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Abstract

Two-dimensional almost-Riemannian structures are generalized Riemannian structures on surfaces for which a local orthonor-
mal frame is given by a Lie bracket generating pair of vector fields that can become collinear. We study the relation between
the topological invariants of an almost-Riemannian structure on a compact oriented surface and the rank-two vector bundle over
the surface which defines the structure. We analyse the generic case including the presence of tangency points, i.e. points where
two generators of the distribution and their Lie bracket are linearly dependent. The main result of the paper provides a classifi-
cation of oriented almost-Riemannian structures on compact oriented surfaces in terms of the Euler number of the vector bundle
corresponding to the structure. Moreover, we present a Gauss–Bonnet formula for almost-Riemannian structures with tangency
points.
© 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

Let M be a two-dimensional smooth manifold. A Riemannian distance on M can be seen as the minimum-time
function of an optimal control problem where admissible velocities are vectors of norm one. The control problem can
be written locally as

q̇ = uX(q) + vY (q), u2 + v2 � 1, (1)

by fixing an orthonormal frame (X,Y ).
Almost-Riemannian structures generalize Riemannian ones by allowing X and Y to be collinear at some points. If

the pair (X,Y ) is Lie bracket generating, i.e., if
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{
X(q),Y (q), [X,Y ](q),

[
X, [X,Y ]](q), . . .

} = TqM

at every q ∈ M , then (1) is completely controllable and the minimum-time function still defines a continuous distance
d on M . Notice that a Riemannian distance can be globally defined on M by a control problem as in (1) only if the
Riemannian structure admits a global orthonormal frame, implying that M is parallelizable. More in general, X and
Y are parallel on a set Z ⊂ M (called singular locus), which is generically a one-dimensional embedded submanifold
of M (possibly disconnected).

Metric structures that can be defined locally by a pair of vector fields (X,Y ) through (1) are called almost-
Riemannian structures. An almost-Riemannian structure S can be seen as an Euclidean bundle E of rank two over M

(i.e. a vector bundle whose fibre is equipped with a smoothly-varying scalar product 〈·,·〉q ) and a morphism of vector
bundles f : E → T M such that the evaluation at q of the Lie algebra generated by

{f ◦ σ | σ section of E}
is equal to TqM for every q ∈ M , see Section 2 and also [17].

If E is orientable, we say that S is orientable. If E is isomorphic to the trivial bundle M × R
2, we say that the

almost-Riemannian structure is trivializable. The singular locus Z is the set of points q of M at which f (Eq) is
one-dimensional. An almost-Riemannian structure is Riemannian if and only if Z = ∅, i.e. f is an isomorphism of
vector bundles.

The first example of genuinely almost-Riemannian structure is provided by the Grushin plane, which is the almost-
Riemannian structure on M = R

2 with E = R
2 × R

2, f ((x, y), (a, b)) = ((x, y), (a, bx)) and 〈·,·〉 the canonical
Euclidean structure on R

2. The model was originally introduced in the context of hypoelliptic operator theory [10,11]
(see also [4,8]). Notice that the singular locus is indeed nonempty, being equal to the y-axis. Another example of
(trivializable) almost-Riemannian structure appeared in problems of control of quantum mechanical systems (see
[6,7]).

The notion of almost-Riemannian structure was introduced in [1]. In that paper, an almost-Riemannian structure is
defined as a locally finitely generated Lie bracket generating C∞(M)-submodule � of Vec(M), the space of smooth
vector fields on M , endowed with a bilinear, symmetric map G : � × � → C∞(M) which is positive definite (in a
suitable sense). This definition is equivalent to the one given above in terms of Euclidean bundles of rank two over M .
A pair of vector fields (X,Y ) in � is said to be an orthonormal frame for G on some open set Ω if G(X,Y )(q) = 0
and G(X,X)(q) = G(Y,Y )(q) = 1 for every q ∈ Ω . Equivalently, there exists a local orthonormal frame (σ,ρ) for
〈·,·〉 such that X = f ◦ σ , Y = f ◦ ρ.

Almost-Riemannian structures present very interesting phenomena. For instance, even in the case where the Gaus-
sian curvature is everywhere negative (where it is defined, i.e., on M \ Z ), geodesics may have conjugate points.
This happens for instance on the Grushin plane (see [1] and also [5] in the case of surfaces of revolution). Moreover
it is possible to define non-orientable almost-Riemannian structures on orientable manifolds and orientable almost-
Riemannian structures on non-orientable manifolds (see [1]).

This paper is a continuation of [1], where we provided a characterization of generic almost-Riemannian structures
by means of local normal forms, and we proved a generalization of the Gauss–Bonnet formula. (For generalizations
of Gauss–Bonnet formula in related contexts, see [2,16].) Let us briefly recall these results.

The flag of a submodule � of Vec(M) is the sequence of submodules � = �1 ⊂ �2 ⊂ · · · ⊂ �m ⊂ · · · defined
through the recursive formula

�k+1 = �k + [�,�k].
Denote by �m(q) the set {V (q) | V ∈ �m}. Under generic assumptions, the singular locus Z has the following
properties: (i) Z is an embedded one-dimensional submanifold of M ; (ii) the points q ∈ M at which �2(q) is one-
dimensional are isolated; (iii) �3(q) = TqM for every q ∈ M . We say that S satisfies (H0) if properties (i), (ii),
(iii) hold true. If this is the case, a point q of M is called ordinary if �(q) = TqM , Grushin point if �(q) is
one-dimensional and �2(q) = TqM , i.e. the distribution is transversal to Z , and tangency point if �2(q) is one-
dimensional, i.e. the distribution is tangent to Z . If (Ω,X,Y ) is a local generator of � such that Ω \ Z has exactly
two components, then (X,Y ) has different orientations on each of them. Normal forms for local generators of �

around ordinary, Grushin and tangency points are recalled in Section 2.1.
The main result of [1] is an extension of the Gauss–Bonnet theorem for orientable almost-Riemannian structures on

orientable manifolds, under the hypothesis that there are not tangency points. More precisely, denote by K : M \ Z →
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R the Gaussian curvature and by ω a volume form for the Euclidean structure on E. Let dAs be the two-form on
M \ Z given by the pushforward of ω along f . Fix an orientation Ξ on M and let M+ (respectively, M−) be the
subset of M \ Z where dAs is a positive (respectively, negative) multiple of Ξ . The main goal of [1] was to prove the
existence and to assign a value to the limit

lim
ε↘0

∫
Mε

K dAs, (2)

where Mε = {q ∈ M | d(q, Z) > ε} and d(·,·) is the distance globally defined by the almost-Riemannian structure
on M . If M has no tangency point, then the limit in (2) can be shown to exist and to be equal to 2π(χ(M+)−χ(M−)),
where χ denotes the Euler characteristic. When the almost-Riemannian structure is trivializable, we proved that
χ(M+) = χ(M−) whence the limit in (2) is equal to zero. Once applied to the special subclass of Riemannian
structures, such a result simply states that the integral of the curvature of a parallelizable compact oriented surface
(i.e., the torus) is equal to zero. In a sense, in the standard Riemannian construction the topology of the surface gives
a constraint on the total curvature through the Gauss–Bonnet formula, whereas for an almost-Riemannian structure
induced by a single pair of vector fields the total curvature is equal to zero and the topology of the manifold constrains
the metric to be singular on a suitable set.

The main objective of this paper is to complete the analysis in the more complicated case in which S has tangency
points.

The following result provides a classification of almost-Riemannian structures in terms of the Euler number of the
vector bundle associated with it (for a definition of the Euler number see Section 2).

Theorem 1. Let M be a compact oriented two-dimensional manifold endowed with an oriented almost-Riemannian
structure S = (E,f, 〈·,·〉) satisfying the generic hypothesis (H0). Then χ(M+) − χ(M−) + τ(S) = e(E), where
e(E) denotes the Euler number of E and τ(S) is the number of revolutions of � on Z computed with respect to the
orientation induced by M+ on Z .

For a detailed definition of τ(S) see Section 3. Notice that the Euler number e(E) measures how far the vector
bundle E is from the trivial one. Indeed, E is trivial if and only if e(E) = 0. As a direct consequence of Theorem 1
we get that S is trivializable if and only if χ(M+) − χ(M−) + τ(S) = 0.

For what concerns the notion of integrability of the curvature with respect to the Riemannian density on M \ Z ,
it turns out that the hypothesis made in [1] about the absence of tangency points is not just technical. Indeed, in Sec-
tion 5.1 we present some numerical simulations strongly hinting that the limit in (2) diverges, in general, if tangency
points are present. One possible explanation of this fact is the interaction between different orders in the asymptotic
expansion of the almost-Riemannian distance. In this paper, to avoid this interference, we define a 3-scale integral of
the curvature. Let T be the set of tangency points of S . Associate with every q ∈ T , a two parameters “rectangular”
neighborhood B

q
δ1,δ2

(δ1 and δ2 playing the role of lengths of the sides of the rectangle) built as follows. We consider
a smooth curve (−1,1) � s → w(s) passing through the tangency point w(0) = q and transversal to the distribution
at q . We then consider, for each s ∈ (−1,1), the geodesic γs (parameterized by arclength) such that γs(0) = w(s) and
minimizing locally the distance from {w(s) | s ∈ (−1,1)} (such geodesic exists and is unique due to the transversality
of the curve w; for details see [1]). For δ1, δ2 sufficiently small, the rectangle B

q
δ1,δ2

is the subset of M containing the
tangency point q and having as boundary

γδ2

([−δ1, δ1]
) ∪ γ[−δ2,δ2](δ1) ∪ γ−δ2

([−δ1, δ1]
) ∪ γ[−δ2,δ2](−δ1)

(see Fig. 1). Let Mε,δ1,δ2 = Mε \ ⋃
q∈T B

q
δ1,δ2

. We say that K is 3-scale S -integrable if

lim
δ1→0

lim
δ2→0

lim
ε→0

∫
Mε,δ1,δ2

K dAs (3)

exists and is finite. In this case we denote such a limit by
∫�MK dAs . The following result, proved in Section 5.3, is a

generalization of the classical Gauss–Bonnet formula for Riemannian structures to generic oriented two-dimensional
almost-Riemannian structures. It concludes the analysis started in [1] including the presence of tangency points.



796 A.A. Agrachev et al. / Ann. I. H. Poincaré – AN 27 (2010) 793–807
Fig. 1. The rectangular box B
q
δ1,δ2

.

Theorem 2. Let M be a compact oriented two-dimensional manifold. If an oriented almost-Riemannian structure S
on M satisfies the hypothesis (H0), then K is 3-scale S -integrable and

∫
�MK dAs = 2πe(E).

Notice that the construction of Mε,δ1,δ2 is not intrinsic since it depends on the choice of a manifold transversal to
Z at each tangency point and on its parameterization. The result, however, is. An interesting question is whether a
canonical way of choosing these manifolds and their parameterizations exists. This is related to the problem of finding
intrinsic local normal forms for almost-Riemannian structures.

As a consequence of Theorems 1 and 2 we get the following corollary.

Corollary 1. Let M be a compact oriented two-dimensional manifold. For an oriented almost-Riemannian structure
S on M satisfying the generic hypothesis (H0) we have

∫�MK dAs = 0 if and only if S is trivializable. In particular,
if S has not tangency points then

∫
M

K dAs = 0 if and only if S is trivializable.

These results complete the analysis of the relation between the integral of the curvature and the topology of the
manifold for two-dimensional almost-Riemannian structures.

The structure of the paper is the following. In Section 2 we introduce the notion of n-dimensional rank-varying
sub-Riemannian structure and recall some definitions and results given in [1]. In Section 3 we define the number of
revolutions of a one-dimensional distribution along an oriented closed curve. In Section 4 we prove Theorem 1. First
we construct a section of the sphere bundle on a tubular neighborhood of the singular locus having each tangency
point as singularity. Then, we extend the section to the complement in the manifold of a finite set and show the sum
of the indexes at all the singularities to be equal to χ(M+) − χ(M−) + τ(S). In Section 5, the relation between
tangency points and integrability of the curvature with respect to the area form associated with an almost-Riemannian
structure is discussed. In particular, we provide in Section 5.1 some numerical simulations strongly hinting that in
presence of tangency points the integral

∫
Mε

K dAs does not converge as ε tends to zero. This leads us to introduce in
Section 5.2 the notion of 3-scale S -integrability. Thanks to a Gauss–Bonnet formula for almost-Riemannian surfaces
with boundary given in [9], we compute in Section 5.3 the total curvature of a generic two-dimensional almost-
Riemannian structure with tangency points, proving Theorem 2.
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2. Basic definitions

Let M be an n-dimensional manifold. Throughout the paper, unless specified, manifolds are smooth (i.e. C∞) and
without boundary; vector fields and differential forms are smooth. Given a vector bundle E over M , the set of smooth
sections of E, denoted by Γ (E), is naturally endowed with the structure of C∞(M)-module. In the case E = T M we
denote Γ (E) by Vec(M).

Given an oriented vector bundle of rank n over a compact connected oriented n-manifold M , the Euler number
of E, denoted by e(E), is the self-intersection number of M in E, where M is identified with the zero section. To
compute e(E), consider a smooth section σ : M → E transverse to the zero section. Then, by definition,

e(E) =
∑

p|σ(p)=0

i(p,σ ),

where i(p,σ ) = 1, respectively −1, if dpσ : TpM → Tσ(p)E preserves, respectively reverses, the orientation. Notice
that if we reverse the orientation on M or on E then e(E) changes sign. Hence, the Euler number of an orientable
vector bundle E is defined up to a sign, depending on the orientations of both E and M . Since reversing the orientation
on M also reverses the orientation of T M , the Euler number of T M is defined unambiguously and is equal to χ(M),
the Euler characteristic of M . We refer the reader to [12] for a more detailed discussion of this subject.

Remark 1. Assume that σ ∈ Γ (E) has only isolated zeros, i.e. the set {p | σ(p) = 0} is finite. If E is endowed with
a smooth scalar product 〈·,·〉, we define σ̃ : M \ {p | σ(p) = 0} → SE by σ̃ (q) = σ(q)√〈σ(q),σ (q)〉 . Then if σ(p) = 0,

i(p, σ̃ ) = i(p,σ ) is equal to the degree of the map ∂B → Sn−1 that associate with each q ∈ ∂B the value σ̃ (q), where
B is a neighborhood of p diffeomorphic to an open ball in R

n that does not contain any other zero of σ .
Notice that if i(p,σ ) �= 0, the limit limq→p σ̃ (q) does not exist and, in this case, we say that σ̃ has a singularity

at p.

Definition 1. An (n, k)-rank-varying distribution on an n-dimensional manifold M is a pair (E,f ) where E is a
vector bundle of rank k over M and f : E → T M is a morphism of vector bundles, i.e., (i) if π : T M → M and
πE : E → M denote the canonical projections, then the diagram

E
f

πE

T M

π

M

commutes and (ii) f is linear on fibers.
Moreover, we require the map σ → f ◦ σ from Γ (E) to Vec(M) to be injective.

Remark 2. Definition 1 is equivalent to the definition of (n, k)-rank-varying distribution given in [1], namely a
submodule � of Vec(M) locally generated by k (and not less than k) vector fields. Given an (n, k)-rank-varying
distribution (E,f ), we define � = {f ◦ σ | σ ∈ Γ (E)}. Thanks to (i) � is a submodule of Vec(M). The injectivity
assumption on the map σ → f ◦ σ implies that � cannot be generated by less than k vector fields. In the following,
we use either definition, depending on our convenience.

Let (E,f ) be an (n, k)-rank-varying distribution, � = {f ◦ σ | σ ∈ Γ (E)} be its associated submodule and denote
by �(q) the linear subspace {V (q) | V ∈ �} = f (Eq) ⊆ TqM . Let Lie(�) be the smallest Lie subalgebra of Vec(M)

containing � and Lieq(�) = {V (q) | V ∈ Lie(�)} for every q ∈ M . We say that (E,f ) satisfies the Lie bracket
generating condition if Lieq(�) = TqM for every q ∈ M .

A property (P ) defined for (n, k)-rank-varying distributions is said to be generic if for every vector bundle E of
rank k over M , (P ) holds for every f in an open and dense subset of the set of morphisms of vector bundles from E

to T M , endowed with the C∞-Whitney topology. E.g., generically, an (n, k)-rank-varying distribution is Lie bracket
generating, provided that k > 1.

We say that an (n, k)-rank-varying distribution (E,f ) is orientable if E is orientable as a vector bundle. Similarly,
(E,f ) is trivializable if E is isomorphic to the trivial bundle M × R

k . In this case, by definition, we have e(E) = 0.
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A rank-varying sub-Riemannian structure is defined by requiring that E is an Euclidean bundle.

Definition 2. An (n, k)-rank-varying sub-Riemannian structure is a triple S = (E,f, 〈·,·〉) where (E,f ) is a Lie
bracket generating (n, k)-rank-varying distribution on a manifold M and 〈·,·〉q is a scalar product on Eq smoothly
depending on q .

Remark 3. Definition 2 is equivalent to Definition 4 in [1], with G : � × � → C∞(M) defined by G(V,W) =
〈σV ,σW 〉 where σV ,σW are the unique sections of E satisfying f ◦ σV = V,f ◦ σW = W .

Definition 2 generalizes several classical structures. First of all, a Riemannian structure (M,g) is an (n,n)-rank-
varying sub-Riemannian structure with E = T M , f = 1T M and 〈·,·〉 = g(·,·). Classical sub-Riemannian structures
(see [3,15]) are (n, k)-rank-varying sub-Riemannian structures such that E is a proper Euclidean subbundle of T M

and f is the inclusion. Finally, we define n-dimensional almost-Riemannian structures (n-ARSs for short) as (n,n)-
rank-varying sub-Riemannian structures.

Let S = (E,f, 〈·,·〉) be an (n, k)-rank-varying sub-Riemannian structure. For every q ∈ M and every v ∈ �(q)

define

Gq(v) = inf
{〈u,u〉q

∣∣ u ∈ Eq, f (u) = v
}
.

If σ1, . . . , σk is an orthonormal frame for 〈·,·〉 on an open subset Ω of M , an orthonormal frame for G on Ω is
given by f ◦ σ1, . . . , f ◦ σk . One easily proves that orthonormal frames are systems of local generators of �. Notice
that S is trivializable if and only if there exists a global orthonormal frame for 〈·,·〉. Hence S is trivializable if and
only if there exists a global orthonormal frame for G.

A curve γ : [0, T ] → M is said to be admissible for S if it is Lipschitz continuous (with respect to the differential
structure on M) and there exists a measurable essentially bounded function

[0, T ] � t → u(t) ∈ Eγ(t)

called control function, such that γ̇ (t) = f (u(t)) for almost every t ∈ [0, T ]. Given an admissible curve γ :
[0, T ] → M , the length of γ is

�(γ ) =
T∫

0

√
Gγ (t)

(
γ̇ (t)

)
dt.

The function �(γ ) is invariant under reparameterization of the curve γ . Moreover, if an admissible curve γ minimizes
the energy functional J (γ ) = ∫ T

0 Gγ (t)(γ̇ (t)) dt (with fixed T and fixed endpoints) then v = √
Gγ (t)(γ̇ (t)) is constant

and γ is also a minimizer of �(·). On the other hand a minimizer γ of �(·) such that v is constant is a minimizer of
J (·) with T = �(γ )/v. A geodesic for S is an admissible curve γ : [0, T ] → M such that for every sufficiently small
interval [t1, t2] ⊂ [0, T ], γ |[t1,t2] is a minimizer of J (·). A geodesic for which Gγ (t)(γ̇ (t)) is (constantly) equal to one
is said to be parameterized by arclength.

The distance induced by S on M is defined as

d(q0, q1) = inf
{
�(γ )

∣∣ γ (0) = q0, γ (T ) = q1, γ admissible
}
. (4)

The finiteness and the continuity of d(·,·) with respect to the topology of M are guaranteed by the Lie bracket
generating assumption on the rank-varying sub-Riemannian structure (see [13]). The distance d(·,·) endows M with
the structure of metric space compatible with the topology of M as smooth manifold.

2.1. Normal forms for generic 2-ARSs

Given a 2-ARS S , its singular locus is the set of points q where �(q) = f (Eq) has not maximal rank, that is,

Z = {
q ∈ M

∣∣ dim
(
�(q)

) = 1
}
.

Notice that dim(�(q)) > 0 for every point q ∈ M , because � is a bracket generating distribution.
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We say that S satisfies condition (H0) if the following properties hold: (i) Z is an embedded one-dimensional
submanifold of M ; (ii) the points q ∈ M at which �2(q) is one-dimensional are isolated; (iii) �3(q) = TqM for every
q ∈ M , where �1 = � and �k+1 = �k + [�,�k].

Proposition 1. (See [1].) Property (H0) is generic for 2-ARSs.

ARSs satisfying hypothesis (H0) admit the following local normal forms.

Theorem 3. (See [1].) Given a 2-ARS S satisfying (H0), for every point q ∈ M there exist a neighborhood U of q and
an orthonormal frame (X,Y ) for G on U , such that up to a smooth change of coordinates defined on U , q = (0,0)

and (X,Y ) has one of the forms

(F1) X(x, y) = (1,0), Y (x, y) = (
0, eφ(x,y)

)
,

(F2) X(x, y) = (1,0), Y (x, y) = (
0, xeφ(x,y)

)
,

(F3) X(x, y) = (1,0), Y (x, y) = (
0,

(
y − x2ψ(x)

)
eξ(x,y)

)
,

where φ, ξ and ψ are smooth real-valued functions such that φ(0, y) = 0 and ψ(0) > 0.

Let S be a 2-ARS satisfying (H0). A point q ∈ M is said to be an ordinary point if �(q) = TqM , hence, if S is
locally described by (F1). We call q a Grushin point if �(q) is one-dimensional and �2(q) = TqM , i.e. if the local
description (F2) applies. Finally, if �(q) = �2(q) has dimension one and �3(q) = TqM then we say that q is a
tangency point and S can be described near q by the normal form (F3). We define

T = {q ∈ Z | q tangency point of S}.

2.2. A Gauss–Bonnet formula for 2-ARSs

Let M be an orientable two-dimensional manifold and S = (E,f, 〈·,·〉) an orientable 2-ARS on M . Notice that
〈·,·〉 defines a Riemannian structure on M \ Z . Denote by K the Gaussian curvature of such a structure and by ω a
volume form for the Euclidean structure on E. Let dAs be the two-form on M \ Z given by the pushforward of ω

along f . Once an orientation on M is fixed, M \ Z is split into two open sets M+ and M− such that the orientation
on M coincides with the one defined by dAs on M+ and with its opposite on M−.

For every ε > 0 let Mε = {q ∈ M | d(q, Z) > ε}, where d(·,·) is the almost-Riemannian distance (see Eq. (4)). We
say that K is S -integrable if

lim
ε→0

∫
Mε

K dAs

exists and is finite. In this case we denote such limit by
∫
M

K dAs .
When S has no tangency points K happens to be S -integrable and

∫
M

K dAs is determined by the topology of M+
and M−. This result, recalled in Theorem 4, can be seen as a generalization of Gauss–Bonnet formula to ARSs.

Theorem 4. (See [1].) Let M be a compact oriented two-dimensional manifold, endowed with an oriented 2-ARS S
for which condition (H0) holds true. Assume that S has no tangency points. Then K is S -integrable and

∫
M

K dAs =
2π(χ(M+) − χ(M−)).

3. Number of revolutions of �

Let M be a compact oriented two-dimensional manifold and W an oriented closed simple curve in M . Since M is
oriented, T M|W is isomorphic to the trivial bundle W × R

2 and its projectivization is isomorphic to W × S1. Every
subbundle Υ of T M|W of rank one can be seen as a section of the projectivization of T M|W , i.e. a smooth map
Υ : W → W × S1 such that π1 ◦ Υ = IdW , where π1 : W × S1 → W denotes the projection on the first component.
We define τ(Υ,W), the number of revolutions of Υ along W , to be the degree of the map π2 ◦ Υ : W → S1, where



800 A.A. Agrachev et al. / Ann. I. H. Poincaré – AN 27 (2010) 793–807
Fig. 2. Tangency points with opposite contributions.

π2 : W × S1 → S1 is the projection on the second component. Notice that τ(Υ,W) changes sign if we reverse the
orientation of W .

Remark 4. Let M,W,Υ be as above and let us show how to compute τ(Υ,W). Let V ∈ Γ (T W) be a never-vanishing
vector field along W . Then span(V ) is a subbundle of T M|W of rank one and there exists an isomorphism t : T M|W →
W × R

2 such that t ◦ V (q) = (q, (1,0)). The trivialization t induces an isomorphism, still denoted by t , between the
projectivization of T M|W and W × S1 such that π2 ◦ t ◦ V : W → S1 is constant. To simplify notations, we omit t

in the following. Let π2 ◦ V (q) ≡ θ0. Assume that θ0 is a regular value of π2 ◦ Υ (otherwise there exists a smooth
section Υ̃ homotopic to Υ having θ0 as a regular value). By definition,

τ(Υ,W) =
∑

q|π2◦Υ (q)=θ0

sign
(
dq(π2 ◦ Υ )

)
,

where dq denotes the differential at q of a smooth map. Notice that a point q satisfies π2 ◦ Υ (q) = θ0 if and only if
Υ (q) is tangent to W at q .

Let M be a compact oriented two-dimensional manifold and S be an oriented 2-ARS satisfying (H0). Then the
singular locus Z is the boundary of M+. Fix on Z the orientation induced by M+ and let C(Z) denote the set of
connected component of Z . Since � is one-dimensional along Z , we can define τ(S) = ∑

W∈C(Z ) τ (�,W).

Remark 5. Let S be a 2-ARS satisfying hypothesis (H0). Let V, θ0,π2 be as in Remark 4 with Υ = � and W ∈ C(Z).
Since �3(q) = TqM for every point q ∈ M , θ0 is a regular value of π2 ◦ �. Moreover, the set of points q ∈ W such
that π2 ◦ �(q) = θ0 is the set of tangency points of S belonging to W . Hence,

τ(�,W) =
∑

q∈W∩T
sign

(
dq(π2 ◦ �)

)
.

We define τq = sign(dqπ2 ◦ �) (see Fig. 2). Clearly, τ(S) = ∑
q∈T τq .

4. Proof of Theorem 1

The idea of the proof is to find a section σ of SE with isolated singularities p1, . . . , pm such that
∑m

j=1 i(pj , σ ) =
χ(M+) − χ(M−) + τ(S). In the sequel, we consider Z to be oriented with the orientation induced by M+.

We start by defining σ on a neighborhood of Z . Let W be a connected component of Z . Since M is oriented, there
exists an open tubular neighborhood W of W and a diffeomorphism Ψ : S1 × (−1,1) → W that preserves the orien-
tation and Ψ |S1×{0} is an orientation-preserving diffeomorphism between S1 and W . Remark that f : E|W+ → T W+
is an orientation-preserving isomorphism of vector bundles, while f : E|W− → T W− is an orientation-reversing iso-
morphism of vector bundles, where W± = W ∩ M±. For every s �= 0, lift the tangent vector to θ → Ψ (θ, s) to E

using f −1, rotate it by the angle π/2 and normalize it: σ is defined as this unit vector (belonging to EΨ (θ,s)) if s > 0,
its opposite if s < 0. In other words, σ : W \ W → SE is given by
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σ(q) = sign(s)
Rπ/2f

−1( ∂Ψ
∂θ

(θ, s))√
〈f −1( ∂Ψ

∂θ
(θ, s)), f −1( ∂Ψ

∂θ
(θ, s))〉

, (θ, s) = Ψ −1(q), (5)

where Rπ/2 denotes the rotation (with respect to the Euclidean structure) in E by angle π/2 in the counterclockwise
sense. The following lemma shows that σ can be extended to a continuous section from W \ T to SE.

Lemma 1. σ can be continuously extended to every point q ∈ W \ T .

Proof. Let q ∈ W \ T , U be a neighborhood of q in M and (x, y) be a system of coordinates on U centered at q

such the almost-Riemannian structure has the form (F2) (see Theorem 3). Assume, moreover, that U is a trivializing
neighborhood of both E and T M and the pair of vector fields (X,Y ) is the image under f of a positively-oriented
local orthonormal frame of E. Then W ∩U = {(x, y) | x = 0}. Since ∂Ψ

∂θ
(θ,0) is non-zero and tangent to W , ∂Ψ

∂θ
(θ,0)

is tangent to the y-axis. Hence, thanks to the Preparation Theorem [14], there exist h2 : R → R, h1, h3 : R
2 → R

smooth functions such that h2(y) �= 0 for every y ∈ R and for Ψ (θ, s) ∈ U

∂Ψ

∂θ
(θ, s) = (

xh1(x, y),h2(y) + xh3(x, y)
)
,

where (x, y) are the coordinates of the point Ψ (θ, s). Let us compute σ at a point p ∈ (W ∩ U) \ W . Since

∂Ψ

∂θ
(θ, s) = xh1(x, y)X(x, y) + h2(y) + xh3(x, y)

xeφ(x,y)
Y (x, y),

then

f −1
(

∂Ψ

∂θ
(θ, s)

)
= xh1(x, y)ζ(x, y) + h2(y) + xh3(x, y)

xeφ(x,y)
ρ(x, y),

where (ζ, ρ) is the unique local orthonormal basis of E|U such that f ◦ ζ = X and f ◦ ρ = Y . Notice that U ∩ M+ =
{(x, y) | x > 0} and U ∩ M− = {(x, y) | x < 0}. Using formula (5), for (x, y) = Ψ (θ, s) ∈ U \ W one easily gets

σ(x, y) = sign(x)

l(x, y)

(
−h2(y) + xh3(x, y)

xeφ(x,y)
ζ + xh1(x, y)ρ

)
,

where

l(x, y) =
√

x2h1(x, y)2 + (h2(y) + xh3(x, y))2

x2e2φ(x,y)
.

Since

lim
x→0

sign(x)(h2(y) + xh3(x, y))

l(x, y)xeφ(x,y)
= h2(y)

|h2(y)| and lim
x→0

sign(x)xh1(x, y)

l(x, y)
= 0,

σ can be continuously extended to the set {x = 0} = W ∩ U . �
The next step of the proof is to show that for every q ∈ W ∩ T , i(q, σ ) = τq .

Lemma 2. Let σ : W \ T → SE be the continuous section obtained in Lemma 1. Then, for every q ∈ W ∩ T the index
of σ at q is equal to τq and, consequently,∑

q∈T ∩W

i(q,σ ) = τ(�,W). (6)

Proof. Let q ∈ W ∩ T , U be a neighborhood of q in M and (x, y) be a system of coordinates on U centered at q such
the almost-Riemannian structure has the form (F3) (see Theorem 3), i.e. a local orthonormal frame (X,Y ) is given by

X = (1,0), Y = (
0,

(
y − x2ψ(x)

)
eξ(x,y)

)
.
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Define α = 1, respectively −1, if (X,Y ) is the image under f of a positively-oriented, respectively negatively-
oriented, local orthonormal frame of E. One can check that τq = −α. Let us make the following change of coordinates

x̃ = x, ỹ = α
(
y − x2ψ(x)

)
.

In these new coordinates, X and Y become

X = (
1,−α

(
2x̃ψ(x̃) + x̃2ψ ′(x̃)

))
, Y = (

0, ỹeξ(x̃,αỹ+x̃2ψ(x̃))
)

and W ∩ U is the x̃-axis. In the following, to simplify notations, we omit the tildes and denote the function ξ(x̃, αỹ +
x̃2ψ(x̃)) by ξ(x, y). Since ∂ψ

∂θ
(θ,0) is tangent to W , by the Preparation Theorem [14] there exist h1 : R → R, h2, h3 :

R
2 → R smooth functions such that h1(x) �= 0 for every x ∈ R and for Ψ (θ, s) ∈ U

∂ψ

∂θ
(θ, s) = (

h1(x) + yh2(x, y), yh3(x, y)
)
,

where (x, y) are the coordinates of the point Ψ (θ, s). This implies that

∂ψ

∂θ
(θ, s) = (

h1(x) + yh2(x, y)
)
X(x,y)

+ yh3(x, y) + α(h1(x) + yh2(x, y))(2xψ(x) + x2ψ ′(x))

yeξ(x,y)
Y (x, y).

Let (ζ, ρ) be the local orthonormal frame of E such that X = f ◦ ζ and Y = f ◦ ρ. From Eq. (5), it follows that

σ(x, y) = −α
sign(y)

l(x, y)

yh3(x, y) + α(h1(x) + yh2(x, y))(2xψ(x) + x2ψ ′(x))

yeξ(x,y)
ζ

+ α
sign(y)

l(x, y)

(
h1(x) + yh2(x, y)

)
ρ,

where

l(x, y) =
√(

h1(x) + yh2(x, y)
)2 +

(
yh3(x, y) + α(h1(x) + yh2(x, y))(2xψ(x) + x2ψ ′(x))

yeξ(x,y)

)2

.

Notice that for x = 0, y �= 0 we have

σ(0, y) = α sign(y)√
(h1(0) + yh2(0, y))2 + h3(0, y)2e−2ξ(0,y)

(−e−ξ(0,y)h3(0, y)ζ + (
h1(0) + yh2(0, y)

)
ρ
)
,

whence the limit of σ as (x, y) tends to (0,0) does not exist. Let us compute the index of σ at q = (0,0). Using Taylor
expansions of the components of σ in the basis (ζ, ρ) we find

σ(x, y) = α
sign(y)

l(x, y)

(
−

(
yh3(0,0) + 2αxh1(0)ψ(0)

yeξ(0,0)
+ O

(√
x2 + y2

))
ζ + (

h1(0) + O
(√

x2 + y2
))

ρ

)
. (7)

Take a circle t → (r cos t, r sin t) of radius r centered at (0,0) and assume r so small that (0,0) is the unique singu-
larity of σ on the closed disk of radius r . By definition, i((0,0), σ ) is half the degree of the map from the circle Sr to
R/πZ that associates to each point the angle between span(σ ) and the ζ . Using (7), this angle is

a(x, y) = − arctan

(
yh1(0)eξ(0,0)

yh3(0,0) + 2αxψ(0)h1(0)
+ O

(√
x2 + y2

))
.

Computing a along the curve x(t) = r cos t , y(t) = r sin t , we find

a(r cos t, r sin t) = − arctan

(
sin(t)h1(0)eξ(0,0)

sin(t)h3(0,0) + 2α cos(t)ψ(0)h1(0)
+ O(r)

)
.

Hence, by letting r go to zero, we are left to compute the degree of the map ã : [0,2π) → [0,π) where

ã(t) = − arctan

(
sin(t)h1(0)eξ(0,0)

)
.

sin(t)h3(0,0) + 2α cos(t)ψ(0)h1(0)
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Since zero is a regular value of ã, the degree of ã is∑
t∈[0,2π)|ã(t)=0

sign
(
ã′(t)

) = sign
(
ã′(0)

) + sign
(
ã′(π)

) = −2α,

where the last equality follows from ã′(0) = ã′(π) = −αeξ(0,0)/(2ψ(0)). Hence, i(q, σ ) = −α. Since τq = −α, the
lemma is proved (see Remark 5). �

Let C(Z) denote the set of connected components of Z . Let Z̃ = ∐
W∈C(Z ) S

1 and consider an orientation-

preserving diffeomorphism Ψ : Z̃ × (−1,1) → ∐
W∈C(Z ) W such that Ψ |Z̃ ×{0} is an orientation-preserving diffeo-

morphism onto Z . Applying Lemma 1 to every W ∈ C(Z) and reducing, if necessary, the cylinders W, we can assume
that the set of singularities of σ on U = ∐

W∈C(Z ) W is T . Then σ : U \ T → SE is continuous. Moreover, by Eq. (6),

∑
q∈T

i(q, σ ) = τ(S).

Extend σ to M \ U. By a transversality argument, we can assume that the extended section has only isolated singular-
ities {p1, . . . , pk} ∈ M \ Z . Since

e(E) =
k∑

j=1

i(pj , σ ) +
∑
q∈T

i(q, σ ) =
k∑

j=1

i(pj , σ ) + τ(S),

we are left to prove that

k∑
j=1

i(pj , σ ) = χ
(
M+) − χ

(
M−)

. (8)

To this aim, consider the vector field F = f ◦ σ . F satisfies G(F,F ) ≡ 1, where G(·,·) is defined as in Remark 3
and the set of singularities of F |M\Z is exactly {p1, . . . , pk}. Let us compute the index of F at a singularity p ∈
{p1, . . . , pk}. Since f : E|M+ → T M+ preserves the orientation and f : E|M− → T M− reverses the orientation, it
follows that i(p,F ) = ±i(p,σ ), if p ∈ M±. Therefore,

k∑
j=1

i(pj , σ ) =
∑

j |pj ∈M+
i(pj ,F ) −

∑
j |pj ∈M−

i(pj ,F ). (9)

The theorem is proved if we show that∑
j |pj ∈M+

i(pj ,F ) = χ
(
M+)

,
∑

j |pj ∈M−
i(pj ,F ) = χ

(
M−)

. (10)

To deduce Eq. (10), define N+ = M+ \ Ψ (Z̃ × (0,1/2)). Notice that, by construction, σ |
Ψ (Z̃ ×{1/2}) is non-singular,

hence the same is true for F |
Ψ (Z̃ ×{1/2}). Moreover, the almost-Riemannian angle between Tq(∂N+) and span(F (q)) is

constantly equal to π/2. Hence F |∂N+ points towards N+ and applying the Hopf’s Index Formula to every connected
component of N+ we conclude that∑

j |pj ∈M+
i(pj ,F ) =

∑
j |pj ∈N+

i(pj ,F ) = χ
(
N+) = χ

(
M+)

.

Similarly, we find∑
j |pj ∈M−

i(pj ,F ) = χ
(
M−)

.
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Fig. 3. Graph of K for � = span((1,0), (0, y − x2)).

5. S-integrability in presence of tangency points

5.1. Numerical simulations

In this section we provide some numerical simulations hinting that, when T �= ∅,∫
Mε

K dAs

does not converge, in general, as ε tends to zero.
From the proof of Theorem 4 we know that far from tangency points the integral of the geodesic curvature along

∂M+
ε and ∂M−

ε offset each other for ε going to zero. Hence, to understand whether the presence of a tangency
point may lead to non-S -integrability of K it is sufficient to compute the geodesic curvature of ∂M+

ε and ∂M−
ε in

a neighborhood of such a point. More precisely consider the almost-Riemannian structure (E,f, 〈·,·〉) on M = R
2

for which E = R
2 × R

2, f ((x, y), (a, b)) = ((x, y), (a, b(y − x2))) and 〈·,·〉 is the canonical scalar product. For this
system one has

K = −2(3x2 + y)

(x2 − y)
2

.

The graph of K is illustrated in Fig. 3. Notice that lim supq→(0,0) K(q) = +∞ and lim infq→(0,0) K(q) = −∞. This
situation is different from the Grushin case where K(q) diverges to −∞ as q approaches Z .

For every ε > 0, the sets ∂M+
ε and ∂M−

ε are smooth manifolds except at their intersections with the vertical axis
x = 0, which is the cut locus for the problem of minimizing the distance from Z = {(x, x2) | x ∈ R}. Fix 0 < a < 1
and consider the two geodesics starting from the point (a, a2) and minimizing (locally) the distance from Z . Let
P + and P − be the two points along these geodesics at distance ε from Z . Denote by γ + and γ − the portions of
∂M+

ε and ∂M−
ε connecting the vertical axis to the points P + and P −, oriented as in Fig. 4. It is easy to approximate

numerically γ + and γ − by broken lines, but the evaluation of the integral of their geodesic curvatures is very unstable
since its computation involves the second derivative of the curve parameterized by arclength. To avoid this problem,
we rather apply the Riemannian Gauss–Bonnet formula on the regions Ω+ and Ω− introduced in Fig. 4. This works
better since the integral of the Gaussian curvature on Ω+ and Ω− is numerically stable, and the integral of the
geodesic curvature on horizontal and vertical segments can be computed analytically (in particular it is always zero
on horizontal segments). Fig. 5 shows the value of



A.A. Agrachev et al. / Ann. I. H. Poincaré – AN 27 (2010) 793–807 805
Fig. 4. Regions Ω± where to apply Riemannian Gauss–Bonnet formula.

Fig. 5. Divergence of the S -integral of K .

ε

( ∫
γ +

Kg ds −
∫
γ −

Kg ds

)

for a = 0.1 and ε varying in the interval [0.01,0.04]. The graph seems to converge as ε tends to zero to a non-zero
constant, strongly hinting at the divergence of

∫
Mε

K dAs .

5.2. More general notion of S -integrability

The simulations of the previous section lead us to introduce the following alternative notion of integrability.
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Definition 3 (3-scale S -integrability). Let q ∈ T and Uq be a neighborhood of q such that an orthonormal frame for
G on Uq is given by the normal form (F3). For δ1, δ2 > 0 sufficiently small the rectangle [−δ1, δ1] × [−δ2, δ2] is a
subset of Uq denoted by B

q
δ1,δ2

. For every ε > 0, define

Mε,δ1,δ2 = Mε \
⋃
q∈T

B
q
δ1,δ2

. (11)

We say that K is 3-scale S -integrable if

lim
δ1→0

lim
δ2→0

lim
ε→0

∫
Mε,δ1,δ2

K dAs (12)

exists, is finite and does not depend on the choice of the normal form. In this case we denote such limit by
∫�MK dAs .

Remark 6. Notice that if T = ∅, then the concepts of S -integrability and 3-scale S -integrability coincide.
The order in which the limits are taken in (12) is important. Indeed, if the order is permuted, then the result given

in Theorem 2 does not hold anymore.
Recall that the normal form (F3) is not totally intrinsic, since the functions ψ and φ depend on the choice of a

parameterized smooth curve passing through the tangency point and transversal to the distribution at the point.

5.3. Proof of Theorem 2

Let us recall the following Gauss–Bonnet-like formula for domains whose boundary is C 2 in a neighborhood of Z .

Theorem 5. (See [9, Theorem 5.2].) Let U be an open bounded connected subset of M such that

(i) U contains only ordinary and Grushin points,
(ii) ∂U is piecewise C 2,

(iii) ∂U is C 2 in a neighborhood of Z ,
(iv) ∂U is the union of the supports of a finite set of curves γ 1, . . . , γ m that are admissible for � and of finite length.

Define U±
ε = M±

ε ∩ U . Then the following limits exist and are finite∫
U

K dAs := lim
ε→0

∫
U+

ε ∪U−
ε

K dAs, (13)

∫
∂U

kg dσs := lim
ε→0

( ∫
∂U∩∂U+

ε

kg dσ −
∫

∂U∩∂U−
ε

kg dσ

)
, (14)

where we interpret each integral
∫
∂U∩∂U±

ε
kg dσ as the sum of the integrals along the C 2 portions of ∂U ∩ ∂U±

ε , plus

the sum of the angles at the points of ∂U ∩ ∂U±
ε where ∂U is not C 1. Moreover, we have∫

U

K dAs +
∫
∂U

kg dσs = 2π
(
χ

(
U+) − χ

(
U−))

. (15)

Fix δ1 and δ2 in such a way that the rectangles B
q
δ1,δ2

are pairwise disjoint and Z ∩ ∂B
q
δ1,δ2

⊂ [−δ1, δ1] × {δ2}, for

every q ∈ T . By construction, ∂B
q
δ1,δ2

is the union of the supports of four admissible curves for every q ∈ T . Hence

we can take Mε \ ⋃
q∈T B

q
δ1,δ2

as U in Theorem 5. As a consequence, we have

lim
ε→0

∫
Mε,δ1,δ2

K dAs +
∑
q∈T

∫
∂B

q
δ1,δ2

kg dσs = 2π

(
χ

(
M+ \

⋃
q∈T

B
q
δ1,δ2

)
− χ

(
M− \

⋃
q∈T

B
q
δ1,δ2

))

= 2π
(
χ

(
M+) − χ

(
M−)) = 2π

(
e(E) − τ(S)

)
,
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where the last equality follows from Theorem 1. We are left to prove that, for a fixed q ∈ T ,

lim
δ1→0

lim
δ2→0

∫
∂B

q
δ1,δ2

kg dσs = −2πτq

(see Remark 5). In order to prove it, let us work with the normal form (F3) and assume that M+ ∩ Uq is the set
{y −x2ψ(x) < 0}∩Uq , the proof for the opposite situation being analogous. On one hand, one can check that τq = 1.
On the other hand, the geodesic curvature along [−δ1, δ1]×{δ2} and along [−δ1, δ1]×{−δ2} is zero, the two segments
being the support of geodesics. Hence

∫
∂B

q
δ1,δ2

kg dσs =
∫

{δ1}×[−δ2,δ2]
kg dσs +

∫
{−δ1}×[−δ2,δ2]

kg dσs +
4∑

j=1

αj ,

where the last term is the sum of the values of the angles of the box and is equal to −2π . Indeed, because of the
diagonal form of the metric with respect to the chosen coordinates, each angle has value −π

2 . The first two terms are
well defined and tend to zero when δ2 tends to zero. Hence

lim
δ1→0

lim
δ2→0

∫
∂B

q
δ1,δ2

kg dσs = −2π = −2πτq.
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