Erratum

Erratum to: "Multiple critical points of perturbed symmetric strongly indefinite functionals"
 [http://dx.doi.org/10.1016/j.anihpc.2008.06.002]

Denis Bonheure ${ }^{\mathrm{a}, *, 1}$, Miguel Ramos ${ }^{\mathrm{b}, 2}$
${ }^{a}$ Université libre de Bruxelles, Département de Mathématique, U.L.B., CP214, Boulevard du Triomphe, 1050 Bruxelles, Belgium
${ }^{\mathrm{b}}$ University of Lisbon, CMAF - Faculty of Science, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal

Received 21 October 2008; accepted 14 January 2009
Available online 17 March 2009

Abstract

We correct the statement and the proof of Proposition 9 in [D. Bonheure, M. Ramos, Multiple critical points of perturbed symmetric strongly indefinite functionals, http://dx.doi.org/10.1016/j.anihpc.2008.06.002]. © 2008 Elsevier Masson SAS. All rights reserved.

MSC: 35J50; 35J55; 58E05
Keywords: Elliptic system; Strongly indefinite functional; Perturbation from symmetry; Lyapunov-Schmidt reduction; Genericity

The proof of [1, Proposition 9] is incorrect. We weaken the statement of this proposition and present a proof of it. The weaker statement however is enough for the purposes of [1]. We use the notation and assumptions introduced in [1].

Let $I^{*}: E \rightarrow \mathbb{R}$ be the functional associated to the problem

$$
\begin{cases}-\Delta u=|v|^{q-2} v & \text { in } \Omega, \tag{1.1}\\ -\Delta v=|u|^{p-2} u & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega, \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

Consider the associated reduced functional

$$
\begin{equation*}
J^{*}(\alpha):=I^{*}\left(\alpha+\psi_{\alpha}^{*}, \alpha-\psi_{\alpha}^{*}\right):=\max _{\psi \in H_{0}^{1}(\Omega)} I^{*}(\alpha+\psi, \alpha-\psi) . \tag{1.2}
\end{equation*}
$$

[^0]Recall that if α is a critical point of J^{*} then

$$
\begin{equation*}
-2 \Delta \alpha=f\left(u_{\alpha}^{*}\right)+g\left(v_{\alpha}^{*}\right), \tag{1.3}
\end{equation*}
$$

where $u_{\alpha}^{*}:=\alpha+\psi_{\alpha}^{*}, v_{\alpha}^{*}:=\alpha-\psi_{\alpha}^{*}$ and ψ_{α}^{*} is the unique solution of the following equation in $H_{0}^{1}(\Omega)$:

$$
\begin{equation*}
-2 \Delta \psi_{\alpha}^{*}=g\left(v_{\alpha}^{*}\right)-f\left(u_{\alpha}^{*}\right) . \tag{1.4}
\end{equation*}
$$

Denote by $m^{*}(\alpha)$ the augmented Morse index of the critical point α with respect to J^{*}, i.e. the number of non-positive eigenvalues of the quadratic form $\left(J^{*}\right)^{\prime \prime}(\alpha)$.

We will be interested in special critical points constructed via a min-max argument. To that purpose, we introduce the following notations. Let us write

$$
H:=H_{0}^{1}(\Omega)=E_{k} \oplus E_{k}^{\perp},
$$

where, for each $k \in \mathbb{N}_{0}, E_{k}$ is spanned by the first k eigenfunctions of the Laplacian operator in $H_{0}^{1}(\Omega)$. Arguing as in [1, Lemma 3], we can provide a large constant $R_{k}>0$ such that $J^{*}(\alpha)<0$ for every $\alpha \in E_{k}$ satisfying $\|\alpha\|>R_{k}$. Let

$$
G_{k}:=\left\{\sigma \in C\left(B_{R_{k}}(0) \cap E_{k} ; H\right) \mid \sigma(-\alpha)=-\sigma(\alpha) \forall \alpha \in H, \sigma_{\mid \partial B_{R_{k}}(0) \cap E_{k}}=\mathrm{Id}\right\}
$$

and define the minimax levels

$$
\begin{equation*}
b_{k}:=\inf _{\sigma \in G_{k}} \max \left\{J^{*}(\sigma(\alpha)): \alpha \in B_{R_{k}}(0) \cap E_{k}\right\} . \tag{1.5}
\end{equation*}
$$

We next derive a bound on b_{k}.
Proposition 9. Assume $2<p \leqslant q \leqslant 2^{*}$. There exist $C>0$ and $k_{0} \in \mathbb{N}_{0}$ such that for every $k \geqslant k_{0}$,

$$
k \leqslant C b_{k}^{\left(1-\frac{1}{p}-\frac{1}{q}\right) \frac{N}{2}}
$$

Proof. For the sake of clarity we divide the proof in several steps.
Step 1. According to (1.3) and (1.4), if α is a critical point of $J^{*}, m^{*}(\alpha)$ is the number of eigenvalues $\mu \leqslant 1$ of the problem

$$
\begin{equation*}
-2 \Delta \varphi=\mu\left(f^{\prime}\left(u_{\alpha}^{*}\right)(\varphi+\phi)+g^{\prime}\left(v_{\alpha}^{*}\right)(\varphi-\phi)\right), \quad \varphi \in H_{0}^{1}(\Omega), \tag{1.6}
\end{equation*}
$$

where $\phi \in H_{0}^{1}(\Omega)$ solves

$$
\begin{equation*}
-2 \Delta \phi=g^{\prime}\left(v_{\alpha}^{*}\right)(\varphi-\phi)-f^{\prime}\left(u_{\alpha}^{*}\right)(\varphi+\phi) . \tag{1.7}
\end{equation*}
$$

By denoting $V=\left(f^{\prime}\left(u_{\alpha}^{*}\right)+g^{\prime}\left(v_{\alpha}^{*}\right)\right) / 2$ and $W=\left(f^{\prime}\left(u_{\alpha}^{*}\right)-g^{\prime}\left(v_{\alpha}^{*}\right)\right) / 2$, we can rephrase (1.6)-(1.7) by

$$
-\Delta \varphi=\mu(V \varphi+W \phi) \quad \text { and } \quad(-\Delta+V) \phi=-W \varphi
$$

Hence, $m^{*}(\alpha)$ is the number of eigenvalues $\mu \leqslant 1$ of the problem

$$
-\Delta \varphi=\mu T \varphi, \quad \varphi \in H_{0}^{1}(\Omega),
$$

where T is the compact operator

$$
T:=V-W(-\Delta+V)^{-1} W .
$$

Since the operator $W(-\Delta+V)^{-1} W$ is positive, we have that $m^{*}(\alpha) \leqslant m_{V}^{*}(\alpha)$, where the latter quantity denotes the number of eigenvalues $\mu \leqslant 1$ of the problem

$$
-\Delta \varphi=\mu V(x) \varphi, \quad \varphi \in H_{0}^{1}(\Omega) .
$$

According to a well-known estimate obtained in [2,3,5] (see e.g. [6] for a proof), we have that

$$
\begin{equation*}
m_{V}^{*}(\alpha) \leqslant C \int V(x)^{N / 2} \tag{1.8}
\end{equation*}
$$

for some universal constant $C>0$. Going back to the original system $-\Delta u=|v|^{q-2} v,-\Delta v=|u|^{p-2} u$, we observe that $\int\left|u_{\alpha}^{*}\right|^{p}=\int\left|v_{\alpha}^{*}\right|^{q}$ and

$$
\begin{aligned}
J^{*}(\alpha)=I^{*}\left(u_{\alpha}^{*}, v_{\alpha}^{*}\right) & =\left(\frac{1}{2}-\frac{1}{p}\right) \int\left|u_{\alpha}^{*}\right|^{p}+\left(\frac{1}{2}-\frac{1}{q}\right) \int\left|v_{\alpha}^{*}\right|^{q} \\
& =\left(1-\frac{1}{p}-\frac{1}{q}\right) \int\left|u_{\alpha}^{*}\right|^{p} \\
& =\left(1-\frac{1}{p}-\frac{1}{q}\right) \int\left|v_{\alpha}^{*}\right|^{q}
\end{aligned}
$$

By using this and by applying Hölder inequality in (1.8) we get that

$$
\begin{equation*}
m^{*}(\alpha) \leqslant C\left(J^{*}(\alpha)^{(p-2) N / 2 p}+J^{*}(\alpha)^{(q-2) N / q}\right) \tag{1.9}
\end{equation*}
$$

We will next refine this estimate by introducing a free parameter.
Step 2. For any $\lambda>0$, define

$$
J_{\lambda}^{*}(\alpha):=I^{*}\left(\lambda \alpha+\psi_{\alpha . \lambda}^{*}, \alpha-\frac{\psi_{\alpha, \lambda}^{*}}{\lambda}\right):=\max _{\psi \in H} I^{*}\left(\lambda \alpha+\psi, \alpha-\frac{\psi}{\lambda}\right)
$$

so that $J_{1}^{*}(\alpha)=J^{*}(\alpha)$. Arguing as in step 1 , we can check that if α is a critical point of J_{λ}^{*} then the corresponding Morse index $m_{\lambda}^{*}(\alpha)$ is given by the number of eigenvalues $\mu \leqslant 1$ of the problem

$$
-\Delta \varphi=\mu T_{\lambda} \varphi, \quad \varphi \in H_{0}^{1}(\Omega)
$$

where T_{λ} is the compact operator

$$
T_{\lambda}:=V_{\lambda}-W_{\lambda}\left(-\Delta+V_{\lambda}\right)^{-1} W_{\lambda}
$$

with $V_{\lambda}=\frac{1}{2}\left(\lambda f^{\prime}\left(u_{\alpha}^{*}\right)+g^{\prime}\left(v_{\alpha}^{*}\right) / \lambda\right)$ and $W_{\lambda}=\frac{1}{2}\left(f^{\prime}\left(u_{\alpha}^{*}\right)-g^{\prime}\left(v_{\alpha}^{*}\right) / \lambda^{2}\right)$. Here, of course, $u_{\alpha}^{*}:=\lambda \alpha+\psi_{\alpha, \lambda}^{*}, v_{\alpha}^{*}:=\alpha-\frac{\psi_{\alpha, \lambda}^{*}}{\lambda}$. Then, similarly to (1.8)-(1.9), we get that

$$
\begin{equation*}
m_{\lambda}^{*}(\alpha) \leqslant C\left(\left(\lambda J_{\lambda}^{*}(\alpha)^{(p-2) / p}\right)^{N / 2}+\left(\frac{J_{\lambda}^{*}(\alpha)^{(q-2) / q}}{\lambda}\right)^{N / 2}\right) \tag{1.10}
\end{equation*}
$$

Step 3. As a further preliminary step in our proof, we introduce the map

$$
\theta_{\lambda}(\alpha):=\frac{\lambda+1}{2} \alpha+\frac{\lambda-1}{2 \lambda} \psi_{\alpha, \lambda}^{*}
$$

We claim that $\theta_{\lambda}: H \rightarrow H$ is an odd homeomorphism such that

$$
\begin{equation*}
J_{\lambda}^{*}\left(\theta_{\lambda}^{-1}(\alpha)\right) \leqslant J_{1}^{*}(\alpha), \quad \forall \alpha \in H \tag{1.11}
\end{equation*}
$$

We can already assume that $\lambda \neq 1$, otherwise our statement is obvious. Observe that given $\beta \in H$ it is possible to find an unique $\alpha \in H$ such that

$$
\psi_{\alpha, \lambda}^{*}=\frac{2 \lambda}{\lambda-1} \beta-\frac{\lambda(\lambda+1)}{\lambda-1} \alpha
$$

Indeed, using the definition of $\psi_{\alpha, \lambda}^{*}$, this means that we must solve the equation in H :

$$
-2 \lambda \frac{\lambda+1}{\lambda-1} \Delta \alpha=\frac{-4 \lambda}{\lambda-1} \Delta \beta-g\left(\frac{2 \lambda}{\lambda-1} \alpha-\frac{2}{\lambda-1} \beta\right)+\lambda f\left(\frac{-2 \lambda}{\lambda-1} \alpha+\frac{2 \lambda}{\lambda-1} \beta\right)
$$

and, clearly, this problem has a unique solution $\alpha \in H$ for any given $\beta \in H$. As for (1.11), given $\alpha \in H$, let $\beta=$ $\theta_{\lambda}^{-1}(\alpha)$. Then $\alpha=\theta_{\lambda}(\beta)$ and

$$
J_{\lambda}^{*}(\beta):=I^{*}\left(\lambda \beta+\psi_{\beta, \lambda}, \beta-\frac{\psi_{\beta, \lambda}}{\lambda}\right)=I^{*}(\alpha+\varphi, \alpha-\varphi) \leqslant J_{1}^{*}(\alpha)
$$

where $\varphi:=\lambda \beta+\psi_{\beta, \lambda}-\alpha$ and we have used the definition of J_{1}^{*} in the last inequality.

Step 4. We now describe the following min-max construction. By using Fatou's lemma, we easily see that for any finite dimensional subspace Y of $H, J_{\lambda}^{*}(\alpha) \rightarrow-\infty$ as $\|\alpha\| \rightarrow \infty, \alpha \in Y$. From now on, we denote by Q_{k}^{λ} a large ball $Q_{k}^{\lambda}=B_{R_{k}^{\lambda}}(0) \cap E_{k}$ and

$$
\partial Q_{k}^{\lambda}:=\left\{\alpha \in E_{k}:\|\alpha\|=R_{k}^{\lambda}\right\}, \quad S:=\left\{\alpha \in H_{k-1}^{\perp}:\|\alpha\|=\rho\right\} .
$$

The constant $\rho=\rho_{k}$ is defined in the following way: from now on we restrict ourselves to a fixed interval $\lambda \in$ [$\lambda^{*},+\infty\left[\right.$ with $0<\lambda^{*}<1$; then it is possible to fix $\left.\rho \in\right] 0, R_{k}[$ in such a way that

$$
\begin{equation*}
\inf \left\{I^{*}\left(\frac{2 \lambda}{\lambda+1} \alpha, \frac{2 \lambda}{\lambda+1} \alpha\right): \alpha \in S\right\}>0 . \tag{1.12}
\end{equation*}
$$

We stress that ρ does not depend on λ. The positive constant R_{k}^{λ} is taken large enough so that $J_{\lambda}^{*}(\alpha)<0$ for every $\alpha \in E_{k}$ such that $\|\alpha\| \geqslant R_{k}^{\lambda}$ and we choose $R_{k}^{1}=R_{k}$. By possibly taking a larger R_{k}^{λ}, we also require that

$$
\begin{equation*}
\left\|\theta_{\lambda}^{-1}(\alpha)\right\|>\rho, \quad \forall \alpha \in \partial Q_{k}^{\lambda} . \tag{1.13}
\end{equation*}
$$

Finally, we require that $R_{k}^{\lambda} \geqslant R_{k}^{1}$ for every $\lambda \in\left[\lambda^{*},+\infty[\right.$.
Given $A \subset H$, we say that A and S link if:
(i) A is compact and symmetric;
(ii) A contains a subset B which is odd homeomorphic to ∂Q_{k}^{λ} and $\sup _{B} J_{\lambda}^{*}<0$;
(iii) $\gamma(A) \cap S \neq \emptyset$ for every odd and continuous map $\gamma: A \rightarrow H$ such that $\left.\gamma\right|_{B}=$ Id. Accordingly, we denote

$$
\mathcal{A}_{\lambda}:=\{A \subset H: A \text { and } S \text { link }\}
$$

and

$$
c_{\lambda}^{*}:=\inf _{A \in \mathcal{A}_{\lambda}} \sup _{A} J_{\lambda}^{*} .
$$

The class \mathcal{A}_{λ} contains the set Q_{k}^{λ}, since $\rho<R_{k}^{\lambda}$. We also observe that $c_{\lambda}^{*}>0$. Indeed, by definition, we have $c_{\lambda}^{*} \geqslant \inf _{S} J_{\lambda}^{*}$ while, using the very definition of J_{λ}^{*}, for every $\alpha \in H$,

$$
J_{\lambda}^{*}(\alpha) \geqslant I^{*}\left(\lambda \alpha+\varphi, \alpha-\frac{\varphi}{\lambda}\right)=I^{*}\left(\frac{2 \lambda}{\lambda+1} \alpha, \frac{2 \lambda}{\lambda+1} \alpha\right),
$$

where $\varphi:=\frac{\lambda(1-\lambda)}{1+\lambda} \alpha$, and our claim follows from (1.12).
Now, it is standard that there exists a critical point α_{λ} of J_{λ}^{*} at level c_{λ}^{*} satisfying $m_{\lambda}^{*}\left(\alpha_{\lambda}\right) \geqslant k$.
It then follows from (1.9) that

$$
\begin{equation*}
k \leqslant C\left(\left(\lambda\left(c_{\lambda}^{*}\right)^{(p-2) / p}\right)^{N / 2}+\left(\frac{\left(c_{\lambda}^{*}\right)^{(q-2) / q}}{\lambda}\right)^{N / 2}\right) . \tag{1.14}
\end{equation*}
$$

This estimate holds uniformly in λ and in k, provided λ is bounded away from zero. In our final step below we prove that, for every λ,

$$
\begin{equation*}
c_{\lambda}^{*} \leqslant b_{k} . \tag{1.15}
\end{equation*}
$$

By inserting (1.15) in the inequality (1.14) with $\lambda:=b_{k}^{\frac{1}{p}-\frac{1}{q}}$ completes then the proof of Proposition 9. We stress that indeed $b_{k} \geqslant 1$ for every large $k \in \mathbb{N}$.

Step 5. In order to prove (1.15), given $\varepsilon>0$, let $\sigma \in G_{k}$ be such that $\sup _{\sigma\left(Q_{k}^{1}\right)} J_{1}^{*} \leqslant b_{k}+\varepsilon$; we recall that $Q_{k}^{1}=$ $B_{R_{k}^{1}}(0) \cap E_{k}=B_{R_{k}}(0) \cap E_{k}$. Since $R_{k}^{1} \leqslant R_{k}^{\lambda}$, we can extend σ to Q_{k}^{λ} by setting

$$
\tilde{\sigma}(\alpha):= \begin{cases}\sigma(\alpha) & \text { if } \alpha \in Q_{k}^{1}, \\ \alpha & \text { if } \alpha \in Q_{k}^{\lambda} \backslash Q_{k}^{1} .\end{cases}
$$

Let $A:=\theta_{\lambda}^{-1}\left(\tilde{\sigma}\left(Q_{k}^{\lambda}\right)\right)$. We claim that $A \in \mathcal{A}_{\lambda}$. Indeed, by letting $B:=\theta_{\lambda}^{-1}\left(\tilde{\sigma}\left(\partial Q_{k}^{\lambda}\right)\right)=\theta_{\lambda}^{-1}\left(\partial Q_{k}^{\lambda}\right)$, thanks to (1.11) we see that

$$
\sup _{B} J_{\lambda}^{*} \leqslant \sup _{\tilde{\sigma}\left(\partial Q_{k}^{\lambda}\right)} J_{1}^{*}=\sup _{\partial Q_{k}^{\lambda}} J_{1}^{*}<0
$$

since $R_{k}^{\lambda} \geqslant R_{k}^{1}$. On the other hand, let $\gamma: A \rightarrow H$ be any odd and continuous map such that $\gamma(\alpha)=\alpha$ for all $\alpha \in$ $\theta_{\lambda}^{-1}\left(\partial Q_{k}^{\lambda}\right)$. Define

$$
\mathcal{U}:=\left\{\alpha \in Q_{k}^{\lambda}:\left\|\gamma\left(\theta_{\lambda}^{-1}(\tilde{\sigma}(\alpha))\right)\right\|<\rho\right\} .
$$

This is a bounded, symmetric neighborhood of the origin in E_{k}. According to the Borsuk-Ulam theorem, there exists $\alpha \in \partial \mathcal{U}$ such that $\gamma(\beta) \in E_{k-1}^{\perp}$, with $\beta:=\theta_{\lambda}^{-1}(\tilde{\sigma}(\alpha))$. Of course we have $\|\gamma(\beta)\| \leqslant \rho$. Now, if $\alpha \in \partial Q_{k}^{\lambda}$ then $\gamma(\beta)=$ $\theta_{\lambda}^{-1}(\alpha)$ and so $\|\gamma(\beta)\|>\rho$, see (1.13). Thus $\alpha \notin \partial Q_{k}^{\lambda}$ and therefore $\|\gamma(\beta)\|=\rho$. In conclusion, $\gamma(\beta) \in \gamma(A) \cap S$. This proves the required linking property and shows that $A \in \mathcal{A}_{\lambda}$. As a consequence,

$$
c_{\lambda}^{*} \leqslant \sup _{A} J_{\lambda}^{*} .
$$

But, again by (1.11) and the fact that $R_{k}^{\lambda} \geqslant R_{k}^{1}$ we have that

$$
\sup _{A} J_{\lambda}^{*}=\sup _{\theta_{\lambda}^{-1}\left(\tilde{\sigma}\left(Q_{k}^{\lambda}\right)\right)} J_{\lambda}^{*} \leqslant \sup _{\tilde{\sigma}\left(Q_{k}^{\lambda}\right)} J_{1}^{*}=\sup _{\left(Q_{k}^{\lambda} \backslash Q_{k}^{1}\right) \cup \sigma\left(Q_{k}^{1}\right)} J_{1}^{*}=\sup _{\sigma\left(Q_{k}^{1}\right)} J_{1}^{*} .
$$

In conclusion,

$$
c_{\lambda}^{*} \leqslant b_{k}+\varepsilon, \quad \forall \varepsilon>0,
$$

and this establishes (1.15).
The proof of [1, Theorem 1] follows easily from Proposition 9. [1, Claim 2 of Theorem 1] has to be adapted to the new statement of Proposition 9. We include the details for completeness.

We denote again by E_{k} the eigenspace associated to the first k eigenfunctions of the Laplacian operator in $H_{0}^{1}(\Omega)$ and we fix a large constant $\tilde{R}_{k}>0$ such that $\tilde{J}(\alpha)<0$ for every $\alpha \in E_{k}$ satisfying $\|\alpha\|>\tilde{R}_{k}$. Let

$$
G_{k}:=\left\{\sigma \in C\left(B_{\tilde{R}_{k}}(0) \cap E_{k} ; H_{0}^{1}(\Omega)\right)|\sigma(-\alpha)=-\sigma(\alpha), \sigma| \partial B_{\tilde{R}_{k}}(0) \cap E_{k}=\mathrm{Id}\right\},
$$

and define the minimax levels

$$
\begin{equation*}
\tilde{b}_{k}:=\inf _{\sigma \in G_{k}} \max \left\{\tilde{J}(\sigma(\alpha)): \alpha \in B_{\tilde{R}_{k}}(0) \cap E_{k}\right\} . \tag{1.16}
\end{equation*}
$$

Proof of [1, Theorem 1]. Assume by contradiction that \tilde{J} does not admit an unbounded sequence of critical values. Let $\left(\tilde{b}_{k}\right)_{k}$ be the sequence of minimax levels of \tilde{J} defined by (1.16).

Claim 1. There exist $C, k_{0}>0$ such that for all $k \geqslant k_{0}$,

$$
\begin{equation*}
\tilde{b}_{k} \leqslant C k^{p /(p-1)} \tag{1.17}
\end{equation*}
$$

The claim follows exactly as in [4, Prop. 10.46].
Claim 2. There exist $C^{\prime}>0$ and $k_{0}^{\prime}>0$ such that for all $k \geqslant k_{0}^{\prime}$,

$$
\begin{equation*}
\tilde{b}_{k} \geqslant C^{\prime} k^{2 p q / N(p q-p-q)} . \tag{1.18}
\end{equation*}
$$

Let us fix a small $c>0$ in such a way that the functional

$$
\hat{I}(u, v)=\int(\langle\nabla u, \nabla v\rangle-c F(u)-c G(v))
$$

is such that $\tilde{I}-\hat{I}$ is bounded from below in $H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$. We also consider the associated reduced functional \hat{J} defined by

$$
\hat{J}(\alpha):=\hat{I}\left(\alpha+\hat{\psi}_{\alpha}, \alpha-\hat{\psi}_{\alpha}\right):=\max _{\psi \in H_{0}^{1}(\Omega)} \hat{I}(\alpha+\psi, \alpha-\psi)
$$

and the corresponding minimax numbers

$$
\hat{b}_{k}:=\inf _{\sigma \in G_{k}} \max \left\{\hat{J}(\sigma(\alpha)): \alpha \in B_{\hat{R}_{k}}(0) \cap E_{k}\right\},
$$

where taking $\hat{R}_{k}=\tilde{R}_{k}$ larger if necessary, we can assume that $\hat{J}(\alpha)<0$ for every $\alpha \in E_{k}$ satisfying $\|\alpha\|>\hat{R}_{k}$. Clearly, the sequence $\tilde{b}_{k}-\hat{b}_{k}$ is bounded from below. According to Proposition 9, we have that $k^{2 p q / N(p q-p-q)} \leqslant C \hat{b}_{k}$, so that the claim follows.

The conclusion easily follows.

References

[1] D. Bonheure, M. Ramos, Multiple critical points of perturbed symmetric strongly indefinite functionals, http://dx.doi.org/10.1016/ j.anihpc.2008.06.002.
[2] M. Cwickel, Weak type estimates and the number of bound states of Schrödinger operators, Ann. Math. 106 (1977) 93-102.
[3] E.H. Lieb, Bounds on the eigenvalues of the Laplace and Schrödinger operators, Bull. Amer. Math. Soc. 82 (1976) $751-753$.
[4] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf., vol. 65, Amer. Math. Soc., Providence, RI, 1986.
[5] G. Rosenbljum, The distribution of the discrete spectrum for singular differential operators, Soviet Math. Dokl. 13 (1972) $245-249$.
[6] B. Simon, Functional Integration and Quantum Physics, Academic Press, 1979.

[^0]: DOI of original article: 10.1016/j.anihpc.2008.06.002.

 * Corresponding author.

 E-mail addresses: denis.bonheure@ulb.ac.be (D. Bonheure), mramos@ptmat.fc.ul.pt (M. Ramos).
 ${ }^{1}$ Research supported by the F.R.S.-FNRS (Belgium).
 ${ }^{2}$ Research partially supported by FCT (Fundação para a Ciência e Tecnologia), program POCI-ISFL-1-209 (Portugal/Feder-EU).

