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Abstract

In this paper we classify all solutions of⎧⎪⎪⎨⎪⎪⎩
−�u = |x|2αeu, in R

2+,

∂u
∂t

= c1|x|αe
u
2 , on ∂R

2+ ∩ {s > 0},
∂u
∂t

= c2|x|αe
u
2 , on ∂R

2+ ∩ {s < 0}
with the finite energy condition∫

R
2+

|x|2αeu dx < ∞,

∫
∂R

2+

|x|αe
u
2 ds < ∞.

Here c1, c2 are constants and α > −1.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

On a Riemann surface, one of the interesting geometric problems is to determine which functions can be realized
as the Gaussian curvature of some pointwise conformal metric. The classical uniformization theorem tell us that every
smooth Riemannian metric on a two-dimensional surface is pointwise conformal to one with constant curvature. This
question is by now well understood from many different perspectives, and successfully approached by many different
methods.
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On this basis, research can move on to surfaces with singularities. This, however, is by no means a straightforward
generalization of the smooth case. Results for smooth surfaces might not be true for surfaces with singularities.
For instance, there exist many surfaces with conical singularities that do not admit a conformal metric of constant
Gauss curvature. In fact, a closed surface with two conical singularities admits a conformal metric of constant Gauss
curvature if and only if its singularities have the same angle and are in antipodal positions – thus, such a surface
necessarily has the shape of an American football; this was proved by Troyanov [18]. Therefore a surface with exactly
one singularity (the teardrop) does not carry a conformal metric of constant Gauss curvature.

This result was obtained by methods from complex analysis. It is known, however, that the existence question for
conformal metrics is intimately linked to the Liouville equation. In recent years, very powerful PDE methods have
been developed to precisely determine the asymptotic behavior of solutions of this equation near singularities.

The purpose of the present paper then is to bring to bear the full force of those methods on the existence problem
for conformal metrics with prescribed singularities. In fact, we shall investigate the more general situation of surfaces
with boundary. When we have a boundary, the natural curvature condition there, the analogue of the constant Gauss
curvature condition in the interior, is the one of constant geodesic curvature.

To continue the discussion about surfaces with singularities, let us first recall their definition, following [18].
A conformal metric ds2 on a Riemannian surface Σ (possibly with boundary) has a conical singularity of order α (a
real number with α > −1) at a point p ∈ Σ ∪ ∂Σ if in some neighborhood of p

ds2 = e2u
∣∣z − z(p)

∣∣2α|dz|2

where z is a coordinate of Σ defined in this neighborhood and u is smooth away from p and continuous at p. The
point p is then said to be a conical singularity of angle θ = 2π(α + 1) if p /∈ ∂Σ and a corner of angle θ = π(α + 1)

if p ∈ ∂Σ . For example, a football has two singularities of equal angle, while a teardrop has only one singularity.
Both these examples correspond to the case −1 < α < 0; in case α > 0, the angle is larger than 2π , leading to a
different geometric picture. Such singularities also appear in orbifolds and branched coverings. They can also describe
the ends of complete Riemannian surfaces with finite total curvature. If (Σ,ds2) has conical singularities of order
α1, α2, . . . , αn at p1,p2, . . . , pn, then ds2 is said to represent the divisor A := ∑n

i=1 αipi .
For a closed surface with more than two conical singularities, the existence problem of constant Gauss curvature

already becomes subtle. When all singularities have order α ∈ (−1,0), Luo and Tian [14] gave a necessary and
sufficient condition. For the case of general α, a necessary and sufficient condition was given by [20] recently for a
closed surface with 3 conical singularities. See also [8] for a simpler proof.

As already mentioned, the objective of this paper is to consider surfaces (with boundary) with corners on their
boundary and to study the existence problem of conformal metrics with constant Gauss curvature and constant
geodesic curvature on their boundary. Our first result shows that a disk with two corners admits a conformal met-
ric with constant Gauss curvature and constant geodesic curvature on its boundary if and only if the two corners have
the same angle. This is analogous to the result of [19]. The disk is conformally equivalent to R

2+ ∪ {∞}. Note that the
case of a metric with zero geodesic curvature on its boundary can be reduced to Troyanov’s result.

Theorem 1.1. It is possible to construct a metric g with constant Gauss curvature on the unit disk D and constant
geodesic curvature on Γ± := ∂D ∩ {(x, y) ∈ R

2 | ±y > 0} admitting two corners p1 = (1,0) with order α1 > −1 and
p2 = (−1,0) with order α2 > −1 if and only if

α1 = α2.

In Theorem 1.1, the constant geodesic curvatures on Γ+ and Γ− may be different. All solutions can be explicitly
written down, see Theorem 1.2. Theorem 1.1 is not difficult to prove. But it is a good starting point for our research.

What we do in fact is more general than this generalization of Troyanov’s result. Let us denote R
2+ = {(s, t) | t > 0}.

We consider⎧⎪⎨⎪⎩
−�u = |x|2αeu, in R

2+,

∂u
∂t

= c1|x|αe
u
2 , on ∂R

2+ ∩ {s > 0},
∂u = c |x|αe

u
2 , on ∂R

2 ∩ {s < 0}
(1)
∂t 2 +
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with the energy conditions∫
R

2+

|x|2αeu dx < ∞,

∫
∂R

2+

|x|αe
u
2 ds < ∞. (2)

Here c1, c2 are constants and α > −1.
We call u ∈ H 1

loc(R
2+) a weak solution of (1)–(2) if it satisfies∫

R
2+

∇u · ∇ϕ dx + c1

∫
∂R

2+∩{s>0}
|x|αe

u
2 ϕ ds + c2

∫
∂R

2+∩{s<0}
|x|αe

u
2 ϕ ds =

∫
R

2+

|x|2αeuϕ dx

for any smooth function ϕ(x) on R
2+ with compact support. Since u ∈ H 1

loc(R
2+) implies eu ∈ L

p

loc(R
2+) for all p > 1,

by standard elliptic regularity we conclude that any weak solution u of (1) is a classical solution when α � 0 while
u is smooth away from the origin and u ∈ W 2,q near the origin for 1 < q < − 1

α
when −1 < α < 0. In particular,

u is continuous at the origin in any case. In the sequel, we assume that a solution u of (1)–(2) always satisfies

u ∈ C2(R2+) ∩ C1(R2+ \ {0}) and that u is continuous at the origin.
Geometrically, a solution u of (1)–(2) determines a metric ds2 = |z|2αeu|dz|2 with constant scalar curvature 1 on

R
2+ and with geodesic curvature −c1 on ∂R

2+ ∩ {s > 0} and geodesic curvature −c2 on ∂R
2+ ∩ {s < 0}. Moreover

ds2 = |z|2αeu|dz|2 has a conical singularity at z = 0. Let 1 and −1 be two points on the boundary of the unit disk D.
We take a conformal transformation φ mapping D to R

2+ and ∂D to ∂R
2+ with φ(1) = 0 and φ(−1) = ∞. With such

a conformal transformation, the metrics studied in Theorem 1.1 are solutions of (1)–(2). Our main result in this paper
is to show the converse, namely, any solution of (1)–(2) is in fact obtained from a metric in Theorem 1.1.

Theorem 1.2. Let u be a solution of (1)–(2). Then ds2 = eu|z|2α|dz|2 comes from a conformal metric as in Theo-
rem 1.1. More precisely, there exists λ > 0 such that:

(1) When α = 2k, k = 0,1,2, . . . , then c1 = c2. And when α = 2k + 1, k = 0,1,2, . . . , then c1 = −c2. In this case
the metric is

ds2 = 8(α + 1)2λ2α+2|z|2α|dz|2
(λ2α+2 + |zα+1 − z0|2)2

for some z0 = (s0, t0) with s0 ∈ R and t0 = c1λ
α+1√
2

.

(2) When α 	= k, k = 0,1,2, . . . , then for any c1 and c2, the metric is

ds2 = 8(α + 1)2λ2α+2|z|2α|dz|2
(λ2α+2 + |zα+1 − z0|2)2

for some z0 = (s0, t0) with s0 = λα+1(c1 cos(πα)−c2)√
2 sin(πα)

and t0 = c1λ
α+1√
2

.

This result is a natural generalization of the classification result of Chen and Li [4] for the Liouville equation

−�u = eu in R
2 (3)

with finite area
∫

R2 eu < ∞ and the classification result of Li and Zhu [13] for solutions of{−�u = eu in R
2+,

∂u
∂t

= ce
u
2 on ∂R

2+.
(4)

Geometrically, the result of Chen–Li covers the case of the standard sphere. In fact, their classification result tells
us that any solution of the Liouville equation (3) with finite area can be compactified as a metric on the standard
sphere with constant curvature. Similarly, the result of Li–Zhu deals with a portion of the standard sphere cut by a
2-plane. Namely, from their result we know that any solution of (4) can be compactified as a metric on such a portion
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of the standard sphere with constant Gauss curvature and constant geodesic curvature on the boundary. In this spirit,
our result (for −1 < α < 1) then deals with a portion of the standard sphere cut by two 2-planes with angle π(α + 1).

It would then be interesting to consider portions of the standard sphere cut by 3 or more 2-planes. This is related to
the result of Umehara and Yamada [20], see also [8]. We will return to this issue later. In another direction, our result is
a generalization of Prajapat and Tarantello [17], who classify solutions of the Liouville equation with one singularity.
For the case c1 = c2 = 0, Theorem 1.2 can be reduced to their result. For other classication results, or different proofs,
see [3,5–7,10,9,12,16], and [22].

Our method to deal with (1)–(2) can be viewed as a combination of the methods developed for those previous
results. We shall make particular use of [11] and [13]. The main issue is the determination of

d := − lim|x|→∞
u(x)

ln|x| .
Note that Eqs. (1) are no longer translation invariant and a solution of (1)–(2) will no longer be radially symmetric
if one of ci 	= 0 for i = 1,2. The methods used in [13] and [17] can therefore not be directly utilized to prove
Theorem 1.2. However, after we have shown that the metric ds2 = eũ|dz|2 = |z|2αeu|dz|2 has two conical singularities
at z = 0 and z = ∞, we can define

η(z) =
(

∂2ũ

∂z2
− 1

2

(
∂ũ

∂z

)2)
|dz|2, z in R

2+,

which can be extended to a projective connection on S
2 = C ∪ {∞} as defined in [19]. Then the problem is reduced

to a linear partial differential system, see (31) and (32). Finally we solve this boundary problem and demonstrate
Theorem 1.2.

2. Projective connections

In this section, we will state the definition and the properties of the projective connection discussed in the papers
of Troyanov [19] and Mandelbaum [15]. In the last section, we will demonstrate our main result in the sense of a
projective connection on C ∪ {∞}.

Assume that Σ is a Riemann surface. Let η be a quadratic differential. If

(1) η(z) = φ(z)|dz|2 is a meromorphic quadratic differential in each local coordinate (U, z) on Σ ,
(2) η(w) = η(z) + {z,w}|dw|2 in the overlap of two local coordinates (U, z), (V ,w),

then η is called a projective connection on Σ . Here { , } denotes the Schwarzian derivative:

{z,w} = z′′′

z′ − 3

2

(
z′′

z′

)2

a function z of w.
A point p ∈ Σ is called a regular point of the projective connection η if η is holomorphic at this point. We say that

η has a regular singularity of weight ρ at p if

η(z) =
(

ρ

z2
+ σ

z
+ φ1(z)

)
|dz|2

where φ1(z) is holomorphic, and z is a local coordinate at p with z(p) = 0.
The projective connection is said to be compatible with the divisor A := ∑n

i=1 αipi if it is regular in Σ −
{p1, . . . , pn} and has, for each i, a regular singularity of weight ρi = − 1

2αi(αi + 2) at pi . The next two lemmas
are examples about some results for the projective connection from [19].

Lemma 2.1. The definition of the weight for a singular point is independent of the choice of local coordinate.

Lemma 2.2. If ds2 = eu|dz|2 is a conformal metric of constant curvature on Σ representing the divisor A then

η(z) =
(

∂2u

∂z2
− 1

2

(
∂u

∂z

)2)
|dz|2

defines a projective connection compatible with the divisor A.
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3. Asymptotic behavior

We will first rewrite Eq. (1). Set ũ = u + 2α ln|x|. Then ũ satisfies⎧⎪⎪⎨⎪⎪⎩
−�ũ = eũ, in R

2+,

∂ũ
∂t

= c1e
ũ
2 , on ∂R

2+ ∩ {s > 0},
∂ũ
∂t

= c2e
ũ
2 , on ∂R

2+ ∩ {s < 0}
(5)

with the energy conditions∫
R

2+

eũ dx < ∞, (6)

∫
∂R

2+

e
ũ
2 ds < ∞. (7)

Proposition 3.1. Any solution ũ of (5) with (6) and (7) is bounded from above in the region R
2+ \ B+

ε (0), for each
ε > 0.

To prove Proposition 3.1, we need the following lemma.

Lemma 3.2. Assume that u is a solution of⎧⎪⎨⎪⎩
−�u = 0, in B+

R ,

∂u
∂t

= f (x), on {t = 0} ∩ ∂B+
R ,

u = 0, on ∂B+
R ∩ B+

R

with f ∈ L1({t = 0} ∩ ∂B+
R ) for any R > 0. Then for every δ1 ∈ (0,4π) we have∫

B+
R

exp

{
(4π − δ1)|u(x)|

‖f ‖1

}
dx � 16π2R2

δ1

and for every δ2 ∈ (0,2π)∫
∂B+

R ∩{t=0}
exp

{
(2π − δ2)|u(x)|

‖f ‖1

}
ds � 4πR

δ2

where ‖f ‖1 = ∫
{t=0}∩∂B+

R
|f |ds.

Proof. Set

Γ1 = {t = 0} ∩ B+
R, Γ2 = {t > 0} ∩ ∂B+

R .

Let

φ(y) = 1

2π

∫
Γ1

(
log

2R

|x − y| + log
2R

|x − y|
)∣∣f (x)

∣∣dx

where y is the reflection point of y about {t = 0}.
A direct computation yields{−�φ = 0, in B+

R ,

∂φ = −|f |, on Γ1.
∂t
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Note that φ � 0 for x ∈ B+
R since 2R

|x−y| � 1 for any x, y ∈ B+
R . We have⎧⎪⎨⎪⎩

−�(u − φ) = 0, in B+
R ,

∂(u−φ)
∂t

= f + |f |, on Γ1,

u − φ � 0, on Γ2.

It follows from the maximum principle and the Hopf lemma that u � φ in B+
R .

By a similar argument we also have⎧⎨⎩
−�(u + φ) = 0, in B+

R ,

∂(u+φ)
∂t

= f − |f |, on Γ1,

u + φ � 0, on Γ2

which implies that u � −φ in B+
R . Therefore we have |u| � φ in B+

R and thus we have∫
B+

R

exp

{
(4π − δ1)|u(x)|

‖f ‖1

}
dx �

∫
B+

R

exp

{
(4π − δ1)φ

‖f ‖1

}
dx,

and ∫
Γ1

exp

{
(2π − δ2)|u(x)|

‖f ‖1

}
ds �

∫
Γ1

exp

{
(2π − δ2)φ

‖f ‖1

}
ds.

At this point, using Jensen’s inequality, we can follow the argument of [1], proof of Theorem 1, to conclude the
result. �
Proof of Proposition 3.1. We first fix ε > 0, and assume that ũ is a solution of (5) with (6) and (7). From Theorem 2
of [1] it suffices to show that, for any x0 ∈ ∂R

2+ \ B+
ε (0), ũ is bounded from above on B+

R(x0) for some small
number R > 0, with a bound that is independent of the point x0. In the following, we denote by C various constants
independent of x0.

Write g = eũ, f = c(x)e
ũ
2 where c(x) is a function on ∂R

2+ \ {0} with c(x) = c1 when s > 0 and c(x) = c2 when
s < 0, where we write x = (s, t). Then ũ satisfies{−�ũ = g, in B+

R (x0),

∂ũ
∂t

= f, on Γ1.

It is clear that f ∈ L1(∂R
2+). Set f = f1 + f2 with ‖f1‖L1(∂R

2+) � π and f2 ∈ L∞(∂R
2+). Let Γ1 and Γ2 be as

Lemma 3.2. Define ũ1, ũ2 and ũ3 by⎧⎪⎨⎪⎩
−�ũ1 = eũ, in B+

R (x0),

∂ũ1
∂t

= 0, on Γ1,

ũ1 = 0, on Γ2.⎧⎪⎨⎪⎩
−�ũ2 = 0, in B+

R (x0),

∂ũ2
∂t

= f1, on Γ1,

ũ2 = 0, on Γ2.⎧⎪⎨⎪⎩
−�ũ3 = 0, in B+

R (x0),

∂ũ3
∂t

= f2, on Γ1,

ũ3 = 0, on Γ2.

Extending ũ1 evenly we have{−�ũ1 = eũ, in BR(x0),
ũ1 = 0, on ∂BR(x0).



J. Jost et al. / Ann. I. H. Poincaré – AN 26 (2009) 437–456 443
By using Theorem 2 in [1] and (6) we have

‖ũ1‖L∞(B+
R(x0))

� C.

For ũ2, by Lemma 3.2, we have∫
B+

R (x0)

exp
(
2|ũ2|

)
dx � C,

∫
Γ1

exp
(|ũ2|

)
ds � C

and in particular ‖ũ2‖Lq(B+
R (x0))

� C and ‖ũ2‖Lq(Γ1) � C for any q > 1.

For ũ3, it is obvious that

‖ũ3‖L∞(B+
R
2

(x0))
� C.

Let ũ4 = ũ − ũ1 − ũ2 − ũ3. Then we have{−�ũ4 = 0, in B+
R (x0),

∂ũ4
∂t

= 0, on Γ1.

Extending ũ4 evenly, ũ4 becomes a harmonic function on BR(x0). Then the mean value theorem for harmonic func-
tions implies that∥∥ũ+

4

∥∥
L∞(B+

R
2

(x0))
� C

∥∥ũ+
4

∥∥
L1(B+

R (x0))
.

Notice that

ũ+
4 � ũ+ + |ũ1| + |ũ2| + |ũ3|,

and ∫
R

2+

ũ+ dx �
∫

R
2+

eũ+
dx < ∞.

We get∥∥ũ+
4

∥∥
L∞(B+

R
2

(x0))
� C.

Finally, we write{−�ũ = eũ = g, in B+
R (x0),

∂ũ
∂t

= c(x)e
ũ
2 = f, on Γ1.

The standard elliptic estimates imply that

‖ũ+‖L∞(B+
R
4

(x0))
� C,

since ‖g‖Lq(B+
R
2

(x0))
� C and ‖f ‖Lq(∂B+

R
2

(x0)∩{t=0}) � C for any q > 1. �

As in the proof of Proposition 3.1, in the sequel we always let c(x) be a function on ∂R
2+ \ {0} with c(x) = c1 when

s > 0 and c(x) = c2 when s < 0, where x = (s, t). In virtue of Proposition 3.1, we obtain the asymptotic behavior of
the solution of (1)–(2). More precisely, we have the following

Proposition 3.3. Let u be a solution of (1)–(2). Let

d = 1

π

∫
R

2

|x|2αeu dx − 1

π

∫
∂R

2

c(x)|x|αe
u
2 ds.
+ +
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Then we have

lim|x|→∞
u(x)

ln|x| = −d.

Proof. Let

w(x) = 1

2π

∫
R

2+

(
log|x − y| + log|x − y| − 2 log|y|)|y|2αeu(y) dy

− 1

2π

∫
∂R

2+

(
log|x − y| + log|x − y| − 2 log|y|)c(y)|y|αe

u(y)
2 dy

where x̄ is the reflection point of y about {t = 0}. It is easy to check that w(x) satisfies{
�w = |x|2αeu, in R2+,

∂w
∂t

= −c(x)|x|αe
u
2 , on ∂R

2+ \ {0}
and

lim|x|→∞
w(x)

ln|x| = d.

Consider v(x) = u + w. Then v(x) satisfies{
�v = 0, in R

2+,

∂v
∂t

= 0, on ∂R
2+ \ {0}.

We extend v(x) to R
2 by even reflection such that v(x) is harmonic in R

2. From Proposition 3.1 we know v(x) �
C(1 + ln(|x| + 1)) for some positive constant C. Thus v(x) is a constant. This completes the proof. �
Remark 3.4. From (2), it is easy to check that d � 2 + 2α.

4. The exact value of d

In this section, we want to compute the value of d . We need to distinguish two cases. When c1 � 0 and c2 � 0, we
will employ a similar argument as in [11] when they proved γi < 2 in Proposition 7.1 to show that d > 2 + 2α. Here
c1 � 0 and c2 � 0 are crucial such that w(x) < 0 in D+, see Proposition 4.1. Once we have proved that d > 2+2α, we
can obtain an extension of u(x) near ∞, see (11). Then we can use the Pohozaev identity of (1) to prove d = 4 + 4α.
When ci > 0 for i = 1 or i = 2, this method will not work well. We will use the moving sphere method, which was
used in [13], to show d > 2(1 + α). Let us start with the negative case.

Proposition 4.1. If c1 � 0 and c2 � 0 in (1)–(2), we have d > 2 + 2α.

Proof. Assume by contradiction that d = 2 + 2α. Let v be the Kelvin transformation of u, i.e. v(x) = u( x

|x|2 )− (4α +
4) ln|x|. Then v satisfies{−�v = |x|2αev, in R

2+,

∂v
∂t

= c(x)|x|αe
v
2 , on ∂R

2+ \ {0}
with the energy conditions∫

R
2

|x|2αev dx < ∞

+
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and ∫
∂R

2+

|x|αe
v
2 dt < ∞.

Here c(x) is a function as in the above section.
Let D+ be a small half disk centered at zero. Define w(x) by

w(x) = 1

2π

∫
D+

(
log|x − y| + log|x − y|)|y|2αev(y) dy

− 1

2π

∫
∂D+∩{t=0}

(
log|x − y| + log|x − y|)c(y)|y|αe

v(y)
2 dy

and define g(x) = v(x) + w(x). It is clear that{
�g = 0, in D+,
∂g
∂t

= 0, on {∂D+ ∩ {t = 0}} \ {0}.
Therefore by extending g(x) to D \ {0} evenly we obtain a harmonic g(x) in D \ {0}.

On the other hand, we can check that

lim|x|→0

w

− log|x| = 0

which implies

lim|x|→0

g(x)

− log|x| = lim|x|→0

v(x) + w(x)

− log|x| = 2α + 2.

Since g(x) is harmonic in D\{0}, we have g(x) = −(2α + 2) log|x| + g0(x) with a smooth harmonic function g0
in D. By the definition, we have w(x) < 0 since c(x) is negative. Thus, we have∫

D+
|x|2αev dx =

∫
D+

|x|2αeg−w dx �
∫

D+
|x|2α|x|−2α−2eg0 dx = ∞,

which is a contradiction with
∫

R
2+ |x|2αevdx < ∞. Hence we have shown that d > 2α + 2. �

From d > 2α + 2 we can improve the estimates for eu to

eu � C|x|−2−2α−ε, for |x| near ∞. (8)

Then by using potential analysis, we obtain

−d ln|x| − C � u(x) � −d ln|x| + C

for some constant C > 0 and ε > 0, see [4]. Furthermore following the idea for the derivation of gradient estimates in
[2] and [21], we get∣∣〈x,∇u〉 + d

∣∣ � C|x|−ε for |x| near ∞,

consequently we have∣∣∣∣ur + d

r

∣∣∣∣ � C|x|−1−ε for |x| near ∞. (9)

In a similar way, we can also get

|uθ | � C|x|−ε for |x| near ∞. (10)

From (9) and (10) we can also get by standard potential analysis that

u(x) = −d ln|x| + C + O
(|x|−1) for |x| near ∞. (11)

Here (r, θ) is the polar coordinate system on R
2, and C,ε are some positive constants.
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Proposition 4.2. If d > 2 + 2α, then we have d = 4 + 4α.

Proof. Firstly we establish the Pohozaev identity of (1)–(2). Multiply equation (1) by x · ∇u and integrate over B+
R

to obtain

−
∫

B+
R

(x · ∇u)�udx =
∫

B+
R

|x|2αeux · ∇udx.

Since

(x · ∇u)�u = div
(
(x · ∇u)∇u

) − div

(
x|∇u|2

2

)
,

|x|2αeux · ∇u = div
(
x|x|2αeu

) − div(x)|x|2αeu − eux · ∇|x|2α,

and

x · ∇|x|2α = 2α|x|2α,

we obtain∫
∂B+

R ∩{t>0}
x · ν |∇u|2

2
− (ν · ∇u)(x · ∇u)ds +

∫
∂B+

R ∩{t=0}
x · ν |∇u|2

2
− (ν · ∇u)(x · ∇u)ds

=
∫

∂B+
R ∩{t>0}

x · ν|x|2αeu ds +
∫

∂B+
R ∩{t=0}

x · ν|x|2αeu ds − (2 + 2α)

∫
B+

R

|x|2αeu dx,

where ν is the outward unit normal vector to ∂B+
R . Hence we have

R

∫
∂B+

R ∩{t>0}

|∇u|2
2

−
∣∣∣∣∂u

∂r

∣∣∣∣2

ds +
∫

∂B+
R ∩{t=0}

∂u

∂t
(x · ∇u)ds = R

∫
∂B+

R ∩{t>0}
|x|2αeu ds − (2 + 2α)

∫
B+

R

|x|2αeu dx.

Since ∫
∂B+

R ∩{t=0}

∂u

∂t
(x · ∇u)ds =

R∫
−R

c(x)|x|αe
u
2 s∂suds

= 2

R∫
−R

c(x)|x|αs∂se
u
2 ds

= 2c(x)|s|αse
u
2 |R−R − (2 + 2α)

R∫
−R

c(x)|x|αe
u
2 ds,

we get the Pohozaev identity

R

∫
∂B+

R ∩{t>0}

|uθ |2
2R2

− |ur |2
2

ds = R

∫
∂B+

R ∩{t>0}
|x|2αeu ds − (2 + 2α)

∫
B+

R

|x|2αeu dx

− 2c(x)|s|αse
u
2 |R−R + (2 + 2α)

R∫
−R

c(x)|x|αe
u
2 ds.

In virtue of (8), (9) and (10), we let R → ∞ in the Pohozaev identity and get

d = 4 + 4α. �
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Next let us consider the case ci > 0 for i = 1 or i = 2.

Proposition 4.3. If ci > 0 for i = 1 or i = 2, then d � 4 + 4α and consequently d = 4 + 4α.

Proof. Without loss of generality, we assume that c1 > 0. First we have d � 2(1 + α) from Remark 3.4. To prove
d � 4(α + 1), we will derive a contradiction from assuming d < 4(1 + α).

Case 1. c1 > 0 and c2 � 0.
In this case c(x) � 0, where c(x) is a function defined as in the proof of Proposition 3.1. We assume 2(1 + α) �

d < 4(1 +α) by contradiction. For any λ > 0, set Eλ = {x ∈ R
2+: |x| > 1√

λ
} and uλ(x) = u(λx)+ 2(1 +α) lnλ. Then

uλ(x) satisfies{−�uλ(x) = |x|2αeuλ, in Eλ,

∂uλ

∂t
= c(x)|x|αe

uλ
2 , on ∂Eλ ∩ ∂R

2+.
(12)

Set

vλ(x) = v(λx) + 2(1 + α) lnλ

= u

(
x

λ|x|2
)

+ 2(α + 1) ln
1

λ|x|2
where v(x) is the Kelvin transformation of u(x), i.e. v(x) = u( x

|x|2 ) − 4(α + 1) ln|x|. So, vλ(x) is also a solution of
(12).

Set wλ = u − vλ. Since Eλ does not contain the point x = 0, wλ is smooth in Eλ, and wλ satisfies⎧⎨⎩
−�wλ(x) = c1(x)|x|2αwλ, in Eλ,
∂wλ

∂t
= c(x)c2(x)|x|αwλ, on ∂Eλ ∩ ∂R

2+,

wλ = 0, on ∂Eλ ∩ {t > 0},
(13)

where c1(x) = eξ1(x) and c2(x) = 1
2e

ξ2(x)

2 , ξi (i = 1,2) are two functions between u and vλ.

Claim 1. For λ large enough, wλ(x) � 0 for all x ∈ Eλ.

Step 1. ∃R0 such that for all x ∈ {x ∈ R
2+, 2√

λ
� |x| � R0}, we have wλ � 0.

For x ∈ {x ∈ R2+, 2√
λ

� |x| � R0} with R0 small enough, we have

wλ(x) = u(x) − u

(
x

λ|x|2
)

+ 2(α + 1) ln
(
λ|x|2)

� o(1) + 2(α + 1) ln 4 > 0.

Step 2. ∃R1 � R0 such that for all x ∈ {x ∈ R
2+, 1√

λ
� |x| � 2√

λ
� R1}, we have wλ � 0.

Set Aλ = {x ∈ R
2+, 1√

λ
� |x| � 2√

λ
� R1} and g(x) = 1 − |x|α+1 and let wλ(x) = wλ(x)

g(x)
. Then, by Step 1 and (13),

wλ(x) satisfies⎧⎪⎨⎪⎩
�wλ(x) + 2

g
∇g · ∇wλ(x) + (c1(x)|x|2α + �g

g
)wλ(x) = 0, in Aλ,

∂wλ(x)
∂t

= c(x)c2(x)|x|αwλ(x), on ∂Aλ ∩ {t = 0},
wλ � 0, on ∂Aλ ∩ {t > 0}.

(14)

Since vλ � max
R

2+ u in Eλ, there exists some positive constant C0 such that c1(x) � C0. By a direct computation,

c1(x)|x|2α + �g

g
� g−1(−(α + 1)2|x|α−1 + C0|x|2α

(
1 − |x|α+1))

� g−1|x|α−1(−(α + 1)2 + C0|x|α+1) < 0,
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if |x| < { (α+1)2

C0
} 1

α+1 . Therefore, we choose R1 < min{{ (α+1)2

C0
} 1

α+1 ,1} small enough. Then, from (14), it follows from
the maximum principle and the Hopf Lemma that wλ � 0 in Aλ. Here we have used the fact that c(x) � 0.

Step 3. ∃R2 � R1 such that for
√

λ � 1
R2

, we have wλ � 0 for all x ∈ {x ∈ R
2+, |x| > R0}.

For x ∈ {x ∈ R2+, |x| > R0} and d < 4α + 4, as |x| → ∞ we have

lim|x|→∞
u(x) + 4(α + 1) ln|x|

ln|x| = −d + 4(α + 1) > 0.

Then there exists some constant C > 0 such that

u(x) + 4(α + 1) ln|x| > −C, for |x| > R0.

Therefore, for λ large enough we have

wλ(x) = u(x) + 4(α + 1) ln|x| − u

(
x

λ|x|2
)

+ 2(α + 1) lnλ

� −C − max
R

2+
u + 2(α + 1) lnλ � 0.

Thus we finish the proof of Claim 1.
Now we define

λ0 = inf
{
λ > 0 | wμ(x) � 0 in Eμ for all μ � λ

}
.

Claim 2. λ0 > 0.

Assume by contradiction that λ0 = 0, that is, for all λ > 0, we have wλ(x) � 0 in Eλ. Then, we have for all x ∈ R2+⎧⎨⎩
w 1

|x|2
(x) = 0,

w 1
|x|2

(rx) � 0, ∀0 < r < 1.

Since

wλ(x) = u(x) − u

(
x

λ|x|2
)

+ 2(α + 1) ln
(
λ|x|2),

by a direct computation, we have

w 1
|x|2

(rx) = u(rx) − u

(
x

r

)
+ 4(α + 1) ln r. (15)

In (15), taking firstly |x| = r and then let r → 0+, we get w 1
|x|2

(rx) → −∞. Thus we get a contradiction with

w 1
|x|2

(rx) � 0 for all 0 < r < 1 and all x ∈ R
2+.

Claim 3. wλ0(x) = 0, ∀x ∈ R
2+.

Assume by contradiction wλ0 � 0 for all x ∈ R
2+. Then from (13) we obtain firstly⎧⎪⎨⎪⎩

�wλ0(x) � 0, in Eλ0,
∂wλ0
∂t

� 0, on ∂Eλ0 ∩ ∂R
2+,

wλ0 = 0, on ∂Eλ0 ∩ {t > 0}.
(16)

Then we use the strong maximum principle and the Hopf Lemma to obtain{
wλ0(x) > 0, in Eλ0,
∂wλ0
∂ν

> 0, on ∂Eλ0 ∩ {t > 0} (17)

where ν denotes the outward unit normal of the surface ∂B√
1/λ (0) ∩ {t > 0}.
0
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Next note that by the definition of λ0, we can assume that there exists a sequence λk → λ0 with λk < λ0 such that

inf
Eλk

wλk
< 0.

If we can prove that

wλ0(x) � C for x ∈ E λ0
2

(18)

for some constant C = C(λ0) > 0, then from the continuity of u at x = 0 we get

wλk
� C

2
, ∀x ∈ E λ0

2
.

for k large enough. It follows that there exists xk = (sk, tk) ∈ Eλk
\ Eλ0/2 such that

wλk
(xk) = inf

Eλk

wλk
< 0.

It is clear that
√

1
λk

< |xk| <

√
2
λ0

and, due to the boundary condition, tk > 0. Hence ∇wλk
(xk) = 0. After passing

to a subsequence (still denoted as xk) xk → x0 = (s0, t0), it follows that

wλ0(x0) = 0, ∇wλ0(x0) = 0. (19)

By (17) we have t0 = 0 and |s0| =
√

1
λ0

.

However, we would like to show

∂wλ0(x0)

∂ν
> 0, for x0 = (s0,0), |s0| =

√
1

λ0
(20)

if wλ0(x) satisfies (16). Here ν denotes the outward unit normal of the surface ∂B√
1/λ0

(0) ∩ {t � 0}.
Therefore from (19) and (20) we get a contradiction. Thus to prove Claim 3, it suffices to show (18) and (20).

Proof of (18). First, for x ∈ E λ0
2

, we have

vλ0 = u

(
x

λ0|x|2
)

+ 2(α + 1) ln
1

λ0|x|2
� max

R
2+

u + 2(α + 1) ln 2 � C.

Notice that min∂E λ0
2

∩{t>0} wλ0 � ε for some 0 < ε < 1. Without loss of generality, we assume λ0 = 2. For 0 <

r < 1, we introduce an auxiliary function

ϕ(x) = εμ

2(c + 1)
− log|x|

log
√

1/r
· ε + ε(1 − μ)(t − 1/

√
r)

2

(√
1

r

)α

when α � 0. Here c = max{c1, c2}; 0 < μ < 1 will be chosen later. When −1 < α < 0, we use instead the auxiliary
function

ϕ(x) = εμ

2(c + 1)
− log|x|

log
√

1/r
· ε + ε(1 − μ)t

2
.

We shall only present the details for the case α � 0 as the case −1 < α < 0 can be treated in a similar way. Let
P(x) = wλ0(x) − ϕ(x). Then we get{

�P(x) = �wλ0(x) � 0, in E1 \ Er,

∂P (x)
∂t

= c(x)c2(x)|x|αwλ0 − ε(1−μ)
2

(√ 1
r

)α
, on ∂(E1 \ Er) ∩ {t = 0}.

We will show

P(x) � 0, x ∈ E1 \ Er. (21)
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We prove it by contradiction. If (21) does not hold, there exists some x0 = (s0, t0) such that

P(x0) = min
E1\Er

P (x) < 0.

Since we have P(x) � 0 on ∂E1 ∩{t > 0} and P(x) > wλ0(x) � 0 on ∂Er ∩{t > 0}, then it follows from the maximum

principle that t0 = 0 and 1 < |s0| <
√

1
r

and ∂P (x)
∂t

|x0 � 0.
In virtue of P(x0) < 0 and vλ0(x0) < C1, we have c2(x0) < C0 for some constant C0 > 0 and moreover

wλ0(x0) < ϕ(x0) <
εμ

2(c + 1)
. (22)

On the other hand, in virtue of ∂P (x)
∂t

|x0 � 0 we have

0 � (c + 1)c2(x0)|x0|αwλ0(x0) − ε(1 − μ)

2

(√
1

r

)α

�
{√

1

r

}α(
C0(c + 1)wλ0(x0) − ε(1 − μ)

2

)
.

Hence

wλ0(x0) � ε(1 − μ)

2C0(c + 1)
. (23)

From (22) and (23), we have

μ >
1

1 + C0
.

If we choose μ such that 0 < μ < 1
1+C0

from the beginning we reach a contradiction.
Since P(x) � 0, we then let r → 0 and have proved (18) with C = ε

2(1+c)(1+C0)
.

Proof of (20). Without loss of generality, we assume λ0 = 1 and s0 = 1. Set Ω = {x = (s, t) | 1 < s2 + t2 < 4, s > 0,
0 < t < 1

4 }. Let

h(x) = ε(s − 1)(t + μ),

and

g(x) = h(x) − h

(
x

|x|2
)

where 0 < ε, μ < 1 are chosen later. A direct computation yields �g(x) = 0 for x ∈ Ω . Now consider

f (x) = wλ0(x) − g(x).

Then we have{
�f (x) � 0, in Ω,
∂f (x)

∂t
= c(x)c2(x)|x|αwλ0(x) − ∂g(x)

∂t
, on ∂Ω ∩ {t = 0}.

Next we want to show

f (x) � 0, ∀x ∈ Ω,

for suitably chosen ε and μ.
In fact, we argue by the contradiction and assume that there exists some x1 = (s1, t1) ∈ Ω such that

f (x1) = min
Ω

f (x) < 0.

Since f (x) = 0 on ∂Ω ∩ ∂E1 and f (x) � 0 on ∂Ω ∩ {∂E 1
4

∪ {t = 1
4 }}, we can use the maximum principle to obtain

t1 = 0, 1 < s1 < 2 and ∂f (x1) � 0 on ∂Ω ∩ {t = 0}.

∂t
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A simple calculation yields

∂g(x1)

∂t
= ε(s1 − 1)

(
1 + s−3

1

)
.

In virtue of ∂f (x1)
∂t

� 0 on ∂Ω ∩ {t = 0}, we obtain

cc2(x1)|s1|αwλ0(x1) � ε(s1 − 1)
(
1 + s−3

1

)
.

Hence, we get

2αcc2(x1)wλ0(x1) � ε(s1 − 1)
(
1 + s−3

1

)
for α � 0. And

cc2(x1)wλ0(x1) � ε(s1 − 1)
(
1 + s−3

1

)
for −1 < α < 0. Here c = max{c1, c2}. On the other hand, we have

wλ0(x1) < f (x1) = εμ(s1 − 1)

(
1 + 1

s1

)
.

Therefore, if α � 0 we have

2α
(
1 + cc2(x1)

)
μ �

1 + s−3
1

1 + s−1
1

>
3

4
,

and if −1 < α < 0, we have

(
1 + cc2(x1)

)
μ �

1 + s−3
1

1 + s−1
1

>
3

4
.

If we choose μ such that 0 < μ < 3
2a+2(1+c sup

R
2+

c2(x))
for a = max{α,0} from the beginning we reach a contradiction.

Thus we have proved that f (x) � 0 for x ∈ Ω . Since f (x0) = 0, i.e. x0 is minimum point of f (x) in Ω , it follows
from the Hopf Lemma that

∂f (x0)

∂ν
� 0.

A direct calculation shows that

∂wλ0(x0)

∂ν
= ∂f (x0)

∂ν
+ ∂g(x0)

∂ν
� ∂g(x0)

∂ν
= 2εμ > 0.

We finish the proof of (20).

In Claim 3, wλ0(x) = 0 implies that

u(x) = u

(
x

λ0|x|2
)

+ 2(α + 1) ln
1

λ0|x|2 . (24)

Hence it follows from (24) that d = 4(1 + α). This contradicts our assumption d < 4(1 + α). Thus we proved d �
4(1 + α). From Proposition 4.2 we know d = 4(1 + α).

Case 2. c1 > 0 and c2 < 0.
In this case, we will follow the argument of Case 1. The main difference between the case c2 � 0 and c2 < 0, in

view of the maximum principle and the Hopf Lemma, is to show Step 2 in the proof of Claim 1. Actually we can prove
this step in the case c2 < 0 by using a suitable test function. This will become evident from the rest of the argument.

Step 2 of Claim 1. ∃R1 � R0 such that for all x ∈ Aλ = {x ∈ R
2+, 1√ � |x| � 2√ � R1}, we have wλ � 0.
λ λ
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Let x = (s, t) and z = x + (0,+ μ√
λ
), where μ is a positive number that will be determined later. Set g(x) =

1 − |z|α+1 and wλ(x) = wλ(x)
g(x)

. Then, by Step 1 and (13), wλ(x) satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�wλ(x) + 2

g
∇g · ∇wλ(x) + (c1(x)|x|2α + �g

g
)wλ(x) = 0, in Aλ,

∂wλ(x)
∂t

= (c1c2(x)|x|α − 1
g

∂g
∂t

)wλ(x), on ∂Aλ ∩ {t = 0} ∩ {s > 0},
∂wλ(x)

∂t
= (c2c2(x)|x|α − 1

g
∂g
∂t

)wλ(x), on ∂Aλ ∩ {t = 0} ∩ {s < 0},
wλ � 0, on ∂Aλ ∩ {t > 0}.

(25)

Since vλ � max
R

2+ u in Eλ, then there exists some positive constant C0 such that 0 < c1(x), c2(x) � C0. Since

x ∈ Aλ = {x ∈ R
2+, 1√

λ
� |x| � 2√

λ
� R1}, we have |x| ∼ |z| ∼ | 1√

λ
|. Then by a direct computation, we obtain

c1(x)|x|2α + �g

g
� g−1(−(α + 1)2|z|α−1 + C0|x|2α

(
1 − |z|α+1)) < 0,

if λ is large enough. Similarly, we have

c2c2(x)|x|2α − 1

g

∂g

∂t
� g−1

(
(α + 1)|z|α−1 μ√

λ
+ c2C0|x|α(

1 − |z|α+1))
� g−1

(
(α + 1)Cμ

∣∣∣∣ 1√
λ

∣∣∣∣α + c2C0

∣∣∣∣ 1√
λ

∣∣∣∣α)
> 0,

on ∂Aλ ∩{t = 0}∩{s < 0} for sufficiently large μ. It is obvious that c1c2(x)|x|2α − 1
g

∂g
∂t

> 0 on ∂Aλ ∩{t = 0}∩{s > 0}
since c1 > 0. Then, from (25), we can again use the maximum principle and the Hopf Lemma to obtain wλ � 0 in Aλ.

The proof of Claim 3 requires some simple modifications when we use the maximum principle and the Hopf
Lemma. But these can be carried out just by changing test functions as in the previous argument. Here we omit the
details. Thus we complete the proof of the theorem. �
Remark 4.4. Actually the spherical symmetry (24) is inherited by the solution of (1)–(2). From the proof of Propo-
sition 4.3, it is sufficient to establish Step 3 when d = 4(1 + α). But this can be done with the help of the asymptotic
estimate (11).

5. Proof of main theorems

In this section we prove our main theorems. Theorem 1.1 can be obtained directly from Proposition 4.3, since we
can show that the solution u to (1)–(2) has a removable singularity at z = ∞ by using the Kelvin transformation as
in many conformal problems. To prove Theorem 1.2, we follow closely the argument in [19]. The crucial step is to

construct a projective connection on S2 by using the conformal metric on R
2+ ∪ {∞} with constant curvature 1 and

constant geodesic curvature c(x) on the boundary.
First, we prove Theorem 1.1:

Proof of Theorem 1.1. To prove Theorem 1.1, it suffices to show that any solution of (1)–(2) determines a metric as
in Theorem 1.1. For this point, we first prove that the metric ds2 = |x|2αeu(x)|dz|2, u being a solution of (1)–(2), has
two conical singularities at 0 and ∞ with the same order. The existence of this metric is shown in Theorem 1.2.

Let v be the Kelvin transformation of u. If u is a solution of (1)–(2), then v ∈ C2(R2+) ∩ C1(R2+ \ {0}) and satisfies{−�v = |x|2αev, in R
2+,

∂v
∂t

= c(x)|x|αe
v
2 , on ∂R

2+ \ {0}. (26)

To prove the result, we first show that v is continuous at x = 0, that is the singularity z = 0 of v is removable. Applying
the asymptotic estimate (11) we have

v(x) = u

(
x

|x|2
)

− 4(α + 1) ln|x|
= (

d − 4(α + 1)
)

ln|x| + O(1) for |x| near 0.
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Since d = 4(1 + α), we get that v is bounded near 0. Thus, by standard elliptic regularity, we conclude that v is a

C2(R2+)∩C1(R2+) solution of (1) when α � 0. While, for α ∈ (−1,0), v is smooth away from the origin and v ∈ W 2,p

for 1 < p < − 1
α

near the origin. In particular, in any case, v is continuous at the origin.
Next note that ds2 = eũ dx2 for ũ = u(x) + 2α log|x|, where u is a solution of (1)–(2). So the metric ds2 has a

conical singularity at z = 0 with order α. Let ṽ(x) = ũ( x

|x|2 ) − 4 log|x| be Kelvin transformation of ũ. Then we obtain
near z = 0

ṽ(x) = u

(
x

|x|2
)

− 2α log|x| − 4 log|x|
= 2α log|x| + v(x)

since v(x) is continuous function at z = 0. By the definition of a conical singularity, we get that the metric ds2 =
eũ dx2 has a conical singularity at z = ∞ with the same order as at z = 0. �
Lemma 5.1. Let u be a solution of (1)–(2), and ds2 = eũ|dz|2, where ũ = u + 2α ln|z|. Define

η(z) =
(

∂2ũ

∂z2
− 1

2

(
∂ũ

∂z

)2)
|dz|2.

Then η(z) can be extended to a projective connection on S
2 = C ∪ ∞, still denoted by η(z), that is compatible with

the divisor A = α · 0 + α · ∞.

Proof. First, from the assumption, we know that ũ satisfies{−�ũ = eũ, in R
2+,

∂ũ
∂t

= c(x)e
ũ
2 , on ∂R

2+ \ {0}, (27)

with the energy conditions∫
R

2+

eũ dx < ∞, (28)

∫
∂R

2+

e
ũ
2 dt < ∞. (29)

Let f (z) = ∂2ũ

∂z2 − 1
2 ( ∂ũ

∂z
)2, then from (27), f (z) is holomorphic on R

2+ and Imf = 1
2 ( 1

2
∂ũ
∂s

∂ũ
∂t

− ∂2ũ
∂s∂t

). On the other

hand, since on ∂R
2+ \ {0}, ∂ũ

∂t
= c(z)e

ũ
2 , we have ∂2ũ

∂s∂t
= c(z)

2 e
ũ
2 ∂ũ

∂s
= 1

2
∂ũ
∂s

∂u
∂t

. This implies f (z) is real on ∂R
2+ \ {0},

and we may extend f (z) to a holomorphic function on C \ {0} by f (z) = f (z) for z ∈ R
2−. Thus we extend η to C

such that η is holomorphic on C − {0}.
Next we show that η(z) is a projective connection on C ∪ ∞. Let (V ,w) and (U, z) be coordinate charts with

U ∩ V 	= ∅. If U ∩ V ⊂ R
2+ ∪ {∞}, then by following the argument in [19] and by using the fact that ds2 = eũ|dz|2 is

a conformal metric on R
2+ ∪ ∞, we have ds2 = eũ|dz|2 = ev|dw|2 with v = ũ + 1

2 log| dz
dw

|, and consequently we get

η(w) =
(

∂2(ũ + 1
2 log| dz

dw
|)

∂w2
− 1

2

(
∂(ũ + 1

2 log| dz
dw

|)
∂w

)2)
|dw|2

= η(z) + {z,w}|dw|2. (30)

If U ∩ V ⊂ R
2−, since z̄w̄ = zw , we get from (30)

η(w) = η(w̄) = η(z̄) + {z̄, w̄}dw̄2

= η(z) + {z,w}|dw|2.
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So, in any case, η(w) = η(z) + {z,w}dw2 when U ∩ V 	= ∅. This means that η is a projective connection on S2 =
C ∪ ∞.

Next, we want to show that η has a regular singularity at 0 and at ∞ of weight ρ = − 1
2α(α + 2). We prove this

statement only at the singular point 0, since the same argument applies at ∞ by using the Kelvin transformation. Since

0 is a conical singular point of the metric ds2 = eũ dz2 on R
2+ ∪ {∞}, we set ũ = u(x) + 2α log|x| in Br(0) ∩ R

2+,
where u(x) is a continuous solution of (1)–(2).

First, we consider the case α � 0. In this case, since u(x) is a continuous solution of (1)–(2), u is of class C2 in
R

2+ by classical elliptic regularity theory. Then we have

∂2ũ

∂z2
− 1

2

(
∂ũ

∂z

)2

= ∂2u

∂z2
− 1

2

(
∂u

∂z

)2

− α

z

∂u

∂z
− α(α + 2)

2z2

in R
2+ \ {0}. Hence we obtain

η(z) =
(

−α(α + 2)

2z2
− α

z

∂u(z)

∂z
+ φ(z)

)
dz2, for z ∈ R

2+ \ {0},

η(z) =
(

−α(α + 2)

2z2
− α

z

∂u(z̄)

∂z̄
+ φ(z̄)

)
dz2, for z ∈ R

2−,

where φ(z) = ∂2u

∂z2 − 1
2 ( ∂u

∂z
)2 for z ∈ R

2+ \{0}. This proves that η(z) has a regular singularity of weight ρ = − 1
2α(α+2)

at z = 0 in this case.
When −1 < α < 0, u might not to be C2 and the computation above might not work. However, we may take a

method used in [19] to lift the metric to a local branched cover: We set z = wm(m ∈ N), then the metric can be lifted
in the w-plane: ds′2 = eu′

dw2 with u′ = ũ+2 log| dz
dw

| = u+2(m(α +1)−1) log|w|+2 logm, when z is in the upper
half plane. Therefore ds′2 has a conical singularity at w = 0 of order α′ = m(α + 1) − 1. Since Eq. (27) is invariant
under conformal transformations, u′ satisfies (27) in terms of w. Now choosing m large enough, we have α′ > 0. Then
we can use the same argument as in [19] and the extension technique above to get

η(z) =
(

−α(α + 2)

2z2
+ σ

z
+ φ(z)

)
dz2

where φ(z) is holomorphic function. �
Proof of Theorem 1.2. From Lemma 5.1, we know that η(z) is a projective connection on S2 = C∪{∞} with regular
singularities at z = 0 and z = ∞. It follows from Proposition 2 in [19] that

η(z) = −α(α + 2)

2
· dz2

z2

in the standard coordinate z.

Setting h = e− ũ
2 , then we have

∂2h

∂z2
= α(α + 2)

4
· h

z2
, for any z ∈ R

2+, (31)

and the boundary condition is

∂h

∂z̄
− ∂h

∂z
= − ic(x)

2
, on ∂R

2+ \ {0}. (32)

All solutions of (31) are of the form

h(z, z̄) = f (z̄)z− α
2 + g(z̄)z1+ α

2 ,

for any z ∈ R
2+. Since h is real and analytic, we have

h(z, z̄) = a(z̄z)−
α
2 + pz1+ α

2 z̄− α
2 + p̄z̄1+ α

2 z− α
2 + b(zz̄)1+ α

2 , for any z ∈ R
2+.
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Here, a, b ∈ R and p ∈ C. Since ũ = u + 2α ln|x| near 0 for some continuous function u, it is clear that a 	= 0. Then
rewriting h(z, z̄), we have

h = a ·
( |1 + μ̄z̄α+1|2 + ν|z|2α+2

|z|α
)

,

for some parameters μ = p
a

∈ C and ν = ab−pp̄

a2 ∈ R. Therefore, a conformal metric should be

ds2 = |dz|2
h2

= 1

a2
· |z|2α|dz2|
(|1 + μ̄z̄α+1|2 + ν|z|2α+2)2

.

Setting w = 1
z̄
, we have

ds2 = 1

a2
· |w|2α|dw2|
(|μ̄ + wα+1|2 + ν)2

.

On the other hand, if we assume (r, θ) is the polar coordinate system in R
2, then we have

h(r, θ) = ar−α + preiθ(1+α) + p̄re−iθ(1+α) + br2+α.

And its boundary condition (32) can be rewritten as

−∂h

∂θ

(
eiθ + e−iθ

) + ir
∂h

∂r

(
eiθ − e−iθ

) = rc(r, θ),

for θ = 0 and θ = π . Here c(r, θ) = c1 if θ = 0 and c(r, θ) = c2 if θ = π . Therefore we obtain by using the partial
derivative ∂h

∂θ
at θ = 0 and θ = π respectively

2(α + 1)(p̄ − p) = −ic1,

and

2(α + 1)
(
p̄e−iαπ − peiαπ

) = −ic2.

Then there are two cases.
In the first case, α is an integer: When α = 2k, k = 0,1,2, . . . , then c1 = c2. And when α = 2k +1, k = 0,1,2, . . . ,

then c1 = −c2. In this case one can only determine Im{p}, namely Im{p} = c1
4(α+1)

. Now we set Im{p}
a

= c1λ
α+1√
2

. Then
we have

a =
√

2

4(α + 1)λα+1
,

and consequently

ds2 = 8(α + 1)2λ2(α+1)|w|2α|dw2|
(|wα+1 − w0|2 + ν)2

,

where w0 = (x0, t0) for some real number x0 and t0 = c1λ
α+1√
2

. Set

u = log
8(α + 1)2λ2(α+1)

(|wα+1 − w0|2 + ν)2
.

Then it follows from the definition of the conformal metric that u is a solution of (1)–(2). Hence we have ν = λ2α+2.
This implies

ds2 = 8(α + 1)2λ2(α+1)|w|2α|dw2|
(|wα+1 − w0|2 + λ2α+2)2

.

In the second case, α 	= k, k = 0,1,2, . . . . For any c1 and c2, one can then find a unique complex number p. In this

case, we also set Im{p}
a

= c1λ
α+1√
2

. Then we have

a =
√

2
α+1

,

4(α + 1)λ
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and consequently we have

ds2 = 8(α + 1)2λ2(α+1)|w|2α|dw2|
(|wα+1 − w0|2 + ν)2

,

where w0 = (x0, t0) is a fixed point for

x0 = λα+1(c1 cos(πα) − c2)√
2 sin(πα)

and t0 = c1λ
α+1

√
2

. (33)

Then as in the first case, we can get

ds2 = 8(α + 1)2λ2(α+1)|w|2α|dw2|
(|wα+1 − w0|2 + λ2α+2)2

.

We complete the proof. �
Since the domain R

2+\{0} is simply connected, in this paper we consider z1+α as a well-defined function, even if
for non-integer α. In polar coordinates, we have

eu = 8(α + 1)2λ2(α+1)

((r1+α cos(1 + α)θ − x0)2 + (r1+α sin(1 + α)θ − t0)2 + λ2α+2)2
,

where x0 and t0 are given by (33).
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