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Abstract

We discuss the existence of a diffeomorphism ϕ : Rn → R
n such that

ϕ∗(g) = f

where f,g : Rn → Λk are closed differential forms and 2 � k � n. Our main results (the case k = n having been handled by
Moser [J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965) 286–294] and Dacorogna and Moser
[B. Dacorogna, J. Moser, On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non
Linéaire 7 (1990) 1–26]) are that

– when n is even and k = 2, under some natural non-degeneracy condition, we can prove the existence of such diffeomorphism
satisfying Dirichlet data on the boundary of a bounded open set and the natural Hölder regularity; at the same time we get
Darboux theorem with optimal regularity;

– we are also able to handle the degenerate cases when k = 2 (in particular when n is odd), k = n − 1 and some cases where
3 � k � n − 2.

© 2008 Published by Elsevier Masson SAS.

Résumé

Nous montrons l’existence d’un difféomorphisme ϕ : Rn → R
n satisfaisant

ϕ∗(g) = f

où f,g : Rn → Λk sont des formes différentielles fermées et 2 � k � n. Nos résultats principaux (le cas k = n a été discuté
notamment dans Moser [J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965) 286–294] et
Dacorogna et Moser [B. Dacorogna, J. Moser, On a partial differential equation involving the Jacobian determinant, Ann. Inst.
H. Poincaré Anal. Non Linéaire 7 (1990) 1–26]) sont les suivants.

– Si n est pair, k = 2 et sous des conditions naturelles de non dégénérescence, nous montrons l’existence et la régularité dans les
espaces de Hölder d’un tel difféomorphisme satisfaisant de plus une condition de Dirichlet. On obtient aussi le théorème de
Darboux avec la régularité optimale.

– Par ailleurs quand k = 2 et n est impair ou k = n − 1, ainsi que quelques cas particuliers où 3 � k � n − 2, nous montrons
l’existence locale d’un tel difféomorphisme satisfaisant, en outre, des conditions de Cauchy.
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1. Introduction

In this article we discuss the existence of a diffeomorphism ϕ : Rn → R
n such that

ϕ∗(g) = f (1)

where f,g : R
n → Λk are closed differential forms (i.e. df = dg = 0), 2 � k � n (the case k = 1 is rather special and

will also be discussed)

g =
∑

1�i1<···<ik�n

gi1···ik (x) dxi1 ∧ · · · ∧ dxik

and similarly for f . The meaning of (1) is that∑
1�i1<···<ik�n

gi1···ik
(
ϕ(x)

)
dϕi1 ∧ · · · ∧ dϕik =

∑
1�i1<···<ik�n

fi1···ik (x) dxi1 ∧ · · · ∧ dxik .

When k = 2 and n = 2m is even, then the celebrated Darboux theorem (cf. for example, Abraham, Marsden and
Ratiu [1], McDuff and Salamon [11] or Taylor [17]) states that if g = ω0 is the standard symplectic form, namely

ω0 = g =
m∑

i=1

dxi ∧ dxm+i

and f : R
n → Λ2 with df = 0 and f (p) = g(p) for a certain p ∈ R

n, then there exists a diffeomorphism ϕ defined
in the neighbourhood of p such that

ϕ∗(g) = f and ϕ(p) = p.

This fundamental result was generalized by Moser in his seminal article [13] for the case k = n and k = 2 with n

even, obtaining also a global result. He proposed to solve (1) by studying the flow associated to an appropriate vector
field ut , namely{

d
dt

ϕt (x) = ut (ϕt (x)), t ∈ [0,1],
ϕ0(x) = x.

A solution of (1) is then given by ϕ = ϕ1. Now (for the notations see below) the vector field is recovered through two
linear equations, namely

dα = f − g (2)

meaning that α : Rn → Λk−1 and for every t ∈ [0,1],
ut �

[
tg + (1 − t)f

] = α. (3)

The first one is a system of linear differential equations and is, at least locally, solvable since df = dg = 0. The second
one is just a linear system of algebraic equations and Moser observed that it is well posed (in the sense that, whatever
α is, there exists a unique ut solving (3)), under some non-degeneracy conditions, only when k = n or k = 2 and n

even. Of course one could consider, with essentially no change, a more general closed homotopy ft , with f0 = f and
f1 = g, and then the two equations read as

dαt = − d

dt
ft and ut � ft = αt

but we will here, for the sake of simplicity, restrict our attention to the homotopy ft = tg + (1 − t)f .
The case k = n after the paper of Moser received considerable attention notably by Banyaga [2], Dacorogna [4],

Reimann [14], Tartar [16], Zehnder [19]. Eq. (1) takes then the following form

g
(
ϕ(x)

)
det∇ϕ(x) = f (x).
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The next important step, still for k = n, appeared in Dacorogna and Moser [7], where it was shown how to handle
both the boundary value and regularity problems. It should be emphasized that the flow method, as elegant as it is,
does not allow to handle regularity problems and in [7] it was necessary to combine a fixed point argument and an
iteration procedure. The exact statement can be found in Theorem 12 below. Posterior contributions can also be found
in Burago and Kleiner [3], McMullen [12], Rivière and Ye [15] and Ye [18].

Our purpose in the present report is twofold.
(1) In the non-degenerate case when k = 2 and n even, the other non-degenerate case being k = n and already solved

in [7], we can handle full boundary condition (meaning Dirichlet condition) as well as regularity in Hölder spaces.
This is a delicate point and requires fine approximations of Hölder functions, a subtle fixed point argument and an
iteration scheme. Our main results are Theorems 15 and 18. Although we will treat mainly contractible domains,
we point out at each stage how our results can be extended to topologically more complex domains.

(2) We also show how to deal with degenerate problems. There we mostly obtain local results, though, in some
particular cases, we can treat global problems. We are, however, able to impose Cauchy data (but, in general,
neither Dirichlet data nor regularity) and not just the value at one point as in Darboux theorem. If we impose
Cauchy data, then, of course, we need to assume that the tangential parts of f and g coincide. We achieve this
goal by solving Eqs. (2) and (3) simultaneously and not separately as Moser did. This is indeed a more flexible
procedure, since (2) is underdetermined while (3) is overdetermined. In particular, only under some minor non-
degeneracy conditions, we can also handle the cases:
– k = 2 and n odd with maximal rank (cf. Theorem 20),
– k = n − 1 (cf. Theorem 21),
– we finally suggest through simple examples that our method applies to higher degenerate case when k = 2 or

to the case of k forms with 3 � k � n − 2.
A systematic study of these last cases will be undertaken elsewhere.

2. Preliminaries and notations

2.1. Notations

We will denote a k-form g : Rn → Λk by

g =
∑

1�i1<···<ik�n

gi1···ik (x) dxi1 ∧ · · · ∧ dxik

or sometimes by

g =
∑
I∈Tk

gI dxI

where Tk = {(i1, . . . , ik): 1 � i1 < · · · < ik � n} is the set of strictly increasing k-indices. More generally we assign
meaning to gi1···ik for any k-index by

gi1···ik = (sgnσ)giσ(1)···iσ (k)

where σ is a permutation of {1, . . . , k}.
(1) If g ∈ Λk , 1 � k � n, and u ∈ R

n then u � g ∈ Λk−1 (also denoted by some authors by iu(g)) is defined as

u � g =
∑

1�i1<···<ik�n

gi1···ik
k∑

r=1

(−1)r−1uir dxi1 ∧ · · · ∧ dxir−1 ∧ dxir+1 ∧ · · · ∧ dxik

= (−1)k−1
∑

1�i1<···<ik−1�n

n∑
ik=1

gi1···ik uik dxi1 ∧ · · · ∧ dxik−1 .

Note that when k = 2, we have

u � g = −
n∑ n∑

giju
j dxi .
i=1 j=1
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(2) It will often be convenient to represent u → u � g as a matrix operating on a vector. We therefore introduce the
antisymmetric representation of g ∈ Λk as the matrix ḡ ∈ R

( n
k−1)×n so that, by abuse of notations,

u � g = (−1)k−1ḡu.

For example when k = 2, we have

ḡ = (gij ) ∈ R
n×n with gij = −gji .

Our terminology “non-degenerate” and “degenerate” refers to the fact that ḡ is invertible or not.
We then consider

Λk−1
g = {

w ∈ Λk−1: ∃u ∈ R
n with u � g = w

}
.

We easily find that if g �= 0, then, for every 2 � k � n,

k � dimΛk−1
g � n

and in general, if 3 � k � n − 1, it can take any of the intermediate values, but (k + 1). So that when k = n − 1, the
dimension cannot be maximal, more precisely, if g �= 0 we always have

dimΛn−2
g = n − 1.

When k = 2, the dimension is necessarily even, this means that there exists an integer 1 � l � [n/2] such that

dimΛ1
g = 2l.

Therefore when k = 2, the matrix ḡ ∈ R
n×n is always singular when n is odd.

It will sometimes be more convenient to express the set Λ1
g in terms of the kernel of ḡ the antisymmetric represen-

tation of g and its dimension by the rank of ḡ. Namely

Λ1
g = (ker ḡ)⊥ and dimΛ1

g = rank ḡ.

(3) If g : Rn → Λk is such that

g =
∑

1�i1<···<ik�n

gi1···ik dxi1 ∧ · · · ∧ dxik

then

dg =
∑

i1<···<ik+1

(
k+1∑
γ=1

(−1)γ−1 ∂gi1···iγ−1iγ+1···ik+1

∂xiγ

)
dxi1 ∧ · · · ∧ dxik+1

and, for ν ∈ R
n,

g ∧ ν =
∑

i1<···<ik+1

(
k+1∑
γ=1

(−1)γ−1gi1···iγ−1iγ+1···ik+1ν
iγ

)
dxi1 ∧ · · · ∧ dxik+1 .

If ν is the outward unit normal to the boundary of a set Ω , we call g ∧ ν the tangential part and ν � g the normal part
of the form g.

(4) For f,g ∈ Λk we write inner product as

〈f ;g〉 =
∑

1�i1<···<ik�n

fi1···ik gi1···ik ∈ R.

(5) To avoid burdening the notations, we will sometimes, by abuse of notations, identify a 1-form with a vector
field in R

n and a n-form with a function.
We now gather some simple algebraic and analytical formulas that follow from the above definitions and that we

will use throughout.
(i) For every f ∈ Λk , g ∈ Λk−1 and u ∈ R

n, then

〈f ;g ∧ u〉 = (−1)k−1〈u � f ;g〉.
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(ii) Let f ∈ Λk , g ∈ Λl and u ∈ R
n, then

u � (f ∧ g) = (u � f ) ∧ g + (−1)kl(u � g) ∧ f.

(iii) Let f ∈ C1(Rn;Λk) be closed

f =
∑
I∈Tk

fI dxI

and u ∈ C1(Rn;R
n), then

d[u � f ] =
∑
I∈Tk

fI d
[
u � dxI

]+
∑
I∈Tk

〈gradfI ;u〉dxI .

So, in particular, when k = 2

d[u � f ] =
∑

1�i<j�n

fij

[
dui ∧ dxj + dxi ∧ duj

]+
∑

1�i<j�n

〈gradfij ;u〉dxi ∧ dxj .

(iv) Let 0 � k � n be an integer, Ω ⊂ R
n be a smooth domain and f,g ∈ C1(Ω;Λk) satisfying f = g on ∂Ω , then

df ∧ ν = dg ∧ ν on ∂Ω

where ν is a normal to ∂Ω .

2.2. Function spaces and Hölder approximations

We will use the following functional notations. Let Ω ⊂ R
n be an open set and r a non-negative integer.

(1) Let 0 < α < 1, we denote by Cr,α(Ω) the usual set of Hölder functions and by Cr,α(Ω;Λk) the set of k-forms

g =
∑

1�i1<···<ik�n

gi1···ik dxi1 ∧ · · · ∧ dxik

so that gi1···ik ∈ Cr,α(Ω).
(2) The set Cω(Ω) will denote the set of analytic functions and Cω(Ω;Λk) the set of k-forms whose components

are in Cω(Ω).
(3) The sets Diffr (Ω;R

n), Diffr,α(Ω;R
n) and Diffω(Ω;R

n), denote the sets of diffeomorphisms ϕ so that ϕ ∈
Cr(Ω;R

n) and ϕ−1 ∈ Cr(ϕ(Ω);R
n), Cr,α and Cω respectively. When ϕ(Ω) = Ω , we just let Diffr (Ω), respectively

Diffr,α(Ω), Diffω(Ω).
In the sequel we will have to approximate closed forms in Cr,α(Ω;Λk) by smooth closed forms in a precise way

and we will need the following theorem.

Theorem 1. Let Ω ⊂ R
n be a bounded smooth contractible domain, 0 < β � α < 1, p � q � r , q � 2, r � 1 and

1 � k � n be integers and g ∈ Cq,α(Ω;Λk) ∩ Cp,α(∂Ω;Λk) with dg = 0. Then for every ε > 0, there exist gε ∈
C∞(Ω;Λk)∩Cp,α(Ω;Λk) and a constant γ = γ (p,q, r,α,β,Ω) > 0 such that dgε = 0, gε ∧ ν = g ∧ ν on ∂Ω and

‖gε − g‖Cr,β (Ω) � γ εq−r+α−β‖g‖Cq,α(Ω),

‖gε‖Cp,α(Ω) � γ

εp−q

[‖g‖Cq,α(Ω) + εp−q‖g‖Cp,α(∂Ω)

]
.

Before starting the proof of the theorem, we need the equivalent of the theorem but for functions.

Lemma 2. Let Ω ⊂ R
n be a bounded smooth domain, 0 < β � α < 1, p � q � r � 2 be integers and u ∈ Cq,α(Ω) ∩

Cp,α(∂Ω). Then for every ε > 0, there exist uε ∈ C∞(Ω)∩Cp,α(Ω) and a constant γ = γ (p,q, r,α,β,Ω) > 0 such
that uε = u on ∂Ω and

‖uε − u‖Cr,β (Ω) � γ εq−r+α−β‖u‖Cq,α(Ω),

‖uε‖Cp,α(Ω) � γ

εp−q

[‖u‖Cq,α(Ω) + εp−q‖u‖Cp,α(∂Ω)

]
.
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Proof. We first find (see Hörmander [9]) vε ∈ C∞(Ω) and a constant γ1 such that

‖vε − u‖Cr,β (Ω) � γ1ε
q−r+α−β‖u‖Cq,α(Ω) and ‖vε‖Cp,α(Ω) � γ1

εp−q
‖u‖Cq,α(Ω).

We then fix the boundary data as follows. Let uε ∈ C∞(Ω) ∩ Cp,α(Ω) be the solution of{
uε = vε in Ω,

uε = u on ∂Ω
⇔

{
[uε − vε] = 0 in Ω,

uε − vε = u − vε on ∂Ω.

The solution satisfies Schauder estimates

‖uε‖Cp,α(Ω) � γ2
[‖vε‖Cp,α(Ω) + ‖u‖Cp,α(∂Ω)

]
,

‖uε − vε‖Cr,β (Ω) � γ2‖u − vε‖Cr,β (∂Ω) � γ2‖u − vε‖Cr,β (Ω).

The combination of the estimates on uε and vε gives the result. �
We can now go back to the proof of Theorem 1.

Proof. Step 1. It is easy to see that, since Ω is contractible, we can find G ∈ Cq+1,α(Ω;Λk−1) ∩ Cp+1,α(∂Ω;Λk−1)

and a constant γ such that dG = g,

‖G‖Cq+1,α(Ω) � γ ‖g‖Cq,α(Ω) and ‖G‖Cp+1,α(∂Ω) � γ ‖g‖Cp,α(∂Ω).

This is easily obtained by an appropriate use of Theorem 3 below and we leave out the details.
Step 2. Applying Lemma 2 on each component of G, we get Gε as in the lemma. Setting gε = dGε , we have the

claim. �
3. Variations on the Poincaré lemma

3.1. The case without constraints

We start with the following theorem (cf. [5]).

Theorem 3 (Dacorogna). Let r � 0, 2 � k � n be integers and 0 < α < 1. Let Ω ⊂ R
n be a bounded smooth con-

tractible domain and ν denote the outward unit normal. The following two conditions are then equivalent.

(i) • Either 2 � k � n − 1 and f ∈ Cr,α(Ω;Λk) with

df = 0 in Ω and f ∧ ν = 0 on ∂Ω;
• or k = n and f ∈ Cr,α(Ω) with∫

Ω

f (x)dx = 0.

(ii) There exists w ∈ Cr+1,α(Ω;Λk−1) satisfying{
dw = f in Ω,

w = 0 on ∂Ω.

Remark 4.

(i) When r = 0, the constraint df = 0 has to be interpreted in the sense of distributions.
(ii) We now briefly discuss the case where Ω is not contractible, but only open and connected. To this aim we first

define, for 0 � k � n, the set of harmonic k-forms with Dirichlet boundary condition as the vector space

Dk(Ω) := {
ψ ∈ C0(Ω;Λk

)∩ C1(Ω;Λk
)
: dψ = 0, δψ = 0 in Ω and ψ ∧ ν = 0 on ∂Ω

}
.
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Note that we always have for connected Ω

D0(Ω) � {0} and Dn(Ω) � R.

Furthermore if 1 � k � n − 1 and if the set Ω is contractible, then

Dk(Ω) � {0} ⊂ Λk,

while for general sets we have

dimDk(Ω) = Bn−k

where Bk are the Betti numbers of Ω (cf. Duff and Spencer [8] and Kress [10]). Theorem 3 remains valid for
such general sets if we add the following necessary condition∫

Ω

〈f ;ψ〉dx = 0, ∀ψ ∈ Dk(Ω).

Observe finally that when k = n in Theorem 3 we therefore have no new condition.
(iii) Although there are infinitely many solutions w, the actual construction singles out a precise one and in fact we

can construct a linear isomorphism of Banach spaces L :X → Y where (when 2 � k � n − 1 and similar ones
when k = n)

X = {
w ∈ Cr+1,α

(
Ω;Λk

)
: w = 0 on ∂Ω

}
,

Y = {
f ∈ Cr,α

(
Ω;Λk+1): df = 0 in Ω and f ∧ ν = 0 on ∂Ω

}
,

that associates in an isomorphic way to every w ∈ X a unique f = Lw ∈ Y such that dw = f .
(iv) The theorem, with an easier and more direct proof, is still valid when k = 1 and regularity holds even in Cr

spaces.
(v) The theorem is also valid for unbounded smooth domains such as the half plane.

3.2. The case with constraints

We start with the simplest case of constant constraints. In the sequel we let

H = {
x ∈ R

n: xn > 0
}

and ν = −en will denote the outward unit normal.

Theorem 5. Let 2 � k � n, b ∈ R
n with bn �= 0 and f ∈ Cr(H ;Λk), r � 0, with

df = 0 in H and f ∧ en = 0 on ∂H.

Let w ∈ Cr(H ;Λk−1) be defined by

w(x) =
xn/bn∫
0

[b � f ]
(

x + b

(
t − xn

bn

))
dt.

Then w is the unique solution of⎧⎨⎩
dw = f in H,

b � w = 0 in H,

w = 0 on ∂H.

If, moreover, 〈f ; c ∧ b〉 = 0 for a certain c ∈ Λk−1, then w also satisfies

〈w; c〉 = 0 in H.

Remark 6. The constraint b � w = 0 can be seen as
(
n−1
k−2

)
independent equations. When k = 2, there is only one

independent equation and it is of the form 〈w;b〉 = 0.
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We now consider the case of non-constant constraints and, in general, one can expect only local solutions. We start
with the case k = 2, which requires less stringent smoothness assumptions than the cases 3 � k � n (cf. Theorem 8
for this last case). Although we will state the following results in the half plane H , both theorems mentioned below
can be proved, by flattening out the boundary, for any smooth domain Ω .

Theorem 7. Let r � 0, a ∈ Cr+1,α(H ;Λ1) with an(x) �= 0 for every x ∈ H and f ∈ Cr,α(H ;Λ2) with

df = 0 in H and f ∧ en = 0 on ∂H.

Then there exist ε > 0 and w ∈ Cr,α(H ∩ Bε(0);Λ1) satisfying⎧⎨⎩
dw = f in H ∩ Bε(0),

〈w;a〉 = 0 in H ∩ Bε(0),

w = 0 on ∂H ∩ Bε(0).

Proof. Set

w = u + dv

where (this has a solution u ∈ Cr+1,α(H ;Λ1) by Theorem 3){
du = f in H,

u = 0 on ∂H

and { 〈dv(x);a(x)〉 = ∑n
i=1 ai(x) ∂v

∂xi = −〈u(x);a(x)〉 if xn > 0,

v(x) = 0 if xn = 0.

This last problem has a solution, v ∈ Cr+1,α(H ∩ Bε(0)), and thus w ∈ Cr,α .
Note that from v(x) = 0 when xn = 0, we deduce that

∂v

∂xi

(
x1, . . . , xn−1,0

) = 0 for every i = 1, . . . , n − 1.

Since u = 0 on ∂H and an(x) �= 0, we deduce from the differential equation and the above identities that

∂v

∂xn

(
x1, . . . , xn−1,0

) = 0

so that dv = 0 when xn = 0. This concludes the proof of the theorem. �
We now discuss the case 3 � k � n. The result and the proof below are still valid if k = 2.

Theorem 8. Let aλ ∈ Cω(H ;Λk−1), λ = 1, . . . ,
(
n−1
k−2

)
, with

A = A(x) = (
aλ
j1···jk−2n

(x)
)λ=1,···,(n−1

k−2)
1�j1<···<jk−2�n−1 ∈ R

(n−1
k−2)×(n−1

k−2)

invertible for every x ∈ H and f ∈ Cω(H ;Λk) with

df = 0 in H and f ∧ en = 0 on ∂H.

Then there exist ε > 0 and w ∈ Cω(H ∩ Bε(0);Λk−1) satisfying⎧⎨⎩
dw = f in H ∩ Bε(0),

〈w;aλ〉 = 0 in H ∩ Bε(0), λ = 1, . . . ,
(
n−1
k−2

)
,

w = 0 on ∂H ∩ Bε(0).

Proof. Set

w = u + dv
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where (this has a solution u ∈ Cω(H ;Λk−1) by Theorem 3 or by Theorem 5){
du = f in H,

u = 0 on ∂H.

The form v : Rn → Λk−2 is defined as follows. Choose first

vj1···jk−3n = 0 for every 1 � j1 < · · · < jk−3 � n − 1

(if k = 3, one just reads vn = 0 and if k = 2, the above constraints do not exist) and then solve, using Cauchy–
Kowalewski theorem, the system of equations{ 〈dv(x);aλ(x)〉 = −〈u(x);aλ(x)〉 if xn > 0, λ = 1, . . . ,

(
n−1
k−2

)
,

v(x) = 0 if xn = 0,

More precisely first observe that with our choice of v, we have

v =
∑

1�j1<···<jk−2�n−1

vj1···jk−2 dxj1 ∧ · · · ∧ dxjk−2

then

dv =
∑

1�j1<···<jk−2�n−1

[
n∑

i=1

∂vj1···jk−2

∂xi
dxi

]
∧ dxj1 ∧ · · · ∧ dxjk−2

=
∑

1�j1<···<jk−2�n−1

(−1)k
∂vj1···jk−2

∂xn
dxj1 ∧ · · · ∧ dxjk−2 ∧ dxn

+
∑

1�j1<···<jk−2�n−1

[
n−1∑
i=1

∂vj1···jk−2

∂xi
dxi

]
∧ dxj1 ∧ · · · ∧ dxjk−2 .

We therefore obtain that〈
dv;aλ

〉 = (−1)k
∑

1�j1<···<jk−2�n−1

aλ
j1···jk−2n

∂vj1···jk−2

∂xn
+ gλ

= (−1)k
(

A
∂v

∂xn

)λ

+ gλ

where A is as in the statement of the theorem and gλ is a term that does not involve derivatives of v with respect to
the variable xn. Note that the system〈

dv(x);aλ(x)
〉 = −〈

u(x);aλ(x)
〉
, λ = 1, . . . ,

(
n − 1

k − 2

)
can therefore be seen, since A is invertible, as⎧⎪⎪⎨⎪⎪⎩

∂v

∂xn
= (−1)k+1A−1

⎡⎣⎛⎝ 〈u;a1〉
...

〈u;a(n−1
k−2)〉

⎞⎠+
⎛⎝ g1

...

g(n−1
k−2)

⎞⎠⎤⎦ if xn > 0,

v = 0 if xn = 0

(recall that we are considering only the vj1···jk−2 with 1 � j1 < · · · < jk−2 � n − 1 and thus ∂v
∂xn ∈ R

(n−1
k−2)). Since all

the coefficients are analytic, we have locally a unique analytical solution in the neighbourhood of x = 0.
We also note that ∂v

∂xi = 0 at xn = 0 for every i = 1, . . . , n − 1 and that also ∂v
∂xn = 0 at xn = 0, since there u = 0

and gλ = 0; so that dv = 0 when xn = 0. �
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4. Abstract results

4.1. Necessary conditions

We give here some elementary necessary conditions, whose proofs are straightforward.

Theorem 9. Let Ω ⊂ R
n be a smooth domain, 1 � k � n, f,g ∈ C1(Ω;Λk) with dg = 0 in Ω and ϕ ∈ Diff1(Ω;R

n)

be such that ϕ∗(g) = f in Ω , then

df = 0.

Moreover the two following results hold.

(i) If Ω is bounded, ϕ(Ω) = Ω and n = mk with m an integer, then∫
Ω

f m =
∫
Ω

gm

where f m = f ∧ · · · ∧ f︸ ︷︷ ︸
m-times

.

(ii) If ϕ(x) = x for x ∈ ∂Ω , then

f ∧ ν = g ∧ ν on ∂Ω.

4.2. The flow method

We have the following abstract result, which is the theorem of Moser [13] with the additional consideration on the
boundary data. In several textbooks the flow method is also called the Lie transform method.

Theorem 10 (Moser). Let Ω ⊂ R
n be a bounded smooth domain (ν denoting the outward unit normal), r � 1 and

1 � k � n be integers and ft ∈ C1([0,1];Cr(Ω;Λk)) (respectively ft ∈ C1([0,1];Cr,α) with 0 < α < 1) satisfying,
for every t ∈ [0,1],

dft = 0 in Ω and ft ∧ ν = f0 ∧ ν on ∂Ω.

Assume that there exists ut ∈ C1([0,1];Cr(Ω;R
n)) (respectively ut ∈ C1([0,1];Cr,α)) verifying, for every t ∈ [0,1],

d[ut � ft ] = − d

dt
ft in Ω and ut = 0 on ∂Ω.

Then there exists ϕ ∈ Diffr (Ω) (respectively ϕ ∈ Diffr,α(Ω)) such that

ϕ∗(f1(x)
) = f0(x), x ∈ Ω. (4)

and

ϕ(x) = x, x ∈ ∂Ω.

Proof. We solve (cf. [13]){
d
dt

ϕt (x) = ut (ϕt (x)), t ∈ [0,1],
ϕ0(x) = x.

The above system has a solution ϕt satisfying, for every t ∈ [0,1],
ϕ∗

t (ft ) = f0 in Ω and ϕt (x) = x on ∂Ω.

This concludes the proof. �
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4.3. The fixed point method

The following theorem is particularly useful when dealing with non-linear problems, once good estimates are
known for the linearized problem. We give it under a general form, because we will need it this way in Theorem 15.
However in many instances, one can choose X1 = X2 = X and Y1 = Y2 = Y in the statement below (in which case
the hypothesis (HXY ) below reduces to requiring that X is a Banach space and Y a normed space). Our theorem will
lean on the following hypotheses.

(HXY ) Let X1 ⊃ X2 be Banach spaces and Y1 ⊃ Y2 be normed spaces such that the following property holds: if

uν
X1−→ u and ‖uν‖X2 � r,

then u ∈ X2 and

‖u‖X2 � lim inf
ν→∞ ‖uν‖X2 .

(HL) L :X2 → Y2 is a linear isomorphism of Banach spaces and there exist k1, k2 > 0 such that for every f ∈ Y2∥∥L−1f
∥∥

Xi
� ki‖f ‖Yi

, i = 1,2.

(HQ) Q :X2 → Y2 is such that Q(0) = 0 and for every u,v ∈ X2 with ‖u‖X1,‖v‖X1 � 1, the following two inequal-
ities hold∥∥Q(u) − Q(v)

∥∥
Y1

� c
(‖u‖X1,‖v‖X1

)‖u − v‖X1, (5)∥∥Q(v)
∥∥

Y2
� c

(‖v‖X1,0
)‖v‖X2, (6)

where c : R+ × R+ → R+ is continuous, separately increasing and c(0,0) = 0.

Theorem 11 (Fixed point theorem). Let X1,X2, Y1, Y2,L,Q satisfy (HXY ), (HL) and (HQ). Then, for every f ∈ Y2
verifying

2 max{k1, k2}c
(
2k1‖f ‖Y1,2k1‖f ‖Y1

)
� 1 and 2k1‖f ‖Y1 � 1, (7)

there exists u ∈ X2 such that

Lu = Q(u) + f and ‖u‖Xi
� 2ki‖f ‖Yi

, i = 1,2. (8)

Proof. We set

N(u) = Q(u) + f.

We next define

B = {
u ∈ X2: ‖u‖Xi

� 2ki‖f ‖Yi
, i = 1,2

}
.

We endow B with ‖·‖X1 norm; the property (HXY ) ensures that B is closed. We now want to show that L−1N :B → B

is a contraction mapping (cf. Claims 1 and 2 below). Applying Banach fixed point theorem we will have indeed found
a solution verifying (8) and the proof will be complete.

Claim 1. Let us first show that L−1N is a contraction on B . To show this, let u,v ∈ B and use (5), (7) to get that∥∥L−1N(u) − L−1N(v)
∥∥

X1
� k1

∥∥N(u) − N(v)
∥∥

Y1
= k1

∥∥Q(u) − Q(v)
∥∥

Y1

� k1c
(‖u‖X1,‖v‖X1

)‖u − v‖X1

� k1c
(
2k1‖f ‖Y1 ,2k1‖f ‖Y1

)‖u − v‖X1

� 1‖u − v‖X1 .
2
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Claim 2. We next show L−1N :B → B is well-defined. First, note that∥∥L−1N(0)
∥∥

X1
� k1

∥∥N(0)
∥∥

Y1
= k1‖f ‖Y1 .

Therefore, using Claim 1, we obtain∥∥L−1N(u)
∥∥

X1
�

∥∥L−1N(u) − L−1N(0)
∥∥

X1
+ ∥∥L−1N(0)

∥∥
X1

� 1

2
‖u‖X1 + k1‖f ‖Y1 � 2k1‖f ‖Y1 .

It remains to show that∥∥L−1N(u)
∥∥

X2
� 2k2‖f ‖Y2 .

Using (6), we have∥∥L−1N(u)
∥∥

X2
� k2

∥∥N(u)
∥∥

Y2
� k2

∥∥Q(u)
∥∥

Y2
+ k2‖f ‖Y2

� k2c
(‖u‖X1,0

)‖u‖X2 + k2‖f ‖Y2 � 2k2
2c

(‖u‖X1,0
)‖f ‖Y2 + k2‖f ‖Y2

= k2
(
2k2c

(‖u‖X1,0
)+ 1

)‖f ‖Y2

� k2
(
2k2c

(
2k1‖f ‖Y1,2k1‖f ‖Y1

)+ 1
)‖f ‖Y2

� 2k2‖f ‖Y2 .

This concludes the proof of Claim 2 and thus of the theorem. �
For the sake of illustration we give here an academic example loosely related to our problem.

Example. Let Ω ⊂ R
n be a bounded smooth contractible domain and 0 < α < 1. Let r � 1 and 1 � k � n − 2 be

integers. Consider the form w : R
n → Λk where

w =
∑
I∈Tk

wI dxI

where Tk is the set of ordered k-indices. Let I1, . . . , Ik+1 ∈ Tk , then there exists ε > 0 such that for every f ∈
Cr,α(Ω;Λk+1) with

‖f ‖Cr,α � ε, df = 0 and f ∧ ν = 0 on ∂Ω

there exists w ∈ Cr+1,α(Ω;Λk) satisfying{
dw +∧k+1

r=1 dwIr = f in Ω,

w = 0 on ∂Ω.

The proof is immediate if we set

X = X1 = X2 = {
w ∈ Cr+1,α

(
Ω;Λk

)
: w = 0 on ∂Ω

}
,

Y = Y1 = Y2 = {
f ∈ Cr,α

(
Ω;Λk+1): df = 0 in Ω and f ∧ ν = 0 on ∂Ω

}
,

L equal to the operator constructed in Remark 4 (Lw = f being equivalent to dw = f ) and

Q(a) =
k+1∧
r=1

daIr .
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5. The non-degenerate cases

5.1. The case k = n

For the sake of completeness we recall here, without proof, the result of Dacorogna and Moser [7] (see also
Dacorogna [6]).

Theorem 12 (Dacorogna–Moser). Let r � 0 be an integer and 0 < α < 1. Let Ω ⊂ R
n be a bounded connected

open set with a Cr+3,α boundary consisting of finitely many connected components. Let f,g > 0 in Ω . Then the two
following statements are equivalent.

(i) f,g ∈ Cr,α(Ω;Λn) and∫
Ω

f (x)dx =
∫
Ω

g(x)dx.

(ii) There exists ϕ ∈ Diffr+1,α(Ω) satisfying{
ϕ∗(g(x)) = f (x), x ∈ Ω,

ϕ(x) = x, x ∈ ∂Ω.

5.2. The case k = 2 in even dimension

We now consider the case where f,g : R
n → Λ2 with

f =
∑

1�i<j�n

fij dxi ∧ dxj and g =
∑

1�i<j�n

gij dxi ∧ dxj .

We denote by f̄ , ḡ ∈ R
n×n their antisymmetric representations. As we have already seen the rank of these matrices is

always even and therefore these matrices can be invertible only when the dimension n is even. The most favourable
case, that we will discuss now, is therefore when n is even and the rank of these matrices is n. The other cases are
studied in Section 6.2.

We give three theorems, the first one (Theorem 13) with the help of the flow method, which has the advantage
of having a simple proof, the second one (Theorem 15) with the fixed point method which gives sharp regularity
estimates and the last one is a version of Darboux theorem with optimal regularity (Theorem 18).

Theorem 13. Let n > 2 be even and Ω ⊂ R
n be a bounded smooth contractible domain (ν denoting the outward unit

normal). Let r � 1 be an integer, 0 < α < 1 and let f,g ∈ Cr,α(Ω;Λ2) satisfy

df = dg = 0 in Ω and f ∧ ν = g ∧ ν on ∂Ω

and, for every t ∈ [0,1],
rank

[
t ḡ + (1 − t)f̄

] = n, in Ω.

Then, there exists ϕ ∈ Diffr,α(Ω) such that

ϕ∗(g) = f in Ω and ϕ(x) = x on ∂Ω.

Remark 14.

(i) As we mentioned in the introduction, with almost no change, we can consider a general homotopy ft with
f0 = f , f1 = g,

dft = 0, ft ∧ ν = f0 ∧ ν on ∂Ω and rank[ft ] = n in Ω.

Note that the non-degeneracy condition rank[ft ] = n implies

f n/2 · gn/2 > 0 in Ω.
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(ii) The non-degeneracy condition

rank
[
t ḡ + (1 − t)f̄

] = n for every t ∈ [0,1]
is equivalent to the condition that ḡf̄ −1 has no negative eigenvalues.

(iii) Although we have only considered contractible domains Ω , the theorem (with the boundary data) remains valid
for smooth connected sets under the additional hypothesis (cf. Remark 4)∫

Ω

〈f ;ψ〉dx =
∫
Ω

〈g;ψ〉dx, ∀ψ ∈ D2(Ω).

Proof. We solve{
dw = f − g in Ω,

w = 0 on ∂Ω

with the help of Theorem 3. We then recover the vector field ut (this is possible since rank[t ḡ+ (1− t)f̄ ] = n) through

ut �
[
tg + (1 − t)f

] = w.

The result then follows at once from Theorem 10. Note, in passing, that, although w is smoother than f and g, the
vector field ut has the same smoothness as f and g. �
Theorem 15. Let n > 2 be even and Ω ⊂ R

n be a bounded smooth contractible domain. Let r � 4 be an integer and
0 < α < 1. Let f,g ∈ Cr,α(Ω;Λ2) ∩ Cr+2,α(∂Ω;Λ2) satisfying

df = dg = 0 in Ω and f ∧ ν = g ∧ ν on ∂Ω

and, for every t ∈ [0,1],
rank

[
t ḡ + (1 − t)f̄

] = n in Ω.

Then, there exists ϕ ∈ Diffr+1,α(Ω) such that

ϕ∗(g) = f in Ω and ϕ(x) = x on ∂Ω.

Remark 16.

(i) The same remarks as in the previous theorem hold. Note also that the extra regularity on f and g holds only on
the boundary.

(ii) With the same method, the regularity assumption on the boundary, namely f,g ∈ Cr+2,α(∂Ω;Λ2), can be weak-
ened and replaced by f,g ∈ Cs,θ (∂Ω;Λ2) with 0 < α,θ < 1 and

r + 2 + α � s + θ > r + 1 + α.

The conclusion ϕ ∈ Diffr+1,α(Ω) is still valid provided (denoting the integer part of x > 0 by [x] and its frac-
tional part by {x} = x − [x])

r � 2 +
[

2

s + θ − r − 1 − α

]
, when α >

{
2

s + θ − r − 1 − α

}
,

r � 3 +
[

2

s + θ − r − 1 − α

]
, when α �

{
2

s + θ − r − 1 − α

}
.

Thus r � 4, when s = r + 2 and θ = α.
(iii) Although our proof will use Theorem 13, we could avoid it by several applications of Lemma 17 that follows.

The proof of Theorem 15 relies on the following key lemma.
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Lemma 17. Let n > 2 be even and Ω ⊂ R
n be a bounded smooth contractible domain. Let r � 0 be an integer and

0 < β � α < 1. Then there exists γ = γ (r,α,β,Ω) > 0 such that for every g ∈ Cr+2,α(Ω;Λ2) and f ∈ Cr,α(Ω;Λ2)

satisfying the following hypotheses:

df = dg = 0 in Ω, f ∧ ν = g ∧ ν on ∂Ω and rank[ḡ] = n in Ω,

‖f − g‖C0,β � γ

‖(ḡ)−1‖C1,β max{‖g‖Cr+2,α‖(ḡ)−1‖Cr+1,α ,1}
there exists ϕ ∈ Diffr+1,α(Ω) such that

ϕ∗(g) = f in Ω and ϕ(x) = x on ∂Ω. (9)

With exactly the same proof of that of the lemma, we can obtain Darboux theorem with optimal regularity.

Theorem 18 (Darboux theorem with optimal regularity). Let r � 0 be an integer and 0 < α < 1. Let n = 2m � 4,
Ω ⊂ R

n be a bounded open set and p ∈ Ω . Let ω0 be the standard symplectic form

ω0 =
m∑

i=1

dxi ∧ dxm+i .

Let ω ∈ Cr,α(Ω;Λ2) be such that

dω = 0 and ω(p) = ω0.

Then there exist a neighbourhood V of p and ϕ ∈ Diffr+1,α(V ;R
n) such that

ϕ∗(ω0) = ω in V and ϕ(p) = p.

Proof of Theorem 18. Step 1. As we already mentioned the proof is almost identical to that of the lemma, which will
be given below. We start by choosing V a sufficiently small neighbourhood of p and we define the sets

X1 = C1,β
(
V ;R

n
)

and Y1 = C0,β
(
V ;Λ2),

X2 = Cr+1,α
(
V ;R

n
)

and Y2 = {
b ∈ Cr,α

(
V ;Λ2): db = 0 in V

}
.

The remaining estimates and conclusions are exactly those of the lemma and in particular we get that there exists
ψ ∈ Diffr+1,α(V ;R

n) such that ψ∗(ω0) = ω in V , provided

‖ω − ω0‖C0,β � γ

‖(ω0)−1‖C1,β max{‖ω0‖Cr+2,α‖(ω0)−1‖Cr+1,α ,1} . (10)

(Of course, here, ‖(ω0)
−1‖C1,β = ‖(ω0)

−1‖C0 and ‖ω0‖Cr+2,α = ‖ω0‖C0 .) Setting ϕ(x) = ψ(x)+p −ψ(p), we have
indeed proved that ϕ ∈ Diffr+1,α(V ;R

n) and

ϕ∗(ω0) = ω in V and ϕ(p) = p.

Step 2. Now it remains to check that under the hypotheses of Darboux theorem, namely ω ∈ Cr,α with dω = 0
and ω(p) = ω0(p), we have automatically that ‖ω − ω0‖C0,β is as small as we want and thus (10) is satisfied. Indeed
choose ε > 0 small and the neighbourhood V , smaller if necessary than in Step 1, such that

|x − y| � ε for x, y ∈ V .

Let 0 < β < α and h = ω − ω0 . Since ω(p) = ω0(p) and ω,ω0 ∈ C0,α , then there exists k > 0 such that for every
x, y ∈ V ,∣∣h(x) − h(y)

∣∣ � k|x − y|α = k|x − y|α−β |x − y|β � kεα−β |x − y|β.
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Since h(p) = 0, we can indeed choose ε > 0 sufficiently small so that

‖ω − ω0‖C0,β = ‖h‖C0,β � γ

‖(ω0)−1‖C1,β max{‖ω0‖Cr+2,α‖(ω0)−1‖Cr+1,α ,1} .

This concludes the proof of the theorem. �
We now turn to the proof of the lemma.

Proof of Lemma 17. The lemma will follow from Theorem 11. We divide the proof into four steps; the three first
ones to verify the hypotheses of the theorem and the last one to check the conclusions of the lemma from the one of
the theorem.

Step 1. We first extend g to R
n with the same regularity. We then define the spaces as follows

X1 = C1,β
(
Ω;R

n
)

and Y1 = C0,β
(
Ω;Λ2),

X2 = {
a ∈ Cr+1,α

(
Ω;R

n
)
: a = 0 on ∂Ω

}
,

Y2 = {
b ∈ Cr,α

(
Ω;Λ2): db = 0 in Ω and b ∧ ν = 0 on ∂Ω

}
.

It is easily seen that they satisfy hypothesis (HXY ) of Theorem 11 (see [6]).
Step 2. We next define a linear operator L : X2 → Y2 which associates in an isomorphic way any element a ∈ X2

to a unique element b ∈ Y2 through the equation

La = d[a � g] = b.

This is indeed well defined according to Theorem 3 (cf. also Remark 4) and to the fact that rank[ḡ] = n. Moreover we
can find a constant K1 > 0, independent of g, such that if

k1 := K1
∥∥(ḡ)−1

∥∥
C1,β and k2 := K1

∥∥(ḡ)−1
∥∥

Cr+1,α

then ∥∥L−1b
∥∥

Xi
� ki‖b‖Yi

for i = 1,2;
so that (HL) of Theorem 11 is satisfied.

Step 3. The central part of the lemma is to define the operator Q and to check the property (HQ) of Theorem 11.
This requires a more subtle linearization than the one in [7] and we divide the proof into five substeps. For this we let

c(r, s) := K2‖g‖Cr+2,α (r + s)

where K2 > 0 will be an appropriate constant that is independent of g.
Step 3.1. With the definition of L in hand, we now rewrite (9) as follows. Setting ϕ = Id + u, we rewrite the

equation ϕ∗(g) = f in the equivalent form

Lu = d[u � g] = f − (Id + u)∗g + d[u � g]
= f − g + [

g − (Id + u)∗g + d[u � g]]
= f − g + Q(u)

where

Q(u) := g − (Id + u)∗g + d[u � g].
In order to get the right estimates, we rewrite Q(u) in the following way

Q(u)(x) = g(x) −
∑
i<j

gij (x + u)
(
dxi + dui

)∧ (
dxj + duj

)+ d[u � g]

= g(x) − g(x + u) −
∑

gij (x + u)
[
dui ∧ dxj + dxi ∧ duj

]−
∑

gij (x + u)dui ∧ duj + d[u � g].

i<j i<j
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We then appeal to the formula

d[u � g] =
∑
i<j

gij

[
dui ∧ dxj + dxi ∧ duj

]+
∑
i<j

〈gradgij ;u〉dxi ∧ dxj

to obtain

Q(u)(x) =
∑
i<j

[
gij (x) − gij (x + u)

][
dui ∧ dxj + dxi ∧ duj

]
−

∑
i<j

[
gij (x + u) − gij (x) − 〈

gradgij (x);u〉]dxi ∧ dxj −
∑
i<j

gij (x + u)dui ∧ duj

= Q1(u)(x) − Q2(u)(x) − Q3(u)(x)

where

Q1(u)(x) :=
∑
i<j

[
gij (x) − gij

(
x + u(x)

)][
dui ∧ dxj + dxi ∧ duj

]
,

Q2(u)(x) :=
∑
i<j

[
gij

(
x + u(x)

) − gij (x) − 〈
gradgij (x);u(x)

〉]
dxi ∧ dxj ,

Q3(u)(x) :=
∑
i<j

gij

(
x + u(x)

)
dui ∧ duj .

Step 3.2. We therefore have to check property (HQ). Clearly Q(0) = 0. Moreover Q :X2 → Y2. Indeed we have to
check that dQ(u) = 0 in Ω and Q(u) ∧ ν = 0 on ∂Ω . The first condition follows immediately since dg = 0 and

dQ(u) = dg − (Id + u)∗ dg + dd[u � g].
The second one is true since u = 0 on ∂Ω . Indeed clearly Q1(u) = Q2(u) = 0 on ∂Ω and, since u = 0 on ∂Ω , each
of gradui and graduj is parallel to the normal ν. Thus, dui ∧ duj = 0 on ∂Ω for every i < j , which implies that
Q3(u) = 0 on ∂Ω . Thus, we have, in fact, proved that Q(u) = 0 on ∂Ω .

Step 3.3. Before starting our estimates, we recall some basic inequalities for Hölder functions (see Hörmander [9]).
In the sequel γ will denote a generic constant. We have

‖uv‖Cr,α � γ
[‖u‖C0‖v‖Cr,α + ‖u‖Cr,α‖v‖C0

]
,

‖g ◦ u‖Cr,α � γ ‖g‖Cr,α

[
1 + ‖u‖Cr,α + ‖u‖r+α

C1

]
and

‖g ◦ u − g ◦ v‖Cr,α � γ [‖g‖Cr+1,α

(
1 + ‖u‖Cr,α + ‖v‖Cr,α + ‖u‖r+α

C1 + ‖v‖r+α

C1

)‖u − v‖C0

+ ‖g‖C1‖u − v‖Cr,α

]
.

When r = 0, the second inequality should be replaced by

‖g ◦ u‖C0,α � γ
[‖g‖C0,α‖u‖α

C1 + ‖g‖C0

]
.

Step 3.4. We now show the estimate (5) in (HQ). We, in fact, will prove the stronger estimate, namely that, for
every v,w ∈ Cr+1,α(Ω;R

n) with ‖v‖C1,β � 1 and ‖w‖C1,β � 1,∥∥Q(v) − Q(w)
∥∥

C0,β � K2‖g‖C2,β

(‖v‖C1,β + ‖w‖C1,β

)‖v − w‖C1,β .

Evidently it is enough to prove that, for each p = 1,2,3∥∥Qp(v) − Qp(w)
∥∥

C0,β � K2‖g‖C2,β

(‖v‖C1,β + ‖w‖C1,β

)‖v − w‖C1,β .

In the sequel, K2 will denote a generic constant that does not depend on g, v and w. We begin with Q1 , we have
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∥∥Q1(v) − Q1(w)
∥∥

C0,β

=
∥∥∥∥∑

i<j

[
gij (Id + w) − gij (Id)

][
dwi ∧ dxj + dxi ∧ dwj

]
−

∑
i<j

[
gij (Id + v) − gij (Id)

][
dvi ∧ dxj + dxi ∧ dvj

]∥∥∥∥
C0,β

�
∑
i<j

∥∥[gij (Id + w) − gij (Id + v)
][

dwi ∧ dxj + dxi ∧ dwj
]∥∥

C0,β

+
∑
i<j

∥∥[gij (Id + v) − gij (Id)
][(

dvi ∧ dxj + dxi ∧ dvj
)− (

dwi ∧ dxj + dxi ∧ dwj
)]∥∥

C0,β

and hence (bearing in mind that ‖v‖C1,β ,‖w‖C1,β � 1)∥∥Q1(v) − Q1(w)
∥∥

C0,β � K2‖g‖C1,β ‖w − v‖C0,β ‖w‖C1,β + K2‖g‖C1,β ‖v‖C0,β ‖w − v‖C1,β

� K2‖g‖C2,β

(‖v‖C1,β + ‖w‖C1,β

)‖v − w‖C1,β .

For Q2 we proceed in the following way. We first observe that

Q2(v) =
∑
i<j

1∫
0

d

dt

[(
gij (x + tv) − t

〈
gradgij (x);v〉)dxi ∧ dxj

]
dt

=
∑
i<j

1∫
0

[〈
gradgij (x + tv) − gradgij (x);v〉dxi ∧ dxj

]
dt.

We therefore obtain

∥∥Q2(v) − Q2(w)
∥∥

C0,β �
∑
i<j

1∫
0

∥∥〈gradgij (x + tv) − gradgij (x);v〉
− 〈

gradgij (x + tw) − gradgij (x);w〉∥∥
C0,β dt

�
∑
i<j

1∫
0

{∥∥〈gradgij (x + tv) − gradgij (x + tw);v〉∥∥
C0,β

+ ∥∥〈gradgij (x + tw) − gradgij (x);v − w
〉∥∥

C0,β

}
dt

and hence

∥∥Q2(v) − Q2(w)
∥∥

C0,β � K2

∑
i<j

1∫
0

{∥∥gradgij (x + tv) − gradgij (x + tw)
∥∥

C0,β ‖v‖C0

+ ∥∥gradgij (x + tv) − gradgij (x + tw)
∥∥

C0‖v‖C0,β

+ ∥∥gradgij (x + tw) − gradgij (x)
∥∥

C0,β ‖v − w‖C0

+ ∥∥gradgij (x + tw) − gradgij (x)
∥∥

C0‖v − w‖C0,β

}
dt.

This leads to (recall that ‖v‖C1,β ,‖w‖C1,β � 1)∥∥Q2(v) − Q2(w)
∥∥

C0,β � K2‖g‖C2,β ‖v − w‖C0,β ‖v‖C0 + K2‖g‖C2‖v − w‖C0‖v‖C0,β

+ K2‖g‖C2,β ‖w‖C0,β ‖v − w‖C0 + K2‖g‖C2‖w‖C0‖v − w‖C0,β .

We therefore have the estimate∥∥Q2(v) − Q2(w)
∥∥

0,β � K2‖g‖C2,β

(‖v‖C1,β + ‖w‖C1,β

)‖v − w‖C1,β .

C
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It remains to prove the estimate for Q3, namely∥∥Q3(v) − Q3(w)
∥∥

C0,β =
∥∥∥∥∑

i<j

gij (Id + w)dwi ∧ dwj −
∑
i<j

gij (Id + v)dvi ∧ dvj

∥∥∥∥
C0,β

�
∑
i<j

∥∥gij (Id + w)
(
dwi ∧ dwj − dvi ∧ dvj

)∥∥
C0,β

+
∑
i<j

∥∥(gij (Id + v) − gij (Id + w)
)
dvi ∧ dvj

∥∥
C0,β

which leads to (recalling that ‖v‖C1,β ,‖w‖C1,β � 1)∥∥Q3(v) − Q3(w)
∥∥

C0,β � K2‖g‖C0,β

(‖v‖C1,β + ‖w‖C1,β

)‖v − w‖C1,β

+ K2‖g‖C1,β ‖v − w‖C0,β ‖gradv‖C0,β

and thus∥∥Q3(v) − Q3(w)
∥∥

C0,β � K2‖g‖C2,β

(‖v‖C1,β + ‖w‖C1,β

)‖v − w‖C1,β

proving the estimate for Q3.
Step 3.5. We finally establish the estimate (6) in (HQ). We have to prove that, for every v ∈ Cr+1,α(Ω;R

n) with
‖v‖C1,β � 1,∥∥Q(v)

∥∥
Cr,α � K2‖g‖Cr+2,α‖v‖Cr+1,α‖v‖C1,β .

The estimate is proved exactly as in Step 3.4 and we leave out the details.
Step 4. The hypotheses of Theorem 11 having been verified, we conclude that if

‖f − g‖C0,β �
min{1/(8K2

1 K2K3),1/(2K1)}
‖(ḡ)−1‖C1,β max{‖g‖Cr+2,α‖(ḡ)−1‖Cr+1,α ,1}

� 1

2K1‖(ḡ)−1‖C1,β

min

{
1

4K1K2K3‖g‖Cr+2,α‖(ḡ)−1‖Cr+1,α

,1

}
,

where K3 � 1 is such that

‖ · ‖C1,β � K3‖.‖Cr+1,α .

Then there exists ϕ ∈ Cr+1,α(Ω;R
n) satisfying (9) and γ can be taken as

γ = min

{
1

8K2
1 K2K3

,
1

2K1

}
.

By further restricting γ we can easily show that det(Dϕ(x)) �= 0 for every x ∈ Ω and ‖u‖C1,β � 1/2. This last
condition leads to the fact that ϕ = Id + u is globally one to one, maps Ω onto Ω and thus ϕ ∈ Diffr+1,α(Ω). �

We can now conclude the proof of Theorem 15 by an iteration scheme involving appropriate regularization.

Proof. We divide the proof into three steps.
Step 1. We start with a preliminary computation. Let s be a positive integer and h ∈ Cs,α(Ω) with h � h0 > 0 in Ω ,

it is easy to see, by induction on s, that there exists a constant γ1 > 0, independent of h, such that∥∥∥∥1

h

∥∥∥∥
Cs,α

� γ1

s∑
j=0

[‖h‖Cj,α

h2
0

‖h‖s−j

C1

h
s−j

0

]
.

Denoting by adj ḡ the transpose of the matrix of cofactors of ḡ so as to have

(ḡ)−1 = adj ḡ
det ḡ
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we find that there exists a constant γ2 > 0, independent of g, such that

∥∥(ḡ)−1
∥∥

Cs,α � γ2

[
‖g‖Cs,α‖g‖n−2

C0

∥∥∥∥ 1

det ḡ

∥∥∥∥
C0

+ ‖g‖n−1
C0

∥∥∥∥ 1

det ḡ

∥∥∥∥
Cs,α

]
,

‖det ḡ‖Cs,α � γ2‖g‖Cs,α‖g‖n−1
C0 .

Combining the two estimates we obtain that there exists a constant γ3 (depending also on min det ḡ but not in any
other way on g) such that∥∥(ḡ)−1

∥∥
Cr+1,α � γ3

[‖g‖Cr+1,α

(‖g‖2n−2
C0 + ‖g‖n−2

C0

)+ terms
(‖g‖Cr,α ,‖g‖C0

)]
.

Step 2. Choose 0 < β < α. We next regularize f and g with the help of Theorem 1 and construct for every
ε > 0, f ε, gε ∈ Cr+2,α(Ω;Λ2) such that df ε = dgε = 0, f ε ∧ ν = gε ∧ ν = g ∧ ν = f ∧ ν on ∂Ω and (where
γ4 = γ4(r,α,β,Ω) > 0 is a constant)

‖gε − g‖C1,β (Ω) � γ4ε
r−1+α−β‖g‖Cr,α(Ω),

‖gε‖C0,β (Ω) � γ4‖g‖C0,β (Ω), ‖gε‖C1,β (Ω) � γ4‖g‖C1,β (Ω),

‖gε‖Cr,α(Ω) � γ4‖g‖Cr,α(Ω),

‖gε‖Cr+1,α(Ω) � γ4

ε

[‖g‖Cr,α(Ω) + ε‖g‖Cr+1,α(∂Ω)

]
,

‖gε‖Cr+2,α(Ω) � γ4

ε2

[‖g‖Cr,α(Ω) + ε2‖g‖Cr+2,α(∂Ω)

]
and similarly for f and f ε . Moreover by further restricting ε we can assume that

rank
[
t ḡε + (1 − t)f̄ ε

] = n, for every t ∈ [0,1].
Observe now that, for ε sufficiently small, the orders of magnitudes are∥∥(gε)−1

∥∥
Cr+1,α(Ω)

� ε−1 and ‖gε‖Cr+2,α(Ω) � ε−2,

so that

1

‖gε‖Cr+2,α‖(gε)−1‖Cr+1,α‖(gε)−1‖C1,β

� ε3 and ‖gε − g‖C1,β � εr−1+α−β.

Therefore, by still further restricting ε, we can assume, since r � 4, that (where γ is as in Lemma 17)

‖gε − g‖C0,β � γ

‖(gε)−1‖C1,β max{‖gε‖Cr+2,α‖(gε)−1‖Cr+1,α ,1}
and similarly for f ε .

Step 3. We then appeal to Lemma 17 to find ϕ1, ϕ3 ∈ Diffr+1,α(Ω) such that{
ϕ∗

1 (gε(x)) = g(x), x ∈ Ω,

ϕ1(x) = x, x ∈ ∂Ω
and

{
ϕ∗

3 (f ε(x)) = f (x), x ∈ Ω,

ϕ3(x) = x, x ∈ ∂Ω.

We finally use Theorem 13 to find ϕ2 ∈ Diffr+1,α(Ω) such that{
ϕ∗

2 (gε(x)) = f ε(x), x ∈ Ω,

ϕ2(x) = x, x ∈ ∂Ω.

The claimed solution is then given by

ϕ = ϕ−1
1 ◦ ϕ2 ◦ ϕ3 .

This achieves the proof of the theorem. �
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6. The degenerate cases

6.1. The case k = 1

We discuss here the very elementary case where k = 1 and we can proceed in a direct way. We have

f =
n∑

i=1

fi dxi and g =
n∑

i=1

gi dxi .

Proposition 19. Let Ω ⊂ R
n be a smooth simply connected domain. Let r � 1 and f,g ∈ Cr(Ω;Λ1) with

df = dg = 0 and f1, g1 �= 0.

Then there exists a diffeomorphism ϕ ∈ Diffr+1(Ω;R
n) satisfying

ϕ∗(g) = f.

If, in addition, f ∧ ν = g ∧ ν on ∂Ω , then ϕ can be chosen so as to verify

ϕ(x) = x on ∂Ω.

Proof. By hypothesis, we can find F,G ∈ Cr+1(Ω) such that

dF = f and dG = g.

Therefore the equation ϕ∗(g) = f will be satisfied if we can solve the equation ϕ∗(G) = F , which reads as

G(ϕ) = F

and is not anymore a differential equation. Note that if f ∧ ν = g ∧ ν on ∂Ω , then we can choose F = G on ∂Ω . We
then let ϕi = xi for every i = 2, . . . , n and we recover ϕ1 by solving

G
(
ϕ1, x2, . . . , xn

) = F
(
x1, . . . , xn

)
.

This is possible if the function t → G(t, x2, . . . , xn) is monotone for every x2, . . . , xn, which happens if g1 �= 0 in Ω .
Moreover the solution is a diffeomorphism if f1 �= 0 in Ω . The boundary data is satisfied since F = G on ∂Ω . �
6.2. The case k = 2

We now investigate the case

f =
∑

1�i<j�n

fij dxi ∧ dxj and g =
∑

1�i<j�n

gij dxi ∧ dxj .

We first recall that the rank of a 2-form is always even and therefore a 2-form f in odd dimension necessarily satisfies

rank[f̄ ] � n − 1 or equivalently dim ker[f̄ ] � 1.

We only give a result concerning forms of maximal rank in odd dimension, meaning that rank[f̄ ] = n − 1 or equiva-
lently dim ker[f̄ ] = 1. Other more degenerate cases can be handled similarly, the details will be discussed elsewhere.
Note that

rank
[
t ḡ + (1 − t)f̄

] = n − 1

implies that there exists a = a(t, x) such that

ker
[
t ḡ + (1 − t)f̄

] = span{a}.
We also let H = {x ∈ R

n: xn > 0} and ν = −en be the outward unit normal. Although the theorem is stated for the
half plane, it can be, in a straightforward way, adapted to smooth domains Ω .
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Theorem 20. Let r � 1, 0 < α < 1, n odd, f,g ∈ Cr,α(H ;Λ2) with df = dg = 0 in H and

ker
[
t ḡ + (1 − t)f̄

] = span{a}
where a ∈ Cr+1,α([0,1] × H ;Λ1) with an �= 0. Then there exist ε > 0 and ϕ ∈ Diffr,α(H ∩ Bε(0);R

n) verifying

ϕ∗(g) = f in H ∩ Bε(0).

Moreover if f ∧ en = g ∧ en on ∂H , then ϕ can be chosen so that

ϕ(x) = x, x ∈ ∂H ∩ Bε(0).

Proof. We immediately deal with the Cauchy data problem. We solve the problem by the flow method, so that we
only have to find the appropriate vector field. First use Theorem 7 to find ht ∈ Cr,α(H ∩ Bε(0);Λ1) such that⎧⎨⎩

dht = f − g in H ∩ Bε(0),

〈ht ;a〉 = 0 in H ∩ Bε(0),

ht = 0 on ∂H ∩ Bε(0).

Then find ut by solving

ut �
[
tg + (1 − t)f

] = ht .

This is indeed possible since 〈ht ;a〉 = 0.
Restricting, if necessary ε, we solve then the problem by the flow. �

6.3. The case 3 � k � n − 2

We here discuss two simple examples showing that our method may, in some cases, apply to the more difficult case
3 � k � n − 2. A systematic study will be undertaken elsewhere. The first example concerns the case k odd, while the
second deals with the case k even.

Example. Let n = 2m be even, f,g : Rn → Λ2 and b : Rn → Λ1 satisfying

df = dg = 0 and db = 0 in H,

where H = {x ∈ R
n: xn > 0} (in order to ensure Cauchy data we have to assume that f ∧ en = g ∧ en on ∂H ) as well

as

tg + (1 − t)f is non-degenerate for every t ∈ [0,1].
Let 1 � l � m − 1 be an integer and consider the k = (2l + 1)-forms

F = f l ∧ b and G = gl ∧ b.

We claim that there exists a diffeomorphism ϕ such that

ϕ∗(G) = F

(if f ∧ en = g ∧ en on ∂H , then we can also guarantee that ϕ(x) = x on ∂H ). The result will be local. In some special
cases, the result can be global, if, for example, we can apply below Theorem 5 instead of Theorem 7.

Step 1. We let

at = tg + (1 − t)f and āt = t ḡ + (1 − t)f̄ .

The matrix āt is, by hypothesis, invertible. We then locally solve, by applying Theorem 7,{
dwt = f − g,

〈wt ; ā−T
t b〉 = 0

(if f ∧ en = g ∧ en on ∂H , we can also impose that wt = 0 on ∂H , provided (ā−T
t b)n �= 0) and we recover the vector

field

ut � at = wt or equivalently ut = −ā−1
t wt

(if f ∧ en = g ∧ en on ∂H , we obtain that ut = 0 on ∂H ).
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Step 2. Observe that

ut � b = 〈ut ;b〉 = −〈
ā−1
t wt ;b

〉 = −〈
wt ; ā−T

t b
〉 = 0.

We thus deduce that not only

d
(
ut �

(
tg + (1 − t)f

)) = f − g

but also

d
(
ut � b

) = d
(
ut �

(
tb + (1 − t)b

)) = b − b = 0.

Therefore solving

d

dt
ϕt = ut (ϕt )

leads to

ϕ∗
1 (g) = f and ϕ∗

1 (b) = b

and hence to

ϕ∗
1

(
gl ∧ b

) = f l ∧ b.

Example. We now discuss another example in the same spirit. Let n = 2m be even, 1 � l � m − 1 and

λ =
∑

1�i<j�2l

λij

(
x1, . . . , x2l

)
dxi ∧ dxj ,

a =
∑

2l+1�i<j�n

aij

(
x2l+1, . . . , xn

)
dxi ∧ dxj ,

b =
∑

2l+1�i<j�n

bij

(
x2l+1, . . . , xn

)
dxi ∧ dxj

with a and b closed and

rank
[
t b̄ + (1 − t)ā

] = n − 2l = 2(m − l) for every t ∈ [0,1].
Finally let f,g : Rn → Λ2 be such that

f = λ + a and g = λ + b.

An easy computation shows that there exists a diffeomorphism ϕ such that

ϕ∗(G) = F where F = f ∧ dx1 ∧ · · · ∧ dx2l and G = g ∧ dx1 ∧ · · · ∧ dx2l .

6.4. The case k = n − 1

We introduce some notations that are more appropriate to the present context. It is convenient here to write any
g : Rn → Λn−1 of the form

g =
∑

1�i1<···<in−1�n

gi1···in−1 dxi1 ∧ · · · ∧ dxin−1

by the missing term. More precisely, we let

dxî := dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn and g
î
:= g1···i−1i+1···n

so that we have

g =
n∑

i=1

g
î
dxî .

Recall also that if g �= 0 then necessarily rank[ḡ] = n − 1. We then have the following result.
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Theorem 21. Let H = {x ∈ R
n: xn > 0}, f,g ∈ Cω(H ;Λn−1) with

df = dg = 0 in H and fn̂, gn̂ > 0 in H.

Then there exist ε > 0 and ϕ ∈ Diffω(H ∩ Bε(0);R
n) satisfying

ϕ∗(g) = f in H ∩ Bε(0).

If, in addition, fn̂ = gn̂ on ∂H , then ϕ can be chosen so that

ϕ(x) = x, x ∈ ∂H ∩ Bε(0).

Remark 22. With the proper adaptation, the theorem is valid if H is replaced by a smooth domain Ω .

Proof. We only discuss the case with Cauchy data, the other one being handled in exactly the same way.
Step 1. We start by fixing the notations. For u ∈ R

n and g : Rn → Λn−1 we have that

u � g =
∑

1�i<j�n

[
(−1)i−1g

ĵ
ui + (−1)j g

î
uj

]
dxîj

where, as before,

dxîj = dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn

and

dg =
[

n∑
i=1

(−1)i−1 ∂g
î

∂xi

]
dx1 ∧ · · · ∧ dxn.

Similarly any h : Rn → Λn−2 of the form

h =
∑

1�i1<···<in−2�n

hi1···in−2 dxi1 ∧ · · · ∧ dxin−2

will be written as

h =
∑

1�i<j�n

hîj dxîj

where

hîj = h1,...,i−1,i+1,...,j−1,j+1,...,n.

Hence

dh =
∑

1�i<j�n

[
(−1)j

∂hîj

∂xj
dxî + (−1)i−1

∂hîj

∂xi
dxĵ

]
.

Now assume that g : Rn → Λn−1, with for example gn̂ �= 0, and h : Rn → Λn−2 are given and satisfy the following(
n−1
n−3

) = (
n−1

2

)
constraints

gn̂hîj + g
î
hĵn − g

ĵ
hîn = 0 for every 1 � i < j � n.

(Note that when j = n, the equation is trivially satisfied, so that there are indeed only
(
n−1

2

)
equations.) Then a solution

u ∈ R
n of u � g = h is given by

ui = (−1)i−1hîn + (−1)n−ig
î
un

gn̂

for every i = 1, . . . , n − 1.

Step 2. We may now proceed with the proof. First solve by Theorem 8, for every t ∈ [0,1]⎧⎪⎨⎪⎩
dht = f − g in H ∩ Bε(0),

f t
n̂
ht

îj
+ f t

î
ht

ĵn
− f t

ĵ
ht

în
= 0 in H ∩ Bε(0), 1 � i < j � n,

ht = 0 on ∂H ∩ Bε(0)

where f t = tg + (1 − t)f .
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Step 3. Then use the above computations to find ut . For example, choose un
t = 0 and

ui
t = (−1)i−1ht

în

tgn̂ + (1 − t)fn̂

for every i = 1, . . . , n − 1.

Step 4. Choosing ε smaller, if necessary, we then solve{
d
dt

ϕt (x) = ut (ϕt (x)), t ∈ [0,1],
ϕ0(x) = x.

This concludes the proof of the theorem. �
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