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Abstract

In this paper the local exact boundary controllability for quasilinear wave equations on a planar tree-like network of strings is
established and the number of boundary controls is equal to the number of simple nodes minus 1.
© 2009 Published by Elsevier Masson SAS.
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1. Introduction

There are many publications concerning the exact controllability for linear hyperbolic systems (see [14,15,17] and
the references therein). In the semilinear case, some results on the exact boundary controllability for semilinear wave
equations are obtained by Zuazua [19–21], Emanuilov [5] and Lasiecka and Triggiani [7], etc.

On the other hand, the exact boundary controllability for linear wave equations with Dirichlet boundary conditions
on a planar tree-like network has been studied. The first result of this type was given in [18], in which the exact
controllability for certain specific networks is obtained by means of boundary controls acting on all but one simple
nodes. This result was later greatly extended in books [6] and [4]. Thus, for a planar tree-like network of linear strings
with Dirichlet boundary conditions, if the network has k simple nodes, then the number of controls is equal to k − 1.

Moreover, some related studies on the stabilization for linear wave equations with Dirichlet boundary conditions
can be found in [1–4,16].

In recent years, based on the result on the semi-global classical solution (see [8]), the exact boundary controllability
for general first order quasilinear hyperbolic systems has been established (see [9,10]), then this result has been applied
to get the exact boundary controllability for 1-D quasilinear wave equations (see [11,12]).
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In this paper, by establishing the semi-global piecewise C2 solution for quasilinear wave equations with vari-
ous boundary conditions on a planar star-like network of strings, we get its local exact boundary controllability by
means of a constructive method. Then, the exact boundary controllability previously obtained in [4,6,18] for linear
wave equations with Dirichlet boundary conditions on a planar tree-like network of strings can be generalized to the
quasilinear case with a totally different method.

This paper is organized as follows. The exact boundary controllability for a quasilinear wave equation on a single
string will be presented in Section 2. Then, in Section 3, the existence and uniqueness of semi-global piecewise C2

solution on a planar star-like network of strings with general boundary conditions will be established, and based on
this, we get the local exact boundary controllability for quasilinear wave equations on a planar star-like network of
strings. With a similar method, the local exact boundary controllability for quasilinear wave equations on a planar
tree-like network of strings will be presented in Section 4.

2. Exact boundary controllability for quasilinear wave equations

For the purpose of this paper, in this section we recall the results about the exact boundary controllability for
quasilinear wave equations on a single string given in [11,12]. Consider the following 1-D quasilinear wave equation

∂2u

∂t2
− ∂

∂x

(
K

(
u,

∂u

∂x

))
= F

(
u,

∂u

∂x
,
∂u

∂t

)
, (1)

where K = K(u,v) is a given C2 function of u and v, such that

Kv(u, v) > 0, (2)

and F = F(u, v,w) is a given C1 function of u,v and w, satisfying

F(0,0,0) = 0. (3)

Moreover, without loss of generality, we may assume that

K(0,0) = 0. (4)

On one end x = 0, we give any one of the following physically meaningful boundary conditions:

u = h(t) (Dirichlet type), (5a)

ux = h(t) (Neumann type), (5b)

ux − αu = h(t) (Third type), (5c)

ux − βut = h(t) (Dissipative type), (5d)

where α and β are given positive constants, h(t) is a C2 function (in case (5a)) or a C1 function (in cases (5b)–(5d)).
Similarly, on another end x = L, the boundary condition is any one of the following conditions:

u = h̄(t) (Dirichlet type), (6a)

ux = h̄(t) (Neumann type), (6b)

ux + ᾱu = h̄(t) (Third type), (6c)

ux + β̄ut = h̄(t) (Dissipative type), (6d)

where ᾱ and β̄ are given positive constants, h̄(t) is a C2 function (in case (6a)) or a C1 function (in cases (6b)–(6d)).
By [11,12], we have

Theorem 2.1. Let

T >
2L√

Kv(0,0)
. (7)

Suppose that
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Fig. 1. A planar star-like network of strings.

β �= 1√
Kv(0,0)

, (8)

where β is given in (5d). For any given initial data (ϕ,ψ) and final data (Φ,Ψ ) with small norms
‖(ϕ,ψ)‖C2[0,L]×C1[0,L] and ‖(Φ,Ψ )‖C2[0,L]×C1[0,L], and for any given function h(t) with small norm ‖h‖C2[0,T ]
(in case (5a)) or ‖h‖C1[0,T ] (in cases (5b)–(5d)), such that the conditions of C2 compatibility are satisfied at the
points (t, x) = (0,0) and (T ,0) respectively, there exists a boundary control h̄(t) with small norm ‖h̄‖C2[0,T ] (in
case (6a)) or ‖h̄‖C1[0,T ] (in cases (6b)–(6d)), such that the mixed initial–boundary value problem for Eq. (1) with the
initial condition

t = 0: u = ϕ(x), ut = ψ(x), 0 � x � L, (9)

one of the boundary conditions (5) on x = 0 and one of the boundary conditions (6) on x = L admits a unique C2

solution u = u(t, x) with small C2 norm on the domain

R(T ) = {
(t, x)

∣∣ 0 � t � T , 0 � x � L
}
, (10)

which exactly satisfies the final condition

t = T : u = Φ(x), ut = Ψ (x), 0 � x � L. (11)

3. Exact boundary controllability for quasilinear wave equations on a planar star-like network of strings

In this section, we consider a planar star-like network which is composed of N strings with a common joint point O .
Take the joint point O as x = 0. Let Ei and Li be another node and the length of the i-th string (i = 1, . . . ,N),
respectively (see Fig. 1).

We consider the following quasilinear wave equation on the i-th string

∂2ui

∂t2
− ∂

∂x

(
Ki

(
ui,

∂ui

∂x

))
= Fi

(
ui,

∂ui

∂x
,
∂ui

∂t

)
(i = 1, . . . ,N), (12)

where, for i = 1, . . . ,N , Ki = Ki(u, v) is a given C2 function of u and v, such that

Kiv(u, v) > 0, (13)

and Fi = Fi(u, v,w) is a given C1 function of u,v and w, satisfying

Fi(0,0,0) = 0. (14)

Moreover, without loss of generality, we assume that

Ki(0,0) = 0. (15)

The initial condition is given by

t = 0: ui = ϕi(x), ui
t = ψi(x), 0 � x � Li (i = 1, . . . ,N). (16)



2376 Q. Gu, T. Li / Ann. I. H. Poincaré – AN 26 (2009) 2373–2384
For i = 1, . . . ,N , on the simple node Ei , we give any one of the following boundary conditions:

ui = hi(t) (Dirichlet type), (17a)

ui
x = hi(t) (Neumann type), (17b)

ui
x + αiu

i = hi(t) (Third type), (17c)

ui
x + βiu

i
t = hi(t) (Dissipative type), (17d)

where αi and βi are given positive constants, hi(t) is a C2 function (in case (17a)) or a C1 function (in cases (17b)–
(17d)) and the conditions of C2 compatibility are satisfied at (0,Li) (i = 1, . . . ,N). While, on the multiple node O ,
we have the interface conditions⎧⎪⎪⎨

⎪⎪⎩
N∑

i=1

Ki

(
ui, ui

x

) = 0,

ui = u1 (i = 2, . . . ,N).

(18)

The first condition in (18) simply means that the total stress at O is equal to zero, while, the second part of conditions
in (18) shows the continuity of displacements at O .

For the purpose of getting the exact boundary controllability on the planar star-like network of strings, we need the
existence and uniqueness of semi-global piecewise C2 solution on it. In order to get it in a unified way, we first reduce
each quasilinear wave equation to a first order quasilinear hyperbolic system.

For i = 1, . . . ,N , setting

vi = ui
x, wi = ui

t , (19)

Eq. (12) can be reduced to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui

∂t
= wi,

∂vi

∂t
− ∂wi

∂x
= 0,

∂wi

∂t
− Kiv

(
ui, vi

)∂vi

∂x

= Fi

(
ui, vi,wi

) + Kiu

(
ui, vi

)
vi def= F̃i

(
ui, vi,wi

)
(i = 1, . . . ,N), (20)

where F̃i(u
i, vi,wi) is still a C1 function of ui, vi and wi , satisfying

F̃i(0,0,0) = 0. (21)

For i = 1, . . . ,N , noting (13), (20) is a strictly hyperbolic system with three distinct real eigenvalues λi
j (j =

1,2,3):

λi
1 = −

√
Kiv

(
ui, vi

)
< λi

2 = 0 < λi
3 =

√
Kiv

(
ui, vi

)
. (22)

Thus, the characteristics for system (20) are given by

dx

dt
= λi

j (j = 1,2,3). (23)

Moreover, the corresponding left eigenvectors can be taken as

li1 = (0,
√

Kiv,1), li2 = (1,0,0), li3 = (0,−√
Kiv,1). (24)

Let

Ui = (
ui, vi,wi

)T (25)

and



Q. Gu, T. Li / Ann. I. H. Poincaré – AN 26 (2009) 2373–2384 2377
vi
j = lij

(
Ui

)
Ui (j = 1,2,3), (26)

namely,

vi
1 =

√
Kiv

(
ui, vi

)
vi + wi, vi

2 = ui, vi
3 = −

√
Kiv

(
ui, vi

)
vi + wi. (27)

We have⎧⎨
⎩

vi
1 + vi

3 = 2wi,

vi
1 − vi

3 = 2
√

Kiv

(
ui, vi

)
vi.

(28)

With this reduction, the initial condition (16) now becomes

t = 0: Ui = (
ϕi(x),ϕ′

i (x),ψi(x)
)T

, 0 � x � Li. (29)

For i = 1, . . . ,N , noting the condition of C0 compatibility: hi(0) = ϕi(Li), the boundary condition (17) on the
i-th simple node will be correspondingly replaced by

wi = h′
i (t), (30a)

vi = hi(t), (30b)

vi + αiu
i = hi(t), (30c)

vi + βiw
i = hi(t). (30d)

It is easy to see that, at least in a neighborhood of U = 0, the boundary condition (30) can be rewritten as

vi
1 + vi

3 = 2h′
i (t), (31a)

vi
1 − vi

3 = 2
√

Kiv

(
vi

2, hi(t)
)
hi(t), (31b)

vi
1 − vi

3 = 2
√

Kiv

(
vi

2, hi(t) − αiv
i
2

)(
hi(t) − αiv

i
2

)
, (31c)

vi
1 − vi

3 =
√

Kiv

(
vi

2, hi(t) − 1

2
βi

(
vi

1 + vi
3

))(
2hi(t) − βi

(
vi

1 + vi
3

))
. (31d)

Then, it can be rewritten as

vi
1 = Gi1

(
t, vi

2, v
i
3

) + Hi1(t), (32)

or, when

βi �= 1√
Kiv(0,0)

, (33)

as

vi
3 = Ḡi3

(
t, vi

1, v
i
2

) + H̄i3(t). (34)

On the other hand, noting the conditions of C0 compatibility at O , the interface condition (18) can be correspond-
ingly replaced by⎧⎪⎪⎨

⎪⎪⎩
N∑

i=1

Ki

(
ui, vi

) = 0,

wi = w1 (i = 2, . . . ,N),

(35)

and then it can be rewritten as⎧⎪⎪⎨
⎪⎪⎩

P1
def=

N∑
i=1

Ki

(
ui, vi

) = 0,

P
def= vi + vi − v1 − v1 = 0 (i = 2, . . . ,N).

(36)
i 1 3 1 3
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Since, noting (13) and (27), in a neighborhood of U = 0 we have

det

∣∣∣∣∂(P1, . . . ,PN)

∂(v1
3, . . . , vN

3 )

∣∣∣∣ =
N∑

i=1

Kiv

∂vi

∂vi
3

< 0, (37)

det

∣∣∣∣∂(P1, . . . ,PN)

∂(v1
1, . . . , vN

1 )

∣∣∣∣ =
N∑

i=1

Kiv

∂vi

∂vi
1

> 0, (38)

the interface condition (18) on the multiple node O can be rewritten as

vi
3 = Gi3

(
t, v1

1, . . . , vN
1 , v1

2, . . . , vN
2

) + Hi3(t) (i = 1, . . . ,N) (39)

or

vi
1 = Ḡi1

(
t, v1

2, . . . , vN
2 , v1

3, . . . , vN
3

) + H̄i1(t) (i = 1, . . . ,N). (40)

Then, by means of the results on the existence and uniqueness of semi-global C1 solution given in [8], it is easy to
get the following lemmas.

Lemma 3.1. Under the assumptions given at the beginning of this section, suppose furthermore that the conditions of
piecewise C2 compatibility or C2 compatibility are satisfied at the points (t, x) = (0,0) and (0,Li) (i = 1, . . . ,N),
respectively. For any given T0 > 0, the forward mixed initial–boundary value problem (12) and (16)–(18) admits a
unique semi-global piecewise C2 solution ui = ui(t, x) (i = 1, . . . ,N) with small piecewise C2 norm on the domain
R(T0) = ⋃N

i=1 Ri(T0), where

Ri(T0) = {
(t, x)

∣∣ 0 � t � T0, 0 � x � Li

}
, (41)

provided that, for i = 1, . . . ,N , the norms ‖(ϕi,ψi)‖C2[0,Li ]×C1[0,Li ] and ‖hi‖C2[0,T0] ( for (17a)) or ‖hi‖C1[0,T0] ( for
(17b)–(17d)) are small enough.

Lemma 3.2. Under the assumptions given at the beginning of this section, and suppose that (33) holds for
i = 1, . . . ,N . For any given T0 > 0, suppose furthermore that the conditions of piecewise C2 compatibility or C2

compatibility are satisfied at the points (t, x) = (T0,0) and (T0,Li) (i = 1, . . . ,N), respectively. Then the backward
mixed initial–boundary value problem (12), (17)–(18) with the final condition

t = T0: ui = Φi(x), ui
t = Ψi(x), 0 � x � Li (i = 1, . . . ,N) (42)

admits a unique semi-global piecewise C2 solution ui = ui(t, x) (i = 1, . . . ,N) with small piecewise C2 norm on the
domain R(T0), provided that, for i = 1, . . . ,N , the norms ‖(Φi,Ψi)‖C2[0,Li ]×C1[0,Li ] and ‖hi‖C2[0,T0] ( for (17a)) or
‖hi‖C1[0,T0] ( for (17b)–(17d)) are small enough.

Based on these two lemmas, we have

Theorem 3.1. Let

T >
2L1√

K1v(0,0)
+ max

i=2,...,N

2Li√
Kiv(0,0)

. (43)

Suppose that

β1 �= 1√
K1v(0,0)

, (44)

where β1 is given in (17d) for i = 1. For any given initial data (ϕi,ψi) (i = 1, . . . ,N) and final data (Φi,Ψi)

(i = 1, . . . ,N) with small norms
∑N

i=1 ‖(ϕi,ψi)‖C2[0,Li ]×C1[0,Li ] and
∑N

i=1 ‖(Φ,Ψ )‖C2[0,Li ]×C1[0,Li ], and for any
given function h1(t) with small norm ‖h1‖C2[0,T ] (in case (17a)) or ‖h1‖C1[0,T ] (in cases (17b)–(17d)), such that
the conditions of C2 compatibility or piecewise C2 compatibility are satisfied at the points (t, x) = (0,L1), (T ,L1)

and (0,0), (T ,0), respectively, there exist boundary controls hi(t) (i = 2, . . . ,N) with small norms ‖hi‖C2[0,T ]
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(i = 2, . . . ,N) (in case (17a)) or ‖hi‖C1[0,T ] (i = 2, . . . ,N) (in cases (17b)–(17d)), such that the mixed initial–
boundary value problem for system (12) with the initial condition (16), the boundary condition (17) on x = Li

(i = 1, . . . ,N) and the interface condition (18) on x = 0 admits a unique piecewise C2 solution ui = ui(t, x)

(i = 1, . . . ,N) with small piecewise C2 norm on the domain R(T ) = ⋃N
i=1 Ri(T ), where

Ri(T ) = {
(t, x)

∣∣ 0 � t � T , 0 � x � Li

}
, (45)

which exactly satisfies the final condition

t = T : ui = Φi(x), ui
t = Ψi(x), 0 � x � Li (i = 1, . . . ,N). (46)

In order to get Theorem 3.1, it suffices to prove the following lemma.

Lemma 3.3. Under the assumptions of Theorem 3.1, system (12) admits a piecewise C2 solution ui(t, x) (i = 1,

. . . ,N) with small norm
∑N

i=1 ‖ui‖C2[Ri(T )] on the domain R(T ) = ⋃N
i=1 Ri(T ), which satisfies simultaneously the

boundary condition (17) for i = 1 on x = L1, the interface condition (18) on x = 0, the initial condition (16) and the
finial condition (46).

Proof. Noting (43), there exists an ε0 > 0 so small that

T > max
|(u1,v1)|�ε0

2L1√
K1v(u1, v1)

+ max
i=2,...,N

max
|(ui ,vi )|�ε0

2Li√
Kiv(ui, vi)

. (47)

Let

T1 = max
|(u1,v1)|�ε0

L1√
K1v(u1, v1)

+ max
i=2,...,N

max
|(ui ,vi )|�ε0

Li√
Kiv(ui, vi)

(48)

and

T2 = max
i=2,...,N

max
|(ui ,vi )|�ε0

Li√
Kiv(ui, vi)

. (49)

(i) We first consider the following forward mixed initial–boundary value problem for system (12) with the initial
condition (16), the interface condition (18), the boundary condition (17) for i = 1 on x = L1, and the following
artificial boundary conditions

x = Li : ui = fi(t) (i = 2, . . . ,N), (50)

where fi (i = 2, . . . ,N) are any given C2 functions of t with small C2[0, T1] norm and the conditions of C2 compat-
ibility at the point (t, x) = (0,Li) (i = 2, . . . ,N) are assumed to be satisfied, respectively. Then, by Lemma 3.1,
there exists a unique semi-global piecewise C2 solution u = uI (t, x) = (u1

I (t, x), . . . , uN
I (t, x)) on the domain

RI = ⋃N
i=1 RI

i , where

RI
i = {

(t, x)
∣∣ 0 � t � T1, 0 � x � Li

}
(i = 1, . . . ,N), (51)

which has a small piecewise C2 norm, in particular,∣∣∣∣
(

uI ,
∂uI

∂x

)∣∣∣∣ � ε0, ∀(t, x) ∈ RI . (52)

Thus, we can determine the corresponding value of (u1
I , u

1
Ix) at x = L1 as

x = L1:
(
u1

I , u
1
Ix

) = (
a1(t), a2(t)

)
, 0 � t � T1, (53)

the C2[0, T1] norm of a1(t) and the C1[0, T1] norm of a2(t) are small and (a1(t), a2(t)) satisfies the boundary con-
dition (17) for i = 1 at x = L1 on the interval 0 � t � T1. Similarly, we can also determine the values of (uI , uIx) at
x = 0 as

x = 0: (
ui

I , u
i
Ix

) = (
bi1(t), bi2(t)

)
, 0 � t � T1 (i = 1, . . . ,N), (54)
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the C2[0, T1] norm of bi1(t) (i = 1, . . . ,N) and the C1[0, T1] norm of bi2(t) (i = 1, . . . ,N) are small and
(bi1(t), bi2(t)) (i = 1, . . . ,N) satisfy the interface condition (18) at x = 0 on the interval 0 � t � T1.

(ii) We next consider the following backward mixed initial–boundary value problem for system (12) with the final
condition (46), the interface condition (18), the boundary condition (17) for i = 1, and the following artificial boundary
conditions

x = Li : ui = gi(t) (i = 2, . . . ,N), (55)

where gi (i = 2, . . . ,N) are any given C2 functions of t with small C2[T − T1, T ] norms and the conditions
of C2 compatibility at the point (t, x) = (T ,Li) (i = 2, . . . ,N) are assumed to be satisfied, respectively. Then, by
Lemma 3.2, there exists a unique semi-global piecewise C2 solution u = uII(t, x) = (u1

II(t, x), . . . , uN
II (t, x)) on the

domain RII = ⋃N
i=1 RII

i , where

RII
i = {

(t, x)
∣∣ T − T1 � t � T , 0 � x � Li

}
(i = 1, . . . ,N), (56)

which has a small piecewise C2 norm, in particular,∣∣∣∣
(

uII,
∂uII

∂x

)∣∣∣∣ � ε0, ∀(t, x) ∈ RII . (57)

Thus, we can determine the corresponding value of (u1
II, u

1
IIx) at x = L1 as

x = L1:
(
u1

II, u
1
IIx

) = (
ā1(t), ā2(t)

)
, T − T1 � t � T , (58)

the C2[T − T1, T ] norm of ā1(t) and the C1[T − T1, T ] norm of ā2(t) are small and (ā1(t), ā2(t)) satisfies the
boundary condition (17) for i = 1 at x = L1 on the interval T − T1 � t � T . Similarly, we can determine the values
of (uII, uIIx) at x = 0 as

x = 0: (
ui

II, u
i
IIx

) = (
b̄i1(t), b̄i2(t)

)
, T − T1 � t � T (i = 1, . . . ,N), (59)

the C2[T − T1, T ] norm of b̄i1(t) (i = 1, . . . ,N) and the C1[T − T1, T ] norm of b̄i2(t) (i = 1, . . . ,N) are small and
(b̄i1(t), b̄i2(t)) (i = 1, . . . ,N) satisfy the interface condition (18) at x = 0 on the interval T − T1 � t � T .

(iii) We now construct ã1(t) ∈ C2[0, T ] with small C2 norm and ã2(t) ∈ C1[0, T ] with small C1 norm, such that(
ã1(t), ã2(t)

) =
{

(a1(t), a2(t)), 0 � t � T1,

(ā1(t), ā2(t)), T − T1 � t � T
(60)

and (ã1(t), ã2(t)) satisfies the boundary condition (17) for i = 1 at x = L1 on the whole interval 0 � t � T .
Noting (13), we now change the status of t and x and consider the following leftward mixed initial–boundary value

problem for system (12) for i = 1 with the initial condition

x = L1: u1 = ã1(t), u1
x = ã2(t), 0 � t � T (61)

and the boundary conditions

t = 0: u1 = ϕ1(x), 0 � x � L1, (62)

t = T : u1 = Φ1(x), 0 � x � L1, (63)

where ϕ1(x) and Φ1(x) are given by (16) and (46) respectively.
Obviously, the conditions of C2 compatibility at the points (t, x) = (0,L1) and (T ,L1) are satisfied respectively.

Then, by Lemma 3.1, there exists a unique semi-global C2 solution u1 = u1(t, x) with small C2 norm on the domain
R1(T ) = {(t, x) | 0 � t � T , 0 � x � L1} and∣∣∣∣

(
u1,

∂u1

∂x

)∣∣∣∣ � ε0, ∀(t, x) ∈ R1(T ). (64)

Since both u1(t, x) and u1
I (t, x) satisfy system (12) for i = 1, the initial condition (61) on 0 � t � T1 and the

boundary condition (62), it is easy to see that

u1(t, x) ≡ u1
I (t, x) (65)
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on the domain{
(t, x)

∣∣∣ 0 � t � T2 + (T1 − T2)x

L1
, 0 � x � L1

}
. (66)

Thus, in particular, we get

t = 0: u1 = ϕ1(x), u1
t = ψ1(x), 0 � x � L1 (67)

and

x = 0: u1 = b11(t), u1
x = b12(t), 0 � t � T2, (68)

where ϕ1(x) and ψ1(x) are given by (16), b11(t) and b12(t) are given by (54).
In a similar way we get

t = T : u1 = Φ1(x), u1
t = Ψ1(x), 0 � x � L1 (69)

and

x = 0: u1 = b̄11(t), u1
x = b̄12(t), T − T2 � t � T , (70)

where Φ1(x) and Ψ1(x) are given by (46), b̄11(t) and b̄12(t) are given by (59).
(iv) Let (b̃11(t), b̃12(t)) be the value of (u1, u1

x) on x = 0. The C2[0, T ] norm of b̃11(t) and the C1[0, T ] norm
of b̃12(t) are small and(

b̃11(t), b̃12(t)
) =

{
(b11(t), b12(t)), 0 � t � T2,

(b̄11(t), b̄12(t)), T − T2 � t � T .
(71)

We now construct b̃i2(t) ∈ C1[0, T ] (i = 2, . . . ,N − 1) with small C1 norm, such that

b̃i2(t) =
{

bi2(t), 0 � t � T2,

b̄i2(t), T − T2 � t � T ,
(i = 2, . . . ,N − 1), (72)

where bi2(t) and b̄i2(t) (i = 2, . . . ,N − 1) are given by (54) and (59) respectively. Noting (13), the interface con-
dition (18) together with u1 = b̃11(t) and ui

x = b̃i2(t) (i = 1, . . . ,N − 1) can uniquely determine the value of ui

(i = 2, . . . ,N) and uN
x at x = 0 on the interval [0, T ]. Let b̃i1(t) = ui (i = 2, . . . ,N) and b̃N2(t) = uN

x at x = 0 on
the interval [0, T ]. It is easy to see that b̃i1(t) (i = 2, . . . ,N) have small C2[0, T ] norms, b̃N2(t) has a small C1[0, T ]
norm and(

b̃i1(t), b̃i2(t)
) =

{
(bi1(t), bi2(t)), 0 � t � T2,

(b̄i1(t), b̄i2(t)), T − T2 � t � T ,
(i = 2, . . . ,N), (73)

where (bi1(t), bi2(t)) and (b̄i1(t), b̄i2(t)) are given by (54) and (59) respectively. Obviously, (b̃i1(t), b̃i2(t)) (i =
1, . . . ,N) satisfy the interface condition (18).

(v) Finally, for i = 2, . . . ,N , we solve the following rightward mixed initial–boundary value problem on the domain
Ri(T ) = {(t, x) | 0 � t � T , 0 � x � Li} for system (12) with the initial condition

x = 0: ui = b̃i1(t), ui
x = b̃i2(t), 0 � t � T (74)

and the boundary conditions

t = 0: ui = ϕi(x), 0 � x � Li, (75)

t = T : ui = Φi(x), 0 � x � Li, (76)

where ϕi(x) and Φi(x) are given by (16) and (46) respectively.
For each i = 2, . . . ,N , the conditions of C2 compatibility at the points (t, x) = (0,0) and (T ,0) are satisfied

respectively and there exists a unique semi-global C2 solution ui = ui(t, x) with small C2 norm on each Ri(T ). In
particular, we have∣∣∣∣

(
ui,

∂ui
)∣∣∣∣ � ε0, ∀(t, x) ∈ Ri(T ) (i = 2, . . . ,N). (77)
∂x
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Fig. 2. A planar tree-like network of strings.

Since for each i = 2, . . . ,N , both ui(t, x) and ui
I (t, x) satisfy system (12), the initial condition (74) for 0 � t � T2

and the boundary condition (75), by the uniqueness of C2 solution to this one-sided mixed initial–boundary value
problem (see [13]) it is easy to see that

ui(t, x) ≡ ui
I (t, x) (78)

on the domain{
(t, x)

∣∣∣ 0 � t � T2

(
1 − x

Li

)
, 0 � x � Li

}
. (79)

Then, in particular, we get

t = 0: ui = ϕi(x), ui
t = ψi(x), 0 � x � Li. (80)

In a similar way we get

t = T : ui = Φi(x), ui
t = Ψi(x), 0 � x � Li. (81)

Thus, (u1(t, x), . . . , uN(t, x)) is a solution required by Lemma 3.3. �
Remark 3.1. From the proof of Lemma 3.3, the boundary controls which realize the exact boundary controllability
are not unique.

4. Exact boundary controllability for quasilinear wave equations on a planar tree-like network of strings

Using a method similar to that in Section 3, in this section we consider the local exact boundary controllability
for quasilinear wave equations in a planar tree-like network composed of N strings: C1, . . . ,CN . Without loss of
generality, we suppose that one end of string C1 is a simple node in the network. We take this simple node as the
starting node E (see Fig. 2).

For the i-th string, let di0 and di1 be the x-coordinates of its two ends and Li = di1 − di0 its length. For simplicity,
in what follows we simply say node di0 (resp. di1) instead of the node corresponding to di0 (resp. di1). We always
suppose that node di0 is closer to E than node di1 in the network (node d10 is just E).

For i = 1, . . . ,N , we consider the following quasilinear wave equations on the string Ci

∂2ui

∂t2
− ∂

∂x

(
Ki

(
ui,

∂ui

∂x

))
= Fi

(
ui,

∂ui

∂x
,
∂ui

∂t

)
, di0 � x � di1 (i = 1, . . . ,N), (82)

where Ki = Ki(u, v) is a given C2 function of u and v, such that

Kiv(u, v) > 0, (83)

and Fi = Fi(u, v,w) is a given C1 function of u,v and w, satisfying

Fi(0,0,0) = 0. (84)
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Moreover, without loss of generality, we assume that

Ki(0,0) = 0. (85)

The initial condition for system (82) is given by

t = 0: ui = ϕi(x), ui
t = ψi(x), di0 � x � di1 (i = 1, . . . ,N). (86)

Let M and S be two subsets of {1, . . . ,N}, such that i ∈ M if and only if di1 is a multiple node, while, i ∈ S if
and only if di1 is a simple node.

At any simple node d10 or di1 (i ∈ S), the boundary condition is given as any one of (17), while at any multiple
node di1 (i ∈ M), we have the interface condition⎧⎪⎨

⎪⎩
∑
j∈Ji

Kj

(
uj ,u

j
x

) = Ki

(
ui, ui

x

)
,

uj = ui, ∀j ∈ Ji ,

(87)

where Ji denotes the set of all the indices j such that node dj0 is just node di1.
Similar to Theorem 3.1, we have

Theorem 4.1. Let

T > 2 max
i∈S

∑
j∈Di

Lj√
Kjv(0,0)

, (88)

where Di stands for the set of indices corresponding to all the canals in the unique string-like subnetwork connecting
nodes d10 and di1. Suppose that

β1 �= 1√
K1v(0,0)

, (89)

where β1 is given in (17d) for i = 1. For any given initial data (ϕi,ψi) (i = 1, . . . ,N) and final data (Φi,Ψi)

(i = 1, . . . ,N) with small norms
∑N

i=1 ‖(ϕi,ψi)‖C2[0,L]×C1[0,L] and
∑N

i=1 ‖(Φ,Ψ )‖C2[0,L]×C1[0,L], and for any
given function h1(t) with small norm ‖h1‖C2[0,T ] (in case (17a)) or ‖h1‖C1[0,T ] (in cases (17b)–(17d)), such that
the conditions of C2 compatibility or piecewise C2 compatibility are satisfied at the points (t, x) = (0,L1), (T ,L1)

and (0, di0), (T , di0) (i ∈ M), respectively, there exist boundary controls hi(t) (i ∈ S) with small norms ‖hi‖C2[0,T ]
(i ∈ S) (in case (17a)) or ‖hi‖C1[0,T ] (i ∈ S) (in cases (17b)–(17d)), such that on the domain R(T ) = ⋃N

i=1 Ri(T ),
where Ri(T ) is given by (45), the mixed initial–boundary value problem for system (82) with the initial condition (86),
the boundary condition (17) on all simple nodes d10 and di1 (i ∈ S) and the interface condition (87) on all multiple
nodes di1 (i ∈ M) admits a unique piecewise C2 solution ui = ui(t, x) (i = 1, . . . ,N) with small piecewise C2 norm,
which exactly satisfies the final condition

t = T : ui = Φi(x), ui
t = Ψi(x), di0 � x � di1 (i = 1, . . . ,N). (90)

Proof. This theorem can be proved in a completely similar way as in the proof of Theorem 3.1. Indeed, after having
solved a forward problem and a backward problem on this tree-like network as in step (i) and step (ii) of the proof of
Lemma 3.3, we can solve a rightward problem as in step (iii) and get u1 on canal C1. Then, as in step (iv), we can
determine uj (j ∈ J1) at node d11 (in a non-unique way!) by u1 and the interface condition (87) at d11. Consider dj0
(j ∈ J1) as a new starting node and do step (iii) and step (iv) again. Noting (88), it is easy to see that we can continue
this procedure until we get the solution ui (i = 1, . . . ,N) on the whole network. This finishes the proof. �
Remark 4.1. In conclusion, for a tree-like network with k simple nodes, we need only k − 1 boundary controls. The
controls are given on all the simple nodes except the starting one, and each simple node has one control on it.

Remark 4.2. If the boundary conditions (17b)–(17d) on the simple node d10 or di1 (i ∈ S) are replaced respectively
by
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Ki

(
ui, ui

x

) = hi(t), (91)

Ki

(
ui, ui

x

) + αiu
i = hi(t) (92)

and

Ki

(
ui, ui

x

) + βiu
i
t = hi(t), (93)

the conclusion of Theorem 4.1 is still valid, provided that (89) is replaced by

β1 �= √
K1v(0,0). (94)

Remark 4.3. For linear wave equations with Dirichlet boundary conditions on a planar tree-like network, as shown
in [4,6,18], if we want to reduce the number of controlled simple nodes, then the problem on the exact boundary
controllability becomes much more complicated and it depends very sensitively on both the topology of the network
and the diophantine properties of the lengths of the strings involved. What should be the corresponding situation in
the quasilinear case is still an open problem.
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