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Abstract

The Cauchy problem for the Kadomtsev–Petviashvili-II equation (ut + uxxx + uux)x + uyy = 0 is considered. A small data

global well-posedness and scattering result in the scale invariant, non-isotropic, homogeneous Sobolev space Ḣ− 1
2 ,0(R2) is de-

rived. Additionally, it is proved that for arbitrarily large initial data the Cauchy problem is locally well-posed in the homogeneous

space Ḣ− 1
2 ,0(R2) and in the inhomogeneous space H− 1

2 ,0(R2), respectively.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main results

The Kadomtsev–Petviashvili-II (KP-II) equation

∂x

(
∂tu + ∂3

xu + u∂xu
) + ∂2

yu = 0 in (0,∞) × R2,

u(0, x, y) = u0(x, y) (x, y) ∈ R2 (1)

has been introduced by B.B. Kadomtsev and V.I. Petviashvili [9] to describe weakly transverse water waves in the
long wave regime with small surface tension. It generalizes the Korteweg–de Vries equation, which is spatially one
dimensional and thus neglects transversal effects. The KP-II equation has a remarkably rich structure. Let us begin
with its symmetries and assume that u is a solution of (1).

(i) Translation: Translates of u in x, y and t are solutions.
(ii) Scaling: If λ > 0 then also

uλ(t, x, y) = λ2u
(
λ3t, λx,λ2y

)
(2)
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is a solution.
(iii) Galilean invariance: For all c ∈ R the function

uc(t, x, y) = u
(
t, x − cy − c2t, y + 2ct

)
(3)

satisfies Eq. (1).

The KP-II equation is integrable in the sense that there exists a Lax pair. Formally, there exists an infinite sequence of
conserved quantities [18], the two most important being

I0 = 1

2

∫
u2 dx dy

and

I1 = 1

2

∫
(∂xu)2 − 1

3
u3 − (

∂−1
x ∂yu

)2
dx dy.

The conserved quantities besides I0 seem to be useless for proofs of well-posedness, because of the difficulty to define
∂−1
x and because the quadratic term is indefinite.

There are many explicit formulas for solutions, see [4]. Particular solutions are the line solitons coming from soli-
tons of the Korteweg–de Vries equation, their Galilei transforms, and multiple line soliton solutions with an intricate
structure, see [1].

It may be possible to apply the machinery of inverse scattering to solve the initial value problem and to obtain
asymptotics for solutions, see [11] for some results in that direction. It is however not clear which classes of initial
data can be treated.

The line solitons are among the simplest solutions. An analysis of the spectrum of the linearization and inverse
scattering indicate that the line soliton is stable [9,16]. A satisfactory non-linear stability result for the line soliton is
an outstanding problem.

In this paper we want to make a modest step towards this challenging question: We prove well-posedness and
scattering in a critical space. These results are in remarkable contrast to the situation for the Korteweg–de Vries

equation where the critical space is H− 3
2 (R) and iteration techniques, as employed in the present work, are known [3]

to fail for initial data below H− 3
4 (R). Stability of solitons has been proved by inverse scattering techniques and by

convexity arguments using conserved quantities [14] which has no chance to carry over to KP-II because the quadratic
part of I1 is not convex.

We study the Cauchy problem (1) for initial data u0 in the non-isotropic Sobolev space H− 1
2 ,0(R2) and in the

homogeneous variant Ḣ− 1
2 ,0(R2), respectively, which are defined as spaces of distributions with − 1

2 generalized x-
derivatives in L2(R2), see (4) and (5) at the end of this section. These spaces are natural for KP-II equation because

of the following considerations: The homogeneous space Ḣ− 1
2 ,0(R2) is invariant under the scaling symmetry (2)

of solutions of the KP-II equation as well as under the action of the Galilei transform (3) for fixed t . Any Fourier
multiplier m invariant under scaling and reflection satisfies m(ξ,η) = |ξ |−1/2m(1, η/|ξ |2). Galilean invariance now
implies that m is independent of η.

While in the super-critical range, i.e. s < − 1
2 , the scaling symmetry suggests ill-posedness of the Cauchy problem

(cp. also [10] Theorem 4.2), we will prove global well-posedness and scattering in Ḣ− 1
2 ,0(R2) for small initial data,

see Theorem 1.1 and Corollary 1.7, and local well-posedness in H− 1
2 ,0(R2) and Ḣ− 1

2 ,0(R2) for arbitrarily large initial
data, see Theorem 1.2.

The well-posedness of (1) has been thoroughly studied in the last two decades. After a first well-posedness result by
S. Ukai [23] in more regular spaces, J. Bourgain established global well-posedness in L2(T2;R) and L2(R2;R) in his
seminal paper [2] by combining the Fourier restriction norm method with the L2 conservation law. N. Tzvetkov [22]
improved the local theory within the scale of non-isotropic Sobolev spaces. Local well-posedness in the full sub-
critical range s > − 1

2 was obtained by H. Takaoka [19] in the homogeneous spaces and by the first author [7] in
the inhomogeneous spaces. Global well-posedness for large, real valued data in Hs,0(R2) has been pushed down to
s > − 1

14 by Pedro Isaza J. and Jorge Mejía L. [8]. For a more complete account on previous work, we would like to
refer the interested reader to the aforementioned papers and references therein.
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The first main result of this paper is concerned with small data global well-posedness in Ḣ− 1
2 ,0(R2). For δ > 0 we

define

Ḃδ := {
u0 ∈ Ḣ− 1

2 ,0(R2) ∣∣ ‖u0‖
Ḣ

− 1
2 ,0 < δ

}
,

and obtain the following:

Theorem 1.1. There exists δ > 0, such that for all initial data u0 ∈ Ḃδ there exists a solution

u ∈ Ż− 1
2
([0,∞)

) ⊂ C
([0,∞); Ḣ− 1

2 ,0(R2))
of the KP-II equation (1) on (0,∞). If for some T > 0 a solution v ∈ Z− 1

2 ([0, T ]) on (0, T ) satisfies v(0) = u(0),
then v = u|[0,T ]. Moreover, the flow map

F+ : Ḃδ → Ż− 1
2
([0,∞)

)
, u0 �→ u

is analytic.

In order to state the second main result of this paper let us define

Bδ,R := {
u0 ∈ H− 1

2 ,0(R2) ∣∣ u0 = v0 + w0, ‖v0‖
Ḣ

− 1
2 ,0 < δ, ‖w0‖L2 < R

}
,

for δ > 0,R > 0. We establish local well-posedness for arbitrarily large initial data, both in H
1
2 ,0(R2) and Ḣ

1
2 ,0(R2):

Theorem 1.2.

(i) There exists δ > 0 such that for all R � δ and u0 ∈ Bδ,R there exists a solution

u ∈ Z− 1
2
([0, T ]) ⊂ C

([0, T ];H− 1
2 ,0(R2))

for T := δ6R−6 of the KP-II equation (1) on (0, T ). If a solution v ∈ Z− 1
2 ([0, T ]) on (0, T ) satisfies v(0) = u(0),

then v = u|[0,T ]. Moreover, the flow map

Bδ,R 	 u0 �→ u ∈ Z− 1
2
([0, T ])

is analytic.

(ii) The statement in part (i) remains valid if we replace the space H− 1
2 ,0(R2) by Ḣ− 1

2 ,0(R2) as well as Z− 1
2 ([0, T ])

by Ż− 1
2 ([0, T ]).

Remark 1.3. For the definition of the spaces Ż− 1
2 (I ) and Z− 1

2 (I ) we refer the reader to Definition 2.22 and the

subsequent Remark 2.23. In particular, we have the embedding Ż− 1
2 (I ) ⊂ Z− 1

2 (I ). Moreover, a solution of the KP-II
equation (1) is understood to be a solution of the corresponding operator equation (53), compare Section 4.

Remark 1.4. Due to the time reversibility of the KP-II equation, the above theorems also hold in corresponding
intervals (T ,0), −∞ � T < 0. We denote the flow map with respect to (−∞,0) by F−.

Remark 1.5. For each u0 ∈ H− 1
2 ,0(R2) and δ > 0 there exists N > 0 such that ‖P�Nu0‖

Ḣ
− 1

2 ,0 < δ. We obviously

have the representation u0 = P�Nu0 + P<Nu0, thus u0 ∈ Bδ,R for some R > 0. However, the time of local existence
provided by Theorem 1.2 for large data may depend on the profile of the Fourier transform of u0, not only on its norm.

Remark 1.6. The well-posedness results above are presented purely at the critical level of regularity s = − 1
2 as this is

the most challenging case. As the reader will easily verify by the standard modification of our arguments, the estimates
also imply persistence of higher initial regularity.

A consequence of Theorem 1.1 is scattering for small data in Ḣ− 1
2 ,0(R2).
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Corollary 1.7. Let δ > 0 be as in Theorem 1.1. For every u0 ∈ Ḃδ there exists u± ∈ Ḣ− 1
2 ,0(R2) such that

F±(u0)(t) − etSu± → 0 in Ḣ− 1
2 ,0(R2) as t → ±∞.

The maps

V± : Ḃδ → Ḣ− 1
2 ,0(R2), u0 �→ u±

are analytic, respectively. For u0 ∈ L2(R2;R) ∩ Ḃδ we have∥∥V±(u0)
∥∥

L2 = ‖u0‖L2 .

Moreover, the local inverses, the wave operators

W± : Ḃδ → Ḣ− 1
2 ,0(R2), u± �→ u(0)

exist and are analytic, respectively. For u± ∈ L2(R2;R) ∩ Ḃδ we have

‖W±(u±)‖L2 = ‖u0‖L2 .

Remark 1.8. The proofs of the global well-posedness and scattering results for small data in Theorem 1.1 and Corol-
lary 1.7 do not rely on the sum structure of the resolution spaces used in [7]. The proof of Theorem 1.2, however, is
based on a similar construction adapted to the endpoint case s = − 1

2 , see (33).

1.1. Organization of the paper

At the end of this section we introduce some notation. In Section 2 we review function spaces related to the well-
posedness theory for non-linear dispersive PDE’s, with a focus on the recently introduced Up space in this context
due to D. Tataru and one of the authors, cp. [12,13] and references therein, as well as the closely related V p space due
to N. Wiener [24]. We believe that the techniques are useful and of independent interest. For that reason we devoted
a considerable effort to the presentation of the methods even though most of the details are implicitly contained in
[12,13]. Proposition 2.20 however seems to be new. In Section 3 we prove bilinear estimates related to the KP-II
equation. These are the main ingredients for the proofs of our main results, which are finally presented in Section 4.

1.2. Notation

The non-isotropic Sobolev spaces Hs1,s2(R2) and Ḣ s1,s2(R2) are spaces of complex valued temperate distributions,
defined via the norms

‖u‖Hs1,s2 :=
( ∫

R2

〈ξ 〉2s1〈η〉2s2
∣∣û(ξ, η)

∣∣2
dξ dη

) 1
2

, (4)

‖u‖Ḣ s1,s2 :=
( ∫

R2

|ξ |2s1 |η|2s2
∣∣û(ξ, η)

∣∣2
dξ dη

) 1
2

, (5)

respectively, where 〈ξ 〉2 = 1 + |ξ |2. The n-dimensional Fourier transform is defined as

û(μ) = F u(μ) = (2π)−
n
2

∫
Rn

e−ix·μu(x)dx

for u ∈ L1(Rn), and extended to S ′(Rn) by duality. For 1 � p � ∞ we define the dual exponent 1 � p′ � ∞ by

1

p
+ 1

p′ = 1.
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2. Function spaces and dispersive estimates

In this section we discuss properties of function spaces of Up and V p type [12,13,24]. In particular, we present
embedding results and a rigorous duality statement as well as interpolation properties and an extension lemma for
dispersive estimates. Though many aspects of these spaces are well known, the interpolation result of Proposition 2.20
seems to be new.

Let Z be the set of finite partitions −∞ = t0 < t1 < · · · < tK = ∞ and let Z0 be the set of finite partitions
−∞ < t0 < t1 < · · · < tK < ∞. In the following, we consider functions taking values in L2 := L2(Rd ;C), but in the
general part of this section L2 may be replaced by an arbitrary Hilbert space.

Definition 2.1. Let 1 � p < ∞. For {tk}Kk=0 ∈ Z and {φk}K−1
k=0 ⊂ L2 with

∑K−1
k=0 ‖φk‖p

L2 = 1 and φ0 = 0 we call the

function a : R → L2 given by

a =
K∑

k=1

1[tk−1,tk)φk−1

a Up-atom. Furthermore, we define the atomic space

Up :=
{

u =
∞∑

j=1

λjaj

∣∣∣ ajU
p-atom, λj ∈ C such that

∞∑
j=1

|λj | < ∞
}

with norm

‖u‖Up := inf

{ ∞∑
j=1

|λj |
∣∣∣ u =

∞∑
j=1

λjaj , λj ∈ C, aj Up-atom

}
. (6)

Proposition 2.2. Let 1 � p < q < ∞.

(i) Up is a Banach space.
(ii) The embeddings Up ⊂ Uq ⊂ L∞(R;L2) are continuous.

(iii) For u ∈ Up it holds limt↓t0 ‖u(t) − u(t0)‖L2 = 0, i.e. every u ∈ Up is right-continuous.
(iv) u(−∞) := limt→−∞ u(t) = 0, u(∞) := limt→∞ u(t) exists.
(v) The closed subspace U

p
c of all continuous functions in Up is a Banach space.

Proof. Part (i) is straightforward. The embedding Up ⊂ Uq follows immediately from 	p(N) ⊂ 	q(N). Uq ⊂
L∞(R;L2) (including the norm estimate) is obvious for atoms, hence also for general u ∈ Uq , and part (ii) follows.
This also proves that convergence in Uq implies uniform convergence, hence part (v). The right-continuity of part (iii)
now follows from the definition of atoms. It remains to prove (iv): Let u = ∑

n λnan and ε > 0. There is n0 ∈ N such
that

∑
n�n0+1 |λn| < ε. On the one hand, there exists T− < 0 such that an(t) = 0 for all t < T−, n = 1, . . . , n0, which

shows ‖u(t)‖L2 < ε for t < T−. On the other hand, there exists T+ > 0 such that an(t) = an(t
′) for all t, t ′ > T+,

n = 1, . . . , n0, which implies ‖u(t) − u(t ′)‖L2 < 2ε for t, t ′ > T+. �
The following spaces were introduced by N. Wiener [24].

Definition 2.3. Let 1 � p < ∞. We define V p as the normed space of all functions v : R → L2 such that v(∞) :=
limt→∞ v(t) = 0 and v(−∞) exists and for which the norm

‖v‖V p := sup
{tk}Kk=0∈Z

(
K∑

k=1

∥∥v(tk) − v(tk−1)
∥∥p

L2

) 1
p

(7)

is finite. Likewise, let V
p
− denote the normed space of all functions v : R → L2 such that v(−∞) = 0, v(∞) exists,

and ‖v‖V p < ∞, endowed with the norm (7).
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Proposition 2.4. Let 1 � p < q < ∞.

(i) Let v : R → L2 be such that

‖v‖V
p
0

:= sup
{tk}Kk=0∈Z0

(
K∑

k=1

∥∥v(tk) − v(tk−1)
∥∥p

L2

) 1
p

is finite. Then, it follows that v(t+0 ) := limt↓t0 v(t) exists for all t0 ∈ [−∞,∞) and v(t−0 ) := limt↑t0 v(t) exists
for all t0 ∈ (−∞,∞] and moreover,

‖v‖V p = ‖v‖V
p
0
.

(ii) We define the closed subspace V
p
rc (V p

−,rc) of all right-continuous V p functions (V p
− functions). The spaces V p ,

V
p
rc, V

p
− and V

p
−,rc are Banach spaces.

(iii) The embedding Up ⊂ V
p
−,rc is continuous.

(iv) The embeddings V p ⊂ V q and V
p
− ⊂ V

q
− are continuous.

Proof. Part (i) essentially can be found in [24], §1. Part (ii) is straightforward, the closedness follows from the fact
that V p convergence implies uniform convergence. Now, let us prove part (iii): Due to Proposition 2.2, parts (iii)
and (iv) it remains to show the norm estimate and it suffices to do so for a Up-atom a = ∑K

k=1 1[tk−1,tk)φk−1. Let
{sj }Jj=1 ∈ Z . Then, a(sj ) − a(sj−1) = φkj −1 − φkj−1−1, which is zero if kj = kj−1. It follows

J∑
j=1

∥∥a(sj ) − a(sj−1)
∥∥p

L2 � 2p
K∑

k=1

‖φk−1‖p

L2 � 2p,

which implies ‖a‖V p � 2. Part (iv) is implied by 	p(N) ⊂ 	q(N). �
Proposition 2.5. Let v ∈ V

p
−,rc such that ‖v‖V p = 1. For any n ∈ N0

(i) there exists tn ∈ Z such that t0 ⊂ t1 ⊂ · · · and #tn � 21+np ,
(ii) there exists a right-continuous step-function un subordinate to tn such that supt ‖un(t)‖L2 � 21−n,

(iii) there exists a vn ∈ V
p
−,rc such that supt ‖vn(t)‖L2 � 2−n,

(iv) it holds vn = un+1 + vn+1, u0 = 0, v0 = v.

Proof. We proceed by induction: For n = 0 we define tn := {−∞,∞}, u0 = 0 and v0 = v, hence all the claims are
immediate. For n ∈ N let tn := {−∞ = tn,0 < · · · < tn,Kn} and un, vn be given with the requested properties. Let
k ∈ {0, . . . ,Kn − 1}. For j = 0 we define t0

n+1,k := tn,k . For j � 1 we define

t
j

n+1,k := inf
{
t
∣∣ t

j−1
n+1,k < t � tn,k+1:

∥∥v(t) − v
(
t
j−1
n+1,k

)∥∥
L2 > 2−n−1}

if this set is non-empty and t
j

n+1,k := tn,k+1 otherwise.

Now, we relabel all these points {tjn+1,k}j,k as

−∞ = tn+1,0 < · · · < tn+1,Kn+1 = ∞
which defines the partition tn+1 ∈ Z . We define

un+1 :=
Kn+1∑
k=1

1[tn+1,k−1,tn+1,k)vn(tn+1,k−1)

vn+1 := vn − un+1.

For t ∈ R there exists k such that t ∈ [tn+1,k−1, tn+1,k) and it holds∥∥vn+1(t)
∥∥

L2 �
∥∥vn(t) − vn(tn+1,k−1)

∥∥
L2 � 2−n−1.

Moreover, 1 = ‖v‖p
p � (#tn+1 − #tn)2−(n+1)p and therefore #tn+1 � 21+(n+1)p . �
V
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Corollary 2.6. Let 1 � p < q < ∞. The embedding V
p
−,rc ⊂ Uq is continuous.

Proof. Let v ∈ V
p
−,rc with ‖v‖V p = 1. Then, by Proposition 2.5 there exist tn ∈ Z with #tn � 21+np and associated

step-functions un with supt ‖un(t)‖L2 � 21−n such that v(t) = ∑∞
n=0 un(t). Moreover, ‖un‖Uq � 4 · 2n(

p
q
−1), hence∑

n ‖un‖Uq � 4(1 − 2
p
q
−1

)−1. The claim follows since Uq is a Banach space. �
Proposition 2.7. For u ∈ Up and v ∈ V p′

and a partition t := {tk}Kk=0 ∈ Z we define

Bt(u, v) :=
K∑

k=1

〈
u(tk−1), v(tk) − v(tk−1)

〉
.

Here, 〈·,·〉 denotes the L2 inner product. There is a unique number B(u, v) with the property that for all ε > 0 there
exists t ∈ Z such that for every t′ ⊃ t it holds∣∣Bt′(u, v) − B(u, v)

∣∣ < ε, (8)

and the associated bilinear form

B: Up × V p′
: (u, v) �→ B(u, v)

satisfies the estimate∣∣B(u, v)
∣∣ � ‖u‖Up‖v‖

V p′ . (9)

Proof. First of all, we note the following: Let t = {tn}Nn=0 ∈ Z and let u be a step function u = ∑K
k=1 1[sk−1,sk)φk−1

subordinate to a partition s ∈ Z (not necessarily an atom), with φ0 = 0. For each tn ∈ t, n < N , there exists kn < K

such that skn � tn < skn+1. Then,

Bt(u, v) =
N∑

n=1

〈
φkn−1 , v(tn) − v(tn−1)

〉
. (10)

Now, if for some n it is kn−1 = kn, then〈
φkn−1 , v(tn) − v(tn−1)

〉 + 〈
φkn, v(tn+1) − v(tn)

〉 = 〈
φkn−1 , v(tn+1) − v(tn−1)

〉
which shows that we may remove such tn from the partition t which gives rise to a partition t∗ ⊂ t. In summary, we
may write

Bt(u, v) =
N∗∑
n=1

〈
φk∗

n−1
, v(t∗n ) − v(t∗n−1)

〉
(11)

where now 0 � k∗
0 < · · · < k∗

N∗−1 < K .
Let t ∈ Z be given. Assume a is a Up-atom. Obviously, (11) and Hölder’s inequality imply∣∣Bt(a, v)

∣∣ � ‖v‖
V p′ ,

for all v ∈ V p′
. Hence,∣∣Bt(u, v)
∣∣ � ‖u‖Up‖v‖

V p′ ,

for all u ∈ Up and v ∈ V p′
.

Now, let u ∈ Up and v ∈ V p′
and ε > 0. Let u = ∑∞

l=1 λlal be an atomic decomposition such that
∑∞

l=n+1 |λl | <

ε/(2‖v‖
V p′ ). We define the approximating step function un = ∑n

l=1 λlal and let t ∈ Z be the subordinate partition.
Then, for all t′ ∈ Z with t ⊂ t′ it follows as in (11) that
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∣∣Bt′(u, v) − Bt(u, v)
∣∣ �

∣∣Bt′(u, v) − Bt′(un, v)
∣∣ + ∣∣Bt(un, v) − Bt(u, v)

∣∣
� 2‖u − un‖Up‖v‖

V p′

� 2
∞∑

l=n+1

|λl |‖v‖
V p′ < ε.

Therefore, for a given j ∈ N there exists t(j) ∈ Z such that for all t′ ∈ Z with t(j) ⊂ t′∣∣Bt′(u, v) − Bt(j) (u, v)
∣∣ < 2−j ,

and with t ′ = t(j) ∪ t(j+1) it follows∣∣Bt(j+1) (u, v) − Bt(j) (u, v)
∣∣ < 21−j .

Hence, limj→∞ Bt(j) (u, v) =: B(u, v) exists and (8) and (9) are satisfied. Property (8) also implies the uniqueness. �
Theorem 2.8. Let 1 < p < ∞.We have(

Up
)∗ = V p′

in the sense that

T :V p′ → (Up)∗, T (v) := B(·, v) (12)

is an isometric isomorphism.

Proof. In view of (9) it suffices to show that for each L ∈ (Up)∗ there is v ∈ V p′
such that T (v)(u) = L(u)

and ‖v‖
V p′ � ‖L‖. To this end, let 0 �= L ∈ (Up)∗. For t fixed we have φ �→ −L(1[t,∞)φ) ∈ (L2)∗, hence

there exists ṽ(t) ∈ L2 such that L(1[t,∞)φ) = −〈φ, ṽ(t)〉 for all φ ∈ L2. Fix a partition {tk}Kk=0 ∈ Z0 and define

u := ∑K
k=1 1[tk−1,tk)φk−1 with

φk−1 := (ṽ(tk) − ṽ(tk−1))‖ṽ(tk) − ṽ(tk−1)‖p′−2
L2

(
∑K

k=1 ‖ṽ(tk) − ṽ(tk−1)‖p′
L2)

1
p

.

Then, ‖u‖Up � 1 and

‖L‖ �
∣∣∣∣∣

K∑
k=1

L(1[tk−1,tk)φk−1)

∣∣∣∣∣ =
∣∣∣∣∣

K∑
k=1

L(1[tk−1,∞)φk−1) − L(1[tk ,∞)φk−1)

∣∣∣∣∣
=

∣∣∣∣∣
K∑

k=1

〈
φk−1, ṽ(tk) − ṽ(tk−1)

〉∣∣∣∣∣ =
(

K∑
k=1

∥∥ṽ(tk) − ṽ(tk−1)
∥∥p′

L2

) 1
p′

,

which shows that ‖ṽ‖
V

p′
0

� ‖L‖ and that lims→±∞ ṽ(s) exists due to Proposition 2.4, part (i). For v(t) := ṽ(t)− ṽ(∞)

it follows v ∈ V p′
and

‖v‖
V p′ � ‖L‖.

It remains to show that T (v)(u) = L(u) for all u ∈ Up: For a step function u = ∑K
k=1 1[tk−1,tk)φk−1 with underlying

partition t we have

T (v)(u) = Bt(u, v) =
K∑

k=1

〈
φk−1, v(tk) − v(tk−1)

〉
=

K∑
k=1

L(1[tk−1,tk)φk−1) = L(u)

and the claim follows by density and (9). �
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Proposition 2.9. For 1 < p < ∞ let u ∈ Up be continuous and v, v∗ ∈ V p′
such that v(s) = v∗(s) except for at most

countably many points. Then,

B(u, v) = B(u, v∗).

Proof. For w := v − v∗ it holds that w(s) = 0 except for at most countably many points. We have to show that
B(u,w) = 0. We may assume ‖u‖Up = ‖w‖

V p′ = 1. For ε > 0 there exists t = {tk}Kk=0 ∈ Z such that for every t′ ⊃ t:∣∣Bt′(u,w) − B(u,w)
∣∣ < ε.

Since u is continuous, there exists δ > 0 such that for all k ∈ {1, . . . ,K − 1} and s ∈ (tk − δ, tk) it holds ‖u(s) −
u(tk)‖L2 < ε

K
. For all k ∈ {1, . . . ,K − 1} we choose t∗k ∈ (tk − δ, tk) such that t∗k > tk−1 and w(t∗k ) = 0 and set

t′ = t ∪ {
t∗1 , . . . , t∗K−1

}
.

Summation by parts yields

Bt′(u,w) =
K−1∑
k=1

〈
u(t∗k ) − u(tk),w(tk)

〉
.

Hence, |B(u,w)| < |Bt′(u,w)| + ε < 2ε. �
Proposition 2.10. Let 1 < p < ∞, u ∈ V 1− be absolutely continuous on compact intervals and v ∈ V p′

. Then,

B(u, v) = −
∞∫

−∞

〈
u′(t), v(t)

〉
dt. (13)

Proof. Without loss of generality we may assume ‖u‖V 1 = ‖v‖
V p′ = 1. By Corollary 2.6 we have u ∈ Up , so that the

left-hand side of (13) makes sense. From our assumptions on u it follows that u′ ∈ L1(R;L2) with ‖u′‖L1 � ‖u‖V 1 =
1 and that the Fundamental Theorem of Calculus is valid (cf. for example [5], Corollaries 2.9.20 and 2.9.22). Because
u is continuous and v is left-continuous except for at most countably many points, it suffices by Proposition 2.9 to
consider left-continuous v ∈ V p′

. For ε > 0 there exists t = {tn}Nn=0 ∈ Z such that for every t′ ⊃ t the estimate (8) is
satisfied. Furthermore, there exists T1 � t1 and T2 � tN−1 such that ‖v(t)− v(T1)‖L2 < ε for t � T1 and ‖v(t)‖L2 < ε

for t � T2. Since v is a left-continuous, regulated function on [T1, T2], there exists t′ = {t ′n}N ′
n=0 ⊃ t such that t ′1 = T1

and t ′
N ′−1 = T2 and

‖v − w‖L∞ < ε, for w :=
N ′−1∑
n=1

v
(
t ′n

)
1(t ′n−1,t

′
n].

Now, estimate (8) and summation by parts yield∣∣∣∣∣−
N ′−1∑
n=1

〈
u
(
t ′n

) − u
(
t ′n−1

)
, v

(
t ′n

))〉 − B(u, v)

∣∣∣∣∣ < ε.

By the Fundamental Theorem of Calculus and the definition of w we have for n ∈ {1, . . . ,N ′ − 1}:

〈
u
(
t ′n

) − u
(
t ′n−1

)
, v

(
t ′n

)〉 = t ′n∫
t ′n−1

〈
u′(s),w(s)

〉
ds.

Altogether, we obtain∣∣∣∣∣−
∞∫

−∞

〈
u′(s), v(s)

〉
ds − B(u, v)

∣∣∣∣∣ < ‖u′‖L1‖v − w‖L∞ + ε < 2ε,

which finishes the proof. �
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Remark 2.11. For u ∈ Up it is clear that

‖u‖Up = sup
v∈V p′ : ‖v‖

V p′ =1

∣∣B(u, v)
∣∣

by Theorem 2.8. Although we will not use it in the sequel, let us remark that for u ∈ V 1− which is absolutely continuous
on compact intervals it holds

‖u‖Up = sup
v∈V

p′
c :‖v‖

V p′ =1

∣∣B(u, v)
∣∣,

where V
p′
c is the set of all continuous functions in V p′

(which is obviously not dense). This may be seen as follows:

By Proposition 2.10 we may restrict the supremum to V
p′
rc . Then, we may restrict this further to the dense subset of the

right-continuous step-functions Trc. Finally, we may replace Trc by V
p′
c by substituting jumps in a piecewise linear

and continuous way with the help of (13).

Remark 2.12. For v ∈ V p Theorem 2.8 also implies

‖v‖V p = sup
u Up′-atom

∣∣B(u, v)
∣∣

for 1 < p < ∞.

We will use the convention that capital letters denote dyadic numbers, e.g. N = 2n for n ∈ Z and for a dyadic
summation we write

∑
N aN := ∑

n∈Z
a2n and

∑
N�M aN := ∑

n∈Z:2n�M a2n for brevity. Let χ ∈ C∞
0 ((−2,2)) be

an even, non-negative function such that χ(t) = 1 for |t | � 1. We define ψ(t) := χ(t) − χ(2t) and ψN := ψ(N−1·).
Then,

∑
N ψN(t) = 1 for t �= 0. We define

Q̂Nu := ψNû

and Q̂0u = χ(2·)û, Q�M = ∑
N�M QN as well as Q<M = I − Q�M .

Definition 2.13. Let s ∈ R and 1 � p,q � ∞. We define the semi-norms

‖u‖Ḃs
p,q

:=
(∑

N

Nqs‖QNu‖q

Lp(R;L2)

) 1
q

(q < ∞),

‖u‖Ḃs
p,∞ := sup

N

Ns‖QNu‖Lp(R;L2) (14)

for all u ∈ S ′(R;L2) for which these numbers are finite.

Proposition 2.14. Let 1 < p < ∞. For any v ∈ V p , the estimate

‖v‖
Ḃ

1
p
p,∞

� ‖v‖V p (15)

holds true. Moreover, for any u ∈ S ′(R;L2) such that the semi-norm ‖u‖
Ḃ

1
p
p,1

is finite there exists u(±∞) ∈ L2. Then,

u − u(−∞) ∈ Up and the estimate∥∥u − u(−∞)
∥∥

Up � ‖u‖
Ḃ

1
p
p,1

(16)

holds true.

Proof. Concerning (15), see e.g. Example 9 in [15], pp. 167–168. Now, the second part follows by duality: Let
u ∈ S ′(R;L2) such that ‖u‖

Ḃ

1
p
p,1

< ∞ and we consider QNu ∈ Lp(R;L2), which is smooth. Hence, QNu ∈ Up .

Then,
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‖QNu‖Up = sup
‖L‖(Up)∗=1

∣∣L(QNu)
∣∣ = sup

‖v‖
V p′ =1

∣∣B(QNu,v)
∣∣ = sup

‖v‖
V p′ =1

∣∣∣∣∣
∞∫

−∞

〈
QNu′(t), v(t)

〉
dt

∣∣∣∣∣
� sup

‖v‖
V p′ =1

‖QNu‖
Ḃ

1
p
p,1

‖v‖
Ḃ

1
p′
p′,∞

� N
1
p ‖QNu‖Lp ,

and it follows that ũ := ∑
N QNu converges in Up and ‖ũ‖Up � ‖u‖

Ḃ

1
p
p,1

. It is ‖u − ũ‖
Ḃ

1
p
p,1

= 0, hence u = ũ + const

and the claim follows. �
Now, we focus on the spatial dimension d = 2 (i.e. L2 = L2(R2;C)) and consider S := −∂3

x − ∂−1
x ∂2

y . We define

the associated unitary operator etS : L2 → L2 to be the Fourier multiplier

êtSu0(ξ, η) = exp

(
it

(
ξ3 − η2

ξ

))
û0(ξ, η).

Definition 2.15. We define

(i) U
p
S = e·SUp with norm ‖u‖U

p
S

= ‖e−·Su‖Up ,

(ii) V
p
S = e·SV p with norm ‖v‖V

p
S

= ‖e−·Su‖V p ,

and similarly the closed subspaces U
p
c,S , V

p
rc,S , V

p
−,S and V

p
−,rc,S .

Let us note that for S defined above these spaces are invariant under complex conjugation, because the symbol of
S is an odd function.

We define the smooth projections

P̂Nu(τ, ξ, η) := ψN(ξ)û(τ, ξ, η),

Q̂S
Mu(τ, ξ, η) := ψM

(
τ − ξ3 + η2ξ−1)û(τ, ξ, η),

as well as P̂0u(τ, ξ, η) := χ(2ξ)û(τ, ξ, η), QS
�M

:= ∑
N�M QS

N , and QS
<M := I − QS

�M
. Note that we have

QS
M = e·SQMe−·S (17)

and similarly for QS
�M

and QS
<M := I − QS

�M
.

Definition 2.16. Let s, b ∈ R and 1 � q � ∞. We define the semi-norms

‖u‖Ẋs,b,q :=
(∑

N

N2s
∥∥e−·SPNu

∥∥2
Ḃb

2,q

) 1
2

(18)

for all u ∈ S ′(R;L2) for which these numbers are finite.

Remark 2.17. Roughly speaking, the spaces U2
S and V 2−,S serve as substitutes for the corresponding Bourgain spaces

Ẋ0, 1
2 ,1 and Ẋ0, 1

2 ,∞ — which shall be defined for the purpose of this remark by the above semi-norms with the
normalization u(−∞) = 0 — in the sense that the embeddings

Ẋ0, 1
2 ,1 ⊂ U2

S ⊂ V 2−,S ⊂ Ẋ0, 1
2 ,∞

are continuous, cp. [13, Eq. (2.5)]. This is an immediate consequence of Proposition 2.14 and part (iii) of Proposi-
tion 2.4.
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We may identify u ∈ S ′(R;L2) with a subset of S ′(R3) and

‖u‖Ẋs,b,q =
(∑

N

N2s

(∑
M

Mbq
∥∥PNQS

Mu
∥∥q

L2(R3)

) 2
q
) 1

2

with the obvious modification in the case q = ∞.

Corollary 2.18. We have∥∥QS
Mu

∥∥
L2(R3)

� M− 1
2 ‖u‖V 2

S
, (19)∥∥QS

�Mu
∥∥

L2(R3)
� M− 1

2 ‖u‖V 2
S
, (20)∥∥QS

<Mu
∥∥

V
p
S

� ‖u‖V
p
S
,

∥∥QS
�Mu

∥∥
V

p
S

� ‖u‖V
p
S
, (21)∥∥QS

<Mu
∥∥

U
p
S

� ‖u‖U
p
S
,

∥∥QS
�Mu

∥∥
U

p
S

� ‖u‖U
p
S
. (22)

Proof. By (17) and Definition 2.15, we see that (19) follows from

‖QMv‖L2(R3) � M− 1
2 ‖v‖V 2 (23)

and similarly for (20)–(22). Now, (23) is just a reformulation of the Besov embedding (15). Furthermore, (23) implies
that

‖Q�Mv‖L2(R3) � ‖v‖V 2

∑
N�M

N− 1
2

and (20) follows from
∑

N�M N− 1
2 � M− 1

2 . We only need to prove the left inequalities of (21) and (22) because of
Q�M = I − Q<M . By scaling it suffices to show (21) and (22) for M = 1 only. We have Q<1v = φ ∗ v for some
Schwartz function φ. Due to the Riemann–Lebesgue Lemma, Q<1(±∞) = 0. For {tk}Kk=0 ∈ Z0 we apply Minkowski’s
inequality(

K∑
k=1

∥∥Q<1v(tk) − Q<1v(tk−1)
∥∥p

L2

) 1
p

�
(

K∑
k=1

(∫
R

∣∣φ(s)
∣∣∥∥v(tk − s) − v(tk−1 − s)

∥∥
L2 ds

)p
) 1

p

�
∫
R

∣∣φ(s)
∣∣( K∑

k=1

∥∥v(tk − s) − v(tk−1 − s)
∥∥p

L2

) 1
p

ds � ‖φ‖L1(R)‖v‖V p

which implies (21). Let us finally prove (22):

‖Q<1u‖Up = sup
‖L‖(Up)∗=1

∣∣L(φ ∗ u)
∣∣ = sup

‖v‖
V p′ =1

∣∣B(φ ∗ u,v)
∣∣

with φ as above. For given t = {tk}Kk=0 ∈ Z we obtain

∣∣Bt(φ ∗ u,v)
∣∣ �

∣∣∣∣∣
K−1∑
k=1

〈
(φ ∗ u)(tk−1), v(tk) − v(tk−1)

〉∣∣∣∣∣ �
∫
R

∣∣φ(s)
∣∣∣∣∣∣∣

K−1∑
k=1

〈
u(tk−1 − s), v(tk) − v(tk−1)

〉∣∣∣∣∣ds

� ‖φ‖L1(R)‖u‖Up‖v‖
V p′ .

Since this bound is independent of t, (22) follows. �
Similarly to [13], Corollary 3.3 or [21], Lemma 4.1 we have the following general extension result, which is well

known at least for Bourgain type spaces (cp. [6], Lemma 2.3):
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Proposition 2.19. Let

T0 :L2 × · · · × L2 → L1
loc

(
R2;C

)
be a n-linear operator.

(i) Assume that for some 1 � p,q � ∞
∥∥T0

(
e·Sφ1, . . . , e

·Sφn

)∥∥
L

p
t (R;Lq

x,y(R2))
�

n∏
i=1

‖φi‖L2 .

Then, there exists T : Up
S × · · · × U

p
S → L

p
t (R;Lq

x,y(R
2)) satisfying

∥∥T (u1, . . . , un)
∥∥

L
p
t (R;Lq

x,y (R2))
�

n∏
i=1

‖ui‖U
p
S
,

such that T (u1, . . . , un)(t)(x, y) = T0(u1(t), . . . , un(t))(x, y) a.e.
(ii) Assume that for some 1 � p,q � ∞

∥∥T0
(
e·Sφ1, . . . , e

·Sφn

)∥∥
L

q
x(R;Lp

t,y (R2))
�

n∏
i=1

‖φi‖L2 .

For r := min(p, q) there exists T :Ur
S × · · · × Ur

S → L
q
x(R;Lp

t,y(R
2)) satisfying

∥∥T (u1, . . . , un)
∥∥

L
q
x(R;Lp

t,y (R2))
�

n∏
i=1

‖ui‖Ur
S
,

such that T (u1, . . . , un)(x)(t, y) = T0(u1(t), . . . , un(t))(x, y) a.e.

Proof. Concerning part (i), we define

T (u1, . . . , un)(t)(x, y) = T0
(
u1(t), . . . , un(t)

)
(x, y).

Let a1, . . . , an be U
p
S -atoms given as

ai =
Ki∑

ki=1

1[tki−1,i ,tki ,i )
e·Sφki−1,i

such that
∑Ki

ki=1 ‖φki−1,i‖p

L2 = 1 and φ0,i = 0. Then, we use Hölder’s inequality

∥∥T (a1, . . . , an)
∥∥

L
p
t (R;Lq

x,y (R2))
�

∥∥∥∥∥ ∑
k1,...,kn

n∏
i=1

1[tki−1,i ,tki ,i )

∥∥T0
(
etSφk1−1,1, . . . , e

tSφkn−1,n

)∥∥
L

q
x,y (R2)

∥∥∥∥∥
L

p
t (R)

�
( ∑

k1,...,kn

∥∥T0
(
etSφk1−1,1, . . . , e

tSφkn−1,n

)∥∥p

L
p
t (R;Lq

x,y (R2))

) 1
p

�
( ∑

k1,...,kn

n∏
i=1

‖φki−1,i‖p

L2(R2)

) 1
p

= 1

and the claim follows. Now, we turn to the proof of part (ii): We define

T (u1, . . . , un)(x)(t, y) = T0
(
u1(t), . . . , un(t)

)
(x, y).

Let a1, . . . , an be Ur -atoms for r = min(p, q). Then, by Hölder’s and Minkowski’s inequality (here we use r � p,q)
S
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∥∥T (a1, . . . , an)
∥∥

L
q
x(R;Lp

t,y (R2))
�

∥∥∥∥( ∑
k1,...,kn

∣∣T0
(
etSφk1−1,1, . . . , e

tSφkn−1,n

)∣∣r) 1
r
∥∥∥∥

L
q
x(R;Lp

t,y (R2))

�
( ∑

k1,...,kn

∥∥T0
(
etSφk1−1,1, . . . , e

tSφkn−1,n

)∥∥r

L
q
x (R;Lp

t,y (R2))

) 1
r

�
( ∑

k1,...,kn

n∏
i=1

‖φki−1,i‖r
L2(R2)

) 1
r

= 1

and the claim follows. �
Proposition 2.20. Let q > 1, E be a Banach space and T :Uq

S → E be a bounded, linear operator with ‖T u‖E �
Cq‖u‖U

q
S

for all u ∈ U
q
S . In addition, assume that for some 1 � p < q there exists Cp ∈ (0,Cq ] such that the estimate

‖T u‖E � Cp‖u‖U
p
S

holds true for all u ∈ U
p
S . Then, T satisfies the estimate

‖T u‖E � 4Cp

αp,q

(
ln

Cq

Cp

+ 2αp,q + 1

)
‖u‖V

p
S
, u ∈ V

p
−,rc,S

where αp,q = (1 − p
q
) ln(2).

Proof. Let v ∈ V
p
−,rc,S be such that ‖v‖V

p
S

= 1. Due to Proposition 2.5 there exists un ∈ Ur for all r � 1 such that

v = ∑∞
n=1 un in Uq and ‖un‖Ur

S
� 4 · 2n(

p
r
−1). For N ∈ N it follows ‖∑N

n=1 un‖U
p
S

� 4N and ‖∑∞
n=N+1 un‖U

q
S

�
4 · 2−N(1− p

q
). We obtain the estimate

‖T v‖E � 4CpN + 4Cq2−N(1− p
q
)
.

Minimizing with respect to N ∈ N gives the desired upper bound. �
Corollary 2.21. We have

‖u‖L4(R3) � ‖u‖U4
S
, (24)

‖u‖L4(R3) � ‖u‖V
p
−,S

(1 � p < 4), (25)

‖∂xu‖L∞
x (R;L2

t,y (R2)) � ‖u‖U2
S
, (26)

‖PN1u1PN2u2‖L2(R3) �
(

N1

N2

) 1
2 ‖PN1u1‖U2

S
‖PN2u2‖U2

S
. (27)

Moreover, for N2 � N1 and u1, u2 ∈ V 2−,S it holds

‖PN1u1PN2u2‖L2(R3) �
(

N1

N2

) 1
2
(

ln

(
N2

N1

)
+ 1

)2

‖PN1u1‖V 2
S
‖PN2u2‖V 2

S
. (28)

Proof. Proposition 2.3 of [17] and Lemma 3.2 of [10] show that the estimates (24) and (26) hold true for free solutions.
Thus, the claims (24) and (26) follow from Proposition 2.19. Then, (25) follows from Corollary 2.6 and the observation
that v ∈ V

p
−,S coincides a.e. with its right-continuous variant. In order to prove (27), let ui = etSφi (i = 1,2) be free

solutions, φi ∈ L2(R2). With the smooth cutoff in time χ we obtain

‖PN1u1PN2u2‖L2([−1,1]×R2) � ‖χPN1u1χPN2u2‖L2(R3) �
(

N1
) 1

2 ‖PN1φ1‖L2‖PN2φ2‖L2

N2
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which is an immediate consequence of [7], Theorem 3.3 (this is implicitly contained in the earlier work [20]). By
rescaling it follows

‖PN1u1PN2u2‖L2(R3) �
(

N1

N2

) 1
2 ‖PN1φ1‖L2‖PN2φ2‖L2

and we may apply Proposition 2.19.
Now, the estimate (28) follows from interpolation between (24) and (27) via Proposition 2.20. Indeed, we first

consider the operator T1 :u2 �→ P̃N1u1P̃N2u2, where P̃Ni
= PNi/2 + PNi

+ P2Ni
, such that P̃Ni

PNi
= PNi

, and obtain
the bounds

‖T1‖U4
S→L2 � ‖u1‖U2

S
, ‖T1‖U2

S→L2 �
(

N1

N2

) 1
2 ‖u1‖U2

S
,

by (24) combined with U2
S ⊂ U4

S and (27). Proposition 2.20 implies

‖P̃N1u1P̃N2u2‖L2 �
(

N1

N2

) 1
2
(

ln

(
N2

N1

)
+ 1

)
‖u1‖U2

S
‖u2‖V 2

S
. (29)

Second, we consider the operator T2 : u1 �→ P̃N1u1P̃N2u2. Then, using (24) and (29) we obtain

‖T2‖U4
S→L2 � ‖u2‖V 2

S
, ‖T2‖U2

S→L2 �
(

N1

N2

) 1
2
(

ln

(
N2

N1

)
+ 1

)
‖u2‖V 2

S
,

where we also used the embedding V 2−,rc,S ⊂ U4
S . Now, we apply Proposition 2.20 again to deduce

‖P̃N1u1P̃N2u2‖L2 �
(

N1

N2

) 1
2
(

ln

(
N2

N1

)
+ 1

)2

‖u1‖V 2
S
‖u2‖V 2

S

for all u1, u2 ∈ V 2−,rc,S . Finally, we apply this estimate to PNi
ui instead of ui and observe that both sides do not

change if we replace ui ∈ V 2−,S by its right-continuous variant and (28) follows. �
Definition 2.22. Let s � 0.

(i) Define Ẏ s as the closure of all u ∈ C(R;H 1,1(R2)) ∩ V 2−,rc,S such that

‖u‖Ẏ s :=
(∑

N

N2s‖PNu‖2
V 2

S

) 1
2

< ∞, (30)

in the space C(R; Ḣ s,0(R2)) with respect to the ‖ · ‖Ẏ s -norm.
(ii) Define Żs as the closure of all u ∈ C(R;H 1,1(R2)) ∩ U2

S such that

‖u‖Żs :=
(∑

N

N2s‖PNu‖2
U2

S

) 1
2

< ∞, (31)

in the space C(R; Ḣ s,0(R2)) with respect to the ‖ · ‖Żs -norm.
(iii) Define X as the closure of all u ∈ C(R;H 1,1(R2)) ∩ U2

S such that

‖u‖X := ‖u‖Ż0 + ‖u‖Ẋ0,1,1 < ∞, (32)

in the space C(R;L2(R2)) with respect to the ‖ · ‖X-norm. Define Zs := Żs + X, with norm

‖u‖Zs = inf
{‖u1‖Żs + ‖u2‖X | u = u1 + u2

}
. (33)

Remark 2.23. Let E be a Banach space of continuous functions f : R → H , for some Hilbert space H . We also
consider the corresponding restriction space to the interval I ⊂ R by

E(I) = {
u ∈ C(I,H)

∣∣ ∃ũ ∈ E: ũ(t) = u(t), t ∈ I
}

endowed with the norm ‖u‖E(I) = inf{‖ũ‖E | ũ : ũ(t) = u(t), t ∈ I }. Obviously, E(I) is also a Banach space.
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Proposition 2.24.

(i) Let T > 0 and u ∈ Ẏ s([0, T ]), u(0) = 0. Then, for every ε > 0 there exists 0 � T ′ � T such that ‖u‖Ẏ s ([0,T ′]) < ε.

(ii) Let T > 0 and u ∈ Żs([0, T ]), u(0) = 0. Then, for every ε > 0 there exists 0 � T ′ � T such that ‖u‖Żs ([0,T ′]) < ε.

Proof. It is enough to consider s = 0. Assume u ∈ Ẏ 0([0, T ]) with u(0) = 0 and let ũ ∈ Ẏ 0 be an extension. There
exists a decomposition ũ = ũh + ũr with

ũh =
∑

M0�N�M1

PNũ, ‖ũr‖Ẏ 0 < ε. (34)

Due to the right-continuity of ũh there exists 0 < T0 � T such that

‖ũh‖L∞([0,T0];L2) < ε.

Moreover, there exists t = {tk}Kk=0 ∈ Z such that 0 ∈ t and(
K∑

k=1

∥∥e−tkS ũh(tk) − e−tk−1Sũh(tk−1)
∥∥2

L2

) 1
2

> ‖ũh‖V 2
S

− ε.

We define T ′ := min{tk | tk > 0} and the continuous extension

ũh,T ′ := 1[0,T ′)ũh + 1[T ′,∞)ũh(T
′). (35)

Then, ‖ũh,T ′ ‖V 2
S

< ε. Finally,

‖uh‖Ẏ 0([0,T ′]) � ‖ũh,T ′ ‖Ẏ 0 �
( ∑

M0/2�N�2M1

‖PNũh,T ′ ‖2
V 2

S

) 1
2

� ε.

In order to prove part (ii) let us assume that u ∈ Ż0([0, T ]) with u(0) = 0 and let ũ ∈ Ż0 be an extension. We perform
a similar decomposition as in (34). Since ũh ∈ U2

S , we have an atomic decomposition

ũh =
∞∑

k=1

λke
·Sak such that

∞∑
k=k0+1

|λk| < ε.

There exists 0 < T ′ � T , such that all ak (k = 1, . . . , k0) are constant on [0, T ′]. Define λ0 = ‖∑k0
k=1 λkak(0)‖L2 and

φ = λ−1
0

∑k0
k=1 λkak(0) as well as the atom a0 = 1[0,∞)φ. Then,

λ0 =
∥∥∥∥∥u(0) −

∞∑
k=k0+1

λkak(0)

∥∥∥∥∥
L2

�
∞∑

k=k0+1

|λk| < ε.

For f (t) := λ0e
tSa0(t)+∑∞

k=k0+1 λke
tSak(t), we define the continuous function fT ′ = 1[0,T ′)f +1[T ′,∞)f (T ′−). It

holds uh(t) = ũh(t) = fT ′(t) for t ∈ [0, T ′] and therefore ‖uh‖Ż0([0,T ′]) � ‖fT ′ ‖Ż0 � ε. �
3. Bilinear estimates

Let T ∈ (0,∞]. In the following, we will give estimates on the Duhamel term

IT (u1, u2)(t) :=
t∫

0

1[0,T )e
(t−t ′)S∂x(u1u2)(t

′) dt ′, (36)

which is initially defined on C(R;H 1,1(R2)), and the estimates will eventually allow us to extend this bilinear operator
to larger function spaces.
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3.1. The homogeneous case

We start with an estimate on dyadic pieces. For a dyadic number N let AN := {(τ, ξ, η) | 1
2N � |ξ | � 2N}.

Proposition 3.1. There exists C > 0, such that for all T > 0 and functions uN1 , vN2,wN3 ∈ V 2−,S satisfying supp ûN1 ⊂
AN1 , supp v̂N2 ⊂ AN2 , supp ŵN2 ⊂ AN3 for dyadic numbers N1,N2,N3 the following holds true:

If N2 ∼ N3, then∣∣∣∣∣ ∑
N1�N2

T∫
0

∫
R2

uN1vN2wN3 dx dy dt

∣∣∣∣∣ � C

( ∑
N1�N2

N−1
1 ‖uN1‖2

V 2
S

) 1
2

N
− 1

2
2 ‖vN2‖V 2

S
N

− 1
2

3 ‖wN3‖V 2
S
, (37)

and if N1 ∼ N2, then( ∑
N3�N2

N3 sup
‖wN3 ‖

V 2
S

=1

∣∣∣∣∣
T∫

0

∫
R2

uN1vN2wN3 dx dy dt

∣∣∣∣∣
2) 1

2

� CN
− 1

2
1 ‖uN1‖V 2

S
N

− 1
2

2 ‖vN2‖V 2
S
. (38)

Proof. We define ũN1 = 1[0,T )uN1 , ṽN2 = 1[0,T )vN2, w̃N3 = 1[0,T )wN3 . Then, we decompose Id = Q<M + Q�M ,
where M will be chosen later, and we divide the integrals on the left-hand side of (37) into eight pieces of the form∫

R3

QS
1 ũN1Q

S
2 ṽN2Q

S
3 w̃N3 dx dy dt

with QS
i ∈ {QS

�M
,QS

<M}, i = 1,2,3. These are well-defined because of the L4 Strichartz estimate (25) and (21).

Let us first consider the case QS
i = QS

<M for 1 � i � 3. By using Plancherel’s Theorem we see∫
R3

QS
<MũN1Q

S
<MṽN2Q

S
<Mw̃N3 dx dy dt = c

(
Q̂S

<MũN1 ∗ Q̂S
<MṽN2 ∗ ̂QS

<Mw̃N3

)
(0). (39)

Now, if we let μi = (τi, ξi, ηi), i = 1,2,3, be the Fourier variables corresponding to Q̂S
<MũN1 , Q̂S

<MṽN2 , and
̂QS
<Mw̃N3 respectively, then the only frequencies which contribute to (39) are those for which we have μ1 + μ2 +

μ3 = 0. For λi = τi −ξ3
i + η2

i

ξi
, i = 1,2,3, we have that |λi | < M within the domain of integration because of the cutoff

operator QS
<M . We also have |ξi | � Ni/2 due to the cut off operators PNi

. By the well-known resonance identity

λ1 + λ2 + λ3 = 3ξ1ξ2ξ3 + (ξ2η1 − η2ξ1)
2

ξ1ξ2ξ3
, (40)

we get

1

8
N1N2N3 � |ξ1||ξ2||ξ3| � max

(|λ1|, |λ2|, |λ3|
)
< M (41)

within the domain of integration. Therefore, if we set M = 8−1N1N2N3 (our notation suppresses the dependence on
N1,N2,N3), it follows that∫

R3

QS
<MũN1Q

S
<MṽN2Q

S
<Mw̃N3 dx dy dt = 0.

So, let us now consider the case that QS
i = QS

�M
for some 1 � i � 3 and start with the case i = 1. Using the L4

Strichartz estimate (25) we obtain for QS
2 ,QS

3 ∈ {QS
�M

,QS
<M}∣∣∣∣ ∑

N1�N2

∫
3

QS
�MũN1Q

S
2 ṽN2Q

S
3 w̃N3 dx dy dt

∣∣∣∣

R
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�
∥∥∥∥ ∑

N1�N2

QS
�MũN1

∥∥∥∥
L2(R3)

∥∥QS
2 ṽN2

∥∥
L4(R3)

∥∥QS
3 w̃N3

∥∥
L4(R3)

� C

( ∑
N1�N2

1

N1N2N3
‖ũN1‖2

V 2
S

) 1
2 ∥∥QS

2 ṽN2

∥∥
V 2

S

∥∥QS
3 w̃N3

∥∥
V 2

S
, (42)

where we used the L2-orthogonality and (20) on the first factor. Now, we exploit (21) and

‖1[0,T )f ‖V 2
S

� 2‖f ‖V 2
S
, f ∈ V 2

S

and the claim is proved.
We turn to the case i = 2. Using the interpolated bilinear Strichartz estimate (28) and Corollary 2.18, we find for

QS
1 ,QS

3 ∈ {QS
�M

,QS
<M}∣∣∣∣ ∫

R3

QS
1 ũN1Q

S
�MṽN2Q

S
3 w̃N3 dx dy dt

∣∣∣∣ �
∥∥QS

�MṽN2

∥∥
L2(R3)

(
N1

N3

) 1
4 ∥∥QS

1 ũN1

∥∥
V 2

S

∥∥QS
3 w̃N3

∥∥
V 2

S

� C

(N1N2N3)
1
2

‖vN2‖V 2
S

(
N1

N3

) 1
4 ‖uN1‖V 2

S
‖wN3‖V 2

S

which is easily summed up with respect to N1 � N2, because N2 ∼ N3.
Finally, the case i = 3 is proved in exactly the same way as i = 2 and the proof of (37) is complete.
In order to prove (38), we use the same decomposition as above. The case i = 1,2, i.e. if the modulation on the

first or second factor is high, we use the bilinear Strichartz estimate (28) and the claim follows similar to the case
i = 2,3 above. It remains to consider the case i = 3, where the modulation on the third factor is high. Let PN3 be the
projection operator onto the set AN3 , which is symmetric. Therefore, using L2-orthogonality and (21) we obtain( ∑

N3�N2

N3 sup
‖wN3 ‖

V 2
S

=1

∣∣∣∣ ∫
R3

QS
1 ũN1Q

S
2 ṽN2Q

S
�Mw̃N3 dx dy dt

∣∣∣∣2) 1
2

�
( ∑

N3�N2

∥∥PAN3

(
QS

1 ũN1Q
S
2 ṽN2

)∥∥2
L2 sup

‖wN3 ‖
V 2
S

=1
N3

∥∥QS
�Mw̃N3

∥∥2
L2

) 1
2

� (N1N2)
− 1

2
∥∥QS

1 ũN1Q
S
2 ṽN2

∥∥
L2 . (43)

The claim now follows from the standard L4 Strichartz estimate (24) and Corollary 2.18. �
Theorem 3.2. There exists C > 0, such that for all 0 < T < ∞ and for all u1, u2 ∈ Ż− 1

2 ∩ C(R;H 1,1(R2)) it holds

∥∥IT (u1, u2)
∥∥

Ż
− 1

2
� C

2∏
j=1

‖uj‖
Ẏ

− 1
2
, (44)

and IT continuously extends to a bilinear operator

IT : Ẏ− 1
2 × Ẏ− 1

2 → Ż− 1
2 .

Proof. Let u1,N1 := PN1u1, u2,N2 := PN2u2. By symmetry, it is enough to consider the two terms

J1 :=
∥∥∥∥∑

N2

∑
N1�N2

IT (u1,N1 , u2,N2)

∥∥∥∥
Ż

− 1
2

,

J2 :=
∥∥∥∥∑ ∑

IT (u1,N1 , u2,N2)

∥∥∥∥
Ż

− 1
2

.

N2 N1∼N2
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We start with J1 and fix N . We may assume N ∼ N2 and by Theorem 2.8 and Proposition 2.10∥∥∥∥e−·SPN

∑
N1�N2

IT (u1,N1 , u2,N2)

∥∥∥∥
U2

= sup
‖v‖

V 2 =1

∣∣∣∣ ∑
N1�N2

B
(
e−·SPNIT (u1,N1 , u2,N2), v

)∣∣∣∣
= sup

‖v‖
V 2
S

=1

∣∣∣∣ ∑
N1�N2

T∫
0

∫
R2

u1,N1u2,N2∂xPNv dx dy dt

∣∣∣∣.
We apply (37) and obtain

N− 1
2

∥∥∥∥ ∑
N1�N2

PNIT (u1,N1 , u2,N2)

∥∥∥∥
U2

S

�
(∑

N1

N−1
1 ‖u1,N1‖2

V 2
S

) 1
2

N
− 1

2
2 ‖u2,N2‖V 2

S
.

We easily sum up the squares with respect to N2 ∼ N .
Next, we turn to J2 and fix N2. We may assume N � N2 and by Theorem 2.8 and Proposition 2.10∑

N�N2

N−1
∥∥e−·SPNIT (u1,N1 , u2,N2)

∥∥2
U2 =

∑
N�N2

N−1 sup
‖v‖

V 2=1

∣∣B(
e−·SPNIT (u1,N1 , u2,N2), v

)∣∣2

=
∑

N�N2

N−1 sup
‖v‖

V 2
S

=1

∣∣∣∣∣
T∫

0

∫
R2

u1,N1u2,N2PN∂xv dx dy dt

∣∣∣∣∣
2

.

We apply (38) and obtain∥∥∥∥∑
N2

∑
N1∼N2

IT (u1,N1 , u2,N2)

∥∥∥∥
Ż

− 1
2

�
∑
N2

∑
N1∼N2

∥∥IT (u1,N1 , u2,N2)
∥∥

Ż
− 1

2

�
∑
N2

∑
N1∼N2

(N1N2)
− 1

2 ‖u1,N1‖V 2
S
‖u2,N2‖V 2

S

and the proof is complete. �
Corollary 3.3. There exists C > 0, such that for all 0 < T < ∞ and for all u1, u2 ∈ Ż− 1

2 ∩ C(R;H 1,1(R2)) it holds

∥∥IT (u1, u2)
∥∥

Ż
− 1

2
� C

2∏
j=1

‖uj‖
Ż

− 1
2
, (45)

and IT continuously extends to a bilinear operator

IT : Ż− 1
2 × Ż− 1

2 → Ż− 1
2 .

A similar statement holds true with Żs replaced by Ẏ s .

Proof. This is due to the continuous embedding Żs ⊂ Ẏ s and Theorem 3.2. �
Corollary 3.4. Assume that u1, u2 ∈ Ẏ− 1

2 . Then, I∞(u1, u2) ∈ Ż− 1
2 and∥∥IT (u1, u2) − I∞(u1, u2)

∥∥
Ż

− 1
2

→ 0 (T → ∞).

In particular, for any u ∈ Ẏ− 1
2 it exists

lim
t→∞ e−tSI∞(u,u)(t) ∈ Ḣ− 1

2 ,0(R2). (46)
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Proof. Without loss of generality we may assume u1, u2 ∈ C(R;H 1,1(R2)) such that ‖u1‖
Ẏ

− 1
2

= ‖u2‖
Ẏ

− 1
2

= 1.

Estimate (44) implies∑
N

N−1
∥∥e−·SPNI∞(u1, u2)

∥∥2
V 2

0
� C,

and due to Proposition 2.4, part (iv), for all the dyadic pieces the limits at ∞ exist and we have PNI∞(u1, u2) ∈ V 2−,rc,S

along with∑
N

N−1
∥∥PNI∞(u1, u2)

∥∥2
V 2

S
� C,

which yields I∞(u1, u2) ∈ Ẏ− 1
2 and in particular the convergence (46).

The limits e−tSui(t) → φi ∈ Ḣ− 1
2 ,0(R2) for t → ∞ exist. Let αT : R → R be

αT (t) =
{0 (t < T − 1),

t + 1 (T − 1 � t < T ),

1 (t � T ).

(47)

We define ũi = ui − α0e
·Sφi , i = 1,2. Let ε > 0. There exists T > 0, such that ‖αT ũi‖

Ẏ
− 1

2
< ε, which follows by a

similar argument as in the proof of Proposition 2.24, part (i). Let T2 > T1 > T . Then,

IT1(ũ1, u2) − IT2(ũ1, u2) = IT1(αT1 ũ1, u2) − IT2(αT1 ũ1, u2)

and for i = 1,2∥∥ITi

(
αT1 ũ1, u2

)∥∥
Ż

− 1
2

� ε.

By a similar argument,∥∥IT1

(
α0e

·Sφ1, ũ2
) − IT2

(
α0e

·Sφ1, ũ2
)∥∥

Ż
− 1

2
� ε.

On the other hand, by the L4 Strichartz estimate (25) there exists T ′ > 0 such that ‖αT ′e·SPNφ‖L4(R3) < ε‖PNφ‖L2 .
For T2 > T1 > T ′∥∥IT1

(
α0e

·Sφ1, α0e
·Sφ2

) − IT2

(
α0e

·Sφ1, α0e
·Sφ2

)∥∥
Ż

− 1
2

= ∥∥IT1

(
αT1e

·Sφ1, αT1e
·Sφ2

) − IT2

(
αT1e

·Sφ1, αT1e
·Sφ2

)∥∥
Ż

− 1
2

� ε

by the same proof as of Theorem 3.2, using again Proposition 3.1 where now the factor ε comes from (42) and (43).

Hence, the family (IT (u1, u2))T satisfies a Cauchy condition in Ż− 1
2 , which is a complete space. Therefore, it con-

verges in Ż− 1
2 to I∞(u1, u2). �

3.2. The inhomogeneous case

Proposition 3.5. Let ε > 0. There exists C > 0 such that for all 0 < T � 1 and uN1 ∈ X, vN2 ∈ U2
S , wN3 ∈ V 2−,S with

supp ûN1 ⊂ AN1 , supp v̂N2 ⊂ AN2 , supp ŵN2 ⊂ AN3 for dyadic numbers N1,N2,N3 where N1 � 1 � N2 it holds∣∣∣∣∣
T∫

0

∫
R2

uN1vN2wN3 dx dy dt

∣∣∣∣∣ � C(T N1)
1
4 −ε

(N2N3)
1
2

‖uN1‖X‖vN2‖U2
S
‖wN3‖V 2

S
. (48)

Proof. We use the same notation as in the proof of Proposition 3.1 and again the left-hand side is well defined. In
particular we denote the time truncation of a function u by ũ. Note that obviously

‖1[0,T )u‖U2
S

� ‖u‖U2
S
, u ∈ U2

S .

In any case we may assume that N3 � N2, because otherwise the left-hand side vanishes. In the first case we assume
N1N

2 � T −1. Using the bilinear Strichartz estimate (27), we obtain
3



M. Hadac et al. / Ann. I. H. Poincaré – AN 26 (2009) 917–941 937
∣∣∣∣ ∫
R3

uN1 ṽN2w̃N3 dx dy dt

∣∣∣∣ � ‖uN1 ṽN2‖L2(R3)‖w̃N3‖L2(R3) � T
1
2

(
N1

N2

) 1
2 ‖uN1‖U2

S
‖vN2‖U2

S
‖wN3‖V 2

S

and the claim follows from ‖uN1‖U2
S

� ‖uN1‖X and N
1
4

1 � T − 1
4 N

− 1
2

3 .

Now, assume that N1N
2
3 � T −1 and we fix M = 8−1N1N2N3. Recall from the proof of Proposition 3.1 that we

have ∫
R3

QS
<MũN1Q

S
<MṽN2Q

S
<Mw̃N3 dx dy dt = 0.

Therefore we can always assume to have high modulation on one of the three factors.
If QS

2 ,QS
3 ∈ {QS

�M
,QS

<M} and the modulation on the first factor is high, we apply the bilinear estimate (27) and
Corollary 2.18 and obtain∣∣∣∣ ∫

R3

QS
�MuN1Q

S
2 ṽN2Q

S
3 w̃N3 dx dy dt

∣∣∣∣ �
(

N1

N2

) 1
2 ∥∥QS

�MuN1

∥∥
U2

S
‖vN2‖U2

S

∥∥QS
3 w̃N3

∥∥
L2 .

Now, we combine this with ‖QS
3 w̃N3‖L2 � T

1
2 ‖wN3‖V 2

S
and∥∥QS

�MuN1

∥∥
U2

S
�

∥∥QS
�MuN1

∥∥
Ẋ

0, 1
2 ,1 � (N1N2N3)

− 1
2 ‖uN1‖Ẋ0,1,1

and (48) follows, because N
1
2

2 � N
1
2

3 � T − 1
4 N

− 1
4

1 . If QS
1 ,QS

3 ∈ {QS
�M

,QS
<M} and the modulation on the second

factor is high, an application of the interpolated estimate (28) yields∣∣∣∣ ∫
R3

QS
1uN1Q

S
�MṽN2Q

S
3 w̃N3 dx dy dt

∣∣∣∣ �
(

N1

N3

) 1−ε
2 ‖uN1‖V 2

S
‖wN3‖V 2

S

∥∥QS
�MṽN2

∥∥
L2(R3)

� 1

N
ε
2

1 N
1
2

2 N
1− ε

2
3

‖uN1‖V 2
S
‖wN3‖V 2

S
‖vN2‖V 2

S

which shows the claim in this case, because N
1−ε

2
3 � (T N1)

− 1
4 + ε

2 .
Finally, if QS

1 ,QS
2 ∈ {QS

�M
,QS

<M} and the modulation on the third factor is high, we invoke estimate (27) and
obtain∣∣∣∣ ∫

R3

QS
1uN1Q

S
2 ṽN2Q

S
�Mw̃N3 dx dy dt

∣∣∣∣ �
(

N1

N2

) 1
2 ∥∥QS

1uN1

∥∥
U2

S

∥∥QS
1 ṽN2

∥∥
U2

S

∥∥QS
�Mw̃N3

∥∥
L2(R3)

� 1

N2N
1
2

3

‖uN1‖U2
S
‖vN2‖U2

S
‖wN3‖V 2

S

which completes the proof, because N
1
2

2 � N
1
2

3 � (T N1)
− 1

4 . �
Theorem 3.6. There exists C > 0, such that for all functions u1, u2 ∈ Z− 1

2 ∩ C(R;H 1,1(R2)) it holds

∥∥I1(u1, u2)
∥∥

Ż
− 1

2
� C

2∏
j=1

‖uj‖
Z

− 1
2
, (49)

and I1 continuously extends to a bilinear operator

I1 :Z− 1
2 × Z− 1

2 → Ż− 1
2 ⊂ Z− 1

2 .
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Proof. We decompose uj = vj + wj , vj ∈ Ż− 1
2 and wj ∈ X, j = 1,2. Due to ‖P�1u‖

Ż
− 1

2
� ‖P�1u‖X and Corol-

lary 3.3, it remains to prove∥∥I1(P<1w1, v2)
∥∥

Ż
− 1

2
� C‖w1‖X‖v2‖

Ż
− 1

2
, (50)∥∥I1(P<1w1,P<1w2)

∥∥
Ż

− 1
2

� C‖w1‖X‖w2‖X. (51)

We start with a proof of (51). By Theorem 2.8 and Proposition 2.10,

N− 1
2
∥∥PNI1(P<1w1,P<1w2)

∥∥
U2

S
� N

1
2 ‖P<1w1P<1w2‖L1([0,1];L2)

� N
1
2 ‖P<1w1‖Ż0‖P<1w2‖Ż0 (52)

due to the L4 estimate (24). We may sum up all dyadic pieces for N � 1.
Let us turn to the proof of (50). The estimate for I1(P<1w1,P<1v2) is already covered by (52). Assume

N1 � 1 � N2. By Theorem 2.8 and Proposition 2.10, we obtain

N− 1
2
∥∥PNI1(PN1w1,PN2v2)

∥∥
U2

S
= N− 1

2 sup
‖f ‖

V 2
S

=1

∣∣∣∣∣
1∫

0

∫
R2

PN1w1PN2v2∂xPNf dx dy dt

∣∣∣∣∣
� N

1
4 −ε

1 ‖PN1w1‖XN
− 1

2
2 ‖PN2v2‖U2

S

where we applied (48) in the last step. Now, we sum up with respect to N1 � 1. Finally, we perform the summation of
the squared dyadic pieces with respect to N ∼ N2. �
4. Proof of the main results

In this section we present the proofs of the main results stated in Section 1. We follow the general approach via the
contraction mapping principle, which is well known.

For regular functions, the Cauchy problem (1) on the time interval (0, T ) for 0 < T � ∞ is equivalent to

u(t) = etSu0 − 1

2
IT (u,u)(t), t ∈ (0, T ). (53)

This allows for a generalization to rough functions: Whenever we refer to a solution of (1) on (0, T ), the operator
equation (53) is assumed to be satisfied.

Proof of Theorem 1.1. Let α0 be as in (47). We then have α0e
·Su0 ∈ Ż− 1

2 , which implies that e·Su0 ∈ Ż− 1
2 ([0,∞))

for u0 ∈ Ḣ− 1
2 ,0(R2) and∥∥e·Su0
∥∥

Ż
− 1

2 ([0,∞))
� ‖u0‖

Ḣ
− 1

2 ,0 .

Let

Ḃδ := {
u0 ∈ Ḣ− 1

2 ,0(R2) ∣∣ ‖u0‖
Ḣ

− 1
2 ,0 < δ

}
for δ = (4C + 4)−2, with the constant C > 0 from (45). Define

Dr := {
u ∈ Ż− 1

2
([0,∞)

) ∣∣ ‖u‖
Ż

− 1
2 ([0,∞))

� r
}
,

with r = (4C + 4)−1. Then, for u0 ∈ Ḃδ and u ∈ Dr ,∥∥∥∥e·Su0 − 1

2
I∞(u,u)

∥∥∥∥
Ż

− 1
2 ([0,∞))

� δ + Cr2 � r,

due to (45) and Corollary 3.4. Similarly,
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∥∥∥∥1

2
I∞(u1, u1) − 1

2
I∞(u2, u2)

∥∥∥∥
Ż

− 1
2 ([0,∞))

� C
(‖u1‖

Ż
− 1

2 ([0,∞))
+ ‖u2‖

Ż
− 1

2 ([0,∞))

)‖u1 − u2‖
Ż

− 1
2 ([0,∞))

� 1

2
‖u1 − u2‖

Ż
− 1

2 ([0,∞))
,

hence Φ :Dr → Dr,u �→ e·Su0 − 1
2I∞(u,u) is a strict contraction. It therefore has a unique fixed point in Dr , which

solves (53). By the implicit function theorem the map F+ : Ḃδ → Dr , u0 �→ u is analytic because the map (u0, u) �→
e·Su0 − 1

2I∞(u,u) is analytic. Due to the embedding Ż− 1
2 ([0,∞)) ⊂ C([0,∞), Ḣ− 1

2 (R2)) the regularity of the initial
data persists under the time evolution. Concerning the results with respect to the negative time axis, we reverse the
time t �→ −t and apply the same arguments. �
Remark 4.1. Up to now, we only know that the solution u is unique in the subset Dr ⊂ Ż− 1

2 ([0,∞)). The proof of

the uniqueness assertion in the larger space Z− 1
2 ([0, T ]) will follow from the results in the subsequent subsection.

Proof of Corollary 1.7. For initial data u0 ∈ Ḣ− 1
2 ,0(R2), ‖u0‖

Ḣ
− 1

2 ,0 < δ, the solution u which was constructed above

satisfies

u(t) = etS

(
u0 − e−·S 1

2
I∞(u,u)

)
(t), t ∈ (0,∞).

The existence of the limit u0 − e−tS 1
2I∞(u,u)(t) → u+ in Ḣ− 1

2 ,0(R2) as t → ∞ follows from Corollary 3.4. The
analyticity of the map V+ : u0 �→ u+ follows from the analyticity of F+ shown above.

An obvious modification of the above proof also yields persistence of higher initial regularity, in particular
if u0 ∈ L2(R2;R), then u(t) ∈ L2(R2;R) for all t . It remains to show that ‖V+(u0)‖L2 = ‖u0‖L2 . By approxi-
mation and a direct calculation for smooth, real valued solutions, we easily see that the L2-norm is conserved.

Due to the strong convergence in Ḣ− 1
2 ,0(R2) we have weak convergence e−tSu(t) ⇀ u+ in L2(R2) for t → ∞,

hence ‖u+‖L2 � ‖u0‖L2 . Let F− be the flow map with respect to (−∞,0) according to Theorem 1.1, which is

Lipschitz continuous. Because limt→∞ etSu+ − u(t) = 0 in Ḣ− 1
2 ,0(R2), it follows limt→∞ F−(−t, etSu+) = u0

in Ḣ− 1
2 ,0(R2). Moreover, due to the L2 conservation ‖u+‖L2 = ‖F−(−t, etSu+)‖L2 we have weak convergence

F−(−t, etSu+) ⇀ u0 in L2(R2). Altogether,

‖u0‖L2 � lim
t→∞

∥∥F−
(−t, etSu+

)∥∥
L2 = ‖u+‖L2 .

The existence and analyticity of the local inverse W+ follows from the inverse function theorem, because V+(0) = 0
and by (45) and Corollary 3.4 we observe DV+(0) = Id . �
Proof of Theorem 1.2. For some δ > 0 and R � δ we define

Bδ,R := {
u0 ∈ H− 1

2 ,0(R2) ∣∣ u0 = v0 + w0, ‖v0‖
Ḣ

− 1
2 ,0 < δ, ‖w0‖L2 < R

}
.

Let u0 ∈ Bδ,R with u0 = v0 + w0. We have χe·Sw0 ∈ X and χe·Sv0 ∈ Ż− 1
2 ,0, which implies that e·Su0 ∈ Z− 1

2 ([0,1])
and ∥∥e·Su0

∥∥
Z

− 1
2 ([0,1]) � δ + R.

We start with the case R = δ = (4C + 4)−2, with the constant C > 0 from (49). Define

Dr := {
u ∈ Z− 1

2
([0,1]) ∣∣ ‖u‖

Z
− 1

2 ([0,1]) � r
}
,

with r = (4C + 4)−1. As above, we use (49) to verify that

Φ :Dr → Dr, u �→ e·Su0 − 1
I1(u,u)
2
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is a strict contraction, for u0 ∈ Ḃδ,R . It therefore has a unique fixed point in Dr , which solves (53) on the interval (0,1).

By the implicit function theorem the map Bδ,R → Dr , u0 �→ u is analytic. We also have the embedding Z− 1
2 ([0,1]) ⊂

C([0,1];H− 1
2 (R2)). Now, we assume that u0 ∈ Bδ,R for R � δ = (4C + 4)−2. We define u0,λ = λ2u0(λ·, λ2·). For

λ = R−2δ2 we observe u0,λ ∈ Bδ,δ . Therefore we find a solution uλ ∈ Z− 1
2 ,0([0,1]) on (0,1) with uλ(0) = u0,λ. By

rescaling (2) we find a solution u ∈ Z− 1
2 ,0([0, δ6R−6]) on (0, δ6R−6) with u(0) = u0. We notice that in (49), the left

hand side is in the homogeneous space Ż− 1
2 ,0, hence all of the above remains valid (or even becomes easier) if we

exchange Z− 1
2 ,0([0,1]) by the smaller space Ż− 1

2 ,0([0,1]).
It remains to show the uniqueness claim. Assume that u1, u2 ∈ Z− 1

2 ,0([0, T ]) are two solutions such that u1(0) =
u2(0). Moreover, we assume that

T ′ := sup
{
0 � t � T

∣∣ u1(t) = u2(t)
}

< T.

By a translation in t it is enough to consider T ′ = 0. A combination of (45) and (48) yields the following: Decompose

uj = vj + wj , where vj ∈ X([0, T ]), wj ∈ Ż− 1
2 ,0([0, T ]) and wj(0) = 0. Then, there exists C > 0, such that for all

small 0 < τ � T ′

‖u1 − u2‖
Z

− 1
2 ,0

([0,τ ]) =
∥∥∥∥1

2
Iτ (u1, u1) − 1

2
Iτ (u2, u2)

∥∥∥∥
Z

− 1
2 ,0

([0,τ ])
� Cτ

1
4 −ε

(‖v1‖X([0,τ ]) + ‖v2‖X([0,τ ])
)‖u1 − u2‖

Z
− 1

2 ,0
([0,τ ])

+ C
(‖w1‖

Ż
− 1

2 ,0
([0,τ ]) + ‖w2‖

Ż
− 1

2 ,0
([0,τ ])

)‖u1 − u2‖
Z

− 1
2 ,0

([0,τ ]).

We apply Proposition 2.24, part (ii) and obtain

‖u1 − u2‖
Z

− 1
2 ,0

([0,τ ]) � 1

2
‖u1 − u2‖

Z
− 1

2 ,0
([0,τ ]),

which contradicts the definition of T ′. �
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