Entire spacelike radial graphs in the Minkowski space, asymptotic to the light-cone, with prescribed scalar curvature ${ }^{\text {dT}}$

Pierre Bayard ${ }^{\text {a }}$, Philippe Delanoë ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Instituto de Física y Matemáticas, U.M.S.N.H. Ciudad Universitaria, CP. 58040 Morelia, Michoacán, Mexico
${ }^{\text {b }}$ Université de Nice-Sophia Antipolis, Laboratoire J.-A. Dieudonné, Parc Valrose, 06108 Nice Cedex 2, France

Received 4 July 2007; accepted 10 March 2008
Available online 27 April 2008

Abstract

We prove the existence and uniqueness in $\mathbb{R}^{n, 1}$ of entire spacelike hypersurfaces contained in the future of the origin O and asymptotic to the light-cone, with scalar curvature prescribed at their generic point M as a negative function of the unit vector pointing in the direction of $\overrightarrow{O M}$, divided by the square of the norm of $\overrightarrow{O M}$ (a dilation invariant problem). The solutions are seeked as graphs over the future unit-hyperboloid emanating from O (the hyperbolic space); radial upper and lower solutions are constructed which, relying on a previous result in the Cartesian setting, imply their existence.

© 2008 Elsevier Masson SAS. All rights reserved.

Résumé

On prouve l'existence et l'unicité dans $\mathbb{R}^{n, 1}$ d'hypersurfaces entières de genre espace contenues dans le futur de l'origine O et asymptotes au cône de lumière, dont la courbure scalaire est prescrite au point générique M comme fonction négative du vecteur unité pointant en direction de $\overrightarrow{O M}$, divisée par le carré de la norme du vecteur $\overrightarrow{O M}$ (un problème invariant par homothétie). Les solutions sont cherchées comme graphes sur l'hyperboloïde-unité futur émanant de O (l'espace hyperbolique); des solutions supérieure et inférieure radiales sont construites qui, d'après un résultat antérieur en cartésien, impliquent l'existence de telles solutions.
© 2008 Elsevier Masson SAS. All rights reserved.
MSC: 53C40; 35J65; 34C11
Keywords: Radial graphs; Spacelike; Entire solution; Prescribed scalar curvature; Upper and lower barriers

0. Introduction

The Minkowski space $\mathbb{R}^{n, 1}$ is the affine Lorentzian manifold $\mathbb{R}^{n} \times \mathbb{R}$ endowed with the metric

$$
d s^{2}=d X^{\prime 2}-d X_{n+1}^{2}, \quad \text { where } d X^{\prime 2}=d X_{1}^{2}+\cdots+d X_{n}^{2}
$$

[^0]setting $X=\left(X^{\prime}, X_{n+1}\right) \in \mathbb{R}^{n} \times \mathbb{R}$, and time-oriented by $d X_{n+1}>0$. Distinguishing the origin O of $\mathbb{R}^{n, 1}$, let
$$
\mathbb{H}=\left\{x \in \mathbb{R}^{n, 1},|\overrightarrow{O x}|^{2}=\left|x^{\prime}\right|^{2}-x_{n+1}^{2}=-1, x_{n+1}>0\right\},
$$
be the future unit-hyperboloid, model of the hyperbolic space in $\mathbb{R}^{n, 1}$. If φ is a real function defined on \mathbb{H}, we define the radial graph of φ by
$$
\operatorname{graph}_{\mathbb{H}} \varphi=\left\{X \in \mathbb{R}^{n, 1}, \overrightarrow{O X}=e^{\varphi(x)} \overrightarrow{O x}, x \in \mathbb{H}\right\} .
$$

This is a hypersurface contained in the future open solid cone

$$
C^{+}=\left\{X \in \mathbb{R}^{n, 1}, X_{n+1}>\left|X^{\prime}\right|\right\} .
$$

We say that φ is spacelike if its graph is a spacelike hypersurface, which means that the metric induced on it is Riemannian. Conversely, a spacelike and connected hypersurface in C^{+}is the radial graph of a uniquely determined function $\varphi: \mathbb{H} \rightarrow \mathbb{R}$. Of course, such a graph may also be considered as the Cartesian graph of some function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\operatorname{graph}_{\mathbb{R}^{n}} u=\left\{\left(x^{\prime}, u\left(x^{\prime}\right)\right), x^{\prime} \in \mathbb{R}^{n}\right\}
$$

and the correspondence between the two representations is bijective passing from the Cartesian chart $X=\left(X^{\prime}, X_{n+1}\right)$ restricted to C^{+}, to the polar chart $(x, \rho) \in \mathbb{H} \times(0, \infty)$ of C^{+}defined by:

$$
\rho=\sqrt{-|\overrightarrow{O X}|^{2}}, \quad \overrightarrow{O X}=\frac{1}{\rho} \overrightarrow{O X}
$$

Recall that the principal curvatures $\left(\kappa_{1}, \ldots, \kappa_{n}\right)$ at a point of a spacelike hypersurface are the eigenvalues of its shape endomorphism $d N$, where N is the future oriented unit normal field, and the m th mean curvature (denoted by H_{m}) is the m th elementary symmetric function of its principal curvatures: $H_{m}=\sigma_{m}\left(\kappa_{1}, \ldots, \kappa_{n}\right)$. For each real $\lambda>0$, the cone C^{+}is globally invariant under the ambient dilation $X \mapsto \lambda X$ of $\mathbb{R}^{n, 1}$ and the above m th mean curvature is ($-m$)homogeneous; specifically, it transforms like $H_{m}(\lambda X)=\lambda^{-m} H_{m}(X)$. It is thus natural to pose, as in [6, Theorem 1], the following inverse problem for H_{m} : given a positive function $h>0$ on \mathbb{H} tending to 1 at infinity, find a spacelike hypersurface Σ in C^{+}, asymptotic to ∂C^{+}at infinity, such that, for each point $X \in \Sigma$, the m th mean curvature of Σ at X is given by:

$$
\begin{equation*}
\widetilde{H_{m}}:=\frac{1}{\binom{n}{m}} H_{m}(X)=\frac{1}{\left(-|\overrightarrow{O X}|^{2}\right)^{\frac{m}{2}}}[h(x)]^{m}, \quad \text { with } \overrightarrow{O x}=\frac{\overrightarrow{O X}}{\sqrt{-|\overrightarrow{O X}|^{2}}} . \tag{1}
\end{equation*}
$$

By construction, this problem is dilation invariant; moreover, as explained below, the positivity of h makes it elliptic.
Actually, introducing the positivity cone [9] of σ_{m} :

$$
\Gamma_{m}=\left\{\kappa \in \mathbb{R}^{n}, \forall i=1, \ldots, m, \sigma_{i}(\kappa)>0\right\}
$$

and recalling McLaurin's inequalities (satisfied on Γ_{m}):

$$
0<\left(\widetilde{H_{m}}\right)^{\frac{1}{m}} \leqslant\left(\widetilde{H_{m-1}}\right)^{\frac{1}{m-1}} \leqslant \cdots \leqslant \widetilde{H_{2}} \leqslant \widetilde{H_{1}},
$$

we note that, if a hypersurface $\Sigma=\operatorname{graph}_{\mathbb{R}^{n}} u$ solves (1) with the asymptotic condition, then the time-function u must assume a minimum on Σ and, as readily checked (using e.g. [3, p. 245]), the principal curvatures of Σ at such a minimum point of u must lie in Γ_{m}. Now Eq. (1) combined with McLaurin's inequalities forces the principal curvatures of Σ to stay in Γ_{m} everywhere. Let us call any spacelike hypersurface of C^{+}having this property, m-admissible; accordingly, a function $\varphi: \mathbb{H} \rightarrow \mathbb{R}$ (resp. $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$) is called m-admissible, provided $\operatorname{graph}_{\mathbb{H}} \varphi\left(\right.$ resp. $\left.\operatorname{graph}_{\mathbb{R}^{n}} u\right)$ is so. The condition of m-admissibility is local (and open); one may thus speak of a function $\varphi: \mathbb{H} \rightarrow \mathbb{R}$ being m admissible at a point (hence nearby) whenever $\operatorname{graph}_{\mathbb{H}} \varphi$ is so at that point. We will seek the solution hypersurface Σ as the radial graph of some m-admissible function $\varphi: \mathbb{H} \rightarrow \mathbb{R}$ vanishing at infinity (to comply with the asymptotic condition). Eq. (1) then reads

$$
\begin{equation*}
F_{m}(\varphi)=h \tag{2}
\end{equation*}
$$

with the radial operator F_{m} defined by:

$$
F_{m}(\varphi)=e^{\varphi}\left[\widetilde{H_{m}}(X)\right]^{\frac{1}{m}}, \quad X \in \operatorname{graph}_{\mathbb{H}} \varphi
$$

For briefness, we will not compute here explicitly the general expression of the operator F_{m} (keeping it for a further study)—its restriction to radial functions will suffice (see Section 3.3 below). We will rely instead on the well-known corresponding Cartesian expression (see e.g. [2]) combined with a few basic properties of F_{m} recorded in the next section (and proved with elementary arguments).

Furthermore, we will essentially restrict to the case $m=2$ (and freely say 'admissible', for short, instead of ' 2 -admissible'). Since H_{2} is related to the scalar curvature S by $S=-2 H_{2}$, our present study is really about the prescription of the scalar curvature, at a generic point X of a radial graph, as a negative function of $x \in \mathbb{H}$ (with x given as in (1)) divided by the square of the norm of $\overrightarrow{O X}$. Aside from the origin O of the ambient space $\mathbb{R}^{n, 1}$, we will distinguish a point o in \mathbb{H} and set $r=r(x)$ for the hyperbolic distance from o to $x \in \mathbb{H}$; accordingly, a function on \mathbb{H} will be called radial whenever it factors through a function of r only. Our main result is the following:

Theorem 1. For $\alpha \in(0,1)$, let $h: \mathbb{H} \rightarrow(0, \infty)$ be a function of class $C^{2, \alpha}$ with

$$
\lim _{r(x) \rightarrow+\infty} h(x)=1 .
$$

Assume that the functions h^{-}and h^{+}defined on \mathbb{R}^{+}by

$$
h^{-}(r)=\sup _{r(x)=r} h(x) \quad \text { and } \quad h^{+}(r)=\inf _{r(x)=r} h(x)
$$

satisfy

$$
\int_{0}^{+\infty}\left(h^{-}-1\right)_{+} d r<+\infty, \quad \int_{0}^{+\infty}\left(1-h^{+}\right)_{+} d r<+\infty
$$

where $\left(h^{-}-1\right)_{+}\left(\right.$resp. $\left.\left(1-h^{+}\right)_{+}\right)$means the positive part of $h^{-}-1\left(\right.$ resp. $\left.1-h^{+}\right)$. Then the equation

$$
\begin{equation*}
F_{2}(\varphi)=h \tag{3}
\end{equation*}
$$

has a unique admissible solution of class $C^{4, \alpha}$ such that $\lim _{r(x) \rightarrow+\infty} \varphi(x)=0$.
Remark 1. From Lemma 4 below, anytime the function h is radial, the integral convergence conditions of Theorem 1 appears necessary for the existence of bounded solutions.

An analogous problem in the Euclidean setting is solved for the Gauss curvature in [6, Théorème 1], and in [13,5] some related problems are studied. In the Lorentzian setting, the prescription of the mean curvature for entire graphs is studied in [1] and that of the Gauss curvature in [11,8,4]. In [3], the scalar curvature is prescribed in Cartesian coordinates $x_{n+1}=u\left(x_{1}, \ldots, x_{n}\right)$.

The outline of the paper is as follows. In Section 1, we prove that there exists at most one solution vanishing at infinity for Eq. (2) with $m \in\{1, \ldots, n\}$. In Section 2, relying on [3], we prove the existence of a solution when $m=2$, provided upper and lower barriers are known. The latter are constructed, as radial functions, in Section 3.

1. Uniqueness

We first require a few basic properties of the operator F_{m}. It is a non-linear second order scalar differential operator defined on m-admissible real functions on \mathbb{H}. The dilation invariance of (1) implies the identity:

$$
\begin{equation*}
F_{m}(\psi+c) \equiv F_{m}(\psi) \tag{4}
\end{equation*}
$$

for every m-admissible function $\psi: \mathbb{H} \rightarrow \mathbb{R}$ and constant c; linearizing at ψ yields

$$
d F_{m}(\psi)(1) \equiv 0 .
$$

Furthermore, we have:
Lemma 1. For each m-admissible function ψ, the linear differential operator $d F_{m}(\psi)$ is elliptic everywhere on \mathbb{H}, with positive-definite symbol.

Summarizing for later use, the expression of $d F_{m}(\psi)$, in the chart $x^{\prime} \in \mathbb{R}^{n}$ of \mathbb{H}, at a fixed m-admissible function ψ reads like:

$$
\begin{equation*}
\delta \psi \mapsto d F_{m}(\psi)(\delta \psi)=\sum_{1 \leqslant i, j \leqslant n} B_{i j} \frac{\partial^{2}}{\partial x^{\prime} \partial x_{j}^{\prime}}(\delta \psi)+\sum_{i=1}^{n} B_{i} \frac{\partial}{\partial x^{\prime}}(\delta \psi), \tag{5}
\end{equation*}
$$

with the $n \times n$ matrix ($B_{i j}$) symmetric positive definite (depending on ψ, of course, like the B_{i} 's). We now proceed to proving Lemma 1 .

Proof. We require the Cartesian operator $v \mapsto G_{m}(v):=F_{m}(\psi)$ defined on m-admissible functions $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by:

$$
\begin{equation*}
\operatorname{graph}_{\mathbb{R}^{n}} v=\operatorname{graph}_{\mathbb{H}} \psi \tag{6}
\end{equation*}
$$

The ellipticity of $d G_{m}(v)$ and the positive-definiteness of its symbol are well-known [10,14,2]. Its expression thus starts out like

$$
d G_{m}(v)(\delta v)=\sum_{1 \leqslant i, j \leqslant n} A_{i j} \frac{\partial^{2}}{\partial{X^{\prime}}_{i} \partial X_{j}^{\prime}}(\delta v)+\text { lower order terms },
$$

with the matrix $\left(A_{i j}\right)$ symmetric positive definite. The m-admissible function ψ on \mathbb{H} such that (6) holds, is related to v, in the chart $x^{\prime}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, by:

$$
v\left(X^{\prime}\right)=\sqrt{1+\left|x^{\prime}\right|^{2}} \exp \left[\psi\left(x^{\prime}\right)\right], \quad \text { with } \overrightarrow{O X^{\prime}}=e^{\psi\left(x^{\prime}\right)} \overrightarrow{O x^{\prime}}
$$

Varying ψ by $\delta \psi$ thus yields for the corresponding variation δv of v the following expression: $\delta v\left(X^{\prime}\right)=w\left(X^{\prime}\right) \delta \psi\left(x^{\prime}\right)$, with

$$
w\left(X^{\prime}\right)=\left[v-\sum_{i=1}^{n} X_{i}^{\prime} \frac{\partial v}{\partial X_{i}^{\prime}}\right]\left(X^{\prime}\right)
$$

Since the graph lies in C^{+}and it is spacelike, we have $v\left(X^{\prime}\right)>\left|X^{\prime}\right|$ and (using Schwarz inequality)

$$
\sum_{i=1}^{n} X_{i}^{\prime} \frac{\partial v}{\partial X_{i}^{\prime}}<\left|X^{\prime}\right|
$$

therefore $w>0$. Moreover, up to lower order terms, we have:

$$
\frac{\partial^{2}}{\partial X^{\prime}{ }_{i} \partial X^{\prime}{ }_{j}}(\delta v)\left(X^{\prime}\right)=w\left(X^{\prime}\right) \sum_{1 \leqslant i, j \leqslant n} \frac{\partial^{2}}{\partial x^{\prime}{ }_{k} \partial x_{l}^{\prime} l}(\delta \psi)\left(x^{\prime}\right) \frac{\partial x_{k}^{\prime}}{\partial X_{i}^{\prime}} \frac{\partial x_{l}^{\prime}}{\partial X_{j}^{\prime}}
$$

with $x_{k}^{\prime}=\frac{X_{k}^{\prime}}{\sqrt{v^{2}\left(X^{\prime}\right)-\left|X^{\prime}\right|^{\prime}}}$. We thus find in (5):

$$
B_{k l}=w\left(X^{\prime}\right) \sum_{1 \leqslant i, j \leqslant n} A_{i j} \frac{\partial x_{k}^{\prime}}{\partial X_{i}^{\prime}} \frac{\partial x_{l}^{\prime}}{\partial X_{j}^{\prime}}
$$

and the ellipticity of $\delta \psi \mapsto d F_{m}(\psi)(\delta \psi)$ follows.
We need also a more specific (ellipticity) property of the operator F_{m}, namely:
Lemma 2. For each couple $\left(\varphi_{0}, \varphi_{1}\right)$ of m-admissible real functions on \mathbb{H} and each point $x_{0} \in \mathbb{H}$ where $\varphi=\varphi_{1}-\varphi_{0}$ assumes a local extremum, the whole segment $t \in[0,1] \rightarrow \varphi_{t}=\varphi_{0}+t \varphi$ consists of m-admissible functions at the point x_{0}.

Proof. The analogue of Lemma 2 is fairly standard in the Cartesian setting, using the expression of the operator G_{m} introduced in the proof of Lemma 1 (see [2]) together with the well-known fact: $\forall \kappa \in \Gamma_{m}, \forall i \in\{1, \ldots, n\}, \frac{\partial \sigma_{m}}{\partial k_{i}}(\kappa)>0$. Here, we will simply reduce the proof to that setting (and let the reader complete the argument). Let us first normalize
the situation at an extremum point $x_{0} \in \mathbb{H}$ of φ. From (4), we may assume $\varphi\left(x_{0}\right)=0$. Moreover, we may assume that φ has a local minimum at x_{0} (if not, exchange φ_{0} and φ_{1}). Finally, setting $\operatorname{graph}_{\mathbb{H}} \varphi_{a}=\operatorname{graph}_{\mathbb{R}^{n}} u_{a}$ for $a=0,1$, and performing if necessary a suitable Lorentz transform (hyperbolic rotation), we may take $x_{0}=(0,1) \in \mathbb{R}^{n} \times \mathbb{R}$ thus with $u_{a}(0)=1$. For $t \in[0,1]$ and near x_{0}, set $\Sigma_{t}=\operatorname{graph}_{\mathbb{R}^{n}} u_{t}$ for the hypersurface graph ${ }_{H} \varphi_{t}$. We must prove that Σ_{t} is m-admissible at x_{0}. For $X_{t} \in \mathbb{R}^{n, 1}$ lying in Σ_{t}, we have: $\overrightarrow{O X_{t}}=e^{t \varphi(x)} \overrightarrow{O X_{0}}$ with $\overrightarrow{O x}=\overrightarrow{O X_{0}} / \sqrt{-\left|\overrightarrow{O X_{0}}\right|^{2}}$. In the Cartesian setting, we thus have (sticking to the \mathbb{R}^{n}-valued charts used in the preceding proof):

$$
u_{t}\left(X_{t}^{\prime}\right)=e^{t \varphi\left(x^{\prime}\right)} u_{0}\left[e^{-t \varphi\left(x^{\prime}\right)} X_{t}^{\prime}\right],
$$

here with $x^{\prime}=X_{0}^{\prime} / \sqrt{u_{0}^{2}\left(X_{0}^{\prime}\right)-\left|X_{0}^{\prime}\right|^{2}}, X_{t}^{\prime}=e^{t \varphi\left(x^{\prime}\right)} X_{0}^{\prime}$, and $\left(X_{0}^{\prime}, u_{0}\left(X_{0}^{\prime}\right)\right) \in \operatorname{graph}_{\mathbb{R}^{n}} u_{0}$; moreover, the lemma boils down to proving that u_{t} is m-admissible at $X_{t}^{\prime}=0$. A routine calculation yields at $X_{t}^{\prime}=0$ the equalities:

$$
\frac{\partial u_{t}}{\partial X_{t i}^{\prime}}(0)=\frac{\partial u_{0}}{\partial X_{0 i}^{\prime}}(0), \quad \frac{\partial^{2} u_{t}}{\partial X_{t i}^{\prime} \partial X_{t j}^{\prime}}(0)=\frac{\partial^{2} u_{0}}{\partial X_{0 i}^{\prime} \partial X_{0 j}^{\prime}}(0)+t \frac{\partial^{2} \varphi}{\partial x_{i}^{\prime} \partial x_{j}^{\prime}}(0),
$$

where, in the second one, the matrix $\left[\partial^{2} \varphi / \partial x_{i}^{\prime} \partial x_{j}^{\prime}(0)\right]_{1 \leqslant i, j \leqslant n}$ is non-negative. We readily infer [2] that, for each $t \in[0,1]$, the principal curvatures $\kappa_{1 t} \leqslant \cdots \leqslant \kappa_{n t}$ of the hypersurface Σ_{t} at x_{0} (each repeated according to its multiplicity) satisfy: $\forall i \in\{1, \ldots, n\}, \kappa_{i t} \geqslant \kappa_{i 0}$. The latter implies that the n-tuple ($\kappa_{1 t}, \ldots, \kappa_{n t}$) lies in the cone Γ_{m}, since $\left(\kappa_{10}, \ldots, \kappa_{n 0}\right) \in \Gamma_{m}$.

Theorem 2. The operator F_{m} is one-to-one on m-admissible functions of class C^{2} vanishing at infinity.
Proof. Let us argue by contradiction. Let φ_{0}, φ_{1} be two m-admissible C^{2} functions vanishing at infinity and having the same image by F_{m}. For $t \in[0,1]$, set $\varphi_{t}=\varphi_{0}+t \varphi$ with $\varphi=\varphi_{1}-\varphi_{0}$. Since φ vanishes at infinity, if $\varphi \not \equiv 0$, it assumes a non-zero local extremum (a maximum, say, with no loss of generality) at some point $x_{0} \in \mathbb{H}$. By Lemma 2 , the whole segment $t \in[0,1] \rightarrow \varphi_{t}$ is m-admissible in a neighborhood Ω of x_{0} where φ thus satisfies the second order linear equation $L \varphi=0$ with $L 1=0$ and the operator L given by $L=\int_{0}^{1} d F_{m}\left(\varphi_{t}\right) d t$. Combining Lemma 1 above with Hopf's strong Maximum Principle (see [7]), we get $\varphi \equiv \varphi\left(x_{0}\right)$ throughout Ω. By connectedness, we infer $\varphi \equiv \varphi\left(x_{0}\right) \neq 0$ on the whole of \mathbb{H}, contradicting $\lim _{r(x) \rightarrow+\infty} \varphi=0$. So, indeed, we must have $\varphi \equiv 0$, in other words F_{m} is one-to-one.

2. Existence of a solution reduced to that of upper and lower solutions

Theorem 3. Let $h: \mathbb{H} \rightarrow \mathbb{R}$ be a function of class $C^{2, \alpha}$, for some $\alpha \in(0,1)$, such that there exists $\varphi^{-} \in C^{4, \alpha}(\mathbb{H})$ with $\operatorname{graph}_{\mathbb{H}} \varphi^{-}$strictly convex and spacelike, and $\varphi^{+} \in C^{2}(\mathbb{H})$ with $\operatorname{graph}_{\mathbb{H}} \varphi^{+}$spacelike, satisfying

$$
F_{2}\left(\varphi^{-}\right) \geqslant h, \quad F_{2}\left(\varphi^{+}\right) \leqslant h \quad \text { and } \quad \lim _{r(x) \rightarrow+\infty} \varphi^{ \pm}=0 .
$$

Then the equation

$$
F_{2}(\varphi)=h
$$

has a unique admissible solution of class $C^{4, \alpha}$ such that $\lim _{r(x) \rightarrow+\infty} \varphi(x)=0$. Moreover φ satisfies the pinching:

$$
\varphi^{-} \leqslant \varphi \leqslant \varphi^{+}
$$

Remark 2. Since φ is a bounded function, the hypersurface $M=\operatorname{graph}_{\mathbb{H}}(\varphi)$ is entire. More precisely, denoting by $\varphi_{\text {min }}$ and $\varphi_{\text {max }}$ two constants such that $\varphi_{\text {min }} \leqslant \varphi \leqslant \varphi_{\text {max }}$, the function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\operatorname{graph}_{\mathbb{R}^{n}}(u)=\operatorname{graph}_{\mathbb{H}}(\varphi)$ satisfies $u_{\min } \leqslant u \leqslant u_{\max }$ where $u_{\min }\left(\right.$ resp. $\left.u_{\max }\right)$ is such that $\operatorname{graph}_{\mathbb{R}^{n}}\left(u_{\min }\right)=\operatorname{graph}_{\mathbb{H}^{\prime}}\left(\varphi_{\min }\right)\left(\right.$ resp. $\operatorname{graph}_{\mathbb{R}^{n}}\left(u_{\max }\right)=$ $\left.\operatorname{graph}_{\mathbb{H}}\left(\varphi_{\max }\right)\right)$. Noting that the graphs of $u_{\min }$ and $u_{\max }$ are hyperboloids, we see that the inequality $u \geqslant u_{\min }$ implies that M is entire, and the inequality $u \leqslant u_{\max }$ implies that M is asymptotic to the lightcone.

Proof. The asserted uniqueness follows from Theorem 2; so let us focus on the existence part. A straightforward comparison principle, using (5) and Lemma 2 , implies $\varphi^{-} \leqslant \varphi^{+}$on \mathbb{H}. Let $u^{-}, u^{+}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be such that $\operatorname{graph}_{\mathbb{R}^{n}}\left(u^{ \pm}\right)=\operatorname{graph}_{\mathbb{H}}\left(\varphi^{ \pm}\right)$. Set H for the function on $\mathbb{R}^{n, 1}$ defined by:

$$
\begin{equation*}
H(X)=\frac{\binom{n}{2}}{\left|X_{n+1}\right|^{2}-\left|X^{\prime}\right|^{2}}\left[h\left(\frac{X}{\sqrt{\left|X_{n+1}\right|^{2}-\left|X^{\prime}\right|^{2}}}\right)\right]^{2} . \tag{7}
\end{equation*}
$$

The spacelike functions u^{-}and u^{+}satisfy:

$$
H_{2}\left[u^{-}\right] \geqslant H\left(\cdot, u^{-}\right), \quad H_{2}\left[u^{+}\right] \leqslant H\left(\cdot, u^{+}\right), \quad u^{-} \leqslant u^{+} \quad \text { and } \quad \lim _{\left|x^{\prime}\right| \rightarrow \infty}\left[u^{ \pm}\left(x^{\prime}\right)-\left|x^{\prime}\right|\right]=0,
$$

where $H_{2}\left[u^{ \pm}\right]$stands for the second mean curvature of the graph of $u^{ \pm}$. Theorem 1.1 in [3] asserts the existence of a function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$, belonging to $C^{4, \alpha}$, spacelike, such that $H_{2}[u]=H(\cdot, u)$ in $\mathbb{R}^{n}, \lim _{\left|x^{\prime}\right| \rightarrow+\infty} u\left(x^{\prime}\right)-\left|x^{\prime}\right|=0$, and $u^{-} \leqslant u \leqslant u^{+}$. The function $\varphi: \mathbb{H} \rightarrow \mathbb{R}$ such that $\operatorname{graph}_{\mathbb{H}}(\varphi)=\operatorname{graph}_{\mathbb{R}^{n}}(u)$ is a solution of our original problem.

3. Construction of radial upper and lower solutions

In the sequel of the paper, we first solve the Dirichlet problem on a bounded set in \mathbb{H} (Section 3.1) then proceed to proving the existence and uniqueness of an entire solution in the radial case and study its properties (Sections 3.2 and 3.3); finally, we construct the required radial barriers (Section 3.4).

3.1. The Dirichlet problem

Theorem 4. Given $\alpha \in(0,1)$, let Ω be a uniformly convex bounded open subset of \mathbb{H} with $C^{2, \alpha}$ boundary, $h: \Omega \rightarrow \mathbb{R}$ be a positive function of class $C^{2, \alpha}$, and $\varphi_{0}: \bar{\Omega} \rightarrow \mathbb{R}$ be a spacelike function of class $C^{2, \alpha}$ whose radial graph is strictly convex. Then the Dirichlet problem

$$
\begin{equation*}
F_{2}(\varphi)=h \quad \text { in } \Omega, \quad \varphi=\varphi_{0} \quad \text { on } \partial \Omega, \tag{8}
\end{equation*}
$$

has a unique admissible solution of class $C^{4, \alpha}$.
Proof. We first prove uniqueness, by contradiction: let φ_{0}, φ_{1} be two admissible solutions of (8), and, for $t \in[0,1]$, set $\varphi_{t}=\varphi_{0}+t \varphi$ with $\varphi=\varphi_{1}-\varphi_{0}$. Since φ vanishes on $\partial \Omega$, if $\varphi \not \equiv 0$, it assumes a non-zero local extremum. Following the arguments of the proof of Theorem 2 we obtain a contradiction with the Hopf's strong Maximum Principle. Let us focus now on the existence part. Setting $x=\left(x^{\prime}, \sqrt{1+\left|x^{\prime}\right|^{2}}\right) \in \mathbb{R}^{n} \times \mathbb{R}$, and

$$
\Omega^{\prime}=\left\{e^{\varphi_{0}(x)} x^{\prime}, x \in \Omega\right\}, \quad u_{0}\left(e^{\varphi_{0}(x)} x^{\prime}\right)=e^{\varphi_{0}(x)} \sqrt{1+\left|x^{\prime}\right|^{2}}
$$

problem (8) is equivalent to the Dirichlet problem:

$$
\begin{equation*}
H_{2}[u]=H(\cdot, u) \quad \text { in } \Omega^{\prime}, \quad u=u_{0} \quad \text { on } \partial \Omega^{\prime}, \tag{9}
\end{equation*}
$$

where H_{2} is the scalar curvature operator acting on spacelike graphs defined on $\Omega^{\prime} \subset \mathbb{R}^{n}$, and H is defined on $\Omega^{\prime} \times \mathbb{R}$ by (7).

Let us consider the Banach space

$$
E=\left\{\bar{v} \in C^{2, \alpha}\left(\overline{\Omega^{\prime}}\right), \bar{v}=0 \text { on } \partial \Omega^{\prime}\right\}
$$

and the open convex subset of E

$$
U=\left\{\bar{v} \in E, \sup _{\bar{\Omega}^{\prime}}\left|D\left(\bar{v}+u_{0}\right)\right|<1\right\} .
$$

We first note that for every $\bar{v} \in U, \operatorname{graph}_{\mathbb{R}^{n}}\left(\bar{v}+u_{0}\right)$ belongs to the dependence set K of graph $\mathbb{R}^{n} u_{0}$. Here, by definition, $X \in \mathbb{R}^{n, 1}$ belongs to K if for every $\xi \in \mathbb{R}^{n, 1}$ with $\langle\xi, \xi\rangle \leqslant 0$ and $\xi \neq 0$, the ray $X+\mathbb{R}$. ξ meets graph $\mathbb{R}_{\mathbb{R}^{n}} u_{0}$. The set K is a compact subset of the open cone C^{+}.

For each $(\bar{v}, t) \in U \times[0,1]$, we know from $[2,15]$ that the Dirichlet problem

$$
\begin{equation*}
H_{2}[u]=t H\left(\cdot, \bar{v}+u_{0}\right)+(1-t) H_{2}\left[u_{0}\right] \quad \text { in } \Omega^{\prime}, \quad u=u_{0} \quad \text { on } \partial \Omega^{\prime} \tag{10}
\end{equation*}
$$

has a unique admissible solution (belonging to $C^{4, \alpha}$). We define the map

$$
\begin{aligned}
& T:[0,1] \times U \rightarrow E, \\
& (t, \bar{v}) \mapsto \bar{u}
\end{aligned}
$$

where \bar{u} is such that $u=\bar{u}+u_{0}$ is the admissible solution of (10).
For each $t \in[0,1]$ the fixed points of $T(t, \cdot)$ are under control: indeed, suppose $T(t, \underline{u})=\underline{u}$, then the function $u=\underline{u}+u_{0}$ solves the Dirichlet problem

$$
\begin{equation*}
H_{2}[u]=\tilde{H}(\cdot, u) \quad \text { in } \Omega^{\prime}, \quad u=u_{0} \quad \text { on } \partial \Omega^{\prime} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{H}(\cdot, u)=t H(\cdot, u)+(1-t) H_{2}\left[u_{0}\right] . \tag{12}
\end{equation*}
$$

The following a priori estimates are carried out in [3, p.251]: there exist $\vartheta \in(0,1)$ and $C>0$ such that

$$
\begin{equation*}
\sup _{\overline{\Omega^{\prime}}}|D u|<1-\vartheta \quad \text { and } \quad\|u\|_{2, \alpha, \overline{\Omega^{\prime}}}<C . \tag{13}
\end{equation*}
$$

The constants ϑ, C only depend on $\operatorname{diam}\left(\Omega^{\prime}\right), \inf _{K} \tilde{H},\|\tilde{H}\|_{2, K},\left\|u_{0}\right\|_{4, \overline{\Omega^{\prime}}}$, and on a positive lower bound on the minimum eigenvalue of $D^{2} u_{0}$ on $\overline{\Omega^{\prime}}$. The expression of \tilde{H} implies that they are independent of the parameter $t \in[0,1]$.

In order to prove that $T(1, \cdot)$ has a fixed point, we now consider the (nonempty) convex subset of the Banach space E :

$$
U_{\vartheta, C}=\left\{\bar{v} \in U,\left|D\left(\bar{v}+u_{0}\right)\right|<1-\vartheta \text { and }\left\|\bar{v}+u_{0}\right\|_{2, \alpha, \overline{\Omega^{\prime}}}<C\right\},
$$

and the map $T:[0,1] \times \bar{U}_{\vartheta, C} \rightarrow E$. Then the following properties hold:
(i) T is continuous with compact image due to the above estimates on the solutions of the Dirichlet problem (10);
(ii) $T(0, \cdot) \equiv 0$ by definition;
(iii) for every $t \in[0,1], T(t, \cdot)$ does not have any fixed point on $\partial U_{\vartheta, C}$, since each fixed point of $T(t, \cdot)$ belongs to $U_{\vartheta, C}$ by the definitions of ϑ and C.

An elementary version of the Leray-Schauder theorem (due to Browder and Potter [12]) implies that $T(1, \cdot)$ has a fixed point, which proves that (8) has a solution.

3.2. Existence and uniqueness of entire radial solutions

The aim of this section is to prove the following result:
Theorem 5. For $\alpha \in(0,1)$, let $h: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be a positive function of class $C^{2, \alpha}$ constant on some neighborhood of 0 and let φ_{0} be a real number. Recall $r=r(x)$ denotes the hyperbolic distance of $x \in \mathbb{H}$ from a fixed origin $o \in \mathbb{H}$. The problem:

$$
\begin{equation*}
F_{2}(\varphi)(x)=h(r) \quad \text { for all } x \in \mathbb{H}, \quad \varphi(o)=\varphi_{0}, \tag{14}
\end{equation*}
$$

admits a unique admissible radial solution $\varphi: \mathbb{H} \rightarrow \mathbb{R}$ of class $C^{4, \alpha}$.
Proof. Existence: let B_{i} denote the ball in \mathbb{H} with center o and radius $i \in \mathbb{N}^{*}$, and φ_{i} be the admissible solution of the Dirichlet problem:

$$
\begin{equation*}
F_{2}(\varphi)=h, \quad \varphi_{\mid \partial B_{i}}=0, \tag{15}
\end{equation*}
$$

given by Theorem 4. By radial symmetry and uniqueness, φ_{i} is a radial function: $\varphi_{i}(x)=f_{i}(r)$ for some function $f_{i}:[0, i] \rightarrow \mathbb{R}$. By uniqueness again, for $j>i$, the function $\varphi_{j}-\varphi_{i}$ must be constant on B_{i}. Therefore $f_{j}^{\prime}(r) \equiv f_{i}^{\prime}(r)$ for $r \in[0, i]$. We may thus define g on \mathbb{R}^{+}by $g=f_{i}^{\prime}$ on each $[0, i]$. Now the function φ defined by

$$
\varphi(x)=\varphi_{0}+\int_{0}^{r} g(u) d u
$$

is a radial solution of (14).
Uniqueness: assume that φ_{1} and φ_{2} are admissible radial solutions of (14): $\varphi_{1}(x)=f_{1}(r), \varphi_{2}(x)=f_{2}(r)$ where f_{1}, f_{2} are functions $\mathbb{R}^{+} \rightarrow \mathbb{R}$. For each real $R>0$, set

$$
\varphi_{1, R}(x)=-\int_{r}^{R} f_{1}{ }^{\prime}(u) d u \quad \text { and } \quad \varphi_{2, R}(x)=-\int_{r}^{R} f_{2}{ }^{\prime}(u) d u
$$

The functions $\varphi_{1, R}$ and $\varphi_{2, R}$ are both admissible solutions of the Dirichlet problem (15) on B_{R}. As such, they must coincide on B_{R}, hence $f_{1}{ }^{\prime}=f_{2}{ }^{\prime}$ on $[0, R]$, which implies the desired result.

3.3. Properties of the radial solutions

The following lemma describes the monotonicity of a solution φ of Eq. (14) depending on the sign of $h-1$:
Lemma 3. Let $h: \mathbb{R}^{+} \rightarrow \mathbb{R}$ and $\varphi: \mathbb{H} \rightarrow \mathbb{R}$ be as in Theorem 5 , and let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be such that $\varphi(x)=f[r(x)]$, $\forall x \in \mathbb{H}$.
(i) If $h \leqslant 1$, then f is non-increasing; in particular, if $\varphi_{0}=0$, the function φ is non-positive.
(ii) If $h \geqslant 1$, then f is non-decreasing; in particular, if $\varphi_{0}=0$, the function φ is non-negative.

Proof. Here, we need to calculate explicitly the expression of Eq. (14) in the radial case. Set e_{1}, \ldots, e_{n+1}, for the standard orthonormal basis of the vector space $\mathbb{R}^{n, 1}$. Fix $x \in \mathbb{H}$ and take, with no loss of generality,

$$
o=e_{n+1}=(0, \ldots, 0,1), \quad x=(\sinh r, 0, \ldots, 0, \cosh r)
$$

with r, the hyperbolic distance between o and x. Consider the orthonormal basis of $T_{x} \mathbb{H}$ defined by:

$$
\partial_{r}=\cosh r e_{1}+\sinh r e_{n+1}, \quad \text { and } \quad \partial_{\vartheta}=e_{\vartheta}, \quad \vartheta=2, \ldots, n,
$$

and the vectors, tangent to $M=\operatorname{graph}_{\mathbb{H}} \varphi$ at $e^{\varphi(x)} x$, induced by the embedding $x \in \mathbb{H} \rightarrow e^{\varphi(x)} x \in M$, given by:

$$
u_{r}=e^{f}\left(f^{\prime} x+\partial_{r}\right), \quad u_{\vartheta}=e^{f} \partial_{\vartheta}, \quad \vartheta=2, \ldots, n .
$$

The future oriented unit normal to M at $e^{\varphi(x)} x$ is the vector:

$$
\begin{equation*}
N(r)=\frac{f^{\prime}}{\sqrt{1-f^{\prime 2}}} \partial_{r}+\frac{1}{\sqrt{1-f^{\prime 2}}} x \tag{16}
\end{equation*}
$$

Let S be the shape endomorphism of M at $e^{\varphi(x)} x$, with respect to the future unit normal $N(r)$. Using the formulas

$$
D_{\partial_{r}} \overline{\partial_{r}}(x)=x, \quad D_{\partial_{\vartheta}} \overline{\partial_{r}}(x)=\frac{1}{\tanh r} \partial_{\vartheta}
$$

where D denotes the canonical flat connection of $\mathbb{R}^{n, 1}$ and $\overline{\partial_{r}}$ the unit radial vector field of \mathbb{H} with respect to the point o, we readily get:

$$
S\left(u_{r}\right)=d N\left(\partial_{r}\right)=\frac{e^{-f}}{\sqrt{1-f^{\prime 2}}}\left(\frac{f^{\prime \prime}}{1-f^{\prime 2}}+1\right) u_{r}
$$

and, for $\vartheta=2, \ldots, n$,

$$
S\left(u_{\vartheta}\right)=d N\left(\partial_{\vartheta}\right)=\frac{e^{-f}}{\sqrt{1-f^{\prime 2}}}\left(\frac{f^{\prime}}{\tanh r}+1\right) u_{\vartheta} .
$$

The principal curvatures of M at $r>0$ are thus equal to:

$$
\left.\frac{e^{-f}}{\sqrt{1-f^{\prime 2}}}\left(\frac{f^{\prime \prime}}{1-f^{\prime 2}}+1\right)(\text { simple }), \quad \frac{e^{-f}}{\sqrt{1-f^{\prime 2}}}\left(\frac{f^{\prime}}{\tanh r}+1\right) \text { (multiplicity } n-1\right)
$$

Setting $s=s(r)$ for the hyperbolic distance from o to $N(r)$, we infer from (16):

$$
\begin{equation*}
s(r)=r+\operatorname{Argth}\left(f^{\prime}\right) . \tag{17}
\end{equation*}
$$

In terms of the new radial unknown $s(r)$, for $r>0$, the principal curvatures read

$$
\begin{equation*}
\left(e^{-f} \cosh (r-s) s^{\prime}, e^{-f} \frac{\sinh s}{\sinh r}, \ldots, e^{-f} \frac{\sinh s}{\sinh r}\right) \tag{18}
\end{equation*}
$$

and the equation $F_{2}(\varphi)=h$ reads

$$
\begin{equation*}
2 s^{\prime} \cosh (r-s) \sinh r \sinh s=n h^{2} \sinh ^{2} r-(n-2) \sinh ^{2} s . \tag{19}
\end{equation*}
$$

We now prove the first statement of the lemma. Since $f^{\prime}=\tanh (s-r)$, we must prove: $s \leqslant r$ on $[0,+\infty)$. Suppose first $h<1$. Since $s(0)=0$ and $s^{\prime}(0)=h(0)<1$ (from (19)), there exists $r_{0}>0$ such that $s \leqslant r$ on $\left[0, r_{0}\right]$. Moreover, we get from (19):

$$
s^{\prime} \leqslant \frac{1}{2 \cosh (r-s)}\left(n \frac{\sinh r}{\sinh s}-(n-2) \frac{\sinh s}{\sinh r}\right) .
$$

We observe that the function $s(r)=r$ is a solution of the ODE:

$$
s^{\prime}=\frac{1}{2 \cosh (r-s)}\left(n \frac{\sinh r}{\sinh s}-(n-2) \frac{\sinh s}{\sinh r}\right)
$$

on $\left[r_{0},+\infty\right)$. So the comparison theorem for solutions of ordinary differential equations implies $s \leqslant r$ on $\left[r_{0},+\infty\right)$. Suppose only $h \leqslant 1$, fix $A>0$ and consider $h_{\delta}=h-\delta$, where δ is some small positive constant such that $h_{\delta}>0$ on $[0, A]$. Denoting by φ_{δ} and s_{δ} the corresponding solutions of (14) and (19) on the ball of radius A, the function $s_{\delta}-r$ is non-positive; we now prove that $s_{\delta}-r$ converges uniformly to $s-r$ as δ tends to zero, which will yield the desired result. Set B_{A} for the ball of radius A in \mathbb{H} centered at o and $U=\left\{\psi \in C^{2, \alpha}\left(\overline{B_{A}}\right), \psi+\varphi\right.$ is admissible in $\overline{B_{A}}$, $\left.\psi_{\mid \partial B_{A}}=0\right\}$; consider the auxiliary map:

$$
\Phi: \psi \in U \rightarrow \Phi(\psi):=F_{2}(\psi+\varphi) \in C^{\alpha}\left(\overline{B_{A}}\right) .
$$

Since $\Phi(0)=h$ and since, classically [7] (recalling (5)), the linearized map $d \Phi(0)$ is an isomorphism from $\left\{\xi \in C^{2, \alpha}\left(\overline{B_{A}}\right), \xi \mid \partial B_{A}=0\right\}$ to $C^{\alpha}\left(\overline{B_{A}}\right)$, the inverse function theorem implies: $\forall \varepsilon>0, \exists \delta_{0}>0, \forall \delta \in\left(0, \delta_{0}\right)$, the solution $\psi_{\delta} \in U$ of $F_{2}\left(\psi_{\delta}+\varphi\right)=h_{\delta}$ satisfies $\left|\psi_{\delta}\right|_{2, \alpha} \leqslant \varepsilon$. Since $\varphi_{\delta}=\psi_{\delta}+\varphi-\psi_{\delta}(o)$, we obtain $\left|\varphi_{\delta}-\varphi\right|_{2, \alpha} \leqslant 2 \varepsilon$, which implies the convergence of φ_{δ} to φ in C^{1} and thus the uniform convergence of s_{δ} to s.

The proof of statement (ii) is analogous and thus omitted.
Our next lemma provides a simple necessary and sufficient condition for an entire radial solution to be bounded.
Lemma 4. Let $h: \mathbb{R}^{+} \rightarrow \mathbb{R}$ and $\varphi: \mathbb{H} \rightarrow \mathbb{R}$ be as in Theorem 5 .
(i) Assume $h \leqslant 1$, and $\lim _{r \rightarrow \infty} h=1$. Then

$$
\lim _{r(x) \rightarrow+\infty} \varphi(x)>-\infty \quad \text { if and only if } \quad \int_{0}^{+\infty}(1-h) d r \text { converges. }
$$

(ii) Assume $h \geqslant 1$, and $\lim _{r \rightarrow \infty} h=1$. Then

$$
\lim _{r(x) \rightarrow+\infty} \varphi(x)<+\infty \quad \text { if and only if } \quad \int_{0}^{+\infty}(h-1) d r \text { converges. }
$$

Proof. Let us prove statement (i), thus assuming $h \leqslant 1$, with $\lim _{r \rightarrow \infty} h=1$. We stick to the notations used in the proof of Lemma 3. From (17), we get at once:

$$
\begin{equation*}
\varphi(x)=\varphi_{0}-\int_{0}^{r(x)} \tanh (u-s(u)) d u \tag{20}
\end{equation*}
$$

Statement (i) amounts to proving that $\int_{0}^{+\infty} \tanh (u-s(u)) d u$ converges if and only if so does $\int_{0}^{+\infty}(1-h) d r$. We split the proof of this fact into five steps.

Step 1. The solution s of (19) is an increasing function.
Let us consider in the (r, s) plane the curve \mathcal{C} with equation:

$$
n h^{2} \sinh ^{2} r=(n-2) \sinh ^{2} s, \quad r, s \geqslant 0 .
$$

The slope of its tangent at $(0,0)$ is $\sqrt{\frac{n}{n-2}} h(0)$. Since the solution s satisfies $s(0)=0$ and $s^{\prime}(0)=h(0)$, we infer that the graph of s stays under the curve \mathcal{C} near 0 . Noting that the following vector field, associated to the differential equation (19):

$$
(r, s) \mapsto\left(2 \cosh (r-s) \sinh r \sinh s, n h^{2} \sinh ^{2} r-(n-2) \sinh ^{2} s\right),
$$

is horizontal on \mathcal{C}, and that the height s of the curve \mathcal{C} is increasing with r, we conclude that the solution s of (19) remains trapped below \mathcal{C}. In other words $n h^{2} \sinh ^{2} r \geqslant(n-2) \sinh ^{2} s$ for all r, and (19) implies: $s^{\prime} \geqslant 0$.

Step 2. $r-s$ has a limit at $+\infty$.
By contradiction, assume $\liminf (r-s)<\lim \sup (r-s)=\delta$. Thus there exists a sequence $r_{k} \rightarrow+\infty$ such that $r_{k}-s\left(r_{k}\right) \rightarrow \delta$ and $s^{\prime}\left(r_{k}\right)=1$. Denoting $s\left(r_{k}\right)$ by s_{k}, we get from Eq. (19):

$$
\begin{equation*}
1=\frac{1}{2 \cosh \left(r_{k}-s_{k}\right)}\left[n h^{2}\left(r_{k}\right) \frac{\sinh r_{k}}{\sinh s_{k}}-(n-2) \frac{\sinh s_{k}}{\sinh r_{k}}\right] . \tag{21}
\end{equation*}
$$

We distinguish two cases:
First case: $\delta<+\infty$. We then have $s_{k} \rightarrow+\infty, \frac{\sinh r_{k}}{\sinh s_{k}} \sim e^{r_{k}-s_{k}} \sim e^{\delta}$ and $\frac{\sinh s_{k}}{\sinh h} \sim e^{s_{k}-r_{k}} \sim e^{-\delta}$ as k tends to infinity (here and below, the equivalence \sim between two quantities means that their quotient has limit 1). So (21) yields

$$
1=\frac{1}{2 \cosh \delta}\left[n e^{\delta}-(n-2) e^{-\delta}\right] .
$$

Using $e^{\delta} \geqslant e^{-\delta}$ we get $1 \geqslant \frac{e^{\delta}}{\cosh \delta}$, which is absurd.
Second case: $\delta=+\infty$. First assuming that s_{k} is not bounded, and since s is an increasing function (Step 1), we have: $s_{k} \rightarrow+\infty, \frac{\sinh r_{k}}{\sinh s_{k}} \sim e^{r_{k}-s_{k}} \rightarrow+\infty$ and $\frac{\sinh s_{k}}{\sinh r_{k}} \sim e^{s_{k}-r_{k}} \rightarrow 0$ as k tends to infinity. Eq. (21) yields

$$
1 \sim \frac{n}{2 \cosh \left(r_{k}-s_{k}\right)} e^{r_{k}-s_{k}},
$$

which is absurd since $\cosh \left(r_{k}-s_{k}\right) \sim \frac{e^{r_{k}-s_{k}}}{2}$. If we now assume s_{k} bounded, since s is an increasing function with $s^{\prime}(0)>0$, we get that s_{k} converges to $l>0$, and, $\operatorname{since} \frac{\sinh s_{k}}{\sinh r_{k}} \rightarrow 0$, we obtain from (21):

$$
1 \sim \frac{n}{2 \cosh \left(r_{k}-s_{k}\right)} \frac{\sinh r_{k}}{\sinh l},
$$

with $\sinh r_{k} \sim \frac{e^{r_{k}}}{2}, \cosh \left(r_{k}-s_{k}\right) \sim \frac{e^{r_{k}-s_{k}}}{2} \sim \frac{e^{-l}}{2} e^{r_{k}}$; so $1=\frac{n}{2} \frac{e^{l}}{\sinh l}$, which is absurd.

Step 3. $r-s$ tends to 0 at infinity.
Having proved that $r-s$ converges, let us set $\delta=\lim _{r \rightarrow+\infty} r-s$ and prove by contradiction that $\delta=0$. There are two cases:

First case: $0<\delta<+\infty$. We get $s \rightarrow+\infty$, hence $\frac{\sinh r}{\sinh s} \sim e^{r-s} \sim e^{\delta}, \frac{\sinh s}{\sinh r} \sim e^{s-r} \sim e^{-\delta}$ as r tends to infinity, and thus, from (19):

$$
s^{\prime} \rightarrow \frac{1}{2 \cosh \delta}\left[n e^{\delta}-(n-2) e^{-\delta}\right]
$$

The latter expression is larger than 1 , which contradicts $r \geqslant s$.
Second case: $\delta=+\infty$. We first note that $\frac{\sinh s}{\sinh r} \rightarrow 0$ (if s is bounded this is trivial; if s is not bounded, $s \rightarrow+\infty$ since s is increasing, and we have $\frac{\sinh s}{\sinh r} \sim e^{s-r} \rightarrow 0$ since $\left.r-s \rightarrow+\infty\right)$. Moreover we have $\liminf n h^{2} \frac{\sinh r}{\sinh s} \geqslant n \operatorname{since}$ $r \geqslant s$. We thus infer from Eq. (19):

$$
s^{\prime} \sim \frac{n}{2 \cosh (r-s)} \frac{\sinh r}{\sinh s}
$$

Assuming $s \rightarrow+\infty$, we get $\frac{\sinh r}{\sinh s} \sim e^{r-s}$ and $\cosh (r-s) \sim \frac{e^{r-s}}{2}$, hence $s^{\prime} \sim n$, which is impossible since $s \leqslant r$.
Finally, assuming s bounded yields $s \rightarrow l>0$; since $r-s \rightarrow+\infty$, we infer $\cosh (r-s) \sim \frac{e^{r-s}}{2}$ and $\sinh r \sim \frac{e^{r}}{2}$, hence from (19), $e^{-s} s^{\prime} \sim \frac{n}{2} \frac{1}{\sinh l}$ and thus $s^{\prime} \sim \frac{n}{2} \frac{e^{l}}{\sinh l}$, which contradicts the boundedness assumption on s.

Step 4. $\lim _{r(x) \rightarrow+\infty} \varphi(x)>-\infty$ if and only if $\varepsilon(r):=r-s$ is integrable on $[0,+\infty)$.
This is straightforward from (20) combined with $\tanh (u-s(u)) \sim \varepsilon(u)$ which holds as $u \rightarrow+\infty$ due to Step 3.
Step 5. ε is integrable on $[0,+\infty)$ if and only if $\beta:=1-h^{2}$ is integrable on $[0,+\infty)$.
First observation: $\lim _{r \rightarrow \infty} s^{\prime}=1$. Indeed, at infinity, we have $r-s \rightarrow 0$, so $s \rightarrow+\infty$, hence:

$$
\frac{\sinh r}{\sinh s} \sim e^{r-s} \sim 1, \quad \frac{\sinh s}{\sinh r} \sim e^{s-r} \sim 1
$$

and (19) yields $s^{\prime} \rightarrow 1$.
Using Step 3, the assumptions on h and the preceding observation, we get

$$
\varepsilon(r) \rightarrow 0, \quad \beta(r) \rightarrow 0, \quad \text { and } \quad \varepsilon^{\prime}(r)=1-s^{\prime}(r) \rightarrow 0
$$

as r tends to infinity. Plugging the definitions of ε and β in (19) and using the expansions

$$
\cosh \varepsilon=1+\mathrm{o}(\varepsilon), \quad \sinh (r-\varepsilon)=\sinh r(1-\varepsilon+\mathrm{o}(\varepsilon))
$$

yields

$$
\begin{equation*}
(n-1) \varepsilon+\varepsilon^{\prime}+\mathrm{o}(\varepsilon)=\frac{n}{2} \beta \tag{22}
\end{equation*}
$$

Fixing a real $\delta>0$, there readily exists $r_{\delta}>0$ such that, for all $r \geqslant r_{\delta}$,

$$
\begin{equation*}
\varepsilon^{\prime}+(n-1-\delta) \varepsilon \leqslant \frac{n}{2} \beta \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon^{\prime}+(n-1+\delta) \varepsilon \geqslant \frac{n}{2} \beta \tag{24}
\end{equation*}
$$

Integrating (23), we get, for $r \geqslant r_{\delta}$,

$$
\varepsilon(r) \leqslant e^{-(n-1-\delta) r}\left[C\left(r_{\delta}\right)+\frac{n}{2} \int_{r_{\delta}}^{r} \beta(u) e^{(n-1-\delta) u} d u\right]
$$

Integrating again and using Fubini Theorem yields, with δ such that $n-1-\delta>0$,

$$
\begin{aligned}
\int_{r_{\delta}}^{+\infty} \varepsilon(r) d r & \leqslant C^{\prime}\left(r_{\delta}\right)+\frac{n}{2} \int_{r_{\delta}}^{+\infty} \beta(u) e^{(n-1-\delta) u}\left(\int_{u}^{+\infty} e^{-(n-1-\delta) r} d r\right) d u \\
& \leqslant C^{\prime}\left(r_{\delta}\right)+\frac{n}{2(n-1-\delta)} \int_{r_{\delta}}^{+\infty} \beta(u) d u
\end{aligned}
$$

We conclude that ε is integrable provided $\beta=1-h^{2}$ is integrable.
Analogously, using (24), we get

$$
\varepsilon(r) \geqslant e^{-(n-1+\delta) r}\left[C\left(r_{\delta}\right)+\frac{n}{2} \int_{r_{\delta}}^{r} \beta(u) e^{(n-1+\delta) u} d u\right]
$$

and

$$
\begin{aligned}
\int_{r_{\delta}}^{+\infty} \varepsilon(r) d r & \geqslant C^{\prime}\left(r_{\delta}\right)+\frac{n}{2} \int_{r_{\delta}}^{+\infty} \beta(u) e^{(n-1+\delta) u}\left(\int_{u}^{+\infty} e^{-(n-1+\delta) r} d r\right) d u \\
& \geqslant C^{\prime}\left(r_{\delta}\right)+\frac{n}{2(n-1+\delta)} \int_{r_{\delta}}^{+\infty} \beta(u) d u
\end{aligned}
$$

Taking $\delta>0$ arbitrary, we find that β is integrable if ε is integrable.
The proof of statement (ii) is analogous and thus omitted.

3.4. Construction of radial barriers

Lemma 5. Let $h: \mathbb{H} \rightarrow \mathbb{R}$ be a positive and continuous function on the hyperbolic space such that

$$
\lim _{r(x) \rightarrow+\infty} h(x)=1
$$

and such that the functions h^{-}and h^{+}defined on \mathbb{R}^{+}by

$$
h^{-}(r)=\sup _{r(x)=r} h(x) \quad \text { and } \quad h^{+}(r)=\inf _{r(x)=r} h(x)
$$

satisfy

$$
\int_{0}^{+\infty}\left(h^{-}-1\right)_{+} d r<+\infty, \quad \int_{0}^{+\infty}\left(1-h^{+}\right)_{+} d r<+\infty
$$

where $\left(h^{-}-1\right)_{+}\left(\right.$resp. $\left.\left(1-h^{+}\right)_{+}\right)$means the positive part of $h^{-}-1\left(\right.$ resp. $\left.1-h^{+}\right)$. Then there exist $\varphi^{-}, \varphi^{+} \in C^{\infty}(\mathbb{H})$, with strictly convex spacelike graphs, satisfying:

$$
F_{2}\left(\varphi^{-}\right) \geqslant h, \quad F_{2}\left(\varphi^{+}\right) \leqslant h \quad \text { and } \quad \lim _{r \rightarrow+\infty} \varphi^{ \pm}=0 .
$$

Proof. First, considering $1+\left(h^{-}-1\right)_{+}$instead of h^{-}and $1-\left(1-h^{+}\right)_{+}$instead of h^{+}, we may suppose without loss of generality that h^{-}and h^{+}are two continuous functions such that: $\forall x \in \mathbb{H}$, with $r=r(x)$,

$$
\begin{align*}
& h^{-}(r) \geqslant h(x) \geqslant h^{+}(r)>0, \tag{25}\\
& h^{-} \geqslant 1 \geqslant h^{+}, \quad \lim _{r \rightarrow+\infty} h^{-}(r)=\lim _{r \rightarrow+\infty} h^{+}(r)=1, \tag{26}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{0}^{+\infty}\left(h^{-}-1\right) d r<+\infty, \quad \int_{0}^{+\infty}\left(1-h^{+}\right) d r<+\infty \tag{27}
\end{equation*}
$$

If we now consider

$$
h^{-}+\frac{\varepsilon_{0}}{r^{2}} \quad \text { if } r \geqslant 1, \quad h^{-}+\varepsilon_{0} \quad \text { if } r \leqslant 1
$$

instead of h^{-}, and

$$
h^{+}-\frac{\varepsilon_{0}}{r^{2}} \quad \text { if } r \geqslant 1, \quad h^{+}-\varepsilon_{0} \quad \text { if } r \leqslant 1
$$

instead of h^{+}, where ε_{0} is chosen sufficiently small such that $\inf h^{+}>\varepsilon_{0}$, we may moreover assume the following:

$$
h^{-} \geqslant \max (1, h)+\frac{\varepsilon_{0}}{r^{2}} \quad \text { and } \quad h^{+} \leqslant \min (1, h)-\frac{\varepsilon_{0}}{r^{2}} \quad \text { if } r \geqslant 1 .
$$

We now prove that we can approximate $h^{ \pm}$by smooth functions $g^{ \pm}$such that

$$
\begin{equation*}
\left|h^{ \pm}-g^{ \pm}\right| \leqslant \min \left(\frac{\varepsilon_{0}}{r^{2}}, \varepsilon_{0}\right) \tag{28}
\end{equation*}
$$

For each $i \in \mathbb{N}$, let us denote by g_{i}^{-}a smooth function on $[0, i+1]$ such that $\left|h^{-}-g_{i}^{-}\right| \leqslant \frac{\varepsilon_{0}}{(i+1)^{2}}$ on $[0, i+1]$. Let $\vartheta \in C_{c}^{\infty}(\mathbb{R})$ such that $0 \leqslant \vartheta \leqslant 1, \vartheta(x)=1$ if $|x| \leqslant \frac{1}{4}$ and $\vartheta(x)=0$ if $|x| \geqslant \frac{3}{4}$. We define g^{-}on $[i, i+1]$ by

$$
g^{-}=\vartheta_{i} g_{i}^{-}+\left(1-\vartheta_{i}\right) g_{i+1}^{-}
$$

where $\vartheta_{i}=\vartheta(.-i)$. By construction, we have $g^{-}=g_{i}^{-}$on a neighborhood of i. The function g^{-}is thus smooth on $[0,+\infty)$, and satisfies on $[i, i+1]$:

$$
\left|g^{-}-h^{-}\right| \leqslant \vartheta_{i}\left|g_{i}^{-}-h^{-}\right|+\left(1-\vartheta_{i}\right)\left|g_{i+1}^{-}-h^{-}\right| \leqslant \frac{\varepsilon_{0}}{(i+1)^{2}}
$$

which implies the estimate (28). We may thus assume that (25), (26) and (27) hold, where $h^{ \pm}$are two smooth functions on \mathbb{R}^{+}. Considering $\vartheta \sup _{\mathbb{R}^{+}} h^{-}+(1-\vartheta) h^{-}$instead of h^{-}, and $\vartheta \inf _{\mathbb{R}^{+}} h^{+}+(1-\vartheta) h^{+}$instead of h^{+}, we may also assume that the functions $h^{ \pm}$are constant on some neighborhood of 0 . Let φ^{-}and φ^{+}be smooth radial functions given by Theorem 5 (with some arbitrary initial condition φ_{0}) such that $F_{2}\left(\varphi^{ \pm}\right)=h^{ \pm}$. From Lemma 4, subtracting constants if necessary, we obtain $\lim _{r \rightarrow+\infty} \varphi^{ \pm}(r)=0$.

Now, we can complete the proof of Theorem 1 as follows. Lemma 5 provides two barriers which tend to 0 at infinity; by Theorem 3, we get an entire solution of Eq. (3) pinched between these barriers, and thus tending to 0 at infinity, so the existence part of Theorem 1 is proved. Uniqueness was proved in Theorem 2.

References

[1] R. Bartnik, Existence of maximal surfaces in asymptotically flat spacetimes, Commun. Math. Phys. 94 (1984) 155-175.
[2] P. Bayard, Dirichlet problem for space-like hypersurfaces with prescribed scalar curvature in $\mathbb{R}^{n, 1}$, Calc. Var. 18 (2003) 1-30.
[3] P. Bayard, Entire spacelike hypersurfaces of prescribed scalar curvature in Minkowski space, Calc. Var. 26 (2) (2006) $245-264$.
[4] P. Bayard, O. Schnürer, Entire spacelike hypersurfaces of constant Gauss curvature in Minkowski space, preprint, 2006.
[5] L. Caffarelli, L. Nirenberg, J. Spruck, Nonlinear second order elliptic equations IV. Starshaped compact Weingarten hypersurfaces, in: K. Kasahara, Y. Ohya, N. Shimakura (Eds.), Current Topics in Partial Differential Equations, Kinokunize Co., Tokyo, 1986, pp. 1-26.
[6] Ph. Delanoë, Plongements radiaux $\mathbb{S}^{n} \rightarrow \mathbb{R}^{n+1}$ à courbure de Gauss positive prescrite, Ann. Sci. École Norm. Sup. (4) 18 (1985) 635-649.
[7] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, second ed., Springer-Verlag, 1983.
[8] B. Guan, H.-Y. Jian, R.M. Schoen, Entire spacelike hypersurfaces of prescribed Gauss curvature in Minkowski space, J. reine angew. Math. 595 (2006) 167-188.
[9] N.M. Ivochkina, A description of the stability cones generated by differential operators of Monge-Ampère type, Math. USSR Sb. 50 (1) (1985) 259-268.
[10] N.M. Ivochkina, Solution of the Dirichlet problem for curvature equations of order m, Math. USSR Sb. 67 (2) (1990) 317-339.
[11] A.-M. Li, Spacelike hypersurfaces with constant Gauss-Kronecker curvature in the Minkowski space, Arch. Math. 64 (6) (1995) 534-551.
[12] A.J.B. Potter, An elementary version of the Leray-Schauder theorem, J. London Math. Soc. 5 (2) (1972) 414-416.
[13] A.E. Treibergs, S.W. Wei, Embedded hyperspheres with prescribed mean curvature, J. Differential Geom. 18 (1983) 513-521.
[14] N.S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rat. Mech. Anal. 111 (1990) $99-112$.
[15] J. Urbas, The Dirichlet problem for the equation of prescribed scalar curvature in Minkowski space, Calc. Var. 18 (2003) $307-316$.

[^0]: * The first author was supported by the project DGAPA-UNAM IN 101507; the second author is supported by the CNRS.
 * Corresponding author.

 E-mail addresses: bayard@ifm.umich.mx (P. Bayard), philippe.delanoe@unice.fr (P. Delanoë).

