x) \geqslant c_{1}, x \in(-1,1)$, for all ε sufficiently small.

Proof.

$$
\begin{aligned}
T\left[w_{\varepsilon}\right](x) & =c_{\varepsilon} \int_{-1}^{1} G_{D}(x, z) w_{\varepsilon}^{2}(z) d x \\
& =\alpha_{D}^{2} c_{\varepsilon} \int_{-1}^{1} G_{D}(x, z) w_{\delta_{\varepsilon}}^{2}\left(\frac{z}{\varepsilon}\right) \chi^{2}\left(\frac{z}{r_{0}}\right) d z
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha_{D}^{2} \varepsilon c_{\varepsilon} \int_{-1 / \varepsilon}^{1 / \varepsilon} G_{D}(x, \varepsilon z) w_{\delta_{\varepsilon}}^{2}(z) \chi^{2}\left(\frac{\varepsilon}{r_{0}} z\right) d z \\
& \geqslant \frac{\alpha_{D}^{2}}{\int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}} \frac{\theta}{\sinh (2 \theta)} \int_{-1 / \varepsilon}^{1 / \varepsilon} w_{\delta_{\varepsilon}}^{2}(z) \chi^{2}\left(\frac{\varepsilon}{r_{0}} z\right) d z \\
& =\frac{\alpha_{D}^{2}}{\int_{\mathbb{R}} w_{\delta_{0}}^{2}} \frac{\theta}{\sinh (2 \theta)} \int_{-\infty}^{\infty} w_{\delta_{0}}^{2}(z) d z+o(1),
\end{aligned}
$$

as $\varepsilon \rightarrow 0$, where $o(1)$ is uniform in $x \in(-1,1)$. This estimate completes the proof.
Next, we show the following elementary inequality.
Lemma 16. For the non-smooth part $K_{D}(|x-z|)$ of $G_{D}(x, z)$, the following estimate holds:

$$
\begin{equation*}
\left|K_{D}(|x|)-K_{D}(|y|)\right| \leqslant \frac{1}{2 \sqrt{D}}\left\{\frac{1}{\sqrt{D}}(| | x|-|y||)+\frac{1}{2}\left(\frac{1}{\sqrt{D}}\right)^{2}\left(|x|^{2}+|y|^{2}\right)\right\} . \tag{52}
\end{equation*}
$$

Proof. This lemma is easily verified by (9) and the following elementary inequality:

$$
1-|x| \leqslant e^{-|x|} \leqslant 1-|x|+\frac{1}{2}|x|^{2} .
$$

Thus, we omit the details.
Lemma 17. For w_{ε} defined by (51), it holds that

$$
\begin{equation*}
T\left[w_{\varepsilon}\right](0)=\alpha_{D}+O(\varepsilon), \tag{53}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$.
Proof. Note that

$$
T\left[w_{\varepsilon}\right](0)=c_{\varepsilon} \int_{-1}^{1} G_{D}(0, z) w_{\varepsilon}^{2}(z) d z=\frac{\alpha_{D}^{2}}{\int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}} \int_{-1 / \varepsilon}^{1 / \varepsilon} G_{D}(0, \varepsilon z) w_{\delta_{\varepsilon}}^{2}(z) \chi^{2}\left(\frac{\varepsilon}{r_{0}} z\right) d z
$$

and the following inequality holds:

$$
\begin{equation*}
\int_{|z|<\frac{r_{0}}{\varepsilon}} G_{D}(0, \varepsilon z) w_{\delta_{\varepsilon}}^{2}(z) d z \leqslant \int_{-1 / \varepsilon}^{1 / \varepsilon} G_{D}(0, \varepsilon z) w_{\delta_{\varepsilon}}^{2}(z) \chi^{2}\left(\frac{\varepsilon}{r_{0}} z\right) d z \leqslant \int_{|z|<\frac{2 r_{0}}{\varepsilon}} G_{D}(0, \varepsilon z) w_{\delta_{\varepsilon}}^{2}(z) d z \tag{54}
\end{equation*}
$$

The left-hand side of (54) is written as follows:

$$
\text { (1.h.s.) }=G_{D}(0,0) \int_{|z|<\frac{r_{0}}{\varepsilon}} w_{\delta_{\varepsilon}}^{2}(z) d z+\int_{|z|<\frac{r_{0}}{\varepsilon}}\left\{G_{D}(0, \varepsilon z)-G_{D}(0,0)\right\} w_{\delta_{\varepsilon}}^{2}(z) d z \equiv I+I I \text {. }
$$

Moreover, noting $\alpha_{D}^{-1}=G_{D}(0,0)$, we can estimate by Lemma 6(iv) so that

$$
\begin{equation*}
I=\alpha_{D}^{-1}\left\{\int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}(z) d z-\int_{|z|>\frac{r_{0}}{\varepsilon}} w_{\delta_{\varepsilon}}^{2}(z) d z\right\}=\alpha_{D}^{-1} \int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}(z) d z+\text { e.s.t., } \tag{55}
\end{equation*}
$$

where "e.s.t." means "exponentially small term". Next, we can estimate by Lemma 16 and the mean value theorem as follows:

$$
\begin{aligned}
|I I| & \leqslant \int_{|z|<\frac{r_{0}}{\varepsilon}}\left|K_{D}(\varepsilon|z|)-K_{D}(0)\right| w_{\delta_{\varepsilon}}^{2}(z) d z+\int_{|z|<\frac{r_{0}}{\varepsilon}}\left|H_{D}(0, \varepsilon z)-H_{D}(0,0)\right| w_{\delta_{\varepsilon}}^{2}(z) d z \\
& \leqslant C \int_{|z|<\frac{r_{0}}{\varepsilon}} \varepsilon|z| w_{\delta_{\varepsilon}}^{2}(z) d z \\
& \leqslant C^{\prime} \varepsilon .
\end{aligned}
$$

Here, we note that, $\varepsilon^{2}|z|^{2}<\varepsilon|z| r_{0}$ for $|z|<r_{0} / \varepsilon, \int_{\mathbb{R}}|z| w_{\delta_{\varepsilon}}^{2}(z) d z$ is bounded uniformly in ε sufficiently small since we may assume $\delta_{\varepsilon} \in[0, \bar{\delta}]$ and we can apply Lemma 6(iv). Hence

$$
\begin{equation*}
\text { (1.h.s. of }(54))=\alpha_{D}^{-1} \int_{\mathbb{R}} w_{\delta_{\varepsilon}}+O(\varepsilon) \tag{56}
\end{equation*}
$$

We can see that the right-hand side of (54) have the same behavior as (56). Thus we have

$$
T\left[w_{\varepsilon}\right](0)=\frac{\alpha_{D}^{2}}{\int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}}\left(\alpha_{D}^{-1} \int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}(z) d z+O(\varepsilon)\right)=\alpha_{D}+O(\varepsilon)
$$

Thus we complete the proof.
Lemma 18. For some constant $C>0$, the following estimate holds:

$$
\begin{equation*}
\left|T\left[w_{\varepsilon}\right](\varepsilon y)-T\left[w_{\varepsilon}\right](0)\right| \leqslant C(\varepsilon|y|+\varepsilon), y \in \Omega_{\varepsilon}, \tag{57}
\end{equation*}
$$

for all ε sufficiently small.

Proof.

$$
\begin{aligned}
T\left[w_{\varepsilon}\right](\varepsilon y)-T\left[w_{\varepsilon}\right](0)= & c_{\varepsilon} \int_{-1}^{1}\left\{G_{D}(\varepsilon y, z)-G_{D}(0, z)\right\} w_{\varepsilon}^{2}(z) d z \\
= & \frac{\alpha_{D}^{2}}{\int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}} \int_{-1 / \varepsilon}^{1 / \varepsilon}\left\{G_{D}(\varepsilon y, \varepsilon z)-G_{D}(0, \varepsilon z)\right\} w_{\delta_{\varepsilon}}^{2}(z) \chi^{2}\left(\frac{\varepsilon}{r_{0}} z\right) d z \\
= & \frac{\alpha_{D}^{2}}{\int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}}\left[\int_{-1 / \varepsilon}^{1 / \varepsilon}\left\{K_{D}(\varepsilon|y-z|)-K_{D}(\varepsilon|z|)\right\} w_{\delta_{\varepsilon}}^{2}(z) \chi^{2}\left(\frac{\varepsilon}{r_{0}} z\right) d z\right. \\
& \left.-\int_{-1 / \varepsilon}^{1 / \varepsilon}\left\{H_{D}(\varepsilon y, \varepsilon z)-H_{D}(0, \varepsilon z)\right\} w_{\delta_{\varepsilon}}^{2}(z) \chi^{2}\left(\frac{\varepsilon}{r_{0}} z\right) d z\right]
\end{aligned}
$$

Now, by Lemma 16 , and noting $\varepsilon|z| \leqslant 1$ for $|z| \leqslant 1 / \varepsilon$, the following estimate holds:

$$
\left|K_{D}(\varepsilon|y-z|)-K_{D}(\varepsilon|z|)\right| \leqslant C\left(\varepsilon| | y|-|y-z||+\varepsilon^{2}\left(|y-z|^{2}+|z|^{2}\right)\right) \leqslant C^{\prime} \varepsilon(|y|+|z|), \quad y, z \in \Omega_{\varepsilon},
$$

for some $C, C^{\prime}>0$ independent of ε, y and z. Moreover, we can estimate by the Maclaurin expansion as follows:

$$
\left|H_{D}(\varepsilon y, \varepsilon z)-H_{D}(0, \varepsilon z)\right| \leqslant C^{\prime \prime} \varepsilon(|y|+|z|), \quad y, z \in \Omega_{\varepsilon}
$$

for some $C^{\prime \prime}>0$ independent of ε, y and z. Thus we have

$$
\left|T\left[w_{\varepsilon}\right](\varepsilon y)-T\left[w_{\varepsilon}\right](0)\right| \leqslant \varepsilon \frac{\alpha_{D}^{2}}{\int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}}\left(C^{\prime}+C^{\prime \prime}\right) \int_{-1 / \varepsilon}^{1 / \varepsilon}(|y|+|z|) w_{\delta_{\varepsilon}}^{2}(z) d z \leqslant C^{\prime \prime \prime}(\varepsilon|y|+\varepsilon), \quad y \in \Omega_{\varepsilon},
$$

for some $C^{\prime \prime \prime}>0$ independent of ε and y. Thus we complete the proof.
Lemma 19. There exists $C_{1}>0$ such that

$$
\begin{equation*}
\left\|S\left[\bar{w}_{\varepsilon}\right]\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \leqslant C_{1} \varepsilon \tag{58}
\end{equation*}
$$

for all ε sufficiently small.
Proof. It is easily to see that $\Delta \bar{w}_{\varepsilon}-\bar{w}_{\varepsilon}=-f_{\delta_{\varepsilon}}\left(w_{\delta_{\varepsilon}}\right) \alpha_{D}+$ e.s.t. in $L^{2}\left(\Omega_{\varepsilon}\right)$ as $\varepsilon \rightarrow 0$. Hence,

$$
\begin{aligned}
S\left[\bar{w}_{\varepsilon}\right](y) & =-f_{\delta_{\varepsilon}}\left(w_{\delta_{\varepsilon}}\right) \alpha_{D}+\frac{1}{\overline{T\left[w_{\varepsilon}\right]}(y)} \frac{\bar{w}_{\varepsilon}^{2}(y)}{1+\delta_{\varepsilon} \alpha_{D}^{-2} \bar{w}_{\varepsilon}^{2}(y)}+\text { e.s.t. } \\
& =-f_{\delta_{\varepsilon}}\left(w_{\delta_{\varepsilon}}\right) \alpha_{D}+\frac{1}{\overline{T\left[w_{\varepsilon}\right]}(y)} \frac{\alpha_{D}^{2} w_{\delta_{\varepsilon}}^{2}(y) \chi^{2}\left(\frac{\varepsilon}{r_{0}} y\right)}{1+\delta_{\varepsilon} w_{\delta_{\varepsilon}}^{2}(y) \chi^{2}\left(\frac{\varepsilon}{r_{0}} y\right)}+\text { e.s.t. } \\
& =-f_{\delta_{\varepsilon}}\left(w_{\delta_{\varepsilon}}\right) \alpha_{D}+\frac{\alpha_{D}^{2}}{\overline{T\left[w_{\varepsilon}\right]}} f_{\delta_{\varepsilon}}\left(w_{\delta_{\varepsilon}}\right)+\text { e.s.t. in } L^{2}\left(\Omega_{\varepsilon}\right) .
\end{aligned}
$$

By Lemma 17, we have

$$
\begin{aligned}
-f_{\delta_{\varepsilon}}\left(w_{\delta_{\varepsilon}}\right) \alpha_{D}+\frac{\alpha_{D}^{2}}{\overline{T\left[w_{\varepsilon}\right]}} f_{\delta_{\varepsilon}}\left(w_{\delta_{\varepsilon}}\right) & =f_{\delta_{\varepsilon}}\left(w_{\delta_{\varepsilon}}\right) \alpha_{D}\left\{-1+\frac{\alpha_{D}}{T\left[w_{\varepsilon}\right](0)}+\frac{\alpha_{D}}{\overline{T\left[w_{\varepsilon}\right]}(y)}-\frac{\alpha_{D}}{T\left[w_{\varepsilon}\right](0)}\right\} \\
& =f_{\delta_{\varepsilon}}\left(w_{\delta_{\varepsilon}}\right) \alpha_{D}\left\{O(\varepsilon)+\frac{\alpha_{D}}{T\left[w_{\varepsilon}\right](\varepsilon y) T\left[w_{\varepsilon}\right](0)}\left(T\left[w_{\varepsilon}\right](0)-T\left[w_{\varepsilon}\right](\varepsilon y)\right)\right\} .
\end{aligned}
$$

Moreover, by Lemma 18, the following estimate holds:

$$
\begin{aligned}
\left\|f_{\delta_{\varepsilon}}\left(w_{\delta_{\varepsilon}}\right)\left(T\left[w_{\varepsilon}\right](0)-T\left[w_{\varepsilon}\right](\varepsilon y)\right)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}^{2} & =\int_{\Omega_{\varepsilon}} \frac{w_{\delta_{\varepsilon}}^{4}}{\left(1+\delta_{\varepsilon} w_{\delta_{\varepsilon}}^{2}\right)^{2}}\left(T\left[w_{\varepsilon}\right](0)-T\left[w_{\varepsilon}\right](\varepsilon y)\right)^{2} d y \\
& \leqslant C \int_{\Omega_{\varepsilon}} w_{\delta_{\varepsilon}}^{4}(y)(\varepsilon|y|+\varepsilon)^{2} d y \leqslant C^{\prime} \varepsilon^{2},
\end{aligned}
$$

for some constants $C, C^{\prime}>0$ independent of ε sufficiently small. From these estimates and by Lemma 15 , we have a conclusion.

Next, we give the derivatives of T and S. The proofs of Lemmas 20, 21 below are uninteresting calculation. So we give their proofs in Appendix A.

Lemma 20. If we regard T as a mapping form $L^{2}(-1,1)$ into $L^{\infty}(-1,1)$, then T is Fréchet differentiable on $L^{2}(-1,1)$, and its derivative at $u \in L^{2}(-1,1)$ is given by

$$
\begin{equation*}
T^{\prime}[u] \phi=2 c_{\varepsilon} \int_{-1}^{1} G_{D}(x, z) u(z) \phi(z) d z, \quad \phi \in L^{2}(-1,1) \tag{59}
\end{equation*}
$$

Moreover, for some constant $C>0$ independent of ε sufficiently small, the following estimates hold:

$$
\begin{align*}
& \left\|\overline{T[\underline{u}+\underline{h}]}-\overline{T[\underline{u}]}-\overline{T^{\prime}[\underline{u}] \underline{h}}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)} \leqslant C\|h\|_{L^{2}\left(\Omega_{\varepsilon}\right)}^{2}, \tag{60}\\
& \left\|\overline{T^{\prime}[\underline{u}] \underline{h}}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)} \leqslant C\|u\|_{L^{2}\left(\Omega_{\varepsilon}\right)}\|h\|_{L^{2}\left(\Omega_{\varepsilon}\right)}, \tag{61}
\end{align*}
$$

for any $u, h \in L^{2}\left(\Omega_{\varepsilon}\right)$.

For $\tau>0$, we define a ball in $H^{2}\left(\Omega_{\varepsilon}\right)$ as follows:

$$
\begin{equation*}
B_{\tau}\left(\bar{w}_{\varepsilon}\right):=\left\{u \in H^{2}\left(\Omega_{\varepsilon}\right):\left\|\bar{w}_{\varepsilon}-u\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)}<\tau\right\} . \tag{62}
\end{equation*}
$$

Let us fix $\tau>0$ so that

$$
\begin{equation*}
T[\underline{u}](x) \geqslant \frac{1}{2} c_{1}, \quad x \in(-1,1), \tag{63}
\end{equation*}
$$

holds for all $u \in B_{\tau}\left(\bar{w}_{\varepsilon}\right)$ and ε sufficiently small, where c_{1} is a constant given in Lemma 15 .
Lemma 21. For all ε sufficiently small, $S: H^{2}\left(\Omega_{\varepsilon}\right) \rightarrow L^{2}\left(\Omega_{\varepsilon}\right)$ is Fréchet differentiable on $B_{\tau}\left(\bar{w}_{\varepsilon}\right)$, and its derivative at $u \in B_{\tau}\left(\bar{w}_{\varepsilon}\right)$ is given by

$$
\begin{equation*}
S^{\prime}[u] \phi=\phi^{\prime \prime}-\phi+\frac{2 u \phi}{\overline{T[\underline{u}]}\left(1+\delta_{\varepsilon} \alpha_{D}^{-2} u^{2}\right)^{2}}-\frac{u^{2}\left(\overline{T^{\prime}[\underline{u}] \underline{\phi}}\right)}{\overline{T[\underline{u}]^{2}}\left(1+\delta_{\varepsilon} \alpha_{D}^{-2} u^{2}\right)}, \quad \phi \in H^{2}\left(\Omega_{\varepsilon}\right) . \tag{64}
\end{equation*}
$$

Moreover, the following estimates hold: for $u \in B_{\tau}\left(\bar{w}_{\varepsilon}\right), \phi \in H^{2}\left(\Omega_{\varepsilon}\right)$ and $h \in H^{2}\left(\Omega_{\varepsilon}\right),\|h\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \ll 1$,

$$
\begin{align*}
& \left\|S[u+h]-S[u]-S^{\prime}[u] h\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \leqslant C\left(\|h\|_{L^{2}\left(\Omega_{\varepsilon}\right)}^{2}+\|h\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}\|h\|_{L^{2}\left(\Omega_{\varepsilon}\right)}\right), \tag{65}\\
& \left\|S^{\prime}[u+h] \phi-S^{\prime}[u] \phi\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \leqslant C\left(\|h\|_{L^{2}\left(\Omega_{\varepsilon}\right)}+\|h\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}\right)\|\phi\|_{L^{2}\left(\Omega_{\varepsilon}\right)}, \tag{66}
\end{align*}
$$

where $C>0$ is independent of u, ϕ, h and ε sufficiently small.
Remark 22. For the estimate (66), we note that the term $\phi^{\prime \prime}$ vanishes in $S^{\prime}[u+h] \phi-S^{\prime}[u] \phi$. Actually, (66) also holds for $\phi \in L^{2}\left(\Omega_{\varepsilon}\right)$.

5. Construction of a solution for $\boldsymbol{\sigma}=0$

In this section, we construct the 1-peak solution to (1) in the case $\sigma=0$ and prove Theorem 1 . Therefore, we always assume $\sigma=0$ throughout this section. Our construction is based on the argument due to the contraction mapping principle, which was used in [14,23,8], and so on.

Now we define an operator \tilde{L}_{ε} on $L^{2}\left(\Omega_{\varepsilon}\right)$ with $\operatorname{Dom}\left(\tilde{L}_{\varepsilon}\right)=H_{r, v}^{2}\left(\Omega_{\varepsilon}\right)$ by

$$
\begin{equation*}
\tilde{L}_{\varepsilon} \phi:=S^{\prime}\left[\bar{w}_{\varepsilon}\right] \phi=\phi^{\prime \prime}-\phi+\frac{2 \bar{w}_{\varepsilon} \phi}{\overline{T\left[w_{\varepsilon}\right]}\left(1+\delta_{\varepsilon} \alpha_{D}^{-2} \bar{w}_{\varepsilon}^{2}\right)^{2}}-\frac{\bar{w}_{\varepsilon}^{2}\left(\overline{T^{\prime}\left[w_{\varepsilon}\right] \phi}\right)}{\left.\overline{T\left[w_{\varepsilon}\right.}\right]^{2}\left(1+\delta_{\varepsilon} \alpha_{D}^{-2} \bar{w}_{\varepsilon}^{2}\right)} . \tag{67}
\end{equation*}
$$

Then its conjugate operator $\tilde{L}_{\varepsilon}^{*}$ is given by $\operatorname{Dom}\left(\tilde{L}_{\varepsilon}^{*}\right)=H_{r, v}^{2}\left(\Omega_{\varepsilon}\right)$ and

$$
\begin{equation*}
\tilde{L}_{\varepsilon}^{*} \psi=\psi^{\prime \prime}-\psi+\frac{2 \bar{w}_{\varepsilon} \psi}{\overline{T\left[w_{\varepsilon}\right]}\left(1+\delta_{\varepsilon} \alpha_{D}^{-2} \bar{w}_{\varepsilon}^{2}\right)^{2}}-\left(\overline{T^{\prime}\left[w_{\varepsilon}\right]\left[\frac{w_{\varepsilon} \underline{\psi}}{T\left[w_{\varepsilon}\right]^{2}\left(1+\delta_{\varepsilon} \alpha_{D}^{-2} w_{\varepsilon}^{2}\right)}\right]}\right) \bar{w}_{\varepsilon} . \tag{68}
\end{equation*}
$$

The most important thing for our construction is the invertibility of \tilde{L}_{ε}. We will notice that the limits of \tilde{L}_{ε} and $\tilde{L}_{\varepsilon}^{*}$ as $\varepsilon \rightarrow 0$ are $\mathcal{L}_{\delta_{0}}$ and $\mathcal{L}_{\delta_{0}}^{*}$ in some sense.

Proposition 23. There exist $\varepsilon_{0}>0$ and $\lambda>0$ such that, for $\varepsilon \in\left(0, \varepsilon_{0}\right)$, the following inequality holds:

$$
\begin{equation*}
\left\|\tilde{L}_{\varepsilon} \phi\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \geqslant \lambda\|\phi\|_{H^{2}\left(\Omega_{\varepsilon}\right)}, \quad \phi \in H_{r, v}^{2}\left(\Omega_{\varepsilon}\right) . \tag{69}
\end{equation*}
$$

In particular, if δ_{0} given in (44) is small so that $\delta_{0} \in\left[0, \delta_{2}\right)$, then

$$
\begin{equation*}
\operatorname{Ran}\left(\tilde{L}_{\varepsilon}\right)=L_{r}^{2}\left(\Omega_{\varepsilon}\right), \tag{70}
\end{equation*}
$$

holds for $\varepsilon \in\left(0, \varepsilon_{0}\right)$, and hence, $\tilde{L}_{\varepsilon}: H_{r, v}^{2}\left(\Omega_{\varepsilon}\right) \rightarrow L_{r}^{2}\left(\Omega_{\varepsilon}\right)$ has a bounded inverse $\tilde{L}_{\varepsilon}^{-1}$.
Before the proof, we make sure of the following extension and embedding lemmas on Ω_{ε} and a priori elliptic estimate. Although they are elementary and well-known facts, we need to state their ε-dependence clearly because our domain Ω_{ε} depends on ε. So, we give their proofs in Appendix A for the completeness.

Lemma 24 (Extension lemma). For fixed $\bar{\varepsilon}>0$, there exists an extension operator E from $H_{r}^{2}\left(\Omega_{\varepsilon}\right)$ into $H_{r}^{2}(\mathbb{R})$, and there exists $C>0$ depending only on $\bar{\varepsilon}$ such that, for all $\varepsilon \in(0, \bar{\varepsilon})$,

$$
\begin{equation*}
\|E u\|_{H^{2}(\mathbb{R})} \leqslant C\|u\|_{H^{2}\left(\Omega_{\varepsilon}\right)}, \quad u \in H_{r}^{2}\left(\Omega_{\varepsilon}\right) . \tag{71}
\end{equation*}
$$

Lemma 25 (Embedding lemma). For fixed $\bar{\varepsilon}>0$, there exists $C>0$ depending only on $\bar{\varepsilon}$ such that, for all $\varepsilon \in(0, \bar{\varepsilon})$,

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)} \leqslant C\|u\|_{H^{2}\left(\Omega_{\varepsilon}\right)}, \quad u \in H^{2}\left(\Omega_{\varepsilon}\right) \tag{72}
\end{equation*}
$$

Lemma 26 (A priori elliptic estimate). For fixed $\bar{\varepsilon}>0$ and $f \in L^{2}\left(\Omega_{\varepsilon}\right)$, let $\varepsilon \in(0, \bar{\varepsilon})$ and $u \in H_{v}^{2}\left(\Omega_{\varepsilon}\right)$ satisfy the following equation:

$$
\begin{equation*}
-u^{\prime \prime}+u=f \quad \text { in } \Omega_{\varepsilon} . \tag{73}
\end{equation*}
$$

Then, the following estimate holds:

$$
\begin{equation*}
\|u\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \leqslant C\|f\|_{L^{2}\left(\Omega_{\varepsilon}\right)}, \tag{74}
\end{equation*}
$$

the constant $C>0$ is independent of u, f and $\varepsilon \in(0, \bar{\varepsilon})$.
Proof of Proposition 23. We first prove (69). Let the contrary be true. Then there exist $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}$ and $\phi_{n} \in H_{r, v}^{2}\left(\Omega_{\varepsilon_{n}}\right)$ such that

$$
\begin{cases}\varepsilon_{n} \rightarrow 0, & \left\|\tilde{L}_{\varepsilon_{n}} \phi_{n}\right\|_{L^{2}\left(\Omega_{\varepsilon_{n}}\right)} \rightarrow 0, \tag{75}\\ \left\|\phi_{n}\right\|_{H^{2}\left(\Omega_{\varepsilon_{n}}\right)}=1, & n=1,2, \ldots\end{cases}
$$

Then, each ϕ_{n} can be extended to an element of $H_{r}^{2}(\mathbb{R})$ by the extension lemma. For simplicity, let us denote the extended function $E \phi_{n}$ by ϕ_{n} again. Note that $\left\|\phi_{n}\right\|_{H^{2}(\mathbb{R})} \leqslant M$ holds for some constant $M>0$ independent of n. Hence, we can pick up a subsequence (we denote the subsequence by $\left\{\phi_{n}\right\}$ simply), such that,

$$
\begin{array}{ll}
\phi_{n} \rightharpoonup \phi & \text { in } H^{2}(\mathbb{R}), \\
\phi_{n} \rightarrow \phi & \text { in } L_{\mathrm{loc}}^{2}(\mathbb{R}) \text { and } L_{\mathrm{loc}}^{\infty}(\mathbb{R}), \tag{77}
\end{array}
$$

as $n \rightarrow \infty$, for some $\phi \in H_{r}^{2}(\mathbb{R})$, where " Δ " means the weak-limit. Let us denote $\delta_{\varepsilon_{n}}$ and $\Omega_{\varepsilon_{n}}$ corresponding to ε_{n} by δ_{n} and Ω_{n}, respectively. Recall that $\delta_{n} \rightarrow \delta_{0}$ as $n \rightarrow \infty$. We claim that:

Claim. For any $\varphi \in C_{0}^{\infty}(\mathbb{R})$, it holds that

$$
\begin{equation*}
\left(\tilde{L}_{\varepsilon_{n}} \phi_{n}, \varphi\right)_{L^{2}\left(\Omega_{n}\right)} \rightarrow\left(\mathcal{L}_{\delta_{0}} \phi, \varphi\right)_{L^{2}(\mathbb{R})} \quad(n \rightarrow \infty) \tag{78}
\end{equation*}
$$

Indeed, let $K:=\operatorname{supp}(\varphi)$ for $\varphi \in C_{0}^{\infty}(\mathbb{R})$. We may assume $\Omega_{n} \supset K$ considering n is large enough. Then,

$$
\left(\tilde{L}_{\varepsilon_{n}} \phi_{n}, \varphi\right)_{L^{2}\left(\Omega_{n}\right)}=\int_{K} \phi_{n}^{\prime \prime} \varphi-\int_{K} \phi_{n} \varphi+\int_{K} \frac{2 \bar{w}_{\varepsilon_{n}} \phi_{n} \varphi}{\overline{T\left[w_{\varepsilon_{n}}\right]}\left(1+\delta_{n} \alpha_{D}^{-2} \bar{w}_{\varepsilon_{n}}^{2}\right)^{2}}-\int_{K} \frac{\bar{w}_{\varepsilon_{n}}^{2}\left(\overline{T^{\prime}\left[w_{\varepsilon_{n}}\right] \phi_{n}}\right) \varphi}{\left.\overline{T\left[w_{\varepsilon_{n}}\right]^{2}\left(1+\delta_{n} \alpha_{D}^{-2} \bar{w}_{\varepsilon_{n}}^{2}\right.}\right) .}
$$

Let us consider each term. We first notice that

$$
\int_{K} \phi_{n}^{\prime \prime} \varphi-\int_{K} \phi_{n} \varphi \rightarrow \int_{K}\left(\phi^{\prime \prime}-\phi\right) \varphi \quad(n \rightarrow \infty) .
$$

Recall $\bar{w}_{\varepsilon_{n}}(y)=\alpha_{D} w_{\delta_{n}}(y) \chi\left(\frac{\varepsilon_{n}}{r_{0}} y\right)$. For each $y \in K$, we have

$$
\begin{aligned}
\frac{2 \bar{w}_{\varepsilon_{n}}(y) \phi_{n}(y) \varphi(y)}{\overline{T\left[w_{\varepsilon_{n}}\right]}(y)\left(1+\delta_{n} \alpha_{D}^{-2} \bar{w}_{\varepsilon_{n}}^{2}(y)\right)^{2}} & =\frac{2 \alpha_{D} w_{\delta_{n}}(y) \chi\left(\frac{\varepsilon_{n}}{r_{0}} y\right) \phi_{n}(y) \varphi(y)}{T\left[w_{\varepsilon_{n}}\right]\left(\varepsilon_{n} y\right)\left(1+\delta_{n} w_{\delta_{n}}^{2}(y) \chi^{2}\left(\frac{\varepsilon_{n}}{r_{0}} y\right)\right)^{2}} \\
& \rightarrow \frac{2 w_{\delta_{0}}(y) \phi(y) \varphi(y)}{\left(1+\delta_{0} w_{\delta_{0}}^{2}(y)\right)^{2}}=f_{\delta_{0}}^{\prime}\left(w_{\delta_{0}}\right) \phi(y) \varphi(y)
\end{aligned}
$$

as $n \rightarrow \infty$. By applying Lebesgue's convergence theorem, we can see that

$$
\int_{K} \frac{2 \bar{w}_{\varepsilon_{n}} \phi_{n} \varphi}{\overline{T\left[w_{\varepsilon_{n}}\right]}\left(1+\delta_{n} \alpha_{D}^{-2} \bar{w}_{\varepsilon_{n}}^{2}\right)^{2}} \rightarrow \int_{K} f_{\delta_{0}}^{\prime}\left(w_{\delta_{0}}\right) \phi \varphi \quad(n \rightarrow \infty) .
$$

Next, for each $y \in K$, let

$$
\begin{aligned}
\left(\overline{T^{\prime}\left[w_{\varepsilon_{n}}\right] \phi_{n}}\right)(y)= & 2 c_{\varepsilon_{n}} \int_{-1}^{1} G_{D}\left(\varepsilon_{n} y, z\right) w_{\varepsilon_{n}}(z) \phi_{n}\left(\frac{z}{\varepsilon_{n}}\right) d z \\
= & \frac{2 \alpha_{D}}{\int_{\mathbb{R}} w_{\delta_{n}}^{2}} \int_{-1 / \varepsilon_{n}}^{1 / \varepsilon_{n}} G_{D}\left(\varepsilon_{n} y, \varepsilon_{n} z\right) w_{\delta_{n}}(z) \chi\left(\frac{\varepsilon_{n}}{r_{0}} z\right) \phi_{n}(z) d z \\
= & \frac{2 \alpha_{D}}{\int_{\mathbb{R}} w_{\delta_{n}}^{2}}\left\{\int_{-1 / \varepsilon_{n}}^{1 / \varepsilon_{n}} G_{D}\left(\varepsilon_{n} y, 0\right) w_{\delta_{n}}(z) \chi\left(\frac{\varepsilon_{n}}{r_{0}} z\right) \phi_{n}(z) d z\right. \\
& \left.+\int_{-1 / \varepsilon_{n}}^{1 / \varepsilon_{n}}\left[G_{D}\left(\varepsilon_{n} y, \varepsilon_{n} z\right)-G_{D}\left(\varepsilon_{n} y, 0\right)\right] w_{\delta_{n}}(z) \chi\left(\frac{\varepsilon_{n}}{r_{0}} z\right) \phi_{n}(z) d z\right\}
\end{aligned}
$$

We notice that

$$
\frac{2 \alpha_{D}}{\int_{\mathbb{R}} w_{\delta_{n}}^{2}} \int_{-1 / \varepsilon_{n}}^{1 / \varepsilon_{n}} G_{D}\left(\varepsilon_{n} y, 0\right) w_{\delta_{n}}(z) \chi\left(\frac{\varepsilon_{n}}{r_{0}} z\right) \phi_{n}(z) d z \rightarrow \frac{2}{\int_{\mathbb{R}} w_{\delta_{0}}^{2}} \int_{\mathbb{R}} w_{\delta_{0}}(z) \phi(z) d z
$$

as $n \rightarrow \infty$ for each $y \in K$. By the same estimate as was used in the proof of Lemma 18 , the following estimate holds:

$$
\begin{aligned}
& \left|\frac{2 \alpha_{D}}{\int_{\mathbb{R}} w_{\delta_{n}}^{2}} \int_{-1 / \varepsilon_{n}}^{1 / \varepsilon_{n}}\left[G_{D}\left(\varepsilon_{n} y, \varepsilon_{n} z\right)-G_{D}\left(\varepsilon_{n} y, 0\right)\right] w_{\delta_{n}}(z) \chi\left(\frac{\varepsilon_{n}}{r_{0}} z\right) \phi_{n}(z) d z\right| \\
& \quad \leqslant C \varepsilon_{n} \int_{\Omega_{n}}(|y|+|z|) w_{\delta_{n}}(z)\left|\phi_{n}(z)\right| d z \\
& \leqslant C \varepsilon_{n}\left(|y| \cdot\left\|w_{\delta_{n}}\right\|_{L^{2}\left(\Omega_{n}\right)}+\left\|z w_{\delta_{n}}\right\|_{L^{2}\left(\Omega_{n}\right)}\right)\left\|\phi_{n}\right\|_{L^{2}\left(\Omega_{n}\right)} \\
& \quad \leqslant C^{\prime} \varepsilon_{n}(1+|y|)
\end{aligned}
$$

for some constants $C, C^{\prime}>0$ independent of n. Hence, for each $y \in K$, it holds that

$$
\begin{equation*}
\left(\overline{T^{\prime}\left[w_{\varepsilon_{n}}\right] \underline{\phi}_{n}}\right)(y) \rightarrow 2 \frac{\int_{\mathbb{R}} w_{\delta_{0}} \phi}{\int_{\mathbb{R}} w_{\delta_{0}}^{2}} \quad(n \rightarrow \infty) \tag{79}
\end{equation*}
$$

Noting (79), we can see by Lebesgue's convergence theorem that

$$
\int_{K} \frac{\bar{w}_{\varepsilon_{n}}^{2}\left(\overline{T^{\prime}\left[w_{\varepsilon_{n}}\right] \underline{\phi_{n}}}\right) \varphi}{\overline{T\left[w_{\varepsilon_{n}}\right]^{2}}\left(1+\delta_{n} \alpha_{D}^{-2} \bar{w}_{\varepsilon_{n}}^{2}\right)} \rightarrow 2 \frac{\int_{\mathbb{R}} w_{\delta_{0}} \phi}{\int_{\mathbb{R}} w_{\delta_{0}}^{2}} \int_{K} f_{\delta_{0}}\left(w_{\delta_{0}}\right) \varphi \quad(n \rightarrow \infty)
$$

By these observations, the claim is verified.
On the other hand, we notice that

$$
\begin{equation*}
\left|\left(\tilde{L}_{\varepsilon_{n}} \phi_{n}, \varphi\right)_{L^{2}\left(\Omega_{n}\right)}\right| \leqslant\left\|\tilde{L}_{\varepsilon_{n}} \phi_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}\|\varphi\|_{L^{2}\left(\Omega_{n}\right)} \rightarrow 0 \tag{80}
\end{equation*}
$$

as $n \rightarrow \infty$ for any $\varphi \in C_{0}^{\infty}(\mathbb{R})$. Combining (78) and (80), we have

$$
\begin{equation*}
\left(\mathcal{L}_{\delta_{0}} \phi, \varphi\right)_{L^{2}(\mathbb{R})}=0 \quad \text { for any } \varphi \in C_{0}^{\infty}(\mathbb{R}) . \tag{81}
\end{equation*}
$$

Therefore, $\mathcal{L}_{\delta_{0}} \phi=0, \phi \in H_{r}^{2}(\mathbb{R})$. Thus we conclude $\phi=0$ by Lemma 13 .
Next, we claim that:

Claim.

$$
\begin{equation*}
\left\|\phi_{n}\right\|_{H^{2}\left(\Omega_{n}\right)} \rightarrow 0 \text { as } n \rightarrow \infty \tag{82}
\end{equation*}
$$

Indeed, by Lemma 26, we have

$$
\begin{align*}
\left\|\phi_{n}\right\|_{H^{2}\left(\Omega_{n}\right)} & \leqslant C\left\{\left\|\tilde{L}_{\varepsilon_{n}} \phi_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}+\left\|\frac{2 \bar{w}_{\varepsilon_{n}} \phi_{n}}{\overline{T\left[w_{\varepsilon_{n}}\right]}\left(1+\delta_{n} \alpha_{D}^{-2} \bar{w}_{\varepsilon_{n}}^{2}\right)^{2}}\right\|_{L^{2}\left(\Omega_{n}\right)}+\| \frac{\bar{w}_{\varepsilon_{n}}^{2}\left(\overline{T^{\prime}\left[w_{\varepsilon_{n}}\right] \phi_{n}}\right)}{\left.\overline{T\left[w_{\varepsilon_{n}}{ }^{2}\left(1+\delta_{n} \alpha_{D}^{-2} \bar{w}_{\varepsilon_{n}}^{2}\right)\right.} \|_{L^{2}\left(\Omega_{n}\right)}\right\}} \begin{array}{l}
\\
\end{array}\right\} C(I+I I+I I I) .
\end{align*}
$$

By (75), $I \rightarrow 0$ as $n \rightarrow \infty$. Moreover, by the exponentially decay estimate of Lemma 6(iv) and the fact $\phi_{n} \rightarrow \phi=0$ in $L_{\mathrm{loc}}^{\infty}(\mathbb{R})$ and $L_{\mathrm{loc}}^{2}(\mathbb{R})$, we can see that $I I, I I I \rightarrow 0$ as $n \rightarrow \infty$.

However, (82) contradicts $\left\|\phi_{n}\right\|_{H^{2}\left(\Omega_{n}\right)}=1$. Thus (69) is verified.
Next, we show (70). We note that (69) implies the range of \tilde{L}_{ε} is closed. Hence, by a general theory of the functional analysis, $\operatorname{Ran}\left(\tilde{L}_{\varepsilon}\right)=L_{r}^{2}\left(\Omega_{\varepsilon}\right)$ if and only if $\tilde{L}_{\varepsilon}^{*}$ is one to one. However, by the same argument as was used in the proof of (69), we can show that $\tilde{L}_{\varepsilon}^{*}$ is one to one for sufficiently small ε under the assumption where $\delta_{\varepsilon} \rightarrow \delta_{0} \in\left[0, \delta_{2}\right.$) as $\varepsilon \rightarrow 0$. Therefore, we omit the details.

At last, we construct a solution to (1) and complete the proof of Theorem 1. Let us find $\phi \in H_{r, v}^{2}\left(\Omega_{\varepsilon}\right)$ such that $S\left[\bar{w}_{\varepsilon}+\varepsilon \phi\right]=0$ for sufficiently small ε. Note that it is equivalent to the following: for $\phi \in H_{r, v}^{2}\left(\Omega_{\varepsilon}\right)$,

$$
\begin{aligned}
& S\left[\bar{w}_{\varepsilon}+\varepsilon \phi\right]=0, \\
& \left(\tilde{L}_{\varepsilon}(\varepsilon \phi)\right)=S^{\prime}\left[\bar{w}_{\varepsilon}\right](\varepsilon \phi)=-S\left[\bar{w}_{\varepsilon}+\varepsilon \phi\right]+S^{\prime}\left[\bar{w}_{\varepsilon}\right](\varepsilon \phi), \\
& \varepsilon \tilde{L}_{\varepsilon} \phi=-S\left[\bar{w}_{\varepsilon}\right]-\left(S\left[\bar{w}_{\varepsilon}+\varepsilon \phi\right]-S\left[\bar{w}_{\varepsilon}\right]-S^{\prime}\left[\bar{w}_{\varepsilon}\right](\varepsilon \phi)\right), \\
& \phi=\frac{1}{\varepsilon}\left\{-\tilde{L}_{\varepsilon}^{-1}\left[S\left[\bar{w}_{\varepsilon}\right]\right]-\tilde{L}_{\varepsilon}^{-1}\left[S\left[\bar{w}_{\varepsilon}+\varepsilon \phi\right]-S\left[\bar{w}_{\varepsilon}\right]-S^{\prime}\left[\bar{w}_{\varepsilon}\right](\varepsilon \phi)\right]\right\}=: M_{\varepsilon}(\phi) .
\end{aligned}
$$

Hence, we only need to find a fixed point ϕ of M_{ε}. Define

$$
\begin{equation*}
B:=\left\{\phi \in H_{r, v}^{2}\left(\Omega_{\varepsilon}\right):\|\phi\|_{H^{2}\left(\Omega_{\varepsilon}\right)}<\frac{2 C_{1}}{\lambda}\right\} \tag{84}
\end{equation*}
$$

where C_{1} and λ are constants given in Lemma 19 and Proposition 23, respectively. Let us show that M_{ε} is a contraction mapping on B when ε is sufficiently small.

Proposition 27. There exists $\varepsilon_{1}>0$ such that, for $\varepsilon \in\left(0, \varepsilon_{1}\right), M_{\varepsilon}$ is a contraction mapping on B.
Proof. For $\phi \in B$, note that $M_{\varepsilon}(\phi) \in H_{r, v}^{2}\left(\Omega_{\varepsilon}\right)$. Moreover, by Lemma 19, (65) and (72), we can estimate as follows:

$$
\begin{aligned}
\left\|M_{\varepsilon}(\phi)\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)} & \leqslant \frac{1}{\varepsilon \lambda}\left\{\left\|S\left[\bar{w}_{\varepsilon}\right]\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}+\left\|S\left[\bar{w}_{\varepsilon}+\varepsilon \phi\right]-S\left[\bar{w}_{\varepsilon}\right]-S^{\prime}\left[\bar{w}_{\varepsilon}\right](\varepsilon \phi)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}\right\} \\
& \leqslant \frac{1}{\varepsilon \lambda}\left\{C_{1} \varepsilon+C \varepsilon^{2}\left(\|\phi\|_{L^{2}\left(\Omega_{\varepsilon}\right)}^{2}+\|\phi\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}\|\phi\|_{L^{2}\left(\Omega_{\varepsilon}\right)}\right)\right\} \\
& \leqslant \frac{1}{\lambda}\left\{C_{1}+C^{\prime} \varepsilon\|\phi\|_{H^{2}\left(\Omega_{\varepsilon}\right)}^{2}\right\} \\
& \leqslant \frac{1}{\lambda}\left\{C_{1}+C^{\prime} \varepsilon \frac{4 C_{1}^{2}}{\lambda^{2}}\right\},
\end{aligned}
$$

where $C, C^{\prime}>0$ are independent of ε sufficiently small. Hence, if ε is small so that $\varepsilon<\lambda^{2} /\left(8 C_{1} C^{\prime}\right)$, then $\left\|M_{\varepsilon}(\phi)\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)}<\frac{2 C_{1}}{\lambda}$ for $\phi \in B$. Therefore, M_{ε} is a mapping form B into itself for sufficiently small ε.

For $\phi_{1}, \phi_{2} \in B$, by (65), (66) and (72), we can estimate as follows:

$$
\begin{aligned}
& \| M_{\varepsilon}\left(\phi_{1}\right)-M_{\varepsilon}\left(\phi_{2}\right) \|_{H^{2}\left(\Omega_{\varepsilon}\right)} \\
& \quad \leqslant \frac{1}{\varepsilon \lambda}\left\|S\left[\bar{w}_{\varepsilon}+\varepsilon \phi_{1}\right]-S\left[\bar{w}_{\varepsilon}+\varepsilon \phi_{2}\right]-S^{\prime}\left[\bar{w}_{\varepsilon}\right]\left(\varepsilon \phi_{1}\right)+S^{\prime}\left[\bar{w}_{\varepsilon}\right]\left(\varepsilon \phi_{2}\right)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \\
& \leqslant \frac{1}{\varepsilon \lambda}\left\{\left\|S\left[\bar{w}_{\varepsilon}+\varepsilon \phi_{2}+\varepsilon\left(\phi_{1}-\phi_{2}\right)\right]-S\left[\bar{w}_{\varepsilon}+\varepsilon \phi_{2}\right]-S^{\prime}\left[\bar{w}_{\varepsilon}+\varepsilon \phi_{2}\right]\left(\varepsilon\left(\phi_{1}-\phi_{2}\right)\right)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}\right. \\
&\left.\quad+\varepsilon\left\|S^{\prime}\left[\bar{w}_{\varepsilon}+\varepsilon \phi_{2}\right]\left(\phi_{1}-\phi_{2}\right)-S^{\prime}\left[\bar{w}_{\varepsilon}\right]\left(\phi_{1}-\phi_{2}\right)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}\right\} \\
& \quad \leqslant \frac{C}{\varepsilon \lambda}\left\{\varepsilon^{2}\left\|\phi_{1}-\phi_{2}\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)}^{2}+\varepsilon^{2}\left\|\phi_{2}\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)}\left\|\phi_{1}-\phi_{2}\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)}\right\} \\
& \leqslant C^{\prime} \varepsilon\left\|\phi_{1}-\phi_{2}\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)},
\end{aligned}
$$

where $C, C^{\prime}>0$ are independent of ε sufficiently small. Therefore, M_{ε} is a contraction mapping on B provided ε is small enough.

Proof of Theorem 1. By Proposition 27, M_{ε} has a unique fixed point in B if ε is sufficiently small. Let $\phi_{\varepsilon} \in B$ be the fixed point. Then ϕ_{ε} satisfies $S\left[\bar{w}_{\varepsilon}+\varepsilon \phi_{\varepsilon}\right]=0$. As we stated in Section 3.2, by putting $A_{\varepsilon}(x):=c_{\varepsilon}\left(w_{\varepsilon}(x)+\varepsilon \underline{\phi}_{\varepsilon}(x)\right)$ and $H_{\varepsilon}(x):=c_{\varepsilon} T\left[w_{\varepsilon}+\varepsilon \underline{\phi_{\varepsilon}}\right](x)$, we obtain a solution to (1). We can see that this ($A_{\varepsilon}, H_{\varepsilon}$) satisfies (12)-(14). Thus we complete the proof.

6. Construction of a solution for $\sigma>0$

In this section, we construct a solution to (1) in the case $\sigma>0$ and prove Theorem 2. Let us treat σ as a parameter. To lead precise estimates, we fix $\bar{\sigma}>0$ arbitrarily, and we will consider $\sigma \in(0, \bar{\sigma})$. Let $\phi_{\varepsilon} \in B$ be a unique fixed point of M_{ε} given in the proof of Theorem 1. Put

$$
\begin{equation*}
U_{\varepsilon}(y):=\bar{w}_{\varepsilon}(y)+\varepsilon \phi_{\varepsilon}, \quad y \in \Omega_{\varepsilon} \tag{85}
\end{equation*}
$$

and we define an operator \hat{L}_{ε} on $L^{2}\left(\Omega_{\varepsilon}\right)$ with $\operatorname{Dom}\left(\hat{L}_{\varepsilon}\right)=H_{r, v}^{2}\left(\Omega_{\varepsilon}\right)$ by

$$
\begin{equation*}
\hat{L}_{\varepsilon} \phi:=S^{\prime}\left[U_{\varepsilon}+\sigma_{\varepsilon}\right] \phi, \quad \phi \in \operatorname{Dom}\left(\hat{L}_{\varepsilon}\right) . \tag{86}
\end{equation*}
$$

We note that

$$
\left\|\sigma_{\varepsilon}\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)}=\sigma_{\varepsilon}\|1\|_{H^{2}\left(\Omega_{\varepsilon}\right)}=\frac{\sigma_{\varepsilon}}{\sqrt{2 \varepsilon}}=\frac{\varepsilon \sigma \int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}(y) d y}{\sqrt{2 \varepsilon}}<C \sqrt{\varepsilon} \sigma
$$

holds for some constant $C>0$ independent of ε sufficiently small. Thus, we may assume $U_{\varepsilon}+\sigma_{\varepsilon} \in B_{\tau}\left(\bar{w}_{\varepsilon}\right)$ for sufficiently small ε and $\sigma \in(0, \bar{\sigma})$. Then we have the following proposition.

Proposition 28. There exists $\hat{\varepsilon}_{0}>0$ depending on $\bar{\sigma}$ such that, for $\varepsilon \in\left(0, \hat{\varepsilon}_{0}\right)$ and $\sigma \in(0, \bar{\sigma}), \hat{L}_{\varepsilon}$ has a bounded inverse $\hat{L}_{\varepsilon}^{-1}: L_{r}^{2}\left(\Omega_{\varepsilon}\right) \rightarrow H_{r, v}^{2}\left(\Omega_{\varepsilon}\right)$, and the following estimate holds:

$$
\begin{equation*}
\left\|\hat{L}_{\varepsilon}^{-1} \phi\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \leqslant \frac{2}{\lambda}\|\phi\|_{L^{2}\left(\Omega_{\varepsilon}\right)}, \quad \phi \in L_{r}^{2}\left(\Omega_{\varepsilon}\right) \tag{87}
\end{equation*}
$$

where λ is a constant given in Proposition 23.
Proof. Let $\phi \in L_{r}^{2}\left(\Omega_{\varepsilon}\right)$ be given. For $\psi \in H_{r, v}^{2}\left(\Omega_{\varepsilon}\right)$, the following equations are equivalent:

$$
\begin{align*}
& \hat{L}_{\varepsilon} \psi=\phi \\
& \tilde{L}_{\varepsilon} \psi-\left(\tilde{L}_{\varepsilon} \psi-\hat{L}_{\varepsilon} \psi\right)=\phi \\
& \left(I-K_{\varepsilon}\right) \psi:=\psi-\tilde{L}_{\varepsilon}^{-1}\left(\tilde{L}_{\varepsilon} \psi-\hat{L}_{\varepsilon} \psi\right)=\tilde{L}_{\varepsilon}^{-1} \phi \tag{88}
\end{align*}
$$

Noting $\tilde{L}_{\varepsilon} \psi-\hat{L}_{\varepsilon} \psi=S^{\prime}\left[\bar{w}_{\varepsilon}\right] \psi-S^{\prime}\left[U_{\varepsilon}+\sigma_{\varepsilon}\right] \psi$, we can regard K_{ε} is a mapping from $L_{r}^{2}\left(\Omega_{\varepsilon}\right)$ into itself. We can estimate so that

$$
\begin{aligned}
\left\|K_{\varepsilon} \psi\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \leqslant\left\|K_{\varepsilon} \psi\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)} & \leqslant \frac{1}{\lambda}\left\|\tilde{L}_{\varepsilon} \psi-\hat{L}_{\varepsilon} \psi\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \\
& =\frac{1}{\lambda}\left\|S^{\prime}\left[\bar{w}_{\varepsilon}+\varepsilon \phi_{\varepsilon}+\sigma_{\varepsilon}\right] \psi-S^{\prime}\left[\bar{w}_{\varepsilon}\right] \psi\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \\
& \leqslant \frac{C}{\lambda}\left(\left\|\varepsilon \phi_{\varepsilon}+\sigma_{\varepsilon}\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}+\left\|\varepsilon \phi_{\varepsilon}+\sigma_{\varepsilon}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}\right)\|\psi\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \\
& \leqslant C^{\prime}(\varepsilon+\sqrt{\varepsilon} \bar{\sigma})\|\psi\|_{L^{2}\left(\Omega_{\varepsilon}\right)},
\end{aligned}
$$

by Lemma 21 , where $C^{\prime}>0$ is independent of $\sigma \in(0, \bar{\sigma})$ and ε. Therefore, $\left\|K_{\varepsilon}\right\|_{L_{r}^{2}\left(\Omega_{\varepsilon}\right) \rightarrow L_{r}^{2}\left(\Omega_{\varepsilon}\right)} \leqslant 1 / 2$ holds provided ε is small enough. Hence, by the Neumann series theory, $\left(I-K_{\varepsilon}\right)^{-1}: L_{r}^{2}\left(\Omega_{\varepsilon}\right) \rightarrow L_{r}^{2}\left(\Omega_{\varepsilon}\right)$ exists. Thus, we have $\psi=\left(I-K_{\varepsilon}\right)^{-1} \phi \equiv \hat{L}_{\varepsilon} \phi$. Moreover, from (88), we have $\psi \in H_{r, \nu}^{2}\left(\Omega_{\varepsilon}\right)$ and the estimate:

$$
\|\psi\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \leqslant\left\|K_{\varepsilon} \psi\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)}+\left\|\tilde{L}_{\varepsilon}^{-1} \psi\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \leqslant \frac{1}{2}\|\psi\|_{H^{2}\left(\Omega_{\varepsilon}\right)}+\frac{1}{\lambda}\|\phi\|_{L^{2}\left(\Omega_{\varepsilon}\right)} .
$$

Hence, $\|\psi\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \leqslant \frac{2}{\lambda}\|\phi\|_{L^{2}\left(\Omega_{\varepsilon}\right)}$ follows.
We put

$$
\hat{B}:=\left\{\phi \in H_{r, v}^{2}\left(\Omega_{\varepsilon}\right):\|\phi\|_{H^{2}\left(\Omega_{\varepsilon}\right)}<\bar{\sigma}\right\},
$$

and fix $\gamma \in(0,1 / 2)$ arbitrarily. Let us find $\phi \in \hat{B}$ such that $S\left[U_{\varepsilon}+\sigma_{\varepsilon}+\varepsilon^{\gamma} \phi\right]+\sigma_{\varepsilon}=0$. We note that this is equivalent to the following:

$$
\begin{aligned}
& -\varepsilon^{\gamma} \hat{L}_{\varepsilon} \phi=S\left[U_{\varepsilon}+\sigma_{\varepsilon}+\varepsilon^{\gamma} \phi\right]-S\left[U_{\varepsilon}+\sigma_{\varepsilon}\right]-S^{\prime}\left[U_{\varepsilon}+\sigma_{\varepsilon}\right]\left(\varepsilon^{\gamma} \phi\right)+S\left[U_{\varepsilon}+\sigma_{\varepsilon}\right]+\sigma_{\varepsilon}, \\
& \phi=-\frac{1}{\varepsilon^{\gamma}} \hat{L}_{\varepsilon}^{-1}\left(S\left[U_{\varepsilon}+\sigma_{\varepsilon}+\varepsilon^{\gamma} \phi\right]-S\left[U_{\varepsilon}+\sigma_{\varepsilon}\right]-S^{\prime}\left[U_{\varepsilon}+\sigma_{\varepsilon}\right]\left(\varepsilon^{\gamma} \phi\right)+S\left[U_{\varepsilon}+\sigma_{\varepsilon}\right]+\sigma_{\varepsilon}\right)=: M_{\varepsilon, \sigma}(\phi) .
\end{aligned}
$$

Proposition 29. For $\bar{\sigma}$ and γ, there exists $\hat{\varepsilon}_{1}>0$ such that, for $\varepsilon \in\left(0, \hat{\varepsilon}_{1}\right)$ and $\sigma \in(0, \bar{\sigma}), M_{\varepsilon, \sigma}$ is a contraction mapping from \hat{B} into itself.

Proof. By Proposition 28, we have

$$
\begin{aligned}
\left\|M_{\varepsilon, \sigma}(\phi)\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \leqslant & \frac{2}{\varepsilon^{\gamma} \lambda}\left\{\left\|S\left[U_{\varepsilon}+\sigma_{\varepsilon}+\varepsilon^{\gamma} \phi\right]-S\left[U_{\varepsilon}+\sigma_{\varepsilon}\right]-S^{\prime}\left[U_{\varepsilon}+\sigma_{\varepsilon}\right]\left(\varepsilon^{\gamma} \phi\right)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}\right. \\
& \left.+\left\|S\left[U_{\varepsilon}+\sigma_{\varepsilon}\right]\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}+\left\|\sigma_{\varepsilon}\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}\right\} \\
\equiv & \frac{2}{\varepsilon^{\gamma} \lambda}(I+I I+I I I) .
\end{aligned}
$$

Moreover, by Lemmas 21, 25, we can see that the following estimates hold: for $\phi \in \hat{B}$,

$$
\begin{aligned}
& I \leqslant 2 C \varepsilon^{2 \gamma}\|\phi\|_{H^{2}\left(\Omega_{\varepsilon}\right)}^{2} \leqslant 2 C \varepsilon^{2 \gamma} \bar{\sigma}^{2}, \\
& I I \leqslant\left\|S\left[U_{\varepsilon}+\sigma_{\varepsilon}\right]-S\left[U_{\varepsilon}\right]-S^{\prime}\left[U_{\varepsilon}\right] \sigma_{\varepsilon}\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}+\left\|S^{\prime}\left[U_{\varepsilon}\right] \sigma_{\varepsilon}\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \leqslant C^{\prime} \sqrt{\varepsilon}\left(\bar{\sigma}^{2}+\bar{\sigma}\right), \\
& I I I \leqslant C^{\prime \prime} \sqrt{\varepsilon} \bar{\sigma},
\end{aligned}
$$

the constants $C, C^{\prime}, C^{\prime \prime}>0$ are independent of $\sigma \in(0, \bar{\sigma})$ and ε sufficiently small. Thus we have

$$
\left\|M_{\varepsilon, \sigma}(\phi)\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \leqslant C^{\prime \prime \prime}\left(\bar{\sigma}^{2}+\bar{\sigma}\right) \max \left\{\varepsilon^{1 / 2-\gamma}, \varepsilon^{\gamma}\right\}
$$

for some constant $C^{\prime \prime \prime}>0$ independent of σ and ε sufficiently small. Hence, $\left\|M_{\varepsilon, \sigma}(\phi)\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)}<\bar{\sigma}$ holds for all $\phi \in \hat{B}$ and $\sigma \in(0, \bar{\sigma})$ provided ε is small enough.

Let $\phi_{1}, \phi_{2} \in \hat{B}$. Then, by the same argument as was used in the proof of Proposition 27, we can see that

$$
\left\|M_{\varepsilon, \sigma}\left(\phi_{1}\right)-M_{\varepsilon, \sigma}\left(\phi_{2}\right)\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \leqslant C \bar{\sigma} \varepsilon^{\gamma}\left\|\phi_{1}-\phi_{2}\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)}
$$

holds for some constant $C>0$ independent of σ and ε sufficiently small. Hence, there exists $\hat{\varepsilon}_{1}>0, M_{\varepsilon, \sigma}$ is a contraction mapping on \hat{B} for $\varepsilon \in\left(0, \hat{\varepsilon}_{1}\right)$ and $\sigma \in(0, \bar{\sigma})$. Thus we complete the proof.

Proof of Theorem 2. By Proposition 29, $M_{\varepsilon, \sigma}$ has a unique fixed point in \hat{B} if ε is sufficiently small. Let $\phi_{\varepsilon, \sigma} \in \hat{B}$ be the fixed point. Then $\phi_{\varepsilon, \sigma}$ satisfies $S\left[\bar{w}_{\varepsilon}+\varepsilon \phi_{\varepsilon}+\sigma_{\varepsilon}+\varepsilon^{\gamma} \phi_{\varepsilon, \sigma}\right]=0$. As we stated in Section 3.2, by putting $A_{\varepsilon, \sigma}(x):=c_{\varepsilon}\left(w_{\varepsilon}(x)+\varepsilon \underline{\phi}_{\varepsilon}(x)+\sigma_{\varepsilon}+\varepsilon^{\gamma} \underline{\phi}_{\varepsilon, \sigma}\right)$ and $H_{\varepsilon, \sigma}(x):=c_{\varepsilon} T\left[w_{\varepsilon}+\varepsilon \underline{\phi}_{\varepsilon}+\sigma_{\varepsilon}+\varepsilon^{\gamma} \underline{\phi}_{\varepsilon, \sigma}\right](x)$, we obtain a solution to (1). We can easily see that this ($A_{\varepsilon, \sigma}, \bar{H}_{\varepsilon, \sigma}$) satisfies (15)-(17). Thus we complete the proof.

Appendix A

In this section, we give the proofs of Lemmas 20, 21, 24, 2526 . We first prove Lemmas 24, 25, 26.
Proof of Lemma 24. In general, $H^{2}(\mathbb{R})$-extensions denoted by $E_{1} u$ and $E_{2} v$ of $u \in H^{2}(0, \infty)$ and $v \in H^{2}(-\infty, 0)$ are given by

$$
E_{1} u(x)=\left\{\begin{array}{ll}
u(x), & x>0, \\
3 u(-x)-2 u(-2 x), & x<0,
\end{array} \quad E_{2} v(x)= \begin{cases}3 v(-x)-2 v(-2 x), & x>0, \\
u(x), & x<0,\end{cases}\right.
$$

respectively, and

$$
\begin{equation*}
\left\|E_{1} u\right\|_{H^{2}(\mathbb{R})} \leqslant C\|u\|_{H^{2}(0, \infty)}, \quad\left\|E_{2} v\right\|_{H^{2}(\mathbb{R})} \leqslant C\|v\|_{H^{2}(-\infty, 0)}, \tag{89}
\end{equation*}
$$

hold for some $C>0$ independent of u and v. By translation, we see that there exists $H^{2}(\mathbb{R})$-extensions denoted by $\tilde{E}_{1} u$ and $\tilde{E}_{2} v$ of $u \in H^{2}\left(-\frac{1}{\varepsilon}, \infty\right)$ and $v \in H^{2}\left(-\infty, \frac{1}{\varepsilon}\right)$. Because translation does not change the H^{2}-norm,

$$
\begin{equation*}
\left\|\tilde{E}_{1} u\right\|_{H^{2}(\mathbb{R})} \leqslant C\|u\|_{H^{2}\left(-\frac{1}{\varepsilon}, \infty\right)}, \quad\left\|\tilde{E}_{2} v\right\|_{H^{2}(\mathbb{R})} \leqslant C\|v\|_{H^{2}\left(-\infty, \frac{1}{\varepsilon}\right)}, \tag{90}
\end{equation*}
$$

hold for the same constant C as that in (89). Now, let $\varphi \in C^{\infty}(\mathbb{R})$ be a function such that, $0 \leqslant \varphi \leqslant 1, \varphi(x)=1$ for $x \leqslant-\frac{1}{3}, \varphi(x)=0$ for $x>\frac{1}{3}$. Moreover, we take φ so that

$$
\begin{equation*}
1-\varphi(x)=\varphi(-x), \quad x \in \mathbb{R}, \tag{91}
\end{equation*}
$$

holds. We define $\varphi_{\varepsilon}(x):=\varphi(\varepsilon x)$. Then, for fixed $\bar{\varepsilon}>0$, we note that the estimates

$$
\begin{equation*}
\sup _{x \in \mathbb{R}}\left|\varphi_{\varepsilon}^{\prime}(x)\right|, \sup _{x \in \mathbb{R}}\left|\varphi_{\varepsilon}^{\prime \prime}(x)\right| \leqslant M, \quad \varepsilon \in(0, \bar{\varepsilon}), \tag{92}
\end{equation*}
$$

hold for some constant $M>0$ depending only on φ and independent of $\varepsilon \in(0, \bar{\varepsilon})$. For $u \in H_{r}^{2}\left(\Omega_{\varepsilon}\right)$, if we regard $\left(\varphi_{\varepsilon} u\right)(x)=0$ for $x \in\left[-\frac{1}{\varepsilon}, \infty\right)$, then $\varphi_{\varepsilon} u \in H^{2}\left(-\frac{1}{\varepsilon}, \infty\right)$. Note that $\left\|\varphi_{\varepsilon} u\right\|_{H^{2}\left(-\frac{1}{\varepsilon}, \infty\right)} \leqslant C^{\prime}\|u\|_{H^{2}\left(\Omega_{\varepsilon}\right)}$ holds for all $\varepsilon \in$ ($0, \bar{\varepsilon}$) by (92). We extend $\varphi_{\varepsilon} u$ by $\tilde{E}_{1}, \tilde{E}_{1}\left(\varphi_{\varepsilon} u\right) \in H^{2}(\mathbb{R})$. Similarly, we can regard $\left(1-\varphi_{\varepsilon}\right) u \in H^{2}\left(-\infty, \frac{1}{\varepsilon}\right)$, and $\tilde{E}_{2}\left(\left(1-\varphi_{\varepsilon}\right) u\right) \in H^{2}(\mathbb{R})$. Define $E u:=\tilde{E}_{1}\left(\varphi_{\varepsilon} u\right)+\tilde{E}_{2}\left(\left(1-\varphi_{\varepsilon}\right) u\right)$. Then, this E is a desired extension operator from $H_{r}^{2}\left(\Omega_{\varepsilon}\right)$ into $H_{r}^{2}(\mathbb{R})$. Indeed, we can easily see that $E u$ gives the $H^{2}(\mathbb{R})$-extension of u. Moreover, $E u$ is radially symmetric by our construction. Note the estimate

$$
\begin{aligned}
\|E u\|_{H^{2}(\mathbb{R})} & \leqslant\left\|\tilde{E}_{1}\left(\varphi_{\varepsilon} u\right)\right\|_{H^{2}(\mathbb{R})}+\left\|\tilde{E}_{2}\left(\left(1-\varphi_{\varepsilon}\right) u\right)\right\|_{H^{2}(\mathbb{R})} \\
& \leqslant C\left\{\left\|\varphi_{\varepsilon} u\right\|_{H^{2}\left(-\frac{1}{\varepsilon}, \infty\right)}+\left\|\left(1-\varphi_{\varepsilon}\right) u\right\|_{H^{2}\left(-\infty, \frac{1}{\varepsilon}\right)}\right\} \leqslant 2 C C^{\prime}\|u\|_{H^{2}\left(\Omega_{\varepsilon}\right)} .
\end{aligned}
$$

Thus we complete the proof.
Proof of Lemma 25. Let E be the extension operator given by Lemma 24. By Morrey's inequality, we have

$$
\|u\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}=\|E u\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)} \leqslant\|E u\|_{L^{\infty}(\mathbb{R})} \leqslant C^{\prime \prime}\|E u\|_{H^{2}(\mathbb{R})} \leqslant C C^{\prime \prime}\|u\|_{H^{2}\left(\Omega_{\varepsilon}\right)} .
$$

The constants $C, C^{\prime \prime}>0$ are independent of $\varepsilon \in(0, \bar{\varepsilon})$.

Proof of Lemma 26. We first note that

$$
\begin{equation*}
\|u\|_{H^{1}\left(\Omega_{\varepsilon}\right)} \leqslant\|f\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \tag{93}
\end{equation*}
$$

holds. This can be easily confirmed by multiplying (73) by u and integrating over Ω_{ε}. For fixed $c \in\left(0, \frac{1}{2}\right)$, let $\varphi_{1}, \varphi_{2} \in$ $C_{0}^{\infty}(\mathbb{R})$ be functions such that

$$
\varphi_{1}(x)=\left\{\begin{array}{ll}
1, & |x+1|<c, \\
0, & |x+1|>2 c,
\end{array} \quad \varphi_{2}(x)= \begin{cases}1, & |x-1|<c \\
0, & |x-1|>2 c .\end{cases}\right.
$$

Define $\varphi_{0}(x):=1-\left(\varphi_{1}(x)+\varphi_{2}(x)\right)$ for $x \in(-1,1)$. Let

$$
\varphi_{j}^{\varepsilon}(x):=\varphi_{j}(\varepsilon x), \quad j=0,1,2 .
$$

Then, note that $\left|\frac{d^{n} \varphi_{j}^{\varepsilon}}{d x^{n}}(x)\right|, j=0,1,2, n=1,2$, are bounded uniformly with respect to $\varepsilon \in(0, \bar{\varepsilon})$. Now, $\varphi_{0}^{\varepsilon} u$ solves the following equation:

$$
\begin{equation*}
-\left(\varphi_{0}^{\varepsilon} u\right)^{\prime \prime}+\left(\varphi_{0}^{\varepsilon} u\right)=-\left(\varphi_{0}^{\varepsilon}\right)^{\prime \prime} u-2\left(\varphi_{0}^{\varepsilon}\right)^{\prime} u^{\prime}+\varphi_{0}^{\varepsilon} f=: g_{0}^{\varepsilon} \quad \text { in } \Omega_{\varepsilon} . \tag{94}
\end{equation*}
$$

Note that $\left\|g_{0}^{\varepsilon}\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \leqslant C\|f\|_{L^{2}\left(\Omega_{\varepsilon}\right)}$ holds for some constant $C>0$ independent of $\varepsilon \in(0, \bar{\varepsilon})$ by (93). We extend $\varphi_{0}^{\varepsilon} u$ and g_{0}^{ε} as 0 in $\mathbb{R} \backslash \Omega_{\varepsilon}$. Then $\varphi_{0}^{\varepsilon} u \in H^{2}(\mathbb{R})$ and $g_{0}^{\varepsilon} \in L^{2}(\mathbb{R})$ satisfy the same equation as that in (94) over \mathbb{R}. Thus, by using a priori estimate of solutions for elliptic equations in whole space, we have

$$
\begin{equation*}
\left\|\varphi_{0}^{\varepsilon} u\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)}=\left\|\varphi_{0}^{\varepsilon} u\right\|_{H^{2}(\mathbb{R})} \leqslant C^{\prime}\left\|g_{0}^{\varepsilon}\right\|_{L^{2}(\mathbb{R})} \leqslant C C^{\prime}\|f\|_{L^{2}\left(\Omega_{\varepsilon}\right)}, \tag{95}
\end{equation*}
$$

for some constant $C^{\prime}>0$. Next, we consider $\varphi_{1}^{\varepsilon} u$. We extend $\varphi_{1}^{\varepsilon} u=0$ for $x \geqslant \frac{1}{\varepsilon}$. Then $\varphi_{1}^{\varepsilon} u \in H^{2}\left(-\frac{1}{\varepsilon}, \infty\right)$. Moreover, we extend it to $H^{2}(\mathbb{R})$-function by reflection (this extension is possible since u satisfies $u^{\prime}\left(-\frac{1}{\varepsilon}\right)=0$). Then we notice that $\varphi_{1}^{\varepsilon}$ satisfies

$$
\begin{equation*}
-\left(\varphi_{1}^{\varepsilon} u\right)^{\prime \prime}-\left(\varphi_{1}^{\varepsilon} u\right)=-\left(\varphi_{1}^{\varepsilon}\right)^{\prime \prime} u-2\left(\varphi_{1}^{\varepsilon}\right)^{\prime} u^{\prime}+\varphi_{1}^{\varepsilon} f \quad \text { in } \mathbb{R} \tag{96}
\end{equation*}
$$

Hence, by the same argument as was used for $\varphi_{0}^{\varepsilon} u$, we have $\left\|\varphi_{1}^{\varepsilon} u\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \leqslant C^{\prime \prime}\|f\|_{L^{2}\left(\Omega_{\varepsilon}\right)}$ for some constant $C^{\prime \prime}>0$ independent of $\varepsilon \in(0, \bar{\varepsilon})$. We can estimate for $\varphi_{2}^{\varepsilon} u$ in the same way. Thus we have

$$
\begin{equation*}
\|u\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \leqslant\left\|\varphi_{0}^{\varepsilon} u\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)}+\left\|\varphi_{1}^{\varepsilon} u\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)}+\left\|\varphi_{2}^{\varepsilon} u\right\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \leqslant C^{\prime \prime \prime}\|f\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \tag{97}
\end{equation*}
$$

for some constant $C^{\prime \prime \prime}>0$ independent of u, f and $\varepsilon \in(0, \bar{\varepsilon})$.
Proof of Lemma 20. It is easily to see that the Fréchet derivative of T at $u \in L^{2}(-1,1)$ is given by $T^{\prime}[u]$ of (59). Hence, we only show the inequalities (60) and (61). Noting that $c \leqslant G_{D}(x, z) \leqslant C, x, z \in(-1,1)$, holds for some $C, c>0$, we can estimate as follows:

$$
\begin{aligned}
\left|\overline{T[\underline{u}+\underline{h}]}(y)-\overline{T[\underline{u}]}(y)-\left(\overline{T^{\prime}[\underline{u}] \underline{h}}\right)(y)\right| & =c_{\varepsilon}\left|\int_{-1}^{1} G_{D}(\varepsilon y, z) \underline{h^{2}}(z) d z\right|=\frac{1}{\int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}}\left|\int_{-1 / \varepsilon}^{1 / \varepsilon} G_{D}(\varepsilon y, \varepsilon z) h^{2}(z) d z\right| \\
& \leqslant C^{\prime}\|h\|_{L^{2}\left(\Omega_{\varepsilon}\right)}^{2}, \quad y \in \Omega_{\varepsilon},
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\left(\overline{T^{\prime}[\underline{u}] \underline{h}}\right)(y)\right| & =2 c_{\varepsilon}\left|\int_{-1}^{1} G_{D}(\varepsilon y, z) \underline{u}(z) \underline{h}(z) d z\right|=\frac{2}{\int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}}\left|\int_{-1 / \varepsilon}^{1 / \varepsilon} G_{D}(\varepsilon y, \varepsilon z) u(z) h(z) d z\right| \\
& \leqslant C^{\prime}\|u\|_{L^{2}\left(\Omega_{\varepsilon}\right)}\|h\|_{L^{2}\left(\Omega_{\varepsilon}\right)}, \quad y \in \Omega_{\varepsilon},
\end{aligned}
$$

for any $u, h \in L^{2}\left(\Omega_{\varepsilon}\right)$, where $C^{\prime}>0$ is independent of ε sufficiently small. Thus we complete the proof.

Proof of Lemma 21. Let us show the inequalities (65) and (66). We first note that $\|u\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)},\|u\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \leqslant C_{\tau}$ holds for any $u \in B_{\tau}\left(\bar{w}_{\varepsilon}\right)$, where $C_{\tau}>0$ is some constant independent of u and ε sufficiently small. For simplicity of notation, we put

$$
\begin{equation*}
g_{\varepsilon}(t):=\frac{t^{2}}{1+\delta_{\varepsilon} \alpha_{D}^{-2} t^{2}} \tag{98}
\end{equation*}
$$

Let $u \in B_{\tau}\left(\bar{w}_{\varepsilon}\right), h \in H^{2}\left(\Omega_{\varepsilon}\right),\|h\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \ll 1$, and

$$
\begin{aligned}
S[u+h]-S[u]-S^{\prime}[u] h= & \frac{g_{\varepsilon}(u+h)}{\overline{T[\underline{u}+\underline{h}]}}-\frac{g_{\varepsilon}(u)}{\overline{T[\underline{u}]}}-\frac{g_{\varepsilon}^{\prime}(u) h}{\overline{T[\underline{u}]}}+\frac{\left(\overline{T^{\prime}[\underline{u}] \underline{h}}\right) g_{\varepsilon}(u)}{\overline{T[\underline{u}}]^{2}} \\
= & \frac{1}{\overline{T[\underline{u}+\underline{h}]}}\left\{g_{\varepsilon}(u+h)-g_{\varepsilon}(u)-g^{\prime}(u) h\right\} \\
& +g_{\varepsilon}(u)\left\{\frac{1}{\overline{T[\underline{u}+\underline{h}]}}-\frac{1}{\overline{T[\underline{u}]}}-\frac{\left(\overline{T^{\prime}[\underline{u}] \underline{h}}\right)}{\left.\overline{T[\underline{u}]^{2}}\right\}}\right. \\
& +g_{\varepsilon}^{\prime}(u) h\left\{\frac{1}{\overline{T[\underline{u}+\underline{h}]}}-\frac{1}{\overline{T[\underline{u}]}}\right\} \\
\equiv & I+I I+I I I .
\end{aligned}
$$

Note that

$$
\left|g_{\varepsilon}(u+h)-g_{\varepsilon}(u)-g_{\varepsilon}^{\prime}(u) h\right|=\left|\int_{0}^{1}\left\{g_{\varepsilon}^{\prime}(u+t h)-g_{\varepsilon}^{\prime}(u)\right\} d t \cdot h\right| \leqslant M|h|^{2}
$$

holds for some constant $M>0$ independent of ε sufficiently small. By this,

$$
\|I\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \leqslant C\left(\int_{\Omega_{\varepsilon}} h^{4}\right)^{\frac{1}{2}} \leqslant C\|h\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}\|h\|_{L^{2}\left(\Omega_{\varepsilon}\right)}
$$

holds for some constant $C>0$ independent of ε sufficiently small. Next, let

$$
\begin{aligned}
I I & =\frac{g_{\varepsilon}(u)}{\overline{T[\underline{u}+\underline{h}}] \overline{T[\underline{u}]}}\left\{\overline{T[\underline{u}]^{2}}-\overline{T[\underline{u}+\underline{h}]} \overline{T[\underline{u}]}+\overline{T[\underline{u}+\underline{h}]}\left(\overline{T^{\prime}[\underline{u}] \underline{h}}\right)\right\} \\
& =\frac{g_{\varepsilon}(u)}{\overline{T[\underline{u}+\underline{h}]} \overline{T[\underline{u}]}}\left[\overline{T[\underline{u}]}\left\{\overline{T[\underline{u}]}-\overline{T[\underline{u}+\underline{h}]}+\left(\overline{T^{\prime}[\underline{u}] \underline{h}}\right)\right\}-\left(\overline{T^{\prime}[\underline{u}] \underline{h}}\right)\{\overline{T[\underline{u}+\underline{h}]}-\overline{T[\underline{u}]}\}\right] .
\end{aligned}
$$

Note that

$$
\left\|\frac{g_{\varepsilon}(u)}{\overline{T[\underline{u}+\underline{h}]} \overline{T[\underline{u}]}}\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}, \quad\|\overline{T[\underline{u}]}\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)},
$$

are bounded independently of u and ε sufficiently small. Hence, by applying (60) and (61), we can estimate so that

$$
\|I I\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \leqslant C^{\prime}\|h\|_{L^{2}\left(\Omega_{\varepsilon}\right)}^{2}
$$

for some constant $C^{\prime}>0$ independent of ε sufficiently small. By the same estimate, we have $\|I I I\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \leqslant$ $C^{\prime \prime}\|h\|_{L^{2}\left(\Omega_{\varepsilon}\right)}^{2}$ for some constant $C^{\prime \prime}>0$ independent of ε sufficiently small. By these estimates, we obtain (65).

Let $u \in B_{\tau}\left(\bar{w}_{\varepsilon}\right), h \in H^{2}\left(\Omega_{\varepsilon}\right),\|h\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \ll 1, \phi \in H^{2}\left(\Omega_{\varepsilon}\right)$, and

$$
\begin{aligned}
& \left\|S^{\prime}[u+h] \phi-S^{\prime}[u] \phi\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \\
& \quad=\left\|\left(\frac{g_{\varepsilon}^{\prime}(u+h)}{\overline{T[\underline{u}+\underline{h}]}}-\frac{g_{\varepsilon}^{\prime}(u)}{\overline{T[\underline{u}]}}\right) \phi+\frac{\left(\overline{T^{\prime}[\underline{u}+\underline{h}] \underline{\phi}}\right)}{\overline{T[\underline{u}+\underline{h}]^{2}}} g_{\varepsilon}(u+h)-\frac{\left(\overline{T^{\prime}[\underline{u}] \underline{\phi}}\right)}{\overline{T[\underline{u}]}} g_{\varepsilon}(u)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\leqslant & \left\|\left(\frac{g_{\varepsilon}^{\prime}(u+h)}{\overline{T[\underline{u}+\underline{h}]}}-\frac{g_{\varepsilon}^{\prime}(u)}{\overline{T[\underline{u}]}}\right) \phi\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}+\left\|\frac{\left(\overline{\left.T^{\prime}[\underline{u}+\underline{h}] \underline{\phi}\right)}\right.}{\overline{T[\underline{u}+\underline{h}]^{2}}}\left(g_{\varepsilon}(u+h)-g_{\varepsilon}(u)\right)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \\
& +\left\|g_{\varepsilon}(u)\left(\frac{\left(\overline{T^{\prime}[\underline{u}+\underline{h}] \underline{\phi}}\right)}{\overline{T[\underline{u}+\underline{h}]^{2}}}-\frac{\left(\overline{\left.T^{\prime}[\underline{u}] \underline{\phi}\right)}\right.}{\overline{T[\underline{u}]^{2}}}\right)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \\
\equiv & I V+V+V I .
\end{aligned}
$$

Let us estimate each term. By applying Lemma 20 and the mean value theorem,

$$
\begin{aligned}
& I V \leqslant\|\phi\|_{L^{2}\left(\Omega_{\varepsilon}\right)}\left\{\left\|g_{\varepsilon}^{\prime}(u+h)\left\{\frac{1}{\overline{T[\underline{u}+\underline{h}]}}-\frac{1}{\overline{T[\underline{u}]}}\right\}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}+\left\|\frac{1}{\overline{T[\underline{u}]}}\left\{g_{\varepsilon}^{\prime}(u+h)-g_{\varepsilon}^{\prime}(u)\right\}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}\right\} \\
& \leqslant C\|\phi\|_{L^{2}\left(\Omega_{\varepsilon}\right)}\left\{\|\overline{T[\underline{u}+\underline{h}]}-\overline{T[\underline{u}]}\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}+\left\|g_{\varepsilon}^{\prime}(u+h)-g_{\varepsilon}^{\prime}(u)\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}\right\} \\
& \leqslant C^{\prime}\|\phi\|_{L^{2}\left(\Omega_{\varepsilon}\right)}\left(\|h\|_{L^{2}\left(\Omega_{\varepsilon}\right)}+\|h\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}\right), \\
& V \leqslant C\left\|\overline{T^{\prime}[\underline{u}+\underline{h}] \underline{\phi}}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}\left\|g_{\varepsilon}(u+h)-g_{\varepsilon}(u)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \leqslant C^{\prime}\|\phi\|_{L^{2}\left(\Omega_{\varepsilon}\right)}\|h\|_{L^{2}\left(\Omega_{\varepsilon}\right)}, \\
& V I \leqslant C\left\|\left(\overline{T^{\prime}[\underline{u}+\underline{h}] \underline{\phi}}\right) \overline{T[\underline{u}]^{2}}-\left(\overline{T^{\prime}[\underline{u}] \underline{\phi}}\right) \overline{T[\underline{u}+\underline{h}]^{2}}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)} \\
& \leqslant C\left\{\left\|\overline{T^{\prime}[\underline{u}+\underline{h}] \underline{\phi}}\right\|_{L^{\infty}(\Omega)}\left\|\overline{T[\underline{u}]^{2}}-\overline{T[\underline{u}+\underline{h}]^{2}}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}\right. \\
& \left.+\left\|\overline{T[\underline{u}+\underline{h}]^{2}}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}\left\|\overline{T^{\prime}[\underline{u}+\underline{h}] \underline{\phi}}-\overline{T^{\prime}[\underline{u}] \underline{\phi}}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}\right\} \\
& \leqslant C^{\prime}\|\phi\|_{L^{2}\left(\Omega_{\varepsilon}\right)}\|h\|_{L^{2}\left(\Omega_{\varepsilon}\right)}
\end{aligned}
$$

hold for some constants $C, C^{\prime}>0$ independent of ε sufficiently small. Here, we used the fact that we may assume there exists a constant $M^{\prime}>0$ independent of ε such that

$$
\|\overline{T[\underline{u}]}\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)},\|\overline{T[\underline{u}+\underline{h}]}\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)} \leqslant M^{\prime}
$$

holds as long as $u \in B_{\tau}\left(\bar{w}_{\varepsilon}\right)$ and $\|h\|_{H^{2}\left(\Omega_{\varepsilon}\right)} \ll 1$. Indeed, for example,

$$
|T[\underline{u}](x)|=c_{\varepsilon}\left|\int_{-1}^{1} G_{D}(x, z) \underline{u}^{2}(z) d z\right|=\frac{1}{\int_{\mathbb{R}} w_{\delta_{\varepsilon}}^{2}}\left|\int_{\Omega_{\varepsilon}} G_{D}(x, \varepsilon z) u^{2}(z) d z\right| \leqslant C C_{\tau}^{2} .
$$

By these estimates, we complete the proof.

Acknowledgement

I would like to take this opportunity to thank my advisor, Professor Kazuhiro Kurata, for his guidance and warm encouragement in the course of this work. I also thank the referee for careful reviewing and comments.

References

[1] M. Mimura, M. Tabata, Y. Hosono, Multiple solutions of two-point boundary value problems of Neumann type with a small parameter, SIAM J. Math. Anal. 11 (1980) 613-631.
[2] M.A. del Pino, A priori estimates and applications to existence-nonexistence for a semilinear elliptic system, Indiana Univ. Math. J. 43 (1994) 77-129.
[3] M.A. del Pino, Radially symmetric internal layers in a semilinear elliptic system, Trans. Amer. Math. Soc. 347 (1995) $4807-4837$.
[4] A. Gierer, H. Meinhardt, A theory of biological pattern formation, Kybernetik (Berlin) 12 (1972) 30-39.
[5] D. Iron, M. Ward, J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D 150 (2001) 25-62.
[6] H. Jiang, W.-M. Ni, A priori estimates of stationary solutions of an activator-inhibitor system, Indiana Univ. Math. J. 56 (2007) 681-730.
[7] T. Kolokolnikov, W. Sun, M.J. Ward, J. Wei, The stability of a stripe for the Gierer-Meinhardt model and the effect of saturation, SIAM J. Appl. Dyn. Syst. 5 (2006) 313-363.
[8] K. Kurata, K. Morimoto, Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation, Commun. Pure Appl. Anal. 7 (2008) 1443-1482.
[9] Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball, J. Differential Equations 229 (2006) $494-508$.
[10] K. Morimoto, Construction of multi-peak solutions to the Gierer-Meinhardt system with saturation and source term, Nonlinear Anal. 71 (2009) 2532-2557.
[11] W.-M. Ni, Qualitative properties of solutions to elliptic problems, in: Stationary Partial Differential Equations, in: Handb. Differ. Equ., vol. I, North-Holland, Amsterdam, 2004, pp. 157-233.
[12] W.-M. Ni, P. Poláčik, E. Yanagida, Monotonicity of stable solutions in shadow systems, Trans. Amer. Math. Soc. 353 (2001) $5057-5069$.
[13] W.-M. Ni, I. Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type, Trans. Amer. Math. Soc. 297 (1986) 351-368.
[14] W.-M. Ni, I. Takagi, Point condensation generated by a reaction-diffusion system in axially symmetric domains, Japan J. Indust. Appl. Math. 12 (1995) 327-365.
[15] Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal. 13 (1982) $555-593$.
[16] K. Sakamoto, Internal layers in high-dimensional domains, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998) 359-401.
[17] I. Takagi, Point-condensation for a reaction-diffusion system, J. Differential Equations 61 (1986) 208-249.
[18] J. Wei, Existence and stability of spikes for the Gierer-Meinhardt system, in: Handb. Differ. Equ., vol. V, North-Holland, 2008 , pp. $487-585$.
[19] J. Wei, M. Winter, On the two-dimensional Gierer-Meinhardt system with strong coupling, SIAM J. Math. Anal. 30 (1999) $1241-1263$.
[20] J. Wei, M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: the weak coupling case, J. Nonlinear Sci. 11 (2001) 415-458.
[21] J. Wei, M. Winter, Spikes for the Gierer-Meinhardt system in two dimensions: the strong coupling case, J. Differential Equations 178 (2002) 478-518.
[22] J. Wei, M. Winter, On the Gierer-Meinhardt system with saturation, Commun. Contemp. Math. 6 (2004) 259-277.
[23] J. Wei, M. Winter, Existence, classification and stability analysis of multiple-peaked solutions for the Gierer-Meinhardt system in R^{1}, Methods Appl. Anal. 14 (2007) 119-163.
[24] J. Wei, M. Winter, Stationary multiple spots for reaction-diffusion systems, J. Math. Biol. 57 (2008) 53-89.

[^0]: E-mail address: morimoto-koutarou@ed.tmu.ac.jp.
 ${ }^{1}$ Supported by Research Fellowships of Japan Society for the Promotion of Science for Young Scientists.

