Generalised twists, $\mathbf{S O}(n)$, and the p-energy over a space of measure preserving maps

M.S. Shahrokhi-Dehkordi, A. Taheri *
Department of Mathematics, University of Sussex, Falmer BN1 9RF, England, UK

Received 12 May 2008; received in revised form 10 March 2009; accepted 10 March 2009
Available online 7 April 2009

Abstract

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain and consider the energy functional $$
\mathbb{F}_{p}[\mathbf{u}, \Omega]:=p^{-1} \int_{\Omega}|\nabla \mathbf{u}(\mathbf{x})|^{p} d \mathbf{x}
$$ with $p \in] 1, \infty$ [over the space of measure preserving maps $$
\mathcal{A}_{p}(\Omega)=\left\{\mathbf{u} \in W^{1, p}\left(\Omega, \mathbb{R}^{n}\right):\left.\mathbf{u}\right|_{\partial \Omega}=\mathbf{x}, \operatorname{det} \nabla \mathbf{u}=1 \text { a.e. in } \Omega\right\} .
$$

In this paper we introduce a class of maps referred to as generalised twists and examine them in connection with the Euler-Lagrange equations associated with \mathbb{F}_{p} over $\mathcal{A}_{p}(\Omega)$. The main result is a surprising discrepancy between even and odd dimensions. Here we show that in even dimensions the latter system of equations admit infinitely many smooth solutions, modulo isometries, amongst such maps. In odd dimensions this number reduces to one. The result relies on a careful analysis of the full versus the restricted Euler-Lagrange equations where a key ingredient is a necessary and sufficient condition for an associated vector field to be a gradient.

© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Soit $\Omega \subset \mathbb{R}^{n}$ un domaine de Lipschitz borné, on considère la fonctionnelle d'énergie

$$
\mathbb{F}_{p}[\mathbf{u}, \Omega]:=p^{-1} \int_{\Omega}|\nabla \mathbf{u}(\mathbf{x})|^{p} d \mathbf{x},
$$

où $p \in] 1, \infty[$ sur l'espace de fonctions conservant la mesure

$$
\mathcal{A}_{p}(\Omega)=\left\{\mathbf{u} \in W^{1, p}\left(\Omega, \mathbb{R}^{n}\right):\left.\mathbf{u}\right|_{\partial \Omega}=\mathbf{x}, \operatorname{det} \nabla \mathbf{u}=1 \text { a.a. dans } \Omega\right\} .
$$

On introduit une classe de fonctions appellée des torsions généralisée qui est examinée dans le cadre des équations d'EulerLagrange associée à \mathbb{F}_{p} sur $\mathcal{A}_{p}(\Omega)$. Le résultat principal est une surprenante différence de proprieté selon le parité de le dimension n. On démontre que pour n pair, ces équations admettent une infinité de solutions régulières qui sont des isometries, alors qu'en dimension impaire la solution est unique. Le résultat repose sur une analyse minutieuse de la version complète des équations d'Euler-Lagrange où l'ingrédient clé est une condition nécessaire et suffisante pour qu'un champ vectoriel soit un gradient.
© 2009 Elsevier Masson SAS. All rights reserved.

[^0]
1. Introduction

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain and consider the energy functional

$$
\begin{equation*}
\mathbb{F}_{p}[\mathbf{u}, \Omega]:=\int_{\Omega} \mathbf{F}_{p}(\nabla \mathbf{u}(\mathbf{x})) d \mathbf{x}, \tag{1.1}
\end{equation*}
$$

with $\mathbf{F}_{p}(\xi)=p^{-1}|\xi|^{p}$ and $\left.p \in\right] 1, \infty[$ over the space of admissible maps

$$
\begin{equation*}
\mathcal{A}_{p}(\Omega):=\left\{\mathbf{u} \in W_{\varphi}^{1, p}\left(\Omega, \mathbb{R}^{n}\right): \operatorname{det} \nabla \mathbf{u}=1 \text { a.e. in } \Omega\right\}, \tag{1.2}
\end{equation*}
$$

where

$$
W_{\varphi}^{1, p}\left(\Omega, \mathbb{R}^{n}\right)=\left\{\mathbf{u} \in W^{1, p}\left(\Omega, \mathbb{R}^{n}\right):\left.\mathbf{u}\right|_{\partial \Omega}=\varphi\right\}
$$

and φ is the identity map.
In this paper we are concerned with the problem of extremising the energy functional (1.1) over the space (1.2) and examining a class of maps of topological significance as solutions to the associated system of Euler-Lagrange equations

$$
\begin{cases}\operatorname{div} \mathfrak{S}_{p}[\mathbf{x}, \nabla \mathbf{u}(\mathbf{x})]=0, & \mathbf{x} \in \Omega \\ \operatorname{det} \nabla \mathbf{u}(\mathbf{x})=1, & \mathbf{x} \in \Omega \\ \mathbf{u}(\mathbf{x})=\varphi(\mathbf{x}), & \mathbf{x} \in \partial \Omega\end{cases}
$$

Here, we have that

$$
\begin{align*}
\mathfrak{S}_{p}[\mathbf{x}, \xi] & =\mathbf{F}_{p}^{\prime}(\xi)-\mathfrak{p}(\mathbf{x}) \xi^{-t} \\
& =: \mathfrak{T}_{p}[\mathbf{x}, \xi] \xi^{-t}, \tag{1.3}
\end{align*}
$$

for $\mathbf{x} \in \Omega, \xi \in \mathbb{R}^{n \times n}$ satisfying $\operatorname{det} \xi=1$ and \mathfrak{p} a suitable Lagrange multiplier while

$$
\begin{equation*}
\mathfrak{T}_{p}[\mathbf{x}, \xi]=\mathbf{F}_{p}^{\prime}(\xi) \xi^{t}-\mathfrak{p}(\mathbf{x}) \mathbf{I} . \tag{1.4}
\end{equation*}
$$

A motivating source for this type of problem is nonlinear elasticity where (1.1) and (1.2) represent a simple model of a homogeneous incompressible hyperelastic material and solutions to the above system of equations serve as the corresponding equilibrium states (cf., e.g., Ball [1]). ${ }^{1}$

While the linear map $\mathbf{u}=\varphi$ serves as the unique minimiser of \mathbb{F}_{p} over $\mathcal{A}_{p}(\Omega)$ little is known about the structure and features of the solution set to this system of Euler-Lagrange equations [e.g., multiplicity versus uniqueness, existence of strong local minimisers, partial regularity, the nature and form of singularities, symmetries, etc. (see, e.g., $[2,3,6,8,9,12,14])]$.

In this article we contribute towards understanding aspects of these questions by way of presenting multiple solutions to the above system of equations. Indeed we focus attention on the case where the domain $\Omega \subset \mathbb{R}^{n}$ is an n-dimensional annulus, i.e., $\Omega=\left\{\mathbf{x} \in \mathbb{R}^{n}: a<|\mathbf{x}|<b\right\}$ with $0<a<b<\infty .^{2}$ We proceed by introducing a class of maps, referred to as generalised twists, characterised and defined by

$$
\mathbf{u}=\mathbf{Q}(r) \mathbf{x}
$$

where $\mathbf{Q} \in C([a, b], \mathbf{S O}(n))$ and $r=|\mathbf{x}|$. To ensure admissibility, i.e., $\mathbf{u} \in \mathcal{A}_{p}(\Omega)$ it suffices to impose a further p-summability on $\dot{\mathbf{Q}}:=d \mathbf{Q} / d r$ along with $\mathbf{Q}(a)=\mathbf{Q}(b)=\mathbf{I}_{n}$. Restricting the p-energy to the space of such twists we can write

$$
\begin{aligned}
\mathbb{E}_{p}[\mathbf{Q}] & :=p \mathbb{F}_{p}[\mathbf{Q}(r) \mathbf{x}, \Omega] \\
& =\int_{a}^{b} \mathbf{E}(r, \dot{\mathbf{Q}}) r^{n-1} d r
\end{aligned}
$$

[^1]where the integrand itself is given through an integral over the unit sphere, i.e.,
$$
\mathbf{E}(r, \xi):=\int_{\mathbb{S}^{n-1}}\left(n+r^{2}|\xi \theta|^{2}\right)^{\frac{p}{2}} d \mathcal{H}^{n-1}(\theta)
$$

Here, the Euler-Lagrange equation can be shown to be the second order ordinary differential equation

$$
\frac{d}{d r}\left\{r^{n-1}\left[\mathbf{E}^{\prime}(r, \dot{\mathbf{Q}}) \mathbf{Q}^{t}-\mathbf{Q E}^{\prime t}(r, \dot{\mathbf{Q}})\right]\right\}=0
$$

Now in order to characterise among solutions to the above equation, all those which grant a solution to the EulerLagrange equations associated with \mathbb{F}_{p} over $\mathcal{A}_{p}(\Omega)$ we are confronted with the of task of obtaining necessary and sufficient conditions on the vector field

$$
\begin{aligned}
{[\nabla \mathbf{u}]^{t} \Delta_{p} \mathbf{u}=} & \nabla \mathbf{s}+\left\{r \mathbf{s} \mathbf{A}^{2}-r^{2} \mathbf{s}\langle\mathbf{A} \theta, \dot{\mathbf{A}} \theta\rangle \mathbf{I}_{n}\right. \\
& \left.+\frac{1}{r^{n}} \frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right)+\frac{1}{r^{n-1}} \frac{d}{d r}\left(r^{n+1} \mathbf{s}|\mathbf{A} \theta|^{2}\right) \mathbf{I}_{n}\right\} \theta
\end{aligned}
$$

with $\mathbf{A}=\mathbf{Q}^{t} \dot{\mathbf{Q}}$ and $\mathbf{s}=\left(n+r^{2}|\dot{\mathbf{Q}} \theta|^{2}\right)^{\frac{p-2}{2}}$ for it to be a gradient, specifically, to coincide with $\nabla \mathfrak{p}$. This analysis occupies a major part of the paper and is fully settled in Theorems 5.1 and 5.2.

The conclusion that the above analysis bares on to the original Euler-Lagrange equations turns to be a surprising discrepancy between even and odd dimensions. Indeed it follows that in even dimensions the latter system of equations admit infinitely many smooth solutions, modulo isometries, in the form of generalised twists whilst in odd dimensions this number severely reduces to one. ${ }^{3}$

2. Generalised twists

Definition 2.1 (Generalised twist). Let $\Omega=\left\{\mathbf{x} \in \mathbb{R}^{n}: a<|\mathbf{x}|<b\right\}$. A map $\mathbf{u} \in C(\bar{\Omega}, \bar{\Omega})$ is a generalised twist if and only if

$$
\begin{equation*}
\mathbf{u}(\mathbf{x})=\mathbf{Q}(r) \mathbf{x} \tag{2.1}
\end{equation*}
$$

for some $\mathbf{Q} \in C([a, b], \mathbf{S O}(n))$ and all $\mathbf{x} \in \bar{\Omega}$ with $r=|\mathbf{x}| .{ }^{4}$

$$
\begin{aligned}
& { }^{3} \text { Note that for the choice of } \Omega \subset \mathbb{R}^{n} \text { an } n \text {-dimensional annulus the space of its continuous self-maps, that is, } \\
& \qquad \mathfrak{A}(\Omega)=\{\phi \in C(\bar{\Omega}, \bar{\Omega}): \phi(\mathbf{x})=\mathbf{x} \text { for } \mathbf{x} \in \partial \Omega\}
\end{aligned}
$$

equipped with the topology of uniform convergence consist of infinitely many components for $n=2$ and precisely two for $n \geqslant 3$. (See $[13,15]$.) Thus with regards to $\mathcal{A}_{p}(\Omega)$ we distinguish the following two cases.
(1) When $p \geqslant n$ taking advantage of the embedding $\mathcal{A}_{p}(\Omega) \subset \mathfrak{A}(\Omega)$ enables one to partition $\mathcal{A}_{p}(\Omega)$ into a corresponding collection of pairwise disjoint sequentially weakly closed subsets on each of which minimising \mathbb{F}_{p} gives rise to a strong local minimiser (see [14]).
(2) When $1 \leqslant p<n$ the above argument encounters two serious obstacles, firstly, there is no embedding of $\mathcal{A}_{p}(\Omega)$ into $\mathfrak{A}(\Omega)$, and secondly, the determinant function fails to be sequentially weakly continuous.

Thus in case (2) the question of existence and multiplicity of strong local minimisers as well as solutions to the system of Euler-Lagrange equations seem at large open. Luckily the approach developed in this paper overcomes this obstacle and leads to explicit constructions of infinitely many smooth solutions to the later system of Euler-Lagrange equations for any $p \in] 1, \infty[$ when n is even. An interesting question is if the strong local minimisers in case (1) (n being even) lie amongst this class of $t w i s t$ solutions. Equally interesting is a full characterisation of these minimisers when n is odd. (See [11].)

Recall that a map $\overline{\mathbf{u}} \in \mathcal{A}_{p}(\Omega)$ is a strong local minimiser of \mathbb{F}_{p} if and only if there exists $\delta=\delta(\overline{\mathbf{u}})>0$ such that $\mathbb{F}_{p}[\overline{\mathbf{u}}, \Omega] \leqslant \mathbb{F}_{p}[\mathbf{v}, \Omega]$ for all $\mathbf{v} \in \mathcal{A}_{p}(\Omega)$ satisfying $\|\overline{\mathbf{u}}-\mathbf{v}\|_{L^{1}(\Omega)}<\delta$.
4 When $n=2$ a generalised twist can be shown to take, in polar coordinates, the alternative form

$$
\begin{equation*}
(r, \theta) \mapsto(r, \theta+g(r)) \tag{2.2}
\end{equation*}
$$

for a suitable $g \in C[a, b]$. Maps of the type (2.2) frequently arise in the study of mapping class groups of surfaces and are better known as Dehntwists. In higher dimensions, by contrast, no such simple representation of (2.1) is feasible in generalised spherical coordinates, however, the terminology here is suggested by analogy with (2.2) when $n=2$.

The continuous function \mathbf{Q} in the above definition will be referred to as the twist path. When additionally $\mathbf{Q}(a)=$ $\mathbf{Q}(b)$ we refer to \mathbf{Q} as the twist loop.

Proposition 2.1. Let $\Omega=\left\{\mathbf{x} \in \mathbb{R}^{n}: a<|\mathbf{x}|<b\right\}$. A generalised twist \mathbf{u} lies in $\mathcal{A}_{p}=\mathcal{A}_{p}(\Omega)$ with $p \in[1, \infty[$ provided that the following hold.
(1) $\mathbf{Q} \in W^{1, p}([a, b], \mathbf{S O}(n))$,
(2) $\mathbf{Q}(a)=\mathbf{I}_{n}$,
(3) $\mathbf{Q}(b)=\mathbf{I}_{n}$.

Thus, in particular, when a generalised twist \mathbf{u} lies in \mathcal{A}_{p} its corresponding twist path forms a loop in the pointed space $\left(\mathbf{S O}(n), \mathbf{I}_{n}\right)$.

Proof. Assume that \mathbf{u} is a generalised twist. Then $\mathbf{u} \in \mathcal{A}_{p}(\Omega)$ if and only if the following hold.
(i) $\mathbf{u}=\mathbf{x}$ on $\partial \Omega$,
(ii) $\operatorname{det} \nabla \mathbf{u}=1$ in Ω, and,
(iii) $\|\mathbf{u}\|_{W^{1, p}(\Omega)}<\infty$.

Evidently (2) and (3) give (i). Moreover, a straight-forward calculation gives

$$
\begin{align*}
\nabla \mathbf{u} & =\mathbf{Q}+r \dot{\mathbf{Q}} \theta \otimes \theta \\
& =\mathbf{Q}\left(\mathbf{I}_{n}+r \mathbf{Q}^{t} \dot{\mathbf{Q}} \theta \otimes \theta\right) \tag{2.3}
\end{align*}
$$

where $r=|\mathbf{x}|, \theta=\mathbf{x} /|\mathbf{x}|$ and $\dot{\mathbf{Q}}:=d \mathbf{Q} / d r$. Hence in view of $\operatorname{det} \mathbf{Q}=1$ we can write

$$
\begin{aligned}
\operatorname{det} \nabla \mathbf{u} & =\operatorname{det}(\mathbf{Q}+r \dot{\mathbf{Q}} \theta \otimes \theta) \\
& =\operatorname{det}\left(\mathbf{I}_{n}+r \mathbf{Q}^{t} \dot{\mathbf{Q}} \theta \otimes \theta\right) \\
& =1+r\left\langle\mathbf{Q}^{t} \dot{\mathbf{Q}} \theta, \theta\right\rangle \\
& =1+r\langle\mathbf{Q} \theta, \mathbf{Q} \theta\rangle=1,
\end{aligned}
$$

where in the last identity we have used the fact that $\langle\mathbf{Q} \theta, \mathbf{Q} \theta\rangle=|\theta|^{2}=1$ for all $\theta \in \mathbb{S}^{n-1}$ and so as a result

$$
\frac{d}{d r}\langle\mathbf{Q} \theta, \mathbf{Q} \theta\rangle=\langle\mathbf{Q} \theta, \dot{\mathbf{Q}} \theta\rangle+\langle\dot{\mathbf{Q}} \theta, \mathbf{Q} \theta\rangle=0 .
$$

This therefore gives (ii). Finally, to justify (iii) we first note that

$$
\begin{aligned}
|\nabla \mathbf{u}|^{2} & =\operatorname{tr}\left\{[\nabla \mathbf{u}][\nabla \mathbf{u}]^{t}\right\} \\
& =\operatorname{tr}\left\{(\mathbf{Q}+r \dot{\mathbf{Q}} \theta \otimes \theta)\left(\mathbf{Q}^{t}+r \theta \otimes \dot{\mathbf{Q}} \theta\right)\right\} \\
& =\operatorname{tr}\left\{\mathbf{I}_{n}+r \mathbf{Q} \theta \otimes \dot{\mathbf{Q}} \theta+r \dot{\mathbf{Q}} \theta \otimes \mathbf{Q} \theta+r^{2} \dot{\mathbf{Q}} \theta \otimes \dot{\mathbf{Q}} \theta\right\} \\
& =n+2 r\langle\mathbf{Q} \theta, \dot{\mathbf{Q}} \theta\rangle+r^{2}\langle\dot{\mathbf{Q}} \theta, \dot{\mathbf{Q}} \theta\rangle .
\end{aligned}
$$

Therefore as a result of $\langle\mathbf{Q} \theta, \dot{\mathbf{Q}} \theta\rangle=0$ for any $p \in[1, \infty[$ we have that

$$
\begin{equation*}
|\nabla \mathbf{u}|^{p}=\left(n+r^{2}|\dot{\mathbf{Q}} \theta|^{2}\right)^{\frac{p}{2}} . \tag{2.4}
\end{equation*}
$$

Hence in view of $|\mathbf{u}|=r \sqrt{\langle\mathbf{Q} \theta, \mathbf{Q} \theta\rangle}=r$ we can write

$$
\int_{\Omega}|\mathbf{u}|^{p}+|\nabla \mathbf{u}|^{p}=\int_{a}^{b} \int_{\mathbb{S}^{n-1}}\left\{r^{p}+\left(n+r^{2}|\dot{\mathbf{Q}} \theta|^{2}\right)^{\frac{p}{2}}\right\} r^{n-1} d \mathcal{H}^{n-1}(\theta) d r,
$$

and so referring to (1) the conclusion follows.

Proposition 2.2. Suppose that \mathbf{u} is a generalised twist with the associated twist path $\mathbf{Q} \in C^{2}(] a, b[, \mathbf{S O}(n))$. Then for $p \in[1, \infty[$ we have that

$$
\begin{aligned}
\Delta_{p} \mathbf{u} & :=\operatorname{div}\left(|\nabla \mathbf{u}|^{p-2}\right) \nabla \mathbf{u} \\
& =\mathbf{Q}\left[\nabla \mathbf{s} \otimes \theta+\frac{1}{r^{n}} \frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right)+r \mathbf{s} \mathbf{A}^{2}\right] \theta,
\end{aligned}
$$

where $\mathbf{A}=\mathbf{Q}^{t} \dot{\mathbf{Q}}$ and $\mathbf{s}=\mathbf{s}(r, \theta):=\left(n+r^{2}|\mathbf{A} \theta|^{2}\right)^{\frac{p-2}{2}}$.
Proof. (1) $(p=2)$ Referring to Definition 2.1 and using the notation $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ we can write with the aid of (2.3) in Proposition 2.1 that

$$
\begin{aligned}
\Delta u_{i}= & \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}}\left\{\mathbf{Q}_{i j}+r \sum_{k=1}^{n} \dot{\mathbf{Q}}_{i k} \theta_{k} \theta_{j}\right\} \\
= & \sum_{j=1}^{n}\left\{\dot{\mathbf{Q}}_{i j} \theta_{j}+\theta_{j} \sum_{k=1}^{n} \dot{\mathbf{Q}}_{i k} \theta_{k} \theta_{j}+r \sum_{k=1}^{n} \ddot{\mathbf{Q}}_{i k} \theta_{j} \theta_{k} \theta_{j}\right. \\
& \left.+\sum_{k=1}^{n} \dot{\mathbf{Q}}_{i k}\left(\delta_{k j}-\theta_{j} \theta_{k}\right) \theta_{j}+\sum_{k=1}^{n} \dot{\mathbf{Q}}_{i k} \theta_{k}\left(1-\theta_{j} \theta_{j}\right)\right\} \\
= & 2 \sum_{j=1}^{n} \dot{\mathbf{Q}}_{i j} \theta_{j}+r \sum_{j=1}^{n} \ddot{\mathbf{Q}}_{i j} \theta_{j}+(n-1) \sum_{j=1}^{n} \dot{\mathbf{Q}}_{i j} \theta_{j} \\
= & (n+1) \sum_{k=1}^{n} \dot{\mathbf{Q}}_{i k} \theta_{k}+r \sum_{j=1}^{n} \ddot{\mathbf{Q}}_{i j} \theta_{j} .
\end{aligned}
$$

As this is true for $1 \leqslant i \leqslant n$ going back to the original vector notation and using the substitutions $\dot{\mathbf{Q}}=\mathbf{Q A}$ and $\ddot{\mathbf{Q}}=\mathbf{Q}\left[\dot{\mathbf{A}}+\mathbf{A}^{2}\right]$ we have that

$$
\begin{aligned}
\Delta \mathbf{u} & =[(n+1) \dot{\mathbf{Q}}+r \ddot{\mathbf{Q}}] \theta \\
& =\mathbf{Q}\left[(n+1) \mathbf{A}+r \dot{\mathbf{A}}+r \mathbf{A}^{2}\right] \theta \\
& =\mathbf{Q}\left[\frac{1}{r^{n}} \frac{d}{d r}\left(r^{n+1} \mathbf{A}\right)+r \mathbf{A}^{2}\right] \theta,
\end{aligned}
$$

which is the required result for $p=2$. [Note that in this case $\mathbf{s}=\mathbf{s}(r, \theta) \equiv 1$.]
(2) $(p \in[1, \infty[)$ According to definition we have that

$$
\begin{aligned}
\Delta_{p} \mathbf{u} & =\operatorname{div}\left(|\nabla \mathbf{u}|^{p-2} \nabla \mathbf{u}\right) \\
& =\operatorname{div}(\mathbf{s} \nabla \mathbf{u})=\nabla \mathbf{u} \nabla \mathbf{s}+\mathbf{s} \Delta \mathbf{u} .
\end{aligned}
$$

Now a straight-forward differentiation gives

$$
\begin{align*}
\nabla \mathbf{s} & =\nabla\left(n+r^{2}|\dot{\mathbf{Q}} \theta|^{2}\right)^{\frac{p-2}{2}} \\
& =\nabla\left(n+r^{2}|\mathbf{A} \theta|^{2}\right)^{\frac{p-2}{2}} \\
& =\beta\left[r \mathbf{A}^{t} \mathbf{A}+r^{2}\langle\mathbf{A} \theta, \dot{\mathbf{A}} \theta\rangle \mathbf{I}_{n}\right] \theta, \tag{2.5}
\end{align*}
$$

where $\beta=\beta(r, \theta, p):=(p-2)\left(n+r^{2}|\mathbf{A} \theta|^{2}\right)^{\frac{p-4}{2}}$. Thus we can write

$$
\begin{aligned}
\Delta_{p} \mathbf{u}= & \nabla \mathbf{u} \nabla \mathbf{s}+\mathbf{s} \Delta \mathbf{u} \\
= & \mathbf{Q}\left[\mathbf{I}_{n}+r \mathbf{A} \theta \otimes \theta\right] \nabla \mathbf{s} \\
& +\mathbf{s} \mathbf{Q}\left[(n+1) \mathbf{A}+r \dot{\mathbf{A}}+r \mathbf{A}^{2}\right] \theta
\end{aligned}
$$

$$
\begin{aligned}
= & \mathbf{Q} \nabla \mathbf{s}+r \beta \mathbf{Q}[\mathbf{A} \theta \otimes \theta]\left[r \mathbf{A}^{t} \mathbf{A}+r^{2}\langle\mathbf{A} \theta, \dot{\mathbf{A}} \theta\rangle \mathbf{I}_{n}\right] \theta \\
& +\mathbf{s} \mathbf{Q}\left[(n+1) \mathbf{A}+r \dot{\mathbf{A}}+r \mathbf{A}^{2}\right] \theta .
\end{aligned}
$$

In order to further simplify the second term on the right in the last identity we first notice that

$$
\begin{aligned}
\mathbf{s}_{r}:=\frac{\partial \mathbf{s}}{\partial r} & =\frac{\partial}{\partial r}\left(n+r^{2}|\mathbf{A} \theta|^{2}\right)^{\frac{p-2}{2}} \\
& =\beta\left[r|\mathbf{A} \theta|^{2}+r^{2}\langle\mathbf{A} \theta, \dot{\mathbf{A}} \theta\rangle\right]
\end{aligned}
$$

and consequently

$$
\begin{aligned}
r \mathbf{s}_{r} \mathbf{Q A} \theta & =r \beta \mathbf{Q}\left[r|\mathbf{A} \theta|^{2}+r^{2}\langle\mathbf{A} \theta, \dot{\mathbf{A}} \theta\rangle\right] \mathbf{A} \theta \\
& =r \beta \mathbf{Q}[\mathbf{A} \theta \otimes \theta]\left[r \mathbf{A}^{t} \mathbf{A}+r^{2}\langle\mathbf{A} \theta, \dot{\mathbf{A}} \theta\rangle \mathbf{I}_{n}\right] \theta .
\end{aligned}
$$

Therefore substituting back gives

$$
\begin{aligned}
\Delta_{p} \mathbf{u} & =\mathbf{Q}\left[\nabla \mathbf{s} \otimes \theta+r \mathbf{s}_{r} \mathbf{A}+(n+1) \mathbf{s} \mathbf{A}+r \mathbf{s} \dot{\mathbf{A}}+r \mathbf{s} \mathbf{A}^{2}\right] \theta \\
& =\mathbf{Q}\left[\nabla \mathbf{s} \otimes \theta+\frac{1}{r^{n}} \frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right)+r \mathbf{s} \mathbf{A}^{2}\right] \theta
\end{aligned}
$$

which is the required conclusion.
Proposition 2.3. Suppose that \mathbf{u} is a generalised twist with the associated twist path $\mathbf{Q} \in C^{2}(] a, b[, \mathbf{S O}(n))$. Then for $p \in[1, \infty[$ we have that

$$
\begin{align*}
{[\nabla \mathbf{u}]^{t} \Delta_{p} \mathbf{u}=} & \nabla \mathbf{s}+\left\{r \mathbf{s} \mathbf{A}^{2}-r^{2} \mathbf{s}\langle\mathbf{A} \theta, \dot{\mathbf{A}} \theta\rangle \mathbf{I}_{n}\right. \\
& \left.+\frac{1}{r^{n}} \frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right)+\frac{1}{r^{n-1}} \frac{d}{d r}\left(r^{n+1} \mathbf{s}|\mathbf{A} \theta|^{2}\right) \mathbf{I}_{n}\right\} \theta \tag{2.6}
\end{align*}
$$

where $\mathbf{A}=\mathbf{Q}^{t} \dot{\mathbf{Q}}$ and $\mathbf{s}=\mathbf{s}(r, \theta)=\left(n+r^{2}|\mathbf{A} \theta|^{2}\right)^{\frac{p-2}{2}}$.
Proof. In view of (2.3) we have that

$$
[\nabla \mathbf{u}]^{t}=[\mathbf{Q}+r \dot{\mathbf{Q}} \theta \otimes \theta]^{t}=\left[\mathbf{Q}^{t}+r \theta \otimes \dot{\mathbf{Q}} \theta\right]=\left[\mathbf{I}_{n}+r \theta \otimes \mathbf{A} \theta\right] \mathbf{Q}^{t} .
$$

Therefore by substituting for $[\nabla \mathbf{u}]^{t}$ and $\Delta_{p} \mathbf{u}$ (from the previous proposition) we arrive at

$$
\begin{aligned}
{[\nabla \mathbf{u}]^{t} \Delta_{p} \mathbf{u}=} & {\left[\mathbf{I}_{n}+r \theta \otimes \mathbf{A} \theta\right] } \\
& \times\left[\nabla \mathbf{s} \otimes \theta+\frac{1}{r^{n}} \frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right)+r \mathbf{s} \mathbf{A}^{2}\right] \theta \\
= & {\left[\nabla \mathbf{s} \otimes \theta+\frac{1}{r^{n}} \frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right)+r \mathbf{s} \mathbf{A}^{2}\right] \theta } \\
& +\left[r\langle\nabla \mathbf{s}, \mathbf{A} \theta\rangle+\frac{1}{r^{n-1}}\left\langle\frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right) \theta, \mathbf{A} \theta\right\rangle+r^{2} \mathbf{s}\left\langle\mathbf{A}^{2} \theta, \mathbf{A} \theta\right\rangle\right] \theta .
\end{aligned}
$$

However, in view of \mathbf{A} being skew-symmetric it can be easily verified that $\left\langle\mathbf{A}^{2} \theta, \mathbf{A} \theta\right\rangle=0$ and in a similar way referring to (2.5)

$$
\begin{aligned}
\langle\nabla \mathbf{s}, \mathbf{A} \theta\rangle & =\left\langle\beta\left[r \mathbf{A}^{t} \mathbf{A}+r^{2}\langle\mathbf{A} \theta, \dot{\mathbf{A}} \theta\rangle \mathbf{I}_{n}\right] \theta, \mathbf{A} \theta\right\rangle \\
& =\beta r\left\{\left\langle\mathbf{A}^{3} \theta, \theta\right\rangle+r\langle\mathbf{A} \theta, \dot{\mathbf{A}} \theta\rangle\langle\mathbf{A} \theta, \theta\rangle\right\}=0 .
\end{aligned}
$$

Thus summarising, we have that

$$
\begin{aligned}
{[\nabla \mathbf{u}]^{t} \Delta_{p} \mathbf{u}=} & \nabla \mathbf{s}+\left\{r \mathbf{s} \mathbf{A}^{2}+\frac{1}{r^{n}} \frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right)\right. \\
& \left.+\frac{1}{r^{n-1}}\left\langle\frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right) \theta, \mathbf{A} \theta\right) \mathbf{I}_{n}\right\} \theta \\
= & \nabla \mathbf{s}+\left\{r \mathbf{s} \mathbf{A}^{2}-r^{2} \mathbf{s}\langle\mathbf{A} \theta, \dot{\mathbf{A}} \theta\rangle \mathbf{I}_{n}+\frac{1}{r^{n}} \frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right)\right. \\
& \left.+\frac{1}{r^{n-1}} \frac{d}{d r}\left(r^{n+1} \mathbf{s}|\mathbf{A} \theta|^{2}\right) \mathbf{I}_{n}\right\} \theta .
\end{aligned}
$$

The proof is thus complete.

3. The \boldsymbol{p}-energy restricted to the loop space

For a generalised twist \mathbf{u} referring to (2.4) we have for any $p \in[1, \infty[$ that

$$
\int_{\Omega}|\nabla \mathbf{u}|^{p}=\int_{a}^{b} \int_{\mathbb{S}^{n-1}}\left(n+r^{2}|\dot{\mathbf{Q}} \theta|^{2}\right)^{\frac{p}{2}} r^{n-1} d \mathcal{H}^{n-1}(\theta) d r .
$$

Motivated by the above representation in this section we introduce the energy functional

$$
\mathbb{E}_{p}[\mathbf{Q}]:=\int_{a}^{b} \mathbf{E}(r, \dot{\mathbf{Q}}) r^{n-1} d r
$$

where the integrand itself is given through the integral

$$
\mathbf{E}(r, \xi)=\int_{\mathbb{S}^{n-1}}\left(n+r^{2}|\xi \theta|^{2}\right)^{\frac{p}{2}} d \mathcal{H}^{n-1}(\theta)
$$

Associated with the energy functional \mathbb{E}_{p} and in line with Proposition 2.1 we introduce the space of admissible loops

$$
\mathcal{E}_{p}=\left\{\mathbf{Q}=\mathbf{Q}(r): \mathbf{Q} \in W^{1, p}([a, b], \mathbf{S O}(n)), \mathbf{Q}(a)=\mathbf{Q}(b)=\mathbf{I}_{n}\right\} .
$$

Our primary objective here is to obtain the Euler-Lagrange equation associated with the energy functional \mathbb{E}_{p} over the space of loops \mathcal{E}_{p}. In doing so the following observation will prove useful.

Proposition 3.1. Let $\mathbf{Q} \in \mathbf{S O}(n)$ and $\mathbf{R} \in \mathbb{M}_{n \times n}$. Then the followings are equivalent:
(1) $\mathbf{R Q}^{t}+\mathbf{Q} \mathbf{R}^{t}=\mathbf{0}$,
(2) $\mathbf{R}=\left(\mathbf{F}-\mathbf{F}^{t}\right) \mathbf{Q}$ for some $\mathbf{F} \in \mathbb{M}_{n \times n}$.

Moreover, \mathbf{F} in (2) is unique if it is assumed skew-symmetric, i.e., $\mathbf{F}^{t}=-\mathbf{F}$.
Proof. The implication $(\mathbf{2}) \Rightarrow(\mathbf{1})$ follows from a direct verification. For the reverse implication it suffices to assume $\mathbf{F}^{t}+\mathbf{F}=\mathbf{0}$ and then take $2 \mathbf{F}=\mathbf{R} \mathbf{Q}^{t}$.

Proposition 3.2. Let $p \in\left[1, \infty\left[\right.\right.$. Then the Euler-Lagrange equation associated with \mathbb{E}_{p} over \mathcal{E}_{p} takes the form

$$
\begin{equation*}
\frac{d}{d r}\left\{r^{n-1}\left[\mathbf{E}_{\xi}(r, \dot{\mathbf{Q}}) \mathbf{Q}^{t}-\mathbf{Q E}_{\xi}^{t}(r, \dot{\mathbf{Q}})\right]\right\}=0 \tag{3.1}
\end{equation*}
$$

Proof. Fix $\mathbf{Q} \in W^{1, p}([a, b], \mathbf{S O}(n))$ and pick a variation $\mathbf{H} \in C_{0}^{\infty}\left([a, b], \mathbb{M}_{n \times n}\right)$. For $\varepsilon \in \mathbb{R}$ put $\mathbf{Q}_{\varepsilon}=\mathbf{Q}+\varepsilon \mathbf{H}$. Then,

$$
\begin{aligned}
\mathbf{Q}_{\varepsilon} \mathbf{Q}_{\varepsilon}^{t} & =[\mathbf{Q}+\varepsilon \mathbf{H}][\mathbf{Q}+\varepsilon \mathbf{H}]^{t} \\
& =\mathbf{I}_{n}+\varepsilon\left[\mathbf{H} \mathbf{Q}^{t}+\mathbf{Q} \mathbf{H}^{t}\right]+\varepsilon^{2} \mathbf{H} \mathbf{H}^{t} .
\end{aligned}
$$

Hence for \mathbf{Q}_{ε} to take values on $\mathbf{S O}(n)$ to the first order it suffices to have

$$
\mathbf{H Q}^{t}+\mathbf{Q} \mathbf{H}^{t}=\mathbf{0},
$$

on $[a, b]$. In view of Proposition 3.1 this is equivalent to assuming that for some $\mathbf{F} \in C_{0}^{\infty}\left([a, b], \mathbb{M}_{n \times n}\right)$ the variation \mathbf{H} has the form

$$
\mathbf{H}=\left(\mathbf{F}-\mathbf{F}^{t}\right) \mathbf{Q}
$$

With this assumption in place we examine the vanishing of the first derivative of the energy, i.e., that indeed

$$
\begin{aligned}
0 & =\left.\frac{d}{d \epsilon} \mathbb{E}_{p}\left[\mathbf{Q}_{\varepsilon}\right]\right|_{\varepsilon=0} \\
& =\left.\frac{d}{d \varepsilon} \int_{a}^{b} \mathbf{E}\left(r, \dot{\mathbf{Q}}_{\varepsilon}\right) r^{n-1} d r\right|_{\varepsilon=0} \\
& =\left.\int_{a}^{b}\left\{\frac{\partial \mathbf{E}}{\partial \xi}\left(r, \dot{\mathbf{Q}}_{\varepsilon}\right): \frac{d}{d \varepsilon} \dot{\mathbf{Q}}_{\varepsilon}\right\} r^{n-1} d r\right|_{\varepsilon=0} \\
& =\int_{a}^{b}\left\{\frac{\partial \mathbf{E}}{\partial \xi}(r, \dot{\mathbf{Q}}):\left[\left(\dot{\mathbf{F}}-\dot{\mathbf{F}}^{t}\right) \mathbf{Q}+\left(\mathbf{F}-\mathbf{F}^{t}\right) \dot{\mathbf{Q}}\right]\right\} r^{n-1} d r \\
& =: \mathbf{I}+\mathbf{I I} .
\end{aligned}
$$

We now proceed by evaluating each term separately. Indeed, with regards to the first term we have that

$$
\begin{aligned}
\mathbf{I} & =\int_{a}^{b}\left\{\frac{\partial \mathbf{E}}{\partial \xi}(r, \dot{\mathbf{Q}}):\left(\dot{\mathbf{F}}-\dot{\mathbf{F}}^{t}\right) \mathbf{Q}\right\} r^{n-1} d r \\
& =\int_{a}^{b}\left\{\frac{\partial \mathbf{E}}{\partial \xi}(r, \dot{\mathbf{Q}}) \mathbf{Q}^{t}:\left(\dot{\mathbf{F}}-\dot{\mathbf{F}}^{t}\right)\right\} r^{n-1} d r \\
& =\int_{a}^{b}\left\{-\frac{d}{d r}\left[r^{n-1} \frac{\partial \mathbf{E}}{\partial \xi}(r, \dot{\mathbf{Q}}) \mathbf{Q}^{t}\right]:\left(\mathbf{F}-\mathbf{F}^{t}\right)\right\} d r
\end{aligned}
$$

Note that in the third line we have used integration by parts which together with the boundary conditions $\mathbf{F}(a)=$ $\mathbf{F}(b)=\mathbf{0}$ gives

$$
\begin{aligned}
0= & r^{n-1} \frac{\partial \mathbf{E}}{\partial \xi}(r, \dot{\mathbf{Q}}) \mathbf{Q}^{t}:\left.\left(\mathbf{F}-\mathbf{F}^{t}\right)\right|_{a} ^{b} \\
= & \int_{a}^{b} r^{n-1} \frac{\partial \mathbf{E}}{\partial \xi}(r, \dot{\mathbf{Q}}) \mathbf{Q}^{t}:\left(\dot{\mathbf{F}}-\dot{\mathbf{F}}^{t}\right) d r \\
& +\int_{a}^{b} \frac{d}{d r}\left[r^{n-1} \frac{\partial \mathbf{E}}{\partial \xi}(r, \dot{\mathbf{Q}}) \mathbf{Q}^{t}\right]:\left(\mathbf{F}-\mathbf{F}^{t}\right) d r .
\end{aligned}
$$

On the other hand for the second term a direct verification reveals that

$$
\mathbf{I I}=\int_{a}^{b}\left\{\frac{\partial \mathbf{E}}{\partial \xi}(r, \dot{\mathbf{Q}}):\left(\mathbf{F}-\mathbf{F}^{t}\right) \dot{\mathbf{Q}}\right\} r^{n-1} d r
$$

$$
=\int_{a}^{b} \int_{\mathbb{S}^{n-1}} p\left(n+r^{2}|\dot{\mathbf{Q}} \theta|^{2}\right)^{\frac{p-2}{2}}\left\langle\dot{\mathbf{Q}} \theta,\left(\mathbf{F}-\mathbf{F}^{t}\right) \dot{\mathbf{Q}} \theta\right) r^{n+1} d r=0
$$

as a result of the pointwise identity $\left\langle\dot{\mathbf{Q}} \theta,\left(\mathbf{F}-\mathbf{F}^{t}\right) \dot{\mathbf{Q}} \theta\right\rangle=0$. Thus, summarising, we have that

$$
\left.\frac{d}{d \varepsilon} \mathbb{E}_{p}\left[\mathbf{Q}_{\varepsilon}\right]\right|_{\varepsilon=0}=\int_{a}^{b}\left\{-\frac{d}{d r}\left[r^{n-1} \frac{\partial \mathbf{E}}{\partial \xi}(r, \dot{\mathbf{Q}}) \mathbf{Q}^{t}\right]:\left(\mathbf{F}-\mathbf{F}^{t}\right)\right\} d r=0
$$

As this is true for every $\mathbf{F} \in C_{0}^{\infty}\left([a, b], \mathbb{M}_{n \times n}\right)$ it follows that the skew-symmetric part of the tensor field in the brackets in the equation above is zero. This gives the required conclusion.

Proposition 3.3. The Euler-Lagrange equation associated with \mathbb{E}_{p} over \mathcal{E}_{p} can be alternatively expressed as

$$
\int_{a}^{b} \int_{\mathbb{S}^{n-1}}\left\{\left\{\frac{d}{d r}\left(r^{n+1} \mathbf{s A}\right)\right\} \theta,\left(\mathbf{F}-\mathbf{F}^{t}\right) \theta\right\rangle d \mathcal{H}^{n-1}(\theta) d r=0
$$

for all $\mathbf{F} \in C_{0}^{\infty}(] a, b\left[, \mathbb{M}_{n \times n}\right)$ where $\mathbf{A}=\mathbf{Q}^{t} \dot{\mathbf{Q}}$ and $\mathbf{s}=\left(n+r^{2}|\mathbf{A} \theta|^{2}\right)^{\frac{p-2}{2}}$.
Proof. Referring to the proof of Proposition 3.2 and making the substitutions described above for \mathbf{A} and \mathbf{s} we can write

$$
\begin{aligned}
0 & =\left.\frac{d}{d \varepsilon} \mathbb{E}_{p}\left[\mathbf{Q}_{\varepsilon}\right]\right|_{\varepsilon=0}=\mathbf{I} \\
& =\int_{a}^{b}\left\{\frac{\partial \mathbf{E}}{\partial \xi}(r, \dot{\mathbf{Q}}):\left(\dot{\mathbf{F}}-\dot{\mathbf{F}}^{t}\right) \mathbf{Q}\right\} r^{n-1} d r \\
& =\int_{a}^{b} \int_{\mathbb{S}^{n-1}} p\left\langle r^{n+1} \mathbf{s} \mathbf{A} \theta,\left(\dot{\mathbf{F}}-\dot{\mathbf{F}}^{t}\right) \theta\right\rangle d \mathcal{H}^{n-1}(\theta) d r \\
& =\int_{a}^{b} \int_{\mathbb{S}^{n-1}}-p\left\langle\left\{\frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right)\right\} \theta,\left(\mathbf{F}-\mathbf{F}^{t}\right) \theta\right\rangle d \mathcal{H}^{n-1}(\theta) d r
\end{aligned}
$$

which is the required conclusion.
Any twist loop forming a solution to the Euler-Lagrange equation associated with \mathbb{E}_{p} over \mathcal{E}_{p} (as described in the above proposition) will be referred to as a p-stationary loop.

Remark 3.1. In view of Proposition 3.3 a sufficient condition for an admissible loop $\mathbf{Q} \in \mathcal{E}_{p}$ to be p-stationary is the stronger condition

$$
\begin{equation*}
\frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right)=0 \tag{3.2}
\end{equation*}
$$

Interestingly for $p=2$ the latter is equivalent to the Euler-Lagrange equation described in Proposition 3.3 (see [10]). However, in general, i.e., for $p \neq 2$, this need not be the case as in the original Euler-Lagrange equation the function \mathbf{s} depends on both r and $\theta .{ }^{5}$

[^2]
4. Minimising \boldsymbol{p}-stationary loops

Consider as in the previous section for $p \in[1, \infty[$ the energy functional

$$
\mathbb{E}_{p}[\mathbf{Q}]=\int_{a}^{b} \mathbf{E}(r, \dot{\mathbf{Q}}) r^{n-1} d r,
$$

with the integrand

$$
\mathbf{E}(r, \xi)=\int_{\mathbb{S}^{n-1}}\left(n+r^{2}|\xi \theta|^{2}\right)^{\frac{p}{2}} d \mathcal{H}^{n-1}(\theta)
$$

over the space of admissible loops

$$
\mathcal{E}_{p}=\left\{\mathbf{Q}=\mathbf{Q}(r): \mathbf{Q} \in W^{1, p}([a, b], \mathbf{S O}(n)), \mathbf{Q}(a)=\mathbf{Q}(b)=\mathbf{I}_{n}\right\} .
$$

According to an elementary version of Sobolev embedding theorem any $\mathbf{Q} \in \mathcal{E}_{p}$ has a continuous representative (again denoted \mathbf{Q}). Thus each such \mathbf{Q} represents an element of the fundamental group $\pi_{1}[\mathbf{S O}(n)]$ which is denoted by $] \mathbf{Q}[$. As is well known (see, e.g., [4])

$$
\pi_{1}[\mathbf{S O}(n)] \cong \begin{cases}\mathbb{Z} & \text { when } n=2 \\ \mathbb{Z}_{2} & \text { when } n \geqslant 3\end{cases}
$$

and so these facts combined enable one to introduce the following partitioning of the loop space \mathcal{E}_{p}.
(1) $(n=2)$ for each $m \in \mathbb{Z}$ put

$$
\begin{equation*}
\mathfrak{c}_{m}\left[\mathcal{E}_{p}\right]:=\left\{\mathbf{Q} \in \mathcal{E}_{p}:\right] \mathbf{Q}[=m\} . \tag{4.1}
\end{equation*}
$$

As a result the latter are pairwise disjoint and that

$$
\mathcal{E}_{p}=\bigcup_{m \in \mathbb{Z}} \mathfrak{c}_{m}\left[\mathcal{E}_{p}\right]
$$

(2) $(n \geqslant 3)$ for each $\alpha \in \mathbb{Z}_{2}=\{0,1\}$ put

$$
\begin{equation*}
\mathfrak{c}_{\alpha}\left[\mathcal{E}_{p}\right]:=\left\{\mathbf{Q} \in \mathcal{E}_{p}:\right] \mathbf{Q}[=\alpha\} . \tag{4.2}
\end{equation*}
$$

As a result, again, the latter are pairwise disjoint and that

$$
\mathcal{E}_{p}=\bigcup_{\alpha \in \mathbb{Z}_{2}} \mathfrak{c}_{\alpha}\left[\mathcal{E}_{p}\right]
$$

When $p>1$ an application of the direct methods of the calculus of variations to the energy functional \mathbb{E}_{p} together with the observation that the homotopy classes $\mathfrak{c}_{\star}\left[\mathcal{E}_{p}\right] \subset \mathcal{E}_{p}$ are sequentially weakly closed gives the existence of [multiple] minimising p-stationary loops. ${ }^{6}$

The only missing ingredient in this regard is the following statement implying the coercivity of \mathbb{E}_{p} over \mathcal{E}_{p}.
Proposition 4.1. Let $p \in[1, \infty[$. Then there exists $c=c(n, p)>0$ such that

$$
\int_{\mathbb{S}^{n-1}}|\mathbf{F} \theta|^{p} d \mathcal{H}^{n-1}(\theta) \geqslant c|\mathbf{F}|^{p}
$$

for every $\mathbf{F} \in \mathbb{M}_{n \times n}$.

[^3]Proof. Fix $\mathbf{F} \in \mathbb{M}_{n \times n}$. Then the non-negative symmetric matrix $\mathbf{F}^{t} \mathbf{F}$ is orthogonally diagonalisable, that is, $\mathbf{F}^{t} \mathbf{F}=$ $\mathbf{P}^{t} \mathbf{D P}$ where $\mathbf{D}=\operatorname{diag}\left(\lambda_{1}\left[\mathbf{F}^{t} \mathbf{F}\right], \ldots, \lambda_{n}\left[\mathbf{F}^{t} \mathbf{F}\right]\right)$ and $\mathbf{P} \in \mathbf{O}(n)$. As a result for $\theta \in \mathbb{S}^{n-1}$ we can write

$$
|\mathbf{F} \theta|=|\langle\mathbf{F} \theta, \mathbf{F} \theta\rangle|^{\frac{1}{2}}=\left|\left\langle\mathbf{F}^{t} \mathbf{F} \theta, \theta\right\rangle\right|^{\frac{1}{2}}=\left|\left\langle\mathbf{P}^{t} \mathbf{D P} \theta, \theta\right\rangle\right|^{\frac{1}{2}}=|\langle\mathbf{D P} \theta, \mathbf{P} \theta\rangle|^{\frac{1}{2}}
$$

Setting $\omega:=\mathbf{P} \theta$ and noting that $\mathbf{O}(n)$ acts as the group of isometries on \mathbb{S}^{n-1}, an application of Jensen's inequality followed by Hölder inequality [on finite sequences] gives

$$
\begin{aligned}
\left\{f_{\mathbb{S}^{n-1}}|\mathbf{F} \theta|^{p} d \mathcal{H}^{n-1}(\theta)\right\}^{\frac{1}{p}} & \geqslant \int_{\mathbb{S}^{n-1}}|\mathbf{F} \theta| d \mathcal{H}^{n-1}(\theta) \\
& \geqslant f_{\mathbb{S}^{n-1}}\left\{\sum_{j=1}^{n} \lambda_{j}\left[\mathbf{F}^{t} \mathbf{F}\right] \omega_{j}^{2}(\theta)\right\}^{\frac{1}{2}} d \mathcal{H}^{n-1}(\theta) \\
& \geqslant \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \lambda_{j}^{\frac{1}{2}}\left[\mathbf{F}^{t} \mathbf{F}\right] \int_{\mathbb{S}^{n-1}}\left|\omega_{j}(\theta)\right| d \mathcal{H}^{n-1}(\theta) \\
& \geqslant \frac{\alpha_{n}}{\sqrt{n}}\left\{\sum_{j=1}^{n} \lambda_{j}\left[\mathbf{F}^{t} \mathbf{F}\right]\right\}^{\frac{1}{2}}=\frac{\alpha_{n}}{\sqrt{n}}|\mathbf{F}| .
\end{aligned}
$$

Hence the conclusion follows with the choice of

$$
c=\alpha_{n}^{p} n^{1-\frac{p}{2}} \omega_{n}=\min _{1 \leqslant j \leqslant n}\left\{f_{\mathbb{S}^{n-1}}\left|\theta_{j}\right| d \mathcal{H}^{n-1}(\theta)\right\}^{p} n^{1-\frac{p}{2}} \omega_{n}>0 .
$$

Proposition 4.2. Let $p \in[1, \infty[$. Then there exists $d=d(n, p, \Omega)>0$ such that

$$
\mathbb{E}_{p}[\mathbf{Q}] \geqslant d\|\mathbf{Q}\|_{1, p}^{p}
$$

for all $\mathbf{Q} \in \mathcal{E}_{p}$.
Proof. In view of Proposition 4.1 it is enough to note that for $\mathbf{Q} \in \mathcal{E}_{p}$ we can write

$$
\begin{aligned}
\mathbb{E}_{p}[\mathbf{Q}] & =\int_{a}^{b} \int_{\mathbb{S}^{n-1}}\left(n+r^{2}|\dot{\mathbf{Q}} \theta|^{2}\right)^{\frac{p}{2}} r^{n-1} d \mathcal{H}^{n-1}(\theta) d r \\
& \geqslant \int_{a}^{b} \int_{\mathbb{S}^{n-1}} r^{p+n-1}|\dot{\mathbf{Q}} \theta|^{p} d \mathcal{H}^{n-1}(\theta) d r \\
& \geqslant c \int_{a}^{b} r^{p+n-1}|\dot{\mathbf{Q}}|^{p} d r
\end{aligned}
$$

and so the conclusion follows by an application of Poincaré inequality.
Theorem 4.1. Let $p \in] 1, \infty[$. Then the following hold.
(1) ($n=2$) for each $m \in \mathbb{Z}$ there exists $\mathbf{Q}_{m} \in \mathfrak{c}_{m}\left[\mathcal{E}_{p}\right]$ such that

$$
\mathbb{E}_{p}\left[\mathbf{Q}_{m}\right]=\inf _{\mathfrak{c}_{m}\left[\mathcal{E}_{p}\right]} \mathbb{E}_{p},
$$

(2) ($n \geqslant 3$) for each $\alpha \in \mathbb{Z}_{2}$ there exists $\mathbf{Q}_{\alpha} \in \mathfrak{c}_{\alpha}\left[\mathcal{E}_{p}\right]$ such that

$$
\mathbb{E}_{p}\left[\mathbf{Q}_{\alpha}\right]=\inf _{\left.\mathfrak{c}_{\alpha} \mathcal{E}_{p}\right]} \mathbb{E}_{p}
$$

In either case the resulting minimisers satisfy the corresponding Euler-Lagrange equations (3.1).
We return to the question of existence of multiple p-stationary loops having specific relevance to the original energy functional \mathbb{F}_{p} over the space \mathcal{A}_{p} towards the end of the paper. Before this, however, we pause to discuss in detail the implications that the original Euler-Lagrange equations [see Definition 5.1 below] will exert upon the twist loop associated with a generalised twist.

5. Generalised twists as classical solutions

The aim of this section is to give a complete characterisation of all those p-stationary loops $\mathbf{Q} \in \mathcal{E}_{p}$ whose resulting generalised twist

$$
\mathbf{u}=\mathbf{Q}(r) \mathbf{x}
$$

furnishes a solution to the Euler-Lagrange equations associated with the energy functional \mathbb{F}_{p} over the space \mathcal{A}_{p}. To this end we begin by clarifying the notion of a [classical] solution.

Definition 5.1 (Classical solution). A pair (\mathbf{u}, \mathfrak{p}) is said to be a classical solution to the Euler-Lagrange equations associated with the energy functional (1.1) and subject to the constraint (1.2) if and only if
(1) $\mathbf{u} \in C^{2}\left(\Omega, \mathbb{R}^{n}\right) \cap C\left(\bar{\Omega}, \mathbb{R}^{n}\right)$,
(2) $\mathfrak{p} \in C^{1}(\Omega) \cap C(\bar{\Omega})$, and
(3) $(\mathbf{u}, \mathfrak{p})$ satisfy the system of equations ${ }^{7}$

$$
\begin{cases}{[\operatorname{cof} \nabla \mathbf{u}(\mathbf{x})]^{-1} \Delta_{p} \mathbf{u}(\mathbf{x})=\nabla \mathfrak{p}(\mathbf{x}),} & \mathbf{x} \in \Omega \\ \operatorname{det} \nabla \mathbf{u}(\mathbf{x})=1, & \mathbf{x} \in \Omega \\ \mathbf{u}(\mathbf{x})=\mathbf{x}, & \mathbf{x} \in \partial \Omega\end{cases}
$$

In view of Proposition 2.3 the task outlined at the start of this section amounts to verifying that under what additional conditions would the vector field described by the expression on the right in (2.6) be a gradient. The answer to this question is given by the following two theorems.

Theorem 5.1. Let $\Omega=\left\{\mathbf{x} \in \mathbb{R}^{n}: a<|\mathbf{x}|<b\right\}$ and consider the vector field $\mathbf{v} \in C^{1}\left(\Omega, \mathbb{R}^{n}\right)$ defined in spherical coordinates through

$$
\mathbf{v}=\left\{r \mathbf{s} \mathbf{A}^{2}-r^{2} \mathbf{s}\langle\mathbf{A} \theta, \dot{\mathbf{A}} \theta\rangle \mathbf{I}_{n}+\frac{1}{r^{n}} \frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right)+\frac{1}{r^{n-1}} \frac{d}{d r}\left(r^{n+1} \mathbf{s}|\mathbf{A} \theta|^{2}\right) \mathbf{I}_{n}\right\} \theta
$$

where $r \in] a, b\left[, \theta \in \mathbb{S}^{n-1}, \mathbf{A}=\mathbf{A}(r) \in C^{1}(] a, b\left[, \mathbb{M}_{n \times n}\right)\right.$ is skew-symmetric and

$$
\begin{align*}
\mathbf{s} & =\mathbf{s}(r, \theta) \\
& =:\left(n+r^{2}|\mathbf{A} \theta|^{2}\right)^{\frac{p-2}{2}} \tag{5.1}
\end{align*}
$$

with $p \in[1, \infty[$. Then the following are equivalent.
(1) \mathbf{v} is a gradient,
(2) $\mathbf{A}^{2}=-\sigma \mathbf{I}_{n}$ for some $\left.\sigma \in C^{1}\right] a, b[$ with $\sigma \geqslant 0$ and

$$
\begin{equation*}
\frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right)=0 \tag{5.2}
\end{equation*}
$$

[^4]Proof. (2) \Rightarrow (1) Assuming A to be skew-symmetric and $\mathbf{A}^{2}=-\sigma \mathbf{I}_{n}$ it follows that

$$
\begin{aligned}
\mathbf{s} & =\left(n+r^{2}|\mathbf{A} \theta|^{2}\right)^{\frac{p-2}{2}} \\
& =\left(n-r^{2}\left\langle\mathbf{A}^{2} \theta, \theta\right\rangle\right)^{\frac{p-2}{2}} \\
& =\left(n+\sigma r^{2}\right)^{\frac{p-2}{2}}
\end{aligned}
$$

and so in particular $\mathbf{s}=\mathbf{s}(r)$. Now referring to (5.2) we can write

$$
\begin{align*}
0 & =\frac{1}{r^{n}}\left\langle\frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right) \theta, \mathbf{A} \theta\right\rangle \\
& =(n+1) \mathbf{s}|\mathbf{A} \theta|^{2}+r \mathbf{s}_{r}|\mathbf{A} \theta|^{2}+r \mathbf{s}\langle\mathbf{A} \theta, \dot{\mathbf{A}} \theta\rangle \\
& =\frac{1}{r^{n}} \frac{d}{d r}\left(r^{n+1} \mathbf{s}|\mathbf{A} \theta|^{2}\right)-r \mathbf{s}\langle\mathbf{A} \theta, \dot{\mathbf{A}} \theta\rangle . \tag{5.3}
\end{align*}
$$

As a result the vector field \mathbf{v} can be simplified and hence re-written in the form

$$
\mathbf{v}=r \mathbf{s} \mathbf{A}^{2} \theta=-\left(n+\sigma r^{2}\right)^{\frac{p-2}{2}} \sigma \theta
$$

Denoting now by F a suitable primitive of $f(r):=-\left(n+\sigma r^{2}\right)^{\frac{p-2}{2}} \sigma$ it is evident that

$$
\mathbf{v}=\nabla F
$$

and so \mathbf{v} is a gradient. This gives (1).
$(\mathbf{1}) \Rightarrow(\mathbf{2})$ For the sake of clarity and convenience we break this part into two steps. In the first step we establish (5.2) and in the second one the particular diagonal form of $\mathbf{A}^{2} .{ }^{8}$

Step 1. [Justification of (5.2)] We begin by extracting a gradient out of \mathbf{v} and hence re-writting it in the form

$$
\begin{equation*}
\mathbf{v}=\nabla \mathbf{t}+\left\{\frac{1}{r^{n}} \frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right)+\frac{1}{r^{n-1}} \frac{d}{d r}\left(r^{n+1} \mathbf{s}|\mathbf{A} \theta|^{2}\right) \mathbf{I}_{n}\right\} \theta \tag{5.4}
\end{equation*}
$$

where $\mathbf{t}=-p^{-1}\left(n+r^{2}|\mathbf{A} \theta|^{2}\right)^{\frac{p}{2}}$.
To the vector field $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ we now assign the differential 1-form $\omega=v_{1} d x_{1}+\cdots+v_{n} d x_{n}$. Then in view of \mathbf{v} being a gradient, for any closed path $\gamma \in C^{1}\left([0,2 \pi], \mathbb{S}^{n-1}\right)$ it must be that

$$
\begin{align*}
0= & \int_{r \gamma} \omega \\
= & \int_{0}^{2 \pi}\left\langle\mathbf{v}(r \gamma(t)), r \gamma^{\prime}(t)\right\rangle d t \\
= & \frac{1}{r^{n}} \int_{0}^{2 \pi}\left\langle\frac{d}{d r}\left[r^{n+1} \mathbf{s}(r, \gamma(t)) \mathbf{A}\right] \gamma(t), r \gamma^{\prime}(t)\right\rangle d t \\
& +\frac{1}{r^{n-1}} \int_{0}^{2 \pi}\left\langle\frac{d}{d r}\left[r^{n+1} \mathbf{s}(r, \gamma(t))|\mathbf{A} \gamma(t)|^{2}\right] \gamma(t), r \gamma^{\prime}(t)\right\rangle d t \\
= & \frac{1}{r^{n}} \int_{0}^{2 \pi}\left\langle\frac{d}{d r}\left[r^{n+1} \mathbf{s}(r, \gamma(t)) \mathbf{A}\right] \gamma(t), r \gamma^{\prime}(t)\right\rangle d t \tag{5.5}
\end{align*}
$$

[^5]where in concluding the last line we have used the pointwise identity $\left\langle\gamma, \gamma^{\prime}\right\rangle=0$ which holds as a result of γ taking values on \mathbb{S}^{n-1} and consequently implying that
\[

$$
\begin{aligned}
0 & =\int_{0}^{2 \pi}\left\langle\frac{d}{d r}\left[r^{n+1} \mathbf{s}(r, \gamma(t))|\mathbf{A} \gamma(t)|^{2}\right] \gamma(t), r \gamma^{\prime}(t)\right\rangle d t \\
& =\int_{0}^{2 \pi} \frac{d}{d r}\left[r^{n+1} \mathbf{s}(r, \gamma(t))|\mathbf{A} \gamma(t)|^{2}\right] r\left\langle\gamma(t), \gamma^{\prime}(t)\right\rangle d t .
\end{aligned}
$$
\]

Anticipating on (5.2) we first note that in view of A being skew-symmetric it can be orthogonally diagonalised, i.e., ${ }^{9}$

$$
\begin{equation*}
\mathbf{A}=\mathbf{P D P}^{t} \tag{5.6}
\end{equation*}
$$

where $\mathbf{P}=\mathbf{P}(r) \in \mathbf{S O}(n)$ and $\mathbf{D}=\mathbf{D}(r) \in \mathbb{M}_{n \times n}$ is in special block diagonal form, i.e.,

$$
\text { (1) } \begin{aligned}
(n & =2 k) \\
\mathbf{D} & =\operatorname{diag}\left(d_{1} \mathbf{J}, d_{2} \mathbf{J}, \ldots, d_{k} \mathbf{J}\right)
\end{aligned}
$$

(2) $(n=2 k+1)$

$$
\mathbf{D}=\operatorname{diag}\left(d_{1} \mathbf{J}, d_{2} \mathbf{J}, \ldots, d_{k} \mathbf{J}, 0\right)
$$

with $\left\{ \pm d_{1} i, \pm d_{2} i, \ldots, \pm d_{k} i\right\}$ or $\left\{ \pm d_{1} i, \pm d_{2} i, \ldots, \pm d_{k} i, 0\right\}$ denoting the eigen-values of the skew-symmetric matrix \mathbf{A} [as well as $\mathbf{D}]$ respectively. ${ }^{10}$

With the aid of (5.6) and for the sake of convenience we now introduce the skew-symmetric matrix

$$
\begin{equation*}
\mathbf{F}=\mathbf{F}(r, \theta):=\mathbf{P}^{t} \frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right) \mathbf{P} \tag{5.7}
\end{equation*}
$$

Then a straight-forward differentiation shows that

$$
\begin{align*}
\mathbf{F} & =\mathbf{P}^{t} \frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right) \mathbf{P} \\
& =\mathbf{P}^{t}\left\{r^{n}\left[(n+1) \mathbf{s}+r \mathbf{s}_{r}\right] \mathbf{A}+r^{n+1} \mathbf{s} \dot{\mathbf{A}}\right\} \mathbf{P} \\
& =\mathbf{P}^{t}\left\{r^{n}\left[(n+1) \mathbf{s}+r \mathbf{s}_{r}\right] \mathbf{P} \mathbf{P}^{t}+r^{n+1} \mathbf{s} \dot{\mathbf{A}}\right\} \mathbf{P} \\
& =r^{n}\left[(n+1) \mathbf{s}+r \mathbf{s}_{r}\right] \mathbf{D}+r^{n+1} \mathbf{s}^{t} \dot{\mathbf{A}} \mathbf{P} \tag{5.8}
\end{align*}
$$

Evidently establishing (5.2) is equivalent to showing that

$$
\begin{equation*}
\mathbf{F}(r, \theta)=0 \tag{5.9}
\end{equation*}
$$

for all $r \in] a, b\left[\right.$ and all $\theta \in \mathbb{S}^{n-1}$.
On the other hand for each fixed $r \in] a, b\left[\right.$ setting $\omega:=\mathbf{P}^{t} \gamma\left[\right.$ also a closed path in $\left.C^{1}\left([0,2 \pi], \mathbb{S}^{n-1}\right)\right]$ in (5.5) we have that expressed as

$$
0=\int_{0}^{2 \pi}\left\langle\frac{d}{d r}\left(r^{n+1} \mathbf{s A}\right) \gamma, \gamma^{\prime}\right\rangle d t
$$

[^6]\[

$$
\begin{aligned}
& =\int_{0}^{2 \pi}\left\langle\frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right) \mathbf{P} \omega, \mathbf{P} \omega^{\prime}\right\rangle d t \\
& =\int_{0}^{2 \pi}\left\langle\mathbf{P}^{t} \frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right) \mathbf{P} \omega, \omega^{\prime}\right\rangle d t \\
& =\int_{0}^{2 \pi}\left\langle\mathbf{F} \omega, \omega^{\prime}\right\rangle d t
\end{aligned}
$$
\]

where in the above $\mathbf{s}=\mathbf{s}(r, \mathbf{P} \omega)$ and $\mathbf{F}=\mathbf{F}(r, \mathbf{P} \omega)$. Thus the necessary condition (5.5) can be equivalently expressed as

$$
\begin{equation*}
\int_{0}^{2 \pi}\left\langle\mathbf{F}(r, \mathbf{P} \omega) \omega, \omega^{\prime}\right\rangle d t=0 \tag{5.10}
\end{equation*}
$$

for every closed path $\omega \in C^{1}\left([0,2 \pi], \mathbb{S}^{n-1}\right)$.
With this introduction the conclusion in Step 1 now amounts to proving the implication

$$
(5.10) \Longrightarrow(5.9)
$$

This will be established below in a componentwise fashion. Note that in view of the skew-symmetry of \mathbf{F} it suffices to justify the latter in the form $\mathbf{F}_{p q}(r, \theta)=0$ only when $1 \leqslant p<q \leqslant n$.

Indeed consider a parameterised family of closed paths $\rho \in C^{\infty}\left([0,2 \pi], \mathbb{S}^{n-1}\right)$ given by

$$
\begin{equation*}
\rho:[0,2 \pi] \ni t \mapsto \rho(t) \in \mathbb{S}^{n-1} \subset \mathbb{R}^{n} \tag{5.11}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
\rho_{1}=\sin t \sin \phi_{2} \sin \phi_{3} \cdots \sin \phi_{n-1}, \\
\rho_{2}=\cos t \sin \phi_{2} \sin \phi_{3} \cdots \sin \phi_{n-1}, \\
\rho_{3}=\cos \phi_{2} \sin \phi_{3} \cdots \sin \phi_{n-1}, \\
\vdots \\
\rho_{n-1}=\cos \phi_{n-2} \sin \phi_{n-1}, \\
\rho_{n}=\cos \phi_{n-1}
\end{array}\right.
$$

where $\phi_{j} \in[0, \pi]$ for all $2 \leqslant j \leqslant n-1$. For fixed $1 \leqslant p<q \leqslant n$ we introduce the matrix $\Gamma^{p q}$ as that obtained by simultaneously interchanging the first and p th and the second and q th rows of \mathbf{I}_{n}, i.e.,

$$
\Gamma^{p q} e_{j}= \begin{cases}e_{p} & \text { if } j=1, \\ e_{1} & \text { if } j=p, \\ e_{q} & \text { if } j=2, \\ e_{2} & \text { if } j=q, \\ e_{j} & \text { otherwise }\end{cases}
$$

where $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ denotes the standard basis of \mathbb{R}^{n}. In view of $\Gamma^{p q} \in \mathbf{O}(n)$ setting $\omega=\Gamma^{p q} \rho$ it is clear that ω is a closed path in $C^{\infty}\left([0,2 \pi], \mathbb{S}^{n-1}\right)$.

Claim 1. For any skew-symmetric matrix $\mathbf{F} \in \mathbb{M}_{n \times n}$ and $\omega=\Gamma^{p q} \rho$ as above we have that

$$
\int_{0}^{2 \pi}\left\langle\mathbf{F} \omega(t), \omega^{\prime}(t)\right\rangle d t=2 \pi\left(\rho_{1}^{2}+\rho_{2}^{2}\right) \mathbf{F}_{p q} .
$$

The proof of this claim follows by direct verification noting that here $\omega^{\prime}(t)=\Gamma^{p q} \rho^{\prime}(t)=\Gamma^{p q}\left(\rho_{2},-\rho_{1}, 0, \ldots, 0\right)$.
We now proceed by substituting ω as described above into (5.10) and then considering the following two distinct cases.
(1) $(p=2 j-1, q=2 j$ for some $1 \leqslant j \leqslant k=[n / 2])$ In this case by utilising the special block diagonal form of \mathbf{D} a straight-forward calculation shows that

$$
\begin{aligned}
\mathbf{s} & =\mathbf{s}(r, \mathbf{P} \omega(t)) \\
& =\left(n-r^{2}\left\langle\mathbf{D}^{2} \omega(t), \omega(t)\right\rangle\right)^{\frac{p-2}{2}} \\
& =\left(n-r^{2}\left\langle\mathbf{D}^{2} \Gamma^{p q} \rho(t), \Gamma^{p q} \rho(t)\right\rangle\right)^{\frac{p-2}{2}} \\
& =\left(n+r^{2}\left[d_{1}^{2} \rho_{p}^{2}+d_{1}^{2} \rho_{q}^{2}+\cdots+d_{j}^{2}\left(\rho_{1}^{2}+\rho_{2}^{2}\right)+\cdots\right]\right)^{\frac{p-2}{2}}
\end{aligned}
$$

is indeed independent of the t variable [as $\rho_{1}^{2}+\rho_{2}^{2}$ does not depend on $\left.t\right]$. Hence the same is true of $\mathbf{F}(r, \mathbf{P} \omega)$ and so referring to (5.10) and utilising Claim 1 we can write

$$
\begin{aligned}
0 & =\int_{0}^{2 \pi}\left\langle\mathbf{F}(r, \mathbf{P} \omega) \omega, \omega^{\prime}\right\rangle d t \\
& =\int_{0}^{2 \pi}\left\langle\mathbf{F}\left(r, \mathbf{P} \Gamma^{p q} \rho(t)\right) \Gamma^{p q} \rho(t), \Gamma^{p q} \rho^{\prime}(t)\right\rangle d t \\
& =2 \pi\left(\rho_{1}^{2}+\rho_{2}^{2}\right) \mathbf{F}_{p q}(r, \mathbf{P} \omega)
\end{aligned}
$$

which in turn for $\rho_{1}^{2}+\rho_{2}^{2} \neq 0$ gives 11

$$
\begin{equation*}
\mathbf{F}_{p q}(r, \mathbf{P} \omega)=0 . \tag{5.12}
\end{equation*}
$$

Now to get (5.9) for the latter choice of p, q pick $\theta \in \mathbb{S}^{n-1}$ and set $\alpha=\left[\Gamma^{p q}\right]^{t} \mathbf{P}^{t} \theta$. Then $\alpha \in \mathbb{S}^{n-1}$ and thus can be written in generalised spherical coordinates as

$$
\left\{\begin{array}{l}
\alpha_{1}=\sin \phi_{1} \sin \phi_{2} \sin \phi_{3} \cdots \sin \phi_{n-1} \\
\alpha_{2}=\cos \phi_{1} \sin \phi_{2} \sin \phi_{3} \cdots \sin \phi_{n-1} \\
\alpha_{3}=\cos \phi_{2} \sin \phi_{3} \cdots \sin \phi_{n-1} \\
\vdots \\
\alpha_{n-1}=\cos \phi_{n-2} \sin \phi_{n-1} \\
\alpha_{n}=\cos \phi_{n-1}
\end{array}\right.
$$

where $\phi_{1} \in[0,2 \pi]$ and $\phi_{j} \in[0, \pi]$ for all $2 \leqslant j \leqslant n-1$. Considering now the closed path ρ in (5.11) for the latter choice of parameters $\phi_{2}, \ldots, \phi_{n-1}$ a straight-forward calculation gives

$$
\begin{aligned}
\mathbf{s}(r, \theta) & =\left(n+r^{2}|\mathbf{A} \theta|^{2}\right)^{\frac{p-2}{2}} \\
& =\left(n+r^{2}\left|\mathbf{D} \Gamma^{p q} \alpha\right|^{2}\right)^{\frac{p-2}{2}} \\
& =\left(n+r^{2}\left|\mathbf{D} \Gamma^{p q} \rho\right|^{2}\right)^{\frac{p-2}{2}} \\
& =\left(n+r^{2}|\mathbf{A P} \omega|^{2}\right)^{\frac{p-2}{2}} \\
& =\mathbf{s}(r, \mathbf{P} \omega)
\end{aligned}
$$

and so referring to (5.12) for $\rho_{1}^{2}+\rho_{2}^{2} \neq 0$ we obtain

$$
\mathbf{F}_{p q}(r, \theta)=\mathbf{F}_{p q}(r, \mathbf{P} \omega)=0
$$

as required.

[^7](2) (p, q not as in (1)) Unlike the case with (1) here \mathbf{s} depends explicitly on the t variable [yet in a specific manner (see below)] whilst $\mathbf{D}_{p q}=0$ as can be verified by inspecting its block diagonal representation.

Now referring, again, to (5.10) and noting that the p th and q th components of ω^{\prime} are given by $\omega_{p}^{\prime}=\rho_{1}^{\prime}=\rho_{2}$ and $\omega_{q}^{\prime}=\rho_{2}^{\prime}=-\rho_{1}$ [with all the remaining derivatives vanishing] we can write using $\mathbf{F}=\mathbf{F}(r, \mathbf{P} \omega)$

$$
\begin{align*}
0 & =\int_{0}^{2 \pi}\left\langle\mathbf{F} \omega, \omega^{\prime}\right\rangle d t \\
& =\int_{0}^{2 \pi}\left\{\sum_{j=1}^{n} \mathbf{F}_{p j} \omega_{j} \omega_{p}^{\prime}+\sum_{j=1}^{n} \mathbf{F}_{q j} \omega_{j} \omega_{q}^{\prime}\right\} d t \\
& =\int_{0}^{2 \pi}\left\{\left(\mathbf{F}_{p q} \rho_{2}^{2}-\mathbf{F}_{q p} \rho_{1}^{2}\right)+\rho_{2} \sum_{\substack{j=1 \\
j \neq q}}^{n} \mathbf{F}_{p j} \omega_{j}-\rho_{1} \sum_{\substack{j=1 \\
j \neq p}}^{n} \mathbf{F}_{q j} \omega_{j}\right\} d t \\
& =\mathbf{I}+\mathbf{I I}-\mathbf{I I I} . \tag{5.13}
\end{align*}
$$

In order to evaluate the above terms we first observe that here \mathbf{s} takes the form

$$
\begin{align*}
\mathbf{s} & =\mathbf{s}(r, \mathbf{P} \omega(t)) \\
& =\left(n-r^{2}\left\langle\mathbf{D}^{2} \omega(t), \omega(t)\right\rangle\right)^{\frac{p-2}{2}} \\
& =\left(n-r^{2}\left\langle\mathbf{D}^{2} \Gamma^{p q} \rho(t), \Gamma^{p q} \rho(t)\right\rangle\right)^{\frac{p-2}{2}} \\
& =\left(n+r^{2}\left[d_{1}^{2} \rho_{p}^{2}+d_{2}^{2} \rho_{q}^{2}+\cdots+d_{\xi}^{2} \rho_{1}^{2}+\cdots+d_{\zeta}^{2} \rho_{2}^{2}+\cdots\right]\right)^{\frac{p-2}{2}} \\
& =\mathfrak{s}\left(\sin ^{2} t, \cos ^{2} t\right) . \tag{5.14}
\end{align*}
$$

Returning to (5.13) we have that

$$
\begin{aligned}
\mathbf{I I} & =\int_{0}^{2 \pi} \rho_{2} \sum_{\substack{j=1 \\
j \neq q}}^{n} \mathbf{F}_{p j} \omega_{j} d t \\
& =\int_{0}^{2 \pi} \rho_{2} \sum_{\substack{j=1 \\
j \neq q}}^{n}\left[\mathbf{P}^{t} \frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right) \mathbf{P}\right]_{p j} \omega_{j} d t \\
& =\sum_{\substack{j=1 \\
j \neq q}}^{n}\left[\mathbf{P}^{t} \frac{d}{d r}\left(r^{n+1}\left\{\int_{0}^{2 \pi} \rho_{2} \mathbf{s} d t\right\} \mathbf{A}\right) \mathbf{P}\right]_{p j} \omega_{j},
\end{aligned}
$$

and in a similar way

$$
\begin{aligned}
\mathbf{I I I} & =\int_{0}^{2 \pi} \rho_{1} \sum_{\substack{j=1 \\
j \neq p}}^{n} \mathbf{F}_{q j} \omega_{j} d t \\
& =\int_{0}^{2 \pi} \rho_{1} \sum_{\substack{j=1 \\
j \neq p}}^{n}\left[\mathbf{P}^{t} \frac{d}{d r}\left(r^{n+1} \mathbf{s A}\right) \mathbf{P}\right]_{q j} \omega_{j} d t
\end{aligned}
$$

$$
=\sum_{\substack{j=1 \\ j \neq p}}^{n}\left[\mathbf{P}^{t} \frac{d}{d r}\left(r^{n+1}\left\{\int_{0}^{2 \pi} \rho_{1} \mathbf{s} d t\right\} \mathbf{A}\right) \mathbf{P}\right]_{q j} \omega_{j},
$$

where in concluding the last line in both equalities we have used the fact that the only components of ω depending explicitly on the t variable are $\omega_{p}=\rho_{1}$ and $\omega_{q}=\rho_{2}$ where in each case one is excluded from the summation sign and the other has a zero coefficient in view of the skew-symmetry of the matrix preceding it.

However in view of the specific manner in which \mathbf{s} depends on t [see (5.14)] it follows that both integrals vanish and so as a result $\mathbf{I I}=\mathbf{I I I}=0 .{ }^{12}$ Hence returning to (5.13) and utilising the skew-symmetry on \mathbf{F} and (5.8) we can write

$$
\begin{aligned}
\mathbf{I} & =\int_{0}^{2 \pi}\left(\mathbf{F}_{p q} \rho_{2}^{2}-\mathbf{F}_{q p} \rho_{1}^{2}\right) d t \\
& =\int_{0}^{2 \pi}\left(\rho_{1}^{2}+\rho_{2}^{2}\right) \mathbf{F}_{p q} d t \\
& =\int_{0}^{2 \pi} r^{n+1}\left(\rho_{1}^{2}+\rho_{2}^{2}\right) \mathbf{s}\left[\mathbf{P}^{t} \dot{\mathbf{A}} \mathbf{P}\right]_{p q} d t \\
& =r^{n+1}\left(\rho_{1}^{2}+\rho_{2}^{2}\right)\left\{\int_{0}^{2 \pi} \mathbf{s} d t\right\}\left[\mathbf{P}^{t} \dot{\mathbf{A}} \mathbf{P}\right]_{p q}=0 .
\end{aligned}
$$

Thus as $\mathbf{s}>0$ for $\rho_{1}^{2}+\rho_{2}^{2} \neq 0$ it follows that $\left[\mathbf{P}^{t} \dot{\mathbf{A}} \mathbf{P}\right]_{p q}=0$. Since for the latter range of p, q we have that $\mathbf{D}_{p q}=0$ referring to (5.8) it immediately that $\mathbf{F}_{p q}=0$.

Hence summarising we have shown that in both cases (1) and (2) for fixed $r \in] a, b\left[\right.$ we have $\mathbf{F}_{p q}(r, \cdot)=0$ outside a copy of \mathbb{S}^{n-3}. By continuity of $\mathbf{F}_{p q}(r, \cdot)$ on \mathbb{S}^{n-1} this gives (5.9) and as a result (5.2). The proof of Step 1 is therefore complete.

Step 2. $\left[\mathbf{A}^{2}=-\sigma \mathbf{I}_{n}\right]$ Here we establish the remaining part of (2) namely that $\mathbf{A}^{2}=-\sigma \mathbf{I}_{n}$ for some $\left.\sigma \in C^{1}\right] a, b[$ with $\sigma \geqslant 0$. To this end, we first observe that by utilising (5.2) the vector field \mathbf{v} can be considerably simplified and re-written in the form [as in (5.3)]

$$
\mathbf{v}=r \mathbf{s} \mathbf{A}^{2} \theta
$$

Now for $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ to be a gradient it is necessary that the differential 1 -form $\omega=v_{1} d x_{1}+\cdots+v_{n} d x_{n}$ be closed. In other words $d \omega=0$ which in turn amounts to

$$
\frac{\partial v_{q}}{\partial x_{p}}-\frac{\partial v_{p}}{\partial x_{q}}=0,
$$

for all $1 \leqslant p, q \leqslant n$. Setting $\mathbf{F}=\mathbf{A}^{2}$ we have that

$$
\frac{\partial v_{q}}{\partial x_{p}}=r \frac{\partial \mathbf{s}}{\partial x_{p}}[\mathbf{F} \theta]_{q}+r \mathbf{s}[\dot{\mathbf{F}} \theta]_{q} \theta_{p}+\mathbf{s} \mathbf{F}_{q p}
$$

[^8]and in a similar way
$$
\frac{\partial v_{p}}{\partial x_{q}}=r \frac{\partial \mathbf{s}}{\partial x_{q}}[\mathbf{F} \theta]_{p}+r \mathbf{s}[\dot{\mathbf{F}} \theta]_{p} \theta_{q}+\mathbf{s} \mathbf{F}_{p q}
$$

Thus in view of the symmetry of \mathbf{F} for the latter range of p, q we have that

$$
\begin{aligned}
0 & =\frac{\partial v_{q}}{\partial x_{p}}-\frac{\partial v_{p}}{\partial x_{q}} \\
& =r \frac{\partial \mathbf{s}}{\partial x_{p}}[\mathbf{F} \theta]_{q}-r \frac{\partial \mathbf{s}}{\partial x_{q}}[\mathbf{F} \theta]_{p}+r \mathbf{s}\left\{[\dot{\mathbf{F}} \theta \otimes \theta]_{q p}-[\dot{\mathbf{F}} \theta \otimes \theta]_{p q}\right\}
\end{aligned}
$$

Alternatively using tensor notation this can be simplified in the form

$$
\begin{align*}
0= & \nabla \mathbf{s} \otimes \mathbf{F} \theta-\mathbf{F} \theta \otimes \nabla \mathbf{s} \\
& +\mathbf{s}(\theta \otimes \dot{\mathbf{F}} \theta-\dot{\mathbf{F}} \theta \otimes \theta) \\
= & \frac{1}{2} \beta r^{2}\langle\dot{\mathbf{F}} \theta, \theta\rangle(\mathbf{F} \theta \otimes \theta-\theta \otimes \mathbf{F} \theta) \\
& +\mathbf{s}(\theta \otimes \dot{\mathbf{F}} \theta-\dot{\mathbf{F}} \theta \otimes \theta) \tag{5.15}
\end{align*}
$$

where in concluding the second identity we have used

$$
\begin{aligned}
\nabla \mathbf{s} & =\nabla\left(n+r^{2}|\mathbf{A} \theta|^{2}\right)^{\frac{p-2}{2}} \\
& =\nabla\left(n-r^{2}\langle\mathbf{F} \theta, \theta\rangle\right)^{\frac{p-2}{2}} \\
& =-\beta\left[\frac{1}{2} r^{2}\langle\dot{\mathbf{F}} \theta, \theta\rangle \mathbf{I}_{n}+r \mathbf{F}\right] \theta,
\end{aligned}
$$

with $\beta=\beta(r, \theta, p):=(p-2)\left(n-r^{2}\langle\mathbf{F} \theta, \theta\rangle\right)^{\frac{p-4}{2}}$. Next a straight-forward calculation using (5.2) gives

$$
\begin{equation*}
\dot{\mathbf{F}}=-2\left(\frac{n+1}{r}+\frac{\mathbf{s}_{r}}{\mathbf{s}}\right) \mathbf{F} \tag{5.16}
\end{equation*}
$$

Therefore substituting this into (5.15) results in

$$
\begin{align*}
0= & \frac{1}{2} \beta r^{2}\langle\dot{\mathbf{F}} \theta, \theta\rangle(\mathbf{F} \theta \otimes \theta-\theta \otimes \mathbf{F} \theta) \\
& -\mathbf{s}(\dot{\mathbf{F}} \theta \otimes \theta-\theta \otimes \dot{\mathbf{F}} \theta) \\
= & \left\{2\left(\frac{n+1}{r}+\frac{\mathbf{s}_{r}}{\mathbf{s}}\right)\left(\mathbf{s}-\frac{1}{2} \beta r^{2}\langle\mathbf{F} \theta, \theta\rangle\right)\right\}(\mathbf{F} \theta \otimes \theta-\theta \otimes \mathbf{F} \theta) \\
= & \gamma \times(\mathbf{F} \theta \otimes \theta-\theta \otimes \mathbf{F} \theta) \tag{5.17}
\end{align*}
$$

where for the sake of convenience we have introduced

$$
\begin{align*}
\gamma & =\gamma(r, \theta, p) \\
& =: 2\left(\frac{n+1}{r}+\frac{\mathbf{s}_{r}}{\mathbf{s}}\right)\left(\mathbf{s}-\frac{1}{2} \beta r^{2}\langle\mathbf{F} \theta, \theta\rangle\right) \tag{5.18}
\end{align*}
$$

Claim 2. Let $p \in\left[1, \infty[\right.$. Then $\gamma=\gamma(r, \theta, p)>0$ for all $r \in] a, b\left[\right.$ and $\theta \in \mathbb{S}^{n-1}$.
The proof of this claim follows by direct verification. Indeed here a straight-forward differentiation gives

$$
\begin{aligned}
\mathbf{s}_{r}=\frac{\partial \mathbf{s}}{\partial r} & =\frac{\partial}{\partial r}\left(n+r^{2}|\mathbf{A} \theta|^{2}\right)^{\frac{p-2}{2}} \\
& =\frac{\partial}{\partial r}\left(n-r^{2}\langle\mathbf{F} \theta, \theta\rangle\right)^{\frac{p-2}{2}} \\
& =-\beta\left[r\langle\mathbf{F} \theta, \theta\rangle+\frac{1}{2} r^{2}\langle\dot{\mathbf{F}} \theta, \theta\rangle\right]
\end{aligned}
$$

Now eliminating the term $\langle\dot{\mathbf{F}} \theta, \theta\rangle$ in the above expression with the aid of (5.16) results in

$$
\mathbf{s}_{r}=\frac{n r \beta \mathbf{s}\langle\mathbf{F} \theta, \theta\rangle}{\mathbf{s}-r^{2} \beta\langle\mathbf{F} \theta, \theta\rangle} .
$$

(See below for a justification that $\mathbf{s}-r^{2} \beta\langle\mathbf{F} \theta, \theta\rangle \neq 0$.) Hence referring to (5.18) we can write

$$
\begin{aligned}
\gamma & =2\left(\frac{n+1}{r}+\frac{\mathbf{s}_{r}}{\mathbf{s}}\right)\left(\mathbf{s}-\frac{1}{2} \beta r^{2}\langle\mathbf{F} \theta, \theta\rangle\right) \\
& =\frac{(n+1) \mathbf{s}-r^{2} \beta\langle\mathbf{F} \theta, \theta\rangle}{r\left(\mathbf{s}-r^{2} \beta\langle\mathbf{F} \theta, \theta\rangle\right)}\left(2 \mathbf{s}-r^{2} \beta\langle\mathbf{F} \theta, \theta\rangle\right) \\
& =: \frac{\mathbf{I}}{\mathbf{I I}} \times \mathbf{I I I} .
\end{aligned}
$$

We now proceed by evaluating each term separately. Indeed with regards to the first term we have that

$$
\begin{aligned}
\mathbf{I} & =(n+1) \mathbf{s}-r^{2} \beta\langle\mathbf{F} \theta, \theta\rangle \\
& =\left(n-r^{2}\langle\mathbf{F} \theta, \theta\rangle\right)^{\frac{p-4}{2}}\left[n(n+1)-(n+p-1) r^{2}\langle\mathbf{F} \theta, \theta\rangle\right]
\end{aligned}
$$

and in a similar way

$$
\begin{aligned}
\mathbf{I I} & =r\left(\mathbf{s}-r^{2} \beta\langle\mathbf{F} \theta, \theta\rangle\right) \\
& =r\left(n-r^{2}\langle\mathbf{F} \theta, \theta\rangle\right)^{\frac{p-4}{2}}\left[n-(p-1) r^{2}\langle\mathbf{F} \theta, \theta\rangle\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{I I I} & =\left(2 \mathbf{s}-r^{2} \beta\langle\mathbf{F} \theta, \theta\rangle\right) \\
& =\left(n-r^{2}\langle\mathbf{F} \theta, \theta\rangle\right)^{\frac{p-4}{2}}\left[2 n-p r^{2}\langle\mathbf{F} \theta, \theta\rangle\right] .
\end{aligned}
$$

Now in view of $-\langle\mathbf{F} \theta, \theta\rangle=\left\langle\mathbf{A}^{t} \mathbf{A} \theta, \theta\right\rangle=|\mathbf{A} \theta|^{2} \geqslant 0$ for all $\left.r \in\right] a, b\left[\right.$ and $\theta \in \mathbb{S}^{n-1}$ along with $p \in[1, \infty[$ it follows that all the terms I, II and III are strictly positive. As a result

$$
\begin{equation*}
\gamma>0 \tag{5.19}
\end{equation*}
$$

and so the claim is justified.
Now returning to the identity (5.17) it follows as a result of (5.19) that necessarily

$$
\begin{equation*}
\mathbf{F} \theta \otimes \theta-\theta \otimes \mathbf{F} \theta=0 \tag{5.20}
\end{equation*}
$$

for all $r \in] a, b\left[\right.$ and $\theta \in \mathbb{S}^{n-1}$. The conclusion in Step 2 is now an immediate result of the following statement.
Claim 3. Let $\mathbf{F} \in \mathbb{M}_{n \times n}$. Then (5.20) holds for all $\theta \in \mathbb{S}^{n-1}$ if and only if there exists $-\sigma \in \mathbb{R}$ such that $\mathbf{F}=-\sigma \mathbf{I}_{n}$.
For a proof of Claim 3 we refer the interested reader to Proposition 7.1 in [10]. Finally $\left.\sigma \in C^{1}\right] a, b[$ and $\sigma \geqslant 0$ are consequences of the representation above and the hypothesis of the theorem. With this the proof of Theorem 5.1 is complete.

Theorem 5.2. Let $\Omega=\left\{\mathbf{x} \in \mathbb{R}^{n}: a<|\mathbf{x}|<b\right\}$ and consider the vector field \mathbf{v} as defined in Theorem 5.1. Then the following are equivalent.
(1) \mathbf{v} is a gradient,
(2) $\mathbf{A}=\mu \mathbf{J}$ for some $\left.\mu \in C^{1}\right] a, b\left[\right.$ with $\mu \geqslant 0, \mathbf{J} \in \mathbb{M}_{n \times n}$ skew-symmetric with $\mathbf{J}^{2}=-\mathbf{I}_{n}$ and

$$
\begin{equation*}
\frac{d}{d r}\left(r^{n+1} \mathbf{s} \mu\right)=0 \tag{5.21}
\end{equation*}
$$

in $] a, b\left[\right.$. Here $\mathbf{s}=\left(n+r^{2} \mu^{2}\right)^{\frac{p-2}{2}}$.

Proof. (2) \Rightarrow (1) The argument here is similar to that in Theorem 5.1 and so will be abbreviated.
$(\mathbf{1}) \Rightarrow(\mathbf{2})$ Let \mathbf{v} be a gradient. Then according to (2) in Theorem 5.1, $\mathbf{A}^{2}=-\sigma \mathbf{I}_{n}$ for some $\sigma \in C^{1}(] a, b[)$ with $\sigma \geqslant 0$ and so $\mathbf{A}=\sqrt{\sigma} \mathbf{J}$ where $\mathbf{J}=\mathbf{J}(r)$ and $\mathbf{J}^{2}=-\mathbf{I}_{n}$. The aim is to show that \mathbf{J} is independent of $r .{ }^{13}$ To this end we proceed as follows. Indeed according to (2) in Theorem 5.1,

$$
\frac{d}{d r}\left(r^{n+1} \mathbf{s} \mathbf{A}\right)=0
$$

Integrating the above equation gives $r^{n+1} \mathbf{s} \mathbf{A}=\xi$ for some constant $\xi \in \mathbb{M}_{n \times n}$. Moreover,

$$
\begin{equation*}
-\left(r^{n+1} \mathbf{s}\right)^{2} \sigma \mathbf{I}_{n}=\left(r^{n+1} \mathbf{s} \mathbf{A}\right)^{2}=\xi^{2} \tag{5.22}
\end{equation*}
$$

giving $\left(r^{n+1} \mathbf{s}\right)^{2} \sigma \equiv c$ for some non-negative constant c. Thus either $\sigma \equiv 0$ in which case $\mathbf{A} \equiv 0$ on $] a, b[$ and so the choice $\mu \equiv 0$ gives the conclusion or else $\sigma>0$ on] a, b [and so setting

$$
\mathbf{J}:=\frac{1}{\sqrt{c}} \xi
$$

we have as a result of (5.22) that $\mathbf{J}^{2}=-\mathbf{I}_{n}$. Furthermore setting

$$
\mu:=\frac{1}{\sqrt{c}} r^{n+1} \mathbf{s} \sigma
$$

it follows that $\left.\mu \in C^{1}\right] a, b\left[, \mu^{2}=\sigma\right.$ and by substitution $\mathbf{A}=\mu \mathbf{J}$. As a result μ also satisfies (5.21). The proof of the theorem is thus complete.

Remark 5.1. Referring to the above proof it follows from $r^{n+1} \mathbf{s} \mu=c$ on $] a, b[$ that when $p>1$ the function μ remains bounded on $] a, b[$.

Theorem 5.3. Let $\Omega=\left\{\mathbf{x} \in \mathbb{R}^{n}: a<|\mathbf{x}|<b\right\}$ and $\mathbf{u} \in \mathcal{A}_{p}$ with $\left.p \in\right] 1, \infty[$ be a generalised twist whose corresponding twist loop $\mathbf{Q} \in C^{2}(] a, b[, \mathbf{S O}(n))$. Then the following are equivalent.
(1) \mathbf{u} is a classical solution to the Euler-Lagrange equations associated with \mathbb{F}_{p} over \mathcal{A}_{p},
(2) depending on whether n is even or odd we have that
(2a) $(n=2 k)$ there exist $\left.g=g(r) \in C[a, b] \cap C^{2}\right] a, b[$ with $g(a), g(b) \in 2 \pi \mathbb{Z}$ and $\mathbf{P} \in \mathbf{O}(n)$ such that

$$
\mathbf{Q}=\mathbf{P} \operatorname{diag}(\mathbf{R}(g), \ldots, \mathbf{R}(g)) \mathbf{P}^{t}
$$

whilst g is a solution on $] a, b[$ to

$$
\begin{equation*}
\frac{d}{d r}\left\{r^{n+1}\left(n+r^{2} g^{\prime 2}\right)^{\frac{p-2}{2}} g^{\prime}\right\}=0 \tag{5.23}
\end{equation*}
$$

or
(2b) $(n=2 k+1)$ necessarily $\mathbf{u}=\mathbf{x}$ on $\bar{\Omega}$.
Proof. (1) \Rightarrow (2) Let $\mathbf{u}=\mathbf{Q}(r) \mathbf{x}$ be a classical solution to the stated Euler-Lagrange equations. Then setting $\mathbf{A}=\mathbf{Q}^{t} \dot{\mathbf{Q}}$ an application of Proposition 2.3 in conjunction with Theorem 5.2 gives

$$
\begin{equation*}
\frac{d}{d r} \mathbf{Q}=\mu \mathbf{Q} \mathbf{J} \tag{5.24}
\end{equation*}
$$

where $\left.\mu \in C^{1}\right] a, b\left[\right.$ satisfies (5.21) and $\mathbf{J}^{2}=-\mathbf{I}_{n}$. Moreover either $\mu \equiv 0$ or else $\mu>0$ and bounded on $] a, b[$. (See Remark 5.1.) We now consider the cases (2a) and (2b) separately.
(2a) $(n=2 k)$ Let $\left.g \in C[a, b] \cap C^{2}\right] a, b[$ be a primitive of μ satisfying $g(a) \in 2 \pi \mathbb{Z}$. (The continuity of g on $[a, b]$ follows from g being monotone and $g^{\prime}=\mu$ being bounded on $] a, b[$.) Next, a straight-forward calculation gives

[^9]\[

$$
\begin{aligned}
\mathbf{s} & =\left(n+r^{2}|\mathbf{A} \theta|^{2}\right)^{\frac{p-2}{2}} \\
& =\left(n+r^{2} g^{\prime 2}|\mathbf{J} \theta|^{2}\right)^{\frac{p-2}{2}} \\
& =\left(n+r^{2} g^{\prime 2}\right)^{\frac{p-2}{2}} .
\end{aligned}
$$
\]

Thus in view of (5.21) g satisfies (5.23) on $] a, b[$. An application of Tonelli and Hilbert-Weierstrass differentiability theorems (see, e.g., [5, pp. 57-61]) now gives $g \in C^{2}[a, b]$ and so in particular $\mu \in C^{1}[a, b] .{ }^{14}$

With this introduction now put $\mathbf{C}=g \mathbf{J}$. Then $\mathbf{A}=g^{\prime} \mathbf{J}=\mu \mathbf{J}$. In particular \mathbf{A} and \mathbf{C} commute and so we have that

$$
\frac{d}{d r} e^{\mathbf{C}}=e^{\mathbf{C}} \mathbf{A}=g^{\prime} e^{\mathbf{C}} \mathbf{J}=\mu e^{\mathbf{C}} \mathbf{J}
$$

Thus $e^{\mathbf{C}}$ is a solution to (5.24). Moreover by bringing \mathbf{C} into a block diagonal form we can write $\mathbf{C}=g \mathbf{P} \mathbf{J}_{n} \mathbf{P}^{t}$ where $\mathbf{P} \in \mathbf{O}(n)$ and $\mathbf{J}_{n}=\operatorname{diag}\left(\mathbf{J}_{2}, \ldots, \mathbf{J}_{2}\right)$. As a result

$$
\begin{aligned}
e^{\mathbf{C}} & =e^{g \mathbf{P J}_{n} \mathbf{P}^{t}} \\
& =\mathbf{P} g \mathbf{J}_{n} \mathbf{P}^{t} \\
& =\mathbf{P} \operatorname{diag}(\mathbf{R}(g), \ldots, \mathbf{R}(g)) \mathbf{P}^{t} .
\end{aligned}
$$

Since $g(a) \in 2 \pi \mathbb{Z}$ the above shows that $\left.e^{\mathbf{C}}\right|_{r=a}=\mathbf{Q}(a)=\mathbf{I}_{n}$ and so by uniqueness of solutions to initial values problems $\mathbf{Q}=e^{\mathbf{C}}$ on $[a, b]$. Since $\mathbf{Q}(b)=\mathbf{I}_{n}$ it follows in a similar way that $g(b) \in 2 \pi \mathbb{Z}$.
(2b) $(n=2 k+1)$ Here in view of the skew-symmetry of $\mathbf{Q}^{t} \dot{\mathbf{Q}}$, pre-multiplying (5.24) by \mathbf{Q}^{t} and then taking determinants from both sides, $\mu \equiv 0$ and so $\dot{\mathbf{Q}} \equiv 0$ on $] a, b\left[\right.$. As $\mathbf{Q}(a)=\mathbf{Q}(b)=\mathbf{I}_{n}$ this gives $\mathbf{Q} \equiv \mathbf{I}_{n}$ on $[a, b]$ and so $\mathbf{u}=\mathbf{x}$ on $\bar{\Omega}$.
(2) \Rightarrow (1) For the case (2b) this is trivial and for (2a) it is enough to note that for such $\mathbf{u},(5.23)$ is equivalent to (5.2).

6. A characterisation of all twist solutions

In Section 4 we proved the existence of multiple p-stationary loops by directly minimising the energy functional \mathbb{E}_{p} over the homotopy classes $\mathfrak{c}_{\star}\left[\mathcal{E}_{p}\right]$ of the loop space \mathcal{E}_{p}. By contrast in this section we focus on the Euler-Lagrange equation itself and present a class of p-stationary loops that in turn will prove fruitful in discussing the existence of multiple solutions to the Euler-Lagrange equations associated with the energy functional \mathbb{F}_{p} over the space \mathcal{A}_{p}.

To this end we consider the case of even dimensions ($n=2 k$) and for $p \in[1, \infty[$ and $m \in \mathbb{N}$ set

$$
\begin{equation*}
\mathcal{G}_{p}^{m}=\mathcal{G}_{p}^{m}(a, b):=\left\{g=g(r) \in W^{1, p}(a, b): g(a)=0, g(b)=2 \pi m\right\} . \tag{6.1}
\end{equation*}
$$

Now for $g \in \mathcal{G}_{p}^{m}$ and $\mathbf{P} \in \mathbf{O}(n)$ set

$$
\begin{equation*}
\mathbf{Q}=\mathbf{P} \operatorname{diag}(\mathbf{R}(g), \ldots, \mathbf{R}(g)) \mathbf{P}^{t} . \tag{6.2}
\end{equation*}
$$

It is then evident that the path \mathbf{Q} so defined forms an admissible loop, i.e., lies in \mathcal{E}_{p}. It is thus natural to set

$$
\begin{align*}
\mathbb{G}_{p}[g]:=\mathbb{E}_{p}[\mathbf{Q}] & =\int_{a}^{b} \int_{\mathbb{S}^{n-1}}\left(n+r^{2}|\dot{\mathbf{Q}} \theta|^{2}\right)^{\frac{p}{2}} r^{n-1} d \mathcal{H}^{n-1}(\theta) d r \\
& =n \omega_{n} \int_{a}^{b}\left(n+r^{2} g^{\prime 2}\right)^{\frac{p}{2}} r^{n-1} d r . \tag{6.3}
\end{align*}
$$

An application of the direct methods of the calculus of variations and standard regularity theory (see, e.g., [5, pp. 57-61]) leads us to the following statement.

[^10]Theorem 6.1. Let $p \in] 1, \infty\left[\right.$ and consider the energy functional \mathbb{G}_{p} over the space \mathcal{G}_{p}^{m}. Then for each $m \in \mathbb{N}$ there exists a unique $g=g(r ; m, a, b) \in \mathcal{G}_{p}^{m}$ such that

$$
\mathbb{G}_{p}[g]=\inf _{\mathcal{G}_{p}^{m}} \mathbb{G}_{p}
$$

Moreover $g(r ; m, a, b)$ satisfies the corresponding Euler-Lagrange equation

$$
\begin{equation*}
\frac{d}{d r}\left\{r^{n+1}\left(n+r^{2} g^{\prime 2}\right)^{\frac{p-2}{2}} g^{\prime}\right\}=0 \tag{6.4}
\end{equation*}
$$

on $] a, b\left[\right.$. Additionally $g \in C^{\infty}[a, b]$.
Remark 6.1. The Euler-Lagrange equation (6.4) for g is equivalent to Eq. (3.2) for the twist loop \mathbf{Q} defined through (6.2) and implies the Euler-Lagrange equation (3.2) [or alternatively that given in Proposition 3.3 for $\left.\mathbf{A}=\mathbf{Q}^{t} \dot{\mathbf{Q}}\right]$. Hence for every $\mathbf{P} \in \mathbf{O}(n)$ and every $m \in \mathbb{Z}$ the corresponding \mathbf{Q} given by (6.2) with $g=g(r ; m, a, b)$ is a p-stationary loop.

Theorem 6.2. Let $\Omega=\left\{\mathbf{x} \in \mathbb{R}^{n}: a<|\mathbf{x}|<b\right\}$. Consider the energy functional \mathbb{F}_{p} with $\left.p \in\right] 1, \infty\left[\right.$ over the space \mathcal{A}_{p}. Then the set \mathfrak{S} of all generalised twist solutions to the corresponding Euler-Lagrange equations can be characterised as follows.
(1) $(n=2 k) \mathfrak{S}$ is infinite and any generalised twist $\mathbf{u} \in \mathfrak{S}$ can be described as

$$
\begin{aligned}
\mathbf{u} & =r \mathbf{Q}(r ; a, b, m) \theta \\
& =r \mathbf{P} \operatorname{diag}(\mathbf{R}(g), \ldots, \mathbf{R}(g))(r) \mathbf{P}^{t} \theta
\end{aligned}
$$

where $\mathbf{P} \in \mathbf{O}(n)$ and $g \in C^{\infty}[a, b]$ satisfies

$$
\frac{d}{d r}\left\{r^{n+1}\left(n+r^{2} g^{\prime 2}\right)^{\frac{p-2}{2}} g^{\prime}\right\}=0
$$

with $g(a), g(b) \in 2 \pi \mathbb{Z}$,
(2) $(n=2 k+1) \mathfrak{S}$ consists of the single map $\mathbf{u}=\mathbf{x}$.

Proof. This is an immediate consequence of Theorems 5.3 and 6.1.
Remark 6.2. Is it possible to consider generalised twists \mathbf{u} whose twist loop lies in other spaces [than $\mathbf{S O}(n)$ already considered] with the hope of finding new classes of classical solutions to the Euler-Lagrange equations associated with the energy functional \mathbb{F}_{p} over \mathcal{A}_{p} ?

Motivated by the requirement $\operatorname{det} \nabla \mathbf{u}=1$ on such maps the choice of loops in $\mathbf{S L}(n) \supset \mathbf{S O}(n)$ seems a natural one. ${ }^{15}$ However it turns out that the choice $\mathbf{S O}(n)$ is no less general than $\mathbf{S L}(n)$!

Claim. Let $\Omega=\left\{\mathbf{x} \in \mathbb{R}^{n}: a<|\mathbf{x}|<b\right\}$. For $p \in[1, \infty[$ consider the map $\mathbf{u} \in C(\bar{\Omega}, \bar{\Omega})$ defined via

$$
\mathbf{u}=\mathbf{F}(r) \mathbf{x}
$$

where $r=|\mathbf{x}|$ and $\mathbf{F} \in W^{1, p}([a, b], \mathbf{S L}(n))$. Then

$$
\mathbf{u} \in \mathcal{A}_{p}(\Omega) \quad \Longrightarrow \quad \mathbf{F} \in W^{1, p}([a, b], \mathbf{S O}(n))
$$

Proof. A straight-forward calculation as in the proof of Proposition 2.1 gives

$$
\begin{aligned}
\nabla \mathbf{u} & =\mathbf{F}+r \dot{\mathbf{F}} \theta \otimes \theta \\
& =\mathbf{F}\left(\mathbf{I}_{n}+r \mathbf{F}^{-1} \dot{\mathbf{F}} \theta \otimes \theta\right) .
\end{aligned}
$$

[^11]Hence in view of $\operatorname{det} \mathbf{F}=1$ we can write

$$
\begin{aligned}
\operatorname{det} \nabla \mathbf{u} & =\operatorname{det}(\mathbf{F}+r \dot{\mathbf{F}} \theta \otimes \theta) \\
& =\operatorname{det}\left(\mathbf{I}_{n}+r \mathbf{F}^{-1} \dot{\mathbf{F}} \theta \otimes \theta\right) \\
& =1+r\left(\mathbf{F}^{-1} \dot{\mathbf{F}} \theta, \theta\right\rangle .
\end{aligned}
$$

Evidently $\mathbf{u} \in \mathcal{A}_{p}(\Omega)$ provided that
(i) $\mathbf{u}=\mathbf{x}$ on $\partial \Omega$,
(ii) $\operatorname{det} \nabla \mathbf{u}=1$ in Ω, and
(iii) $\|\mathbf{u}\|_{W^{1, p}(\Omega)}<\infty$.

Now again referring to the proof of Proposition 2.1 we have that
(i) $\Longleftrightarrow \quad \mathbf{F}(a)=\mathbf{F}(b)=\mathbf{I}_{n}$,
whilst
(ii) $\Longleftrightarrow\left\langle\mathbf{F}^{-1} \dot{\mathbf{F}} \theta, \theta\right\rangle=0 \quad$ for all $\theta \in \mathbb{S}^{n-1} \quad \Longleftrightarrow \quad \mathbf{F}^{1} \dot{\mathbf{F}}+\dot{\mathbf{F}}^{t} \mathbf{F}^{-t}=0$.

However, anticipating on the latter, we can write

$$
\begin{aligned}
\mathbf{F}^{-1} \dot{\mathbf{F}}+\dot{\mathbf{F}}^{t} \mathbf{F}^{-t}=0 & \Longleftrightarrow \quad \dot{\mathbf{F}}+\mathbf{F}^{t} \mathbf{F}^{-t}=0 \\
& \Longleftrightarrow \quad \dot{\mathbf{F}} \mathbf{F}^{t}+\mathbf{F}^{t}=0 \\
& \Longleftrightarrow \frac{d}{d r}\left(\mathbf{F F}^{t}\right)=0 .
\end{aligned}
$$

This together with (i) and the continuity of \mathbf{F} on $[a, b]$ gives $\mathbf{F} \mathbf{F}^{t}=\mathbf{I}_{n}$ and so the conclusion follows.

7. Limiting behaviour of the generalised twists as the inner hole shrinks to a point

In this section we consider the case where $b=1$ and $a=\varepsilon>0$ with the aim of discussing the limiting properties of the generalised twists from Theorem 6.2 as $\varepsilon \downarrow 0$. This is particularly interesting since in the limit (the punctured ball) all components of the function space collapse to a single one and so it is important to have a clear understanding as to how the twist solutions and their energies [for each fixed integer m] behave. ${ }^{16}$

To this end, let $\Omega_{\varepsilon}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: \varepsilon<|\mathbf{x}|<1\right\}$ where $n=2 k$ and for each $m \in \mathbb{Z}$ let $\mathbf{u}_{\varepsilon} \in \mathcal{A}_{p}$ denote the generalised twist from (1) in Theorem 6.2, that is, with the notation $\mathbf{x}=r \theta$,

$$
\begin{aligned}
\mathbf{u}_{\varepsilon} & =r \mathbf{Q}(r ; \varepsilon, 1, m) \theta \\
& =r \mathbf{P}_{\varepsilon}\left[\operatorname{diag}\left(\mathbf{R}\left(g_{\varepsilon}\right), \ldots, \mathbf{R}\left(g_{\varepsilon}\right)\right)\right] \mathbf{P}_{\varepsilon}^{t} \theta
\end{aligned}
$$

where $\mathbf{P}_{\varepsilon} \in \mathbf{O}(n)$ and $g_{\varepsilon}(r)=g(r ; \varepsilon, 1, m)$.
In order to make the study of the limiting properties of \mathbf{u}_{ε} more tractable, we fix the domain to be the unit ball and extend each map by identity off Ω_{ε}. [In what follows, unless otherwise stated, we speak of \mathbf{u}_{ε} in this extended sense.] Thus, here, we have that

$$
\begin{equation*}
\mathbf{u}_{\varepsilon}:(r, \theta) \mapsto\left(r, \mathbf{G}_{\varepsilon}(r) \theta\right) \tag{7.1}
\end{equation*}
$$

where

$$
\mathbf{G}_{\varepsilon}(r)=\mathbf{P}_{\varepsilon}\left[\operatorname{diag}\left(\mathbf{R}\left(g_{\varepsilon}\right), \ldots, \mathbf{R}\left(g_{\varepsilon}\right)\right)\right] \mathbf{P}_{\varepsilon}^{t}
$$

[^12]and
\[

g_{\varepsilon}(r)= $$
\begin{cases}0, & r \leqslant \varepsilon, \\ g(r ; \varepsilon, 1, m), & \varepsilon \leqslant r \leqslant 1 .\end{cases}
$$
\]

In discussing the limiting properties of \mathbf{u}_{ε} it is convenient to introduce a so-called comparison map. Indeed, fix $m \in \mathbb{Z}$ and consider the generalised twist

$$
\begin{equation*}
\mathbf{v}_{\varepsilon}:(r, \theta) \mapsto\left(r, \mathbf{H}_{\varepsilon}(r) \theta\right) \tag{7.2}
\end{equation*}
$$

where

$$
\mathbf{H}_{\varepsilon}(r)=\mathbf{P}_{\varepsilon}\left[\operatorname{diag}\left(\mathbf{R}\left(h_{\varepsilon}\right), \ldots, \mathbf{R}\left(h_{\varepsilon}\right)\right)\right] \mathbf{P}_{\varepsilon}^{t}
$$

and

$$
h_{\varepsilon}(r):= \begin{cases}0, & r \in(0, \varepsilon), \\ 2 m \pi\left(\frac{r}{\varepsilon}-1\right), & r \in(\varepsilon, 2 \varepsilon), \\ 2 m \pi, & r \in(2 \varepsilon, 1) .\end{cases}
$$

Proposition 7.1. Let $p \in] 1, \infty\left[\right.$. The family of generalised twists $\left(\mathbf{v}_{\varepsilon}\right)$ enjoys the followings properties.
(1) $\mathbf{v}_{\varepsilon} \rightarrow \mathbf{x}$ in $W^{1, p}\left(\mathbb{B}, \mathbb{R}^{n}\right)$,
(2) $\mathbf{v}_{\varepsilon} \rightarrow \mathbf{x}$ uniformly on $\overline{\mathbb{B}}$.

Proof. (1) Using (7.2) and a straight-forward calculation we have that

$$
\begin{aligned}
\left\|\mathbf{v}_{\varepsilon}-\mathbf{x}\right\|_{W_{0}^{1, p}}^{p} & =\int_{\mathbb{B}}\left|\nabla \mathbf{v}_{\varepsilon}-\mathbf{I}\right|^{p} \\
& =\int_{\mathbb{B}_{2 \varepsilon} \backslash \mathbb{B}_{\varepsilon}}\left|\nabla \mathbf{v}_{\varepsilon}-\mathbf{I}\right|^{p} \leqslant 2^{p-1} \int_{\mathbb{B}_{2 \varepsilon} \backslash \mathbb{B}_{\varepsilon}}\left|\nabla \mathbf{v}_{\varepsilon}\right|^{p}+|\mathbf{I}|^{p} .
\end{aligned}
$$

Furthermore, referring to Proposition 2.1 [see (2.4)] we can write

$$
\begin{align*}
\int_{\mathbb{B}_{2 \varepsilon} \backslash \mathbb{B}_{\varepsilon}}\left|\nabla \mathbf{v}_{\varepsilon}\right|^{p} & =\int_{\varepsilon}^{2 \varepsilon} \int_{\mathbb{S}^{n-1}}\left(n+r^{2}\left|\dot{\mathbf{H}}_{\varepsilon} \theta\right|^{2}\right)^{\frac{p}{2}} r^{n-1} d \mathcal{H}^{n-1}(\theta) d r \\
& =n \omega_{n} \int_{\varepsilon}^{2 \varepsilon}\left(n+r^{2} h_{\varepsilon}^{\prime 2}\right)^{\frac{p}{2}} r^{n-1} d r \\
& \leqslant \omega_{n}\left(2^{n}-1\right) \varepsilon^{n}\left[n+4(2 m \pi)^{2}\right]^{\frac{p}{2}} . \tag{7.3}
\end{align*}
$$

The above estimates when combined give (1) as a result of Poincaré inequality.
(2) By direct verification we have that

$$
\begin{align*}
\left|\mathbf{v}_{\varepsilon}-\mathbf{x}\right|^{2} & =\left|r \mathbf{H}_{\varepsilon}(r) \theta-r \theta\right|^{2} \\
& =r^{2}\left|\mathbf{P}_{\varepsilon} \operatorname{diag}\left(\mathbf{R}\left(h_{\varepsilon}\right), \ldots, \mathbf{R}\left(h_{\varepsilon}\right)\right) \mathbf{P}_{\varepsilon}^{t} \theta-\theta\right|^{2} \\
& =r^{2}\left|\mathbf{P}_{\varepsilon}\left(\operatorname{diag}\left(\mathbf{R}\left(h_{\varepsilon}\right), \ldots, \mathbf{R}\left(h_{\varepsilon}\right)\right)-\mathbf{I}_{n}\right) \mathbf{P}_{\varepsilon}^{t} \theta\right|^{2} \\
& =r^{2}\left|\left(\operatorname{diag}\left(\mathbf{R}\left(h_{\varepsilon}\right), \ldots, \mathbf{R}\left(h_{\varepsilon}\right)\right)-\mathbf{I}_{n}\right) \omega_{\varepsilon}\right|^{2} \quad\left(\omega_{\varepsilon}:=\mathbf{P}_{\varepsilon}^{t} \theta\right) \\
& =\frac{1}{2} r^{2}\left|\mathbf{R}\left(h_{\varepsilon}\right)-\mathbf{I}_{2}\right|^{2} . \tag{7.4}
\end{align*}
$$

However a straight-forward calculation gives

$$
\left|\mathbf{R}\left(h_{\varepsilon}\right)-\mathbf{I}_{2}\right|^{2}=4\left(1-\cos h_{\varepsilon}\right)=8 \sin ^{2} \frac{h_{\varepsilon}}{2} .
$$

Thus combining the above and referring to the definition of h_{ε} we arrive at the bound

$$
\sup _{\mathbb{B}}\left|\mathbf{v}_{\varepsilon}-\mathbf{x}\right|=\sup _{[\varepsilon, 2 \varepsilon]} 2 r\left|\sin \frac{h_{\varepsilon}}{2}\right| \leqslant 4 \varepsilon,
$$

which gives the required conclusion.
Let $p \in] 1, \infty\left[\right.$ and $f i x m \in \mathbb{Z}$. Then $g_{\varepsilon}, h_{\varepsilon} \in \mathcal{G}_{p}^{m}(\varepsilon, 1)\left[\right.$ see (6.1)] and so according to the minimising property of g_{ε} we have that

$$
\begin{equation*}
\mathbb{F}_{p}\left[\mathbf{u}_{\varepsilon}, \mathbb{B}\right]=\frac{1}{p} \mathbb{E}_{p}\left[\mathbf{G}_{\varepsilon}\right]=\frac{1}{p} \mathbb{G}_{p}\left[g_{\varepsilon}\right] \leqslant \frac{1}{p} \mathbb{G}_{p}\left[h_{\varepsilon}\right]=\frac{1}{p} \mathbb{E}_{p}\left[\mathbf{H}_{\varepsilon}\right]=\mathbb{F}_{p}\left[\mathbf{v}_{\varepsilon}, \mathbb{B}\right] . \tag{7.5}
\end{equation*}
$$

This in conjunction with (1) in Proposition 7.1 implies the boundedness of $\left(\mathbf{u}_{\varepsilon}\right)$ in $W^{1, p}\left(\mathbb{B}, \mathbb{R}^{n}\right)$ and so as a result $\left(\mathbf{u}_{\varepsilon}\right)$ admits a weakly convergent subsequence. Indeed more is true!

Theorem 7.1. Let $\Omega_{\varepsilon}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: \varepsilon<|\mathbf{x}|<1\right\}$. For $\left.p \in\right] 1, \infty\left[\right.$ and $m \in \mathbb{Z}$ let $\left(\mathbf{u}_{\varepsilon}\right)_{\varepsilon>0}$ denote the family of generalised twists as in (7.1). Then,
(1) $\mathbf{u}_{\varepsilon} \rightarrow \mathbf{x}$ in $W^{1, p}\left(\mathbb{B}, \mathbb{R}^{n}\right)$,
(2) $\mathbf{u}_{\varepsilon} \rightarrow \mathbf{x}$ uniformly in $\overline{\mathbb{B}} .{ }^{17}$

Proof. (1) Fix $m \in \mathbb{Z}$ and let \mathbf{v}_{ε} be as in (7.2). Then referring to (7.5) it follows that by passing to a subsequence (not re-labeled) $\mathbf{u}_{\varepsilon} \rightharpoonup \mathbf{u}$ in $W^{1, p}\left(\mathbb{B}, \mathbb{R}^{n}\right)$. Appealing to the sequential weak lower semicontintuity of \mathbb{F}_{p} and (1) in Proposition 7.1 we can write

$$
\begin{aligned}
\mathbb{F}_{p}[\mathbf{x}, \mathbb{B}] \leqslant \mathbb{F}_{p}[\mathbf{u}, \mathbb{B}] & \leqslant \liminf _{\varepsilon \searrow 0} \mathbb{F}_{p}\left[\mathbf{u}_{\varepsilon}, \mathbb{B}\right] \\
& \leqslant \limsup _{\varepsilon \searrow 0} \mathbb{F}_{p}\left[\mathbf{u}_{\varepsilon}, \mathbb{B}\right] \\
& \leqslant \lim _{\varepsilon \searrow 0} \mathbb{F}_{p}\left[\mathbf{v}_{\varepsilon}, \mathbb{B}\right]=\mathbb{F}_{p}[\mathbf{x}, \mathbb{B}] .
\end{aligned}
$$

This in view of the strict convexity of $\mathbb{F}_{p}\left(\right.$ on $\left.W^{1, p}\right)$ gives $\mathbf{u}=\mathbf{x}$. As a result of the uniform convexity of the p-norm ($p>1$) the aforementioned weak convergence can now be improved to strong convergence and this gives (1).
(2) By (1) we can assume without loss of generality that $\mathbf{u}_{\varepsilon} \rightarrow \mathbf{x} \mathcal{L}^{n}$-a.e. in Ω. To justify the uniform convergence in (2) let g_{ε} be as that described in (7.1) and fix $\sigma \in(0,1)$. Then we claim that $g_{\varepsilon} \rightarrow 2 m \pi$ uniformly on [$\left.\sigma, 1\right]$. Indeed, $\left(\mathbf{u}_{\varepsilon}\right)$ bounded in $W^{1, p}\left(\mathbb{B}, \mathbb{R}^{n}\right)$ gives $\left(\mathbf{u}_{\varepsilon}\right)$ bounded in $W^{1, p}\left(\mathbb{B} \backslash \overline{\mathbb{B}}_{\sigma}, \mathbb{R}^{n}\right)$ and so referring to (2.4) and using a calculation similar to that in (7.3) we have $\left(g_{\varepsilon}\right)$ bounded in $W^{1, p}(\sigma, 1)$. Hence, there exists $f=f_{\sigma} \in W^{1, p}(\sigma, 1)$ so that passing to a subsequence (not re-labeled)

$$
\begin{cases}g_{\varepsilon} \rightharpoonup f, & \text { in } W^{1, p}(\sigma, 1) \\ g_{\varepsilon} \rightarrow f, & \text { in } L^{\infty}[\sigma, 1] \\ f(1)=2 m \pi & \end{cases}
$$

In addition referring again to (7.1) we can assume in view of $\mathbf{O}(n)$ being compact, that by passing to a further subsequence (again, not re-labeled) $\mathbf{P}_{\varepsilon} \rightarrow \mathbf{P}$ for some $\mathbf{P} \in \mathbf{O}(n)$. Hence for \mathcal{L}^{n}-a.e. $\mathbf{x} \in \Omega$ we can write

$$
\begin{aligned}
\lim _{\varepsilon \searrow 0} \mathbf{u}_{\varepsilon}(\mathbf{x}) & =\lim _{\varepsilon \searrow 0} r \mathbf{G}_{\varepsilon}(r) \theta \\
& =\lim _{\varepsilon \searrow 0} r \mathbf{P}_{\varepsilon} \operatorname{diag}\left(\mathbf{R}\left(g_{\varepsilon}\right), \ldots, \mathbf{R}\left(g_{\varepsilon}\right)\right) \mathbf{P}_{\varepsilon}^{t} \theta \\
& =r \mathbf{P} \operatorname{diag}(\mathbf{R}(f), \ldots, \mathbf{R}(f)) \mathbf{P}^{t} \theta=r \theta \\
& =\mathbf{x},
\end{aligned}
$$

[^13]giving $\mathbf{R}(f)=\mathbf{I}_{2}$ and in turn that $f=2 \pi n(r)$ for some $n(r) \in \mathbb{Z}$. The continuity of f along with $f(1)=2 m \pi$ now gives $f=2 m \pi$ on $[\sigma, 1]$ justifying the assertion. Next, arguing as in (7.4) we can write
\[

$$
\begin{aligned}
\left|\mathbf{u}_{\varepsilon}-\mathbf{x}\right|^{2} & =\left|r \mathbf{G}_{\varepsilon}(r) \theta-r \theta\right|^{2} \\
& =2 r^{2}\left(1-\cos g_{\varepsilon}\right) \\
& =4 r^{2} \sin ^{2} \frac{g_{\varepsilon}}{2} .
\end{aligned}
$$
\]

Thus, to conclude [2] fix $\delta>0$ and first take $\sigma \in\left(0,2^{-1} \delta\right.$] and then ε_{0} such that $\left|\sin \left(2^{-1} g_{\varepsilon}\right)\right| \leqslant 2^{-1} \delta$ on [$\left.\sigma, 1\right]$ for $\varepsilon<\varepsilon_{0}$. Then $\sup _{\mathbb{B}}\left|\mathbf{u}_{\varepsilon}-\mathbf{x}\right| \leqslant \max (2 \sigma, \delta)=\delta .{ }^{18}$

Acknowledgements

The research of the first author was supported by a University of Sussex scholarship and an ORS award both gratefully acknowledged.

Appendix A

Recall from linear algebra that all eigen-values of a [real] skew-symmetric matrix have zero real parts. Hence they either appear as purely imaginary conjugate pairs or zero. In particular when n is odd there is necessarily a zero eigenvalue. Thus distinguishing between the cases when n is even and odd respectively we can bring every skew-symmetric matrix to a block diagonal form. Let

$$
\mathbf{J}:=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

Proposition A.1. Let $\mathbf{A} \in \mathbb{M}_{n \times n}$ be skew-symmetric. Then there exist $\mathbf{P} \in \mathbf{S O}(n)$ and $\left(\lambda_{j}\right)_{j=1}^{k} \subset \mathbb{R}$ such that ${ }^{19}$
(1) $(n=2 k)$

$$
\mathbf{A}=\mathbf{P}^{t} \operatorname{diag}\left(\lambda_{1} \mathbf{J}, \lambda_{2} \mathbf{J}, \ldots, \lambda_{k} \mathbf{J}\right) \mathbf{P}
$$

(2) $(n=2 k+1)$

$$
\mathbf{A}=\mathbf{P}^{t} \operatorname{diag}\left(\lambda_{1} \mathbf{J}, \lambda_{2} \mathbf{J}, \ldots, \lambda_{k} \mathbf{J}, 0\right) \mathbf{P}
$$

Proof. Indeed, here, \mathbf{A} is normal [i.e., it commutes with its transpose $\mathbf{A}^{t}=-\mathbf{A}$] and so the conclusion follows from the well-known spectral theorem.

With the aid of the above representation evaluating the exponential function for skew-symmetric matrices becomes remarkably convenient. Let

$$
\mathbf{R}(s):=\left[\begin{array}{cc}
\cos s & \sin s \\
-\sin s & \cos s
\end{array}\right] .
$$

Proposition A.2. Let $\mathbf{A} \in \mathbb{M}_{n \times n}$ be skew-symmetric. Then using the notation in Proposition A. 1 we have that
(1) $(n=2 k)$

$$
e^{s \mathbf{A}}=\mathbf{P}^{t} \operatorname{diag}\left(\mathbf{R}\left(s \lambda_{1}\right), \mathbf{R}\left(s \lambda_{2}\right), \ldots, \mathbf{R}\left(s \lambda_{k}\right)\right) \mathbf{P}
$$

[^14](2) $(n=2 k+1)$
$$
e^{s \mathbf{A}}=\mathbf{P}^{t} \operatorname{diag}\left(\mathbf{R}\left(s \lambda_{1}\right), \mathbf{R}\left(s \lambda_{2}\right), \ldots, \mathbf{R}\left(s \lambda_{k}\right), 1\right) \mathbf{P}
$$

Proof. A straight-forward calculation gives

$$
e^{s \mathbf{J}}=\sum_{n=0}^{\infty} \frac{1}{n!} s^{n} \mathbf{J}^{n}=\mathbf{R}(s)
$$

The conclusion now follows by noting that $e^{\mathbf{A}}=e^{\mathbf{P}^{t} \mathbf{D P}}=\mathbf{P}^{t} e^{\mathbf{D}} \mathbf{P}$.

References

[1] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 (1977) 337-403.
[2] J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. Ser. A 306 (1982) 557-611.
[3] P. Bauman, N.C. Owen, D. Phillips, Maximum principles and a priori estimates for an incompressible material in nonlinear elasticity, Comm. Partial Differential Equations 17 (1992) 1185-1212.
[4] G. Bredon, Topology and Geometry, Graduate Texts in Mathematics, vol. 139, Springer, 1993.
[5] L. Cesari, Optimization-Theory and Application, Applications of Mathematics, vol. 17, Springer, 1983.
[6] L.C. Evans, R.F. Gariepy, On the partial regularity of energy-minimizing, area preserving maps, Calc. Var. 63 (1999) 357-372.
[7] T. Kato, Perturbation Theory for Linear Operators, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, 1980.
[8] R.J. Knops, C.A. Stuart, Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity, Arch. Ration. Mech. Anal. 86 (3) (1984) 233-249.
[9] K. Post, J. Sivaloganathan, On homotopy conditions and the existence of multiple equilibria in finite elasticity, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 595-614.
[10] M.S. Shahrokhi-Dehkordi, A. Taheri, Generalised twists, stationary loops and the Dirichlet energy on a space of measure preserving maps, Calc. Var. Partial Differential Equations 35 (2) (2009) 191-213.
[11] M.S. Shahrokhi-Dehkordi, A. Taheri, in preparation.
[12] J. Sivaloganathan, Uniqueness of regular and singular equilibria for spherical symmetric problems of nonlinear elasticity, Arch. Ration. Mech. Anal. 96 (3) (1986) 97-136.
[13] A. Taheri, Local minimizers and quasiconvexity - the impact of topology, Arch. Ration. Mech. Anal. 176 (3) (2005) 363-414.
[14] A. Taheri, Minimizing the Dirichlet energy on a space of measure preserving maps, Topol. Methods Nonlinear Anal. 33 (1) (2009) 179-204.
[15] A. Taheri, On a topological degree on the space of self-maps of annuli, submitted for publication.

[^0]: * Corresponding author.

 E-mail address: a.taheri@sussex.ac.uk (A. Taheri).

[^1]: ${ }^{1}$ In the language of elasticity, the tensor fields (1.3) and (1.4) are referred to as the Piola-Kirchhoff and the Cauchy stress tensors respectively and the Lagrange multiplier \mathfrak{p} is better known as the hydrostatic pressure.
 2 Recall that for star-shaped domains and subject to linear boundary conditions there is a uniqueness result associated with [sufficiently regular] equilibrium states in both compressible and incompressible hyperelasticity. (See [8].)

[^2]: ${ }^{5}$ In fact, if, s were to be independent of θ then the Euler-Lagrange equation described in Proposition 3.3 could be easily shown to be equivalent to (3.2).

[^3]: ${ }^{6}$ The sequential weak closedness of the homotopy classes $\mathfrak{c}_{\star}\left[\mathcal{E}_{p}\right]$ is a result of $\mathbf{S O}(n)$ having a tubular neighbourhood that projects back onto itself and this in turn follows from $\mathbf{S O}(n)$ being a smooth compact manifold.

[^4]: 7 Note that $\Delta_{p} \mathbf{u}:=\operatorname{div}\left(|\nabla \mathbf{u}|^{p-2} \nabla \mathbf{u}\right)$.

[^5]: 8 Thus it is important to note that in the first two steps the function \mathbf{s} depends on both r and θ !

[^6]: ${ }^{9}$ At this stage the reader is encouraged to consult Appendix A at the end of the paper where some notation as well as basic properties related to the matrix exponential as a mapping between the space of skew-symmetric matrices and the special orthogonal group is discussed.
 10 We emphasise that nowhere in this proof have we assumed continuity or differentiability on $\mathbf{P}=\mathbf{P}(r)$ or $\mathbf{D}=\mathbf{D}(r)$ with respect to r. These in general need not even be true! [See, e.g., [7].]

[^7]: ${ }^{11}$ Note that $\left(\rho_{1}^{2}+\rho_{2}^{2}\right)=\prod_{2 \leqslant j \leqslant n-1} \sin ^{2} \phi_{j}$ and so $\rho_{1}^{2}+\rho_{2}^{2}=0 \Longleftrightarrow \sum_{3 \leqslant j \leqslant n} \rho_{j}^{2}=1 \Longleftrightarrow \phi_{j} \in\{0, \pi\}$ for some $2 \leqslant j \leqslant n-1$. This set is a copy of \mathbb{S}^{n-3} lying in \mathbb{S}^{n-1}.

[^8]: 12 It can be easily shown that as a result of periodicity the following identities hold:

 $$
 \begin{aligned}
 & \int_{0}^{2 \pi} \mathfrak{s}\left(\sin ^{2} t, \cos ^{2} t\right) \sin t d t=0 \\
 & \int_{0}^{2 \pi} \mathfrak{s}\left(\sin ^{2} t, \cos ^{2} t\right) \cos t d t=0
 \end{aligned}
 $$

[^9]: 13 Note that in general there is no uniqueness or even finiteness associated with the choice of a square root of a matrix! Thus an argument purely based on continuity would not yield the aforementioned claim and it is crucial to additionally utilise (5.2).

[^10]: (6.1), (6.3)]. In particular it follows that $g \in C^{\infty}[a, b]$.

[^11]: 15 Recall that for every non-negative integer n we have that
 $\mathbf{S L}(n)=\mathbf{S L}(\mathbb{R}, n):=\left\{\mathbf{F} \in \mathbb{M}_{n \times n}(\mathbb{R}): \operatorname{det} \mathbf{F}=1\right\}$.

[^12]: 16 In the case of a punctured disk, say, $\Omega=\mathbb{B} \backslash\{0\}$, for any pair of maps $\phi_{0}, \phi_{1} \in \mathfrak{A}:=\{\phi \in C(\bar{\Omega}, \bar{\Omega}): \phi=\varphi$ on $\partial \Omega=\{0\} \cup \partial \mathbb{B}\}$, the continuous path $[0,1] \ni t \mapsto \phi_{t}:=(1-t) \phi_{0}+t \phi_{1}$ lies within \mathfrak{A} and joins ϕ_{0} to ϕ_{1}. Therefore, here, \mathfrak{A} consists of a single component only! [Compare this with the discussion in the footnote at the end of Section 1.]

[^13]: $\overline{17}$ Note that here both convergences are in reference to the entire sequence and not merely a subsequence as was implied in discussing the weak convergence prior to the proposition. The argument is standard and will be abbreviated.

[^14]: 18 The uniform convergence in (2) above looks at first counter-intuitive, as, how can \mathbf{u}_{ε} and \mathbf{x} be uniformly close when \mathbf{u}_{ε} twists m times while the limit \mathbf{x} none? Indeed a careful consideration reveals that the latter twists occur at a distance ε from the origin and within a layer of thickness $O(\varepsilon)$ and this is in no conflict with the stated uniform convergence!
 ${ }^{19}$ Indeed by allowing $\mathbf{P} \in \mathbf{O}(n)$ we can additionally arrange for the sequence $\left(\lambda_{j}\right)_{j=1}^{k}$ to be non-negative.

