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Abstract

We present a method to prove nonlinear instability of solitary waves in dispersive models. Two examples are analyzed: we prove
the nonlinear long time instability of the KdV solitary wave (with respect to periodic transverse perturbations) under a KP-I flow
and the transverse nonlinear instability of solitary waves for the cubic nonlinear Schrödinger equation.
© 2008 Elsevier Masson SAS. All rights reserved.

Résumé

On présente une méthode pour prouver l’instabilité non-linéaire d’ondes solitaires dans des modèles dispersifs. Deux exemples
sont analysés : on prouve l’instabilité de l’onde solitaire de KdV (par rapport à des perturbations transverses périodiques) dans
l’équation de KP-I et l’instabilité transverse nonlinéaire des ondes solitaires de l’équation de Schrödinger non-linéaire cubique.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

There are many results (both theoretical and numerical) dealing with detecting unstable modes of dispersive equa-
tions linearized around soliton like structures. However, in most of these cases it is not clear whether one has indeed
a nonlinear instability for a flow of the full nonlinear problem. The goal of this paper is to present a method showing
how only a partial information about the spectrum of the linearized operator together with a suitable nonlinear analysis
may indeed give the proof of the nonlinear instability in the presence of an unstable mode. Our first example is the
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nonlinear long time instability of the KdV solitary wave (with respect to periodic transverse perturbations) under a
KP-I flow. We also prove a nonlinear instability result for the cubic nonlinear Schrödinger equation. We believe that
the method presented here could be useful in the contexts of other dispersive equations.

Consider the Korteweg–de Vries (KdV) equation

ut + uux + uxxx = 0, (1)

u : R2 → R, which is an asymptotic model, derived from the free surface Euler equation, for the propagation of long
one-directional small amplitude surface waves. A famous solution of (1) is the solitary wave solution, given by

u(t, x) = Q(x − t), Q(x) = 3 sech2
(

x

2

)
.

Observe that u(t, x) corresponds to the displacement of the profile Q from left to the right with speed one. One also
has the solution

uc(t, x) = cQ
(√

c(x − ct)
)
, c > 0 (2)

which corresponds to a solitary wave with a positive speed c.
A very natural question concerning the relevance of the solution Q(x − t) is its stability with respect to small

perturbations. It is evident that the usual Lyapounov stability cannot hold because of the translation invariance of the
problem. More precisely for c close to one cQ(

√
cx) is close to Q(x) while for t � 1 (t ∼ |c−1|−1) the corresponding

solutions of the KdV equation u(t, x) and uc(t, x) separate from each other at distance independent of the smallness
of c − 1. However, the solution uc(t, x) remains close to the spatial translates of Q and thus orbital stability of Q

under the flow of KdV is not excluded. It is known since the seminal paper of Benjamin [2] that Q is orbitally stable
in the energy space H 1(R) (we call H 1(R) the energy space since this is the natural space induced by the Hamiltonian
structure of (1)). Here is the precise statement.

Theorem 1. (Benjamin [2].) For every ε > 0 there exists δ > 0 such that if the initial data

u|t=0 = u0 ∈ H 1(R)

of the KdV equation (1) satisfies

‖u0 − Q‖H 1(R) < δ

then the corresponding solution u (which is well defined thanks to [17]) satisfies

sup
t∈R

inf
a∈R

∥∥u(t, ·) − Q(· − a)
∥∥

H 1(R)
< ε.

Let us notice that the phase space H 1(R) may be replaced by L2(R) (see [20]).
In [15], Kadomtsev–Petviashvili studied weak transverse perturbation of the KdV flow and derived the following

two-dimensional models

ut + uux + uxxx ± ∂−1
x uyy = 0. (3)

Eq. (3) with sign + is called the KP-II equation while (3) with sign − is the KP-I equation. Let us observe that in
the derivation of the model, the signs vary in front of the uxxx term and correspond to different surface tensions.
However from mathematical view point the study of the models with signs varying in front of uxxx is equivalent to
the study of the models with signs varying in front of ∂−1

x uyy by the variable change u(t, x, y) 	→ −u(−t, x, y). The
anti-derivative ∂−1

x is defined on functions which have, in a suitable sense, a zero x mean value.
Let us observe that Q(x − t) is a solution of both Eqs. (3). It is conjectured in [15] that Q(x − t) is stable under

the KP-II flow and unstable under the KP-I flow. Of course this conjecture is very vague since one should precise
the stability notion and the spatial domain for x, y. In [1], all possible unstable modes of the linearized equation are
described and in particular it is shown that the linearization about Q of the KP-I flow is unstable and the linearization
of the KP-II flow is spectrally stable. In this paper, we show that the spectral instability result of [1] indeed implies the
nonlinear instability in the case of the KP-I equation for solutions periodic in the y variable. This result is actually not
new since the equation being completely integrable (having a Lax pair representation), the instability can be shown by
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exhibiting explicit solutions (see Zakharov [26]). Nevertheless, we believe that our method inspired from the work of
Grenier [10] in fluid mechanics to prove that spectral instability implies nonlinear instability which does not use the
complete integrability is interesting and can be applied to many other dispersive equations. As an illustration, we shall
also study below a transverse instability of the two-dimensional cubic nonlinear Schrödinger equation which is not
completely integrable. Let us observe that the explicit solution of the KP-I equation constructed by Zakharov tends to
a soliton for t → −∞ but is different from a soliton. Our method of proof does not give such type of instability.

The global well-posedness of the KP-I equation in the setting R × T was recently obtained by Ionescu and Kenig
[13] in a space which moreover contains the solitary wave Q and hence, we state our result in the context of Ionescu–
Kenig’s theorem. In general it is difficult to get nonlinear instability results in natural energy norms like L2 or H 1 for
conservative equations due to the presence of strong nonlinearities. Here we shall use the general setting developed
by Grenier in [10] in the context of the Euler equation which relies on the possibility of constructing a high order
approximate solution more accurate than the only linear approximation. For other methods, we refer to [8,11,9]. One
of the difficulty in the problem is to get a precise estimate on the growth of the semi-group of the linearized equation
about the solitary wave. The main interest of the strategy of [10] is that it allows to study the semi-group on smaller
spaces which are only made of functions with a finite number of Fourier modes in the transverse direction so that
we basically deal with one-dimensional problems. In this part of the analysis, our argument uses in a crucial way
the properties of the equations we consider and in particular the Hamiltonian structure and the properties of the 1-D
solitary waves.

We consider thus the KP-I equation

ut + uux + uxxx − ∂−1
x uyy = 0 (4)

for (x, y) ∈ R × TL where TL is the flat torus R/2πLZ. As mentioned above, a special solution of this equation is
given by the KdV soliton Q(x − t). Since we are interested in the stability of the soliton for (4), it is more convenient
to go into a moving frame i.e. to change x into x − t and to study the equation

ut − ux + uux + uxxx − ∂−1
x uyy = 0, (x, y) ∈ R × TL (5)

so that Q(x) is now a stationary solution of (5). Note that we can always change space and time scales to reduce the
study of the stability of uc , given by (2) to the study of the stability of Q for (5). Nevertheless, since we are in a
bounded domain in y, the scaling changes the size of the domain, this is why we keep the parameter L in our study.

As established in [13], the Cauchy problem for (4) or equivalently (5) is globally well-posed for data in the space
Z2(R × TL) defined by

Z2(R × TL) = {
u,

∥∥û(ξ, k)
(
1 + |ξ |2 + |k/ξ |2)∥∥

L2(R×Z)
< +∞}

,

where û(ξ, k) is the Fourier transform of u:

û(ξ, k) = 1

2πL

∞∫
−∞

2πL∫
0

e−i(xξ+ yk
L

)u(x, y) dy dx.

If u ∈ Z2, this means that u,ux,uxx and ∂−1
x uy, ∂

−2
x uyy are in L2, where ∂−1

x is defined in the natural way via the
Fourier transform for functions u ∈ L2 such that ξ−1û(ξ, k) ∈ L2. Moreover, the propagation of Hs regularity holds:
if u0 ∈ Hs ∩ Z2 for s > 7, then u(t) ∈ Hs ∩ Z2 for every t > 0. Note that since Q does not depend of y, we have
Q ∈ Z2. The first goal of this paper is to prove the following orbital instability result.

Theorem 2. Assuming that L > 4/
√

3, then for every s � 2, there exists η > 0 such that for every δ > 0, there exists
uδ

0 ∈ Z2 ∩ Hs and a time T δ ∼ |log δ| such that

‖uδ
0 − Q‖Hs(R×TL) < δ

and the solution uδ of (5) with initial value uδ
0 satisfies

inf
a∈R

∥∥uδ
(
T δ, ·) − Q(· − a)

∥∥
L2(R×TL)

� η.
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Remark 3. If u(t, x, y) is a solution of the KP equation (3) then so is uλ defined by

uλ(t, x, y) = λ2u
(
λ3t, λx,λ2y

)
.

Thus in the context of (4) solutions of period one in y transform into solutions of period λ−2 and solitary waves
of speed c transform into solitary waves of speed λ2c. Consequently Theorem 2 implies that if we fix period one
perturbations in y then one needs to consider solitary waves of sufficiently large speed to get the instability. Let
us also remark that the restriction L > 4/

√
3 in Theorem 2 is imposed by the spectral considerations of [1] and is

needed for the existence of unstable eigenmodes. It would be interesting to decide what happens for L � 4/
√

3 (or
equivalently for small speed solitary waves for period one perturbations).

Remark 4. Let us recall that a three-dimensional analogue of (4)

ut + uux + uxxx − ∂−1
x (uyy + uzz) = 0, (x, y, z) ∈ R

3 (6)

has solutions blowing up in finite time (see [19] and also [22]) and thus for the three-dimensional versions of the KP-I
equation a stronger form of the instability appears. It is however an open problem to prove the existence of blow-up
solutions for (6) with u periodic in y, z.

Let us outline the main steps of the proof Theorem 2. First, we need to use the result of [1] concerning the existence
of unstable eigenmodes for the linearized about Q operator. Next, following the idea of Grenier [10], we perform the
construction of an approximate solution. The approximate solution is defined iteratively. At the first step we put the
unstable eigenmode. At each further step, we get linear problems with source terms involving the previous iterates
(the procedure is closely related to the Picard iteration). We need to control precisely the eventual growth in time of
each iterate. By applying a Laplace transform, we reduce the matters to showing estimates on a resolvent equation
which are uniform on some straight line λ = γ + iτ, τ ∈ R. For bounded frequencies (i.e. |τ | bounded), a classical
ODE argument combined with the absence of unstable modes coming from [1] suffices to get the needed bound.
The main difficulty is to get uniform resolvent estimates for large τ . They will result from conservation (or almost
conservation) laws. We finally perform an energy estimate to the nonlinear problem to show that the constructed
approximate solution is indeed close to the actual solution for suitable time scales. This in turn implies the nonlinear
instability claimed in Theorem 2.

The second example that we consider in this paper is the two-dimensional Nonlinear Schrödinger equation (NLS)

ivt + �x,yv + |v|2v = 0, (7)

where v is a complex valued function. A famous solution of this equation is the solitary wave Q(x)eit with Q given
by

Q(x) =
√

2

ch(x)
.

This solitary wave is orbitally stable when submitted to one-dimensional perturbations i.e. perturbations which depend
on x only (see [6]). Here orbital stability means that

∀ε > 0, ∃δ > 0:
∥∥v(0, ·) − Q

∥∥
H 1(R)

< δ �⇒ inf
a∈R,γ∈R

∥∥v(t, ·) − eiγ eitQ(· − a)
∥∥

H 1(R)
< ε.

We shall prove that, similarly to the KdV soliton as a solution of the KP-I equation, this stationary solution of (8)
which is orbitally stable when submitted to one-dimensional perturbation is nonlinearly unstable when it is submitted
to two-dimensional perturbation. As previously, it is more convenient to set v = eitu and to study the equation

iut + �u − u + |u|2u = 0, (8)

for (x, y) ∈ R × TL. A stationary solution of this equation is now given by the ground state Q(x). Since the solitary
waves modelled on Q(x) for (7) are given by

uλ(t, x) = λQ(λx)eiλ2t

we can always reduce by scaling the study of the stability of uλ to the study of the stability of Q in (8), but it is again
important to keep L as a parameter. Here is our result.
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Theorem 5. There exists L0 such that for L � L0, for every s � 2, there exists η > 0 such that for every δ > 0, there
exists uδ

0 ∈ Hs and a time T δ ∼ |log δ| such that∥∥uδ
0 − Q

∥∥
Hs(R×TL)

< δ

and the solution uδ of (8) with initial value uδ
0 belongs to C([0, T δ],H s) and satisfies

inf
a∈R,γ∈R

∥∥uδ
(
T δ, ·) − Q(· − a)eiγ

∥∥
L2(R×TL)

� η.

Remark 6. Let us observe that the cubic two-dimensional NLS is not known to be integrable (in the sense of Lax
pairs representation) and thus it is hard to expect that the instability result presented in Theorem 5 can be displayed
by an explicit family of solutions in the spirit of [26].

Remark 7. It is likely that the method presented here may be applied to the following two-dimensional perturbation
of the Boussinesq equation

utt + (
uxx + u2 − u

)
xx

− uyy = 0. (9)

The stability, for suitable values of the propagation speed, with respect to one-dimensional perturbation of the soliton
of the Boussinesq equation is obtained in [4]. The analysis for an unstable mode in 2D in the context of (9) is essentially
the same as the corresponding analysis for the KdV soliton as a solution of KP (see [3]). One thus may perform the
analysis of [1] (see also Appendix A of this paper) combined with the nonlinear analysis of this paper to get statements
in the spirit of Theorems 2, 5 for Eq. (9).

The assumption L � L0 in Theorem 5 is used to get the spectral instability of the solitary wave. A difference
with Theorem 2 is that for the two-dimensional Schrödinger equation in R × T a global existence result of large data
strong solutions is not known so that Theorem 5 contains the fact that our unstable solution uδ remains well-defined
on a sufficiently long time scale. In fact, small data global existence for (8), posed on R × T, is obtained in [23].
For general large data we may not have the global existence for (8), posed on R × T, since one may localize the
well-known explicit blow-up solution for the cubic NLS on R

2 (see [5] for details on this argument).
Let us complete this introduction by several remarks. The instability we describe is due to isolated point spectrum

of the linearized operator. Nevertheless, in principle, as in the work of Grenier [10], our approach may be applied to
the case of fully localized perturbations (in this case, there is only continuous spectrum) by constructing a wave packet
near the most unstable mode. The only new difficulty in the analysis would be to control the resolvent estimates below
in the regime j → 0. Let us finally observe that if one can prove that the growth in Hs(R × T) for s sufficiently large
of the semi-group generated by the linearized equation about the solitary wave is bounded by eγ t where γ is the real
part of the most unstable eigenvalue, then a more classical approach to instability (see e.g. [12]) may give our result
for NLS which is a weakly nonlinear problem (the nonlinearity does not contain derivatives). We however do not see
how such an approach may be applied to the case of quasi-linear problems as the KP-I equation.

The rest of the paper is organized as follows. In the next section, we give a detailed proof of all the steps of the proof
of Theorem 2. Then we give a less detailed proof of Theorem 5 since the method is the same. Finally, Appendix A is
devoted to the linear instability results.

2. Proof of Theorem 2

2.1. Existence of a most unstable eigenmode

The linearized equation about the soliton Q reads

ut + Au = 0, Au = −ux + (Qu)x + uxxx − ∂−1
x ∂yyu, (x, y) ∈ R × TL. (10)

This last linear equation can be solved, for instance by a classical energy method, for initial data in Hs such that its
anti-derivative exists. The main result of [1] is the characterization of all the unstable eigenmodes associated to A. An
unstable eigenmode is a solution of (10) under the form

ϕσ,k(t, x, y) = eσ t e
iky
L V (x),
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with Reσ > 0, V ∈ L2(R). The result of [1] adapted to our framework reads:

Theorem 8. (See [1].) There exist unstable eigenmodes if and only if L > 4√
3

. Moreover, for an unstable eigenmode,

σ and k ∈ Z are parametrized by

2σ = μ(μ − 1)(2 − μ), k =
√

3L

4
μ(2 − μ), μ ∈ (1,2) (11)

and there exists g ∈ H∞(R) such that

V = gxx. (12)

For the sake of completeness, we recall the main steps of the proof of this result in Appendix A.

Note that for μ ∈ (0,2), μ(2 − μ) ∈ (0,1) hence one can find an integer such that k =
√

3L
4 μ(2 − μ) only if√

3L
4 > 1. Moreover, for L fixed, there is only a finite number of k which verify this property, this allows us to choose

σ0 and k0 such that ϕσ0,k0 is the most unstable eigenmode i.e.

σ0 = sup
{
σ, (σ, k) verifying (11)

}
and k0 is the corresponding integer such that (11) holds with (σ, k) = (σ0, k0). Let us define

u0(t, x, y) ≡ ϕσ0,k0(t, x, y) + ϕσ0,k0(t, x, y).

To prove Theorem 2, we shall use Q+δu0(0, x, y) as an initial data for (5). As remarked before, we have Q ∈ Z2 ∩Hs

for every s, but thanks to (12) in Theorem 8, we also have that u0(0, x, y) ∈ Z2 ∩Hs consequently, thanks to the result
of [13] there is a unique global solution uδ of (5) in Z2 ∩ Hs with initial value Q + δu0(0, x, y). So the only problem
that remains is to estimate from below

inf
a∈R

∥∥uδ
(
T δ, ·) − Q(· − a)

∥∥
L2(R×TL)

.

Towards this, we shall use the method of [10] which relies on the construction of an high order unstable solution. This
is the aim of the next section.

2.2. Construction of an high order unstable approximate solution

Let us set v = uδ − Q, then v solves

vt + Av = −vvx. (13)

We define V s
K as the space:

V s
K =

{
u,u =

∑
j∈ k0

L
Z, |jL/k0|�K

uj (x)eijy, uj ∈ Hs(R)

}

and we define a norm on V s
K by

|u|V s
K

= sup
j

|uj |s

where | · |s is the standard Hs(R) norm. Let us notice that u0 is such that u0 ∈ V s
1 for all s ∈ N. Following the strategy

of [10], for s � 1, we look for an high order solution under the form:

uap = δ

(
u0 +

M∑
k=1

δkuk

)
, uk ∈ V s−k

k+1 (14)

such that uk
/t=0 = 0 and M � 1 is to be fixed later. Once the value of M is fixed, then we fix the integer s so that

s > M . By plugging the expansion in (13), cancelling the terms involving δk , 1 � k � M + 1, we choose uk so that
uk solves the problem

∂tu
k + Auk = −1

2

( ∑
ujul

)
x

, uk
/t=0 = 0. (15)
j+l=k−1
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The main point in the analysis of uap is the following estimate.

Proposition 9. Let uk the solution of (15), if s − k � 1, we have the estimate:∣∣uk(t)
∣∣
V s−k

k+1
� Ck,se

(k+1)σ0t , ∀t � 0. (16)

The proof of the proposition will follow easily by induction from the following theorem.

Theorem 10. Consider the solution u of the linear problem

∂tu + Au = Fx, u/t=0 = 0 (17)

with a source term F ∈ V s+1
K with∣∣F(t)

∣∣
V s+1

K
� CF

K,se
γ t , γ � 2σ0 (18)

then u belongs to V s
K and satisfies the estimate∣∣u(t)

∣∣
V s

K
� CK,se

γ t , ∀t � 0. (19)

We first observe that under our hypothesis on F the solution of (10) is well-defined and the only point is to prove
the quantitative bound (19). The estimate (19) relies on the fact that on V s

K , the real part of the spectrum of the operator
−A is bounded by σ0. Nevertheless for such a dispersive operator, there is no general theory to convert an information
on the position of the spectrum into an estimate on the semi-group like it is the case for example for sectorial operators.
To get the result, we need to estimate the resolvent of −A on V s

K . At first, we can perform some reductions on the
problem. Indeed, since F has a finite number of Fourier modes, we can expand u in Fourier modes and hence we only
need to study the problem

∂tv + Ajv = ∂xFj (t, x), v/t=0 = 0 (20)

where

Ajv = −vx + (Qv)x + vxxx + j2∂−1
x v, (21)

j ∈ k0
L

Z, |jL/k0| � K and v(t, x) = uj (t, x), and to establish that v satisfies∣∣v(t)
∣∣
s
� Cj,se

γ t

under the assumption∣∣Fj (t)
∣∣
s+1 � Cj,se

γ t . (22)

In what follows, we fix γ0 such that σ0 < γ0 < γ and we shall use the Laplace transform. For T > 0, we first introduce
G such that

G = 0, t < 0, G = 0, t > T , G = Fj , t ∈ [0, T ]
and we notice that the solution of

∂t ṽ + Aj ṽ = Gx, ṽ/t=0 = 0

coincides with v on [0, T ] so that it is sufficient to study ṽ. Next, we set

w(τ, x) = Lṽ(γ0 + iτ ), H(τ, x) = LG(γ0 + iτ ), (τ, x) ∈ R
2

where L stands for the Laplace transform in time:

Lf (γ0 + iτ ) =
∫
R

e−γ0t−iτ t f (t)1t�0 dt.

We get that w solves the resolvent equation

(γ0 + iτ )w + Ajw = Hx. (23)
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In the sequel, for complex valued functions depending on x, we define

(f, g) ≡
∫
R

f (x)g(x) dx, |f |2 ≡ ‖f ‖2
L2(R)

= (f,f ), |f |2s ≡ ‖f ‖2
Hs(R) =

∑
0�m�s

∣∣∂m
x f

∣∣2
.

Towards the proof of Theorem 10, we first need to study (23). Our main estimate on the resolvent will be

Theorem 11 (Resolvent estimates). Let s � 1 be an integer. Let w(τ) be the solution of (23) for j , |j | � k0K/L, then
there exists C(s, γ0,K) > 0 such that for every τ , we have the estimate∣∣w(τ)

∣∣2
s
� C(s, γ0,K)

∣∣H(τ)
∣∣2
s+1. (24)

2.2.1. Proof of Theorem 11
We shall split the proof in various lemmas. To estimate w, we shall deal differently with large and bounded fre-

quencies.

Lemma 12. There exists M > 0 (which depends on K) and C(s, γ0,K) such that for |τ | � M , we have the estimate∣∣w(τ)
∣∣2
s
� C(s, γ0,K)

∣∣H(τ)
∣∣2
s+1. (25)

2.2.2. Proof of Lemma 12
We first prove (25) for s = 1. Note that Eq. (23) can be rewritten as

(γ0 + iτ )w − (Lw)x + j2∂−1
x w = Hx (26)

where L is defined by

Lw = −wxx − Qw + w.

Note that L is a self-adjoint operator in L2 which is very useful in the proof of the stability of the soliton for the KdV
equation. Since it is self-adjoint, the spectrum is real. Moreover, since Q goes to zero exponentially fast, the essential
spectrum of L is in [1,+∞). For λ < 1 there are only eigenvalues of finite multiplicity. Finally by Sturm–Liouville
theory, since Qx is in the kernel of L and has only one zero, we get that L has only one negative eigenvalue. Moreover,
0 is a simple eigenvalue. Consequently we can define an orthogonal decomposition:

w = α(τ)ϕ−1 + β(τ)ϕ0 + w⊥ (27)

where

Lϕ−1 = μϕ−1, μ < 0, Lϕ0 = 0, (Lw⊥,w⊥) � c0|w⊥|2, c0 > 0. (28)

Note that the eigenvectors ϕ−1 and ϕ0 are smooth. The important role of L is due to the following conservation law

γ0
(
(w, Lw) + j2

∣∣∂−1
x w

∣∣2) = Re
(
(Hx, Lw) + j2(H,∂−1

x w
))

(29)

which can be checked by a straightforward computation. Consequently, we can use (27), (28) and integrate by parts
the right-hand side to get

γ0
(
μα(τ)|ϕ−1|2 + c0|w⊥|2 + j2

∣∣∂−1
x w

∣∣2) � C|H |2|w|1 + j2|H |∣∣∂−1
x w

∣∣.
Therefore, using the inequality

ab � εa2 + 1

4ε
b2, ∀ε > 0, ∀(a, b) ∈ R

2, (30)

with ε small enough, we can incorporate |∂−1
x w| in the left-hand side and arrive at

|w⊥|2 + j2
∣∣∂−1

x w
∣∣2 � C

(|α|2 + |H |2 + |H |2|w|1
)
. (31)

In what follows C is a large number which may change from lines to lines and depend on γ and K but not on τ . The
next step is to estimate α and β . We use the decomposition (27) and take the scalar product of (26) with ϕ−1 and with
ϕ0 respectively to get
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(γ0 + iτ )α = −(
w, L∂x(ϕ−1)

) − j2(∂−1
x w,ϕ−1

) + (Hx,ϕ−1),

(γ0 + iτ )β = −(
w, L∂x(ϕ0)

) − j2(∂−1
x w,ϕ0

) + (Hx,ϕ0)

and hence, we can take the modulus and add the two identities to get(
γ0 + |τ |)(|α| + |β|) � C

(|α| + |β| + |w⊥| + j2
∣∣∂−1

x w
∣∣ + |H |1

)
.

Next, we multiply by |α| + |β| and use (30) to get(
γ0 + |τ | − C

)(|α|2 + |β|2) � C
(|w⊥|2 + j4

∣∣∂−1
x w

∣∣2 + |H |21
)
. (32)

Note that this last estimate is a good estimate when τ is large. Next, we can consider B(31) + (32) with B a large
number to be chosen to get

(B − C)
(|w⊥|2 + (

Bj2 − Cj4)∣∣∂−1
x w

∣∣2) + (
γ0 + |τ | − C − BC

)(|α|2 + |β|2) � CB
(|H |2|w|1 + |H |21

)
.

Consequently, we can first choose B sufficiently large (such that B > C, and B > Cj2) and then consider τ sufficiently
large (for example |τ | � 2(C + BC)) to get the estimate

|w|2 + j2
∣∣∂−1

x w
∣∣2 � C

(|H |2|w|1 + |H |21
)
, |τ | � M. (33)

To conclude we just need to estimate |∂xw|. It suffices to look again at (29). Indeed, we can use that (w, Lw) =
|wx |2 − O(1)|w|2 in (29) to get

|wx |2 + j2
∣∣∂−1

x w
∣∣2 � C

(|w|2 + |H |2 + |H |2|w|1
)
. (34)

Consequently, the combination of a sufficiently large constant times (33) and (34) gives

|w|21 + j2
∣∣∂−1

x w
∣∣2 � C

(|H |2|w|1 + |H |21
)
, |τ | � M

and hence by using the inequality (30), we get

|w|21 + j2
∣∣∂−1

x w
∣∣2 � C|H |22. (35)

This proves (25) for s = 1. Note that moreover (35) gives a control of j2|∂−1
x w|2 which is interesting when j �= 0.

To estimate higher order derivatives, we shall use higher order approximate conservation laws for the linearized
KdV equation. Namely, we define a self-adjoint operator

Ls+1w = ∂2s+2
x w + ∂s

x

(
rs+1(x)∂s

xw
)
,

where rs+1 is real valued and will be chosen in order that the following cancellation property occurs:

Re
(
(Lw)x, Ls+1w

) = O(1)|w|2s . (36)

By making repeated integration by parts, we easily establish that

Re
(
∂2s+2
x w,wxxx

) = (−1)s Re
(
∂s+2
x w, ∂x∂

s+2
x w

) = 0,

Re
(
∂2s+2
x w,Qwx

) = (−1)s+1 Re
((

∂s+1
x w,Q∂s+2

x w
) + (s + 1)

(
∂s+1
x w,Qx∂

s+1
x w

) + O(1)|w|2s
)

= (−1)s+1 Re

((
s + 1

2

)(
∂s+1
x w,Qx∂

s+1
x w

) + O(1)|w|2s
)

,

Re
(
∂2s+2
x w,Qxw

) = (−1)s+1 Re
((

∂s+1
x w,Qx∂

s+1
x w

) + O(1)|w|2s
)
,

Re
(
∂s
x

(
rs+1∂

s
xw

)
,wxxx

) = (−1)s−1 Re
(
∂x

(
rs+1∂

s
xw

)
, ∂s+2

x w
)

= (−1)s−1 Re

(
−3

2

(
∂s+1
x w, ∂xrs+1∂

s+1
x w

) + O(1)|w|2s
)

and that all the other terms which appear in the product Re((Lw)x, Ls+1w) are O(1)|w|2s . Consequently, we get
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Re
(−(Lw)x, Ls+1w

) = (−1)s+1
((

s + 3

2

)(
∂s+1
x w,Qx∂

s+1
x w

)
+

(
s − 3

2

)(
∂s+1
x w, ∂xrs+1∂

s+1
x w

)) + O(1)|w|2s
= O(1)|w|2s

with the choice

rs+1 = s + 3/2

3/2
Q =

(
2s

3
+ 1

)
Q.

Note that s is an integer so that rs+1 is always well-defined.
Finally, we can take the scalar product of (26) by (−1)s+1 Ls+1w and then take the real part to get thanks to the

above cancellation property

γ0
∣∣∂s+1

x w
∣∣2 � C

(|w|2s + j4
∣∣∂−1

x w
∣∣2 + |H |s+2

∣∣∂s+1
x w

∣∣ + |H |s+1|w|s
)

since Re(∂−1
x w, ∂2s+2

x w) = 0 (the constant C is independent of τ ). We finally obtain∣∣∂s+1
x w

∣∣2 � C
(|w|2s + j4

∣∣∂−1
x w

∣∣2 + |H |2s+2

)
thanks to the inequality (30) and hence we get (25) by induction and the control of j2|∂−1

x w|2 given by (35).
Next, we need to estimate w for |τ | � M. This is the aim of the following lemma.

Lemma 13. For |τ | � M , we have the estimate∣∣w(τ)
∣∣2
s
� C(s, γ0,K,M)

∣∣H(τ)
∣∣2
s+1. (37)

2.2.3. Proof of Lemma 13
Note that here we actually give a proof of the fact that if λ is not an eigenvalue then λ is not in the spectrum. To

prove (37), we need to treat differently the cases j = 0 and j �= 0.
Let us start with the case j �= 0. In this case, we take the derivative of (26) to get

(γ0 + iτ )wx − (Lw)xx + j2w = Hxx (38)

and we introduce V = (w,wx,wxx,wxxx)
t ∈ C4 and H = (0,0,0,Hxx)

t to rewrite the problem as

Vx = A(q, x)V + H (39)

where A is a 4 × 4 matrix that one may easily find from Eq. (38) and the parameter q = (γ0 + iτ, j2) is in the compact
set K defined by

K = {
(γ0 + iτ, b), |τ | � M,k2

0/L2 � |b| � K2k2
0/L2}.

Let us denote by T (q, x, x′) the fundamental solution of Vx = AV i.e. the solution such that T (q, x′, x′) = I4. Next,
since Q(x) tends to zero exponentially fast when x → ±∞, there exists a matrix A∞(q) such that

A(q, x) − A∞(q) = O
(
e−|x|), x → ±∞.

Moreover the eigenvalues of A∞ are the roots of the polynomial P defined in (63) below and hence are not purely
imaginary. By classical arguments of ODE (namely the roughness of exponential dichotomy, see [7] for example),
the equation Vx = AV has an exponential dichotomy on R+ and R−, i.e., there exist projections P +(q, x), P −(q, x)

which are smooth in the parameter with the invariance property

T (q, x, x′)P ±(q, x′) = P ±(q, x)T (q, x, x′) (40)

and such that there exist C and α > 0 such that for every U ∈ C
4, and q ∈ K, we have
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∣∣T (q, x, x′)P +(q, x′)U
∣∣ � Ce−α(x−x′)∣∣P +(q, x′)U

∣∣, x � x′ � 0,∣∣T (q, x, x′)
(
I − P +(q, x′)

)
U

∣∣ � Ceα(x−x′)∣∣(I − P +(q, x′)
)
U

∣∣, 0 � x � x′,∣∣T (q, x, x′)P −(q, x′)U
∣∣ � Ceα(x−x′)∣∣P −(q, x′)U

∣∣, x � x′ � 0,∣∣T (q, x, x′)
(
I − P −(q, x′)

)
U

∣∣ � Ce−α(x−x′)∣∣(I − P −(q, x′)
)
U

∣∣, 0 � x � x′.

In particular, note that a solution T (q, x,0)V 0 is decaying when x tend to ±∞ if and only if V 0 belongs to
R(P ±(q,0)). Since by the analysis of [1] recalled in Appendix A there is no eigenvalue of Aj (see (21) for the
definition of Aj ) for q ∈ K, we have no nontrivial solution decaying in both sides and hence we have

R
(
P +(q,0)

) ∩ R
(
P −(q,0)

) = {0}. (41)

Let us choose bases (r±
1 , r±

2 ) of R(P ±(q,0)) which depend on the parameters in a smooth way (see [16] for example)
then we can define

M(q) = (
r+

1 , r+
2 , r−

1 , r−
2

)
and we note that M(q) is invertible for q ∈ K because of (41). This allows us to define a new projection P(q) by

P(q) = M(q)

(
I2 0
0 0

)
M(q)−1

and next

P(q, x) = T (q, x,0)P (q).

The main interest of these definitions is that we have R(P (q)) = R(P +(q,0)) and R(I − P(q)) = R(P −(q,0)).
Therefore thanks to (40), we have for every x that R(P (q, x)) = R(P +(q, x)) and similarly that

R
(
I − P(q, x)

) = R
(
P −(q, x)

)
.

Consequently, we have the estimates∣∣T (q, x, x′)P (q, x′)
∣∣ � Ce−α(x−x′), x, x′ ∈ R, x � x′, ∀q ∈ K, (42)∣∣T (q, x, x′)

(
I − P(q, x′)

)∣∣ � Ceα(x−x′), x, x′ ∈ R, x � x′, ∀q ∈ K. (43)

By using this property, the unique bounded solution of (39) reads by Duhamel formula

V (x) =
x∫

−∞
T (q, x, x′)P (q, x′)H(x′) dx′ −

+∞∫
x

T (q, x, x′)
(
I − P(q, x′)

)
H(x′) dx′

and hence, we get thanks to (42), (43) that∣∣V (x)
∣∣ � C

∫
R

e−α|x−x′|∣∣H(x′)
∣∣dx′

which yields by standard convolution estimates

|V | � C|H |.
The estimates of high order derivatives are very easy, it suffices to write

∂s+1
x V = A∂s

xV + [
∂s
x,A

]
V + ∂s

xH,

and to write Duhamel formula considering [∂s
x,A]V as part of the source term.

It remains the case j = 0. In this case, we do not take the derivative of (26), we directly define W = (w,wx,wxx)

and we rewrite (26) under the form

Wx = B(λ, x)W + H̃.

Then the proof of the estimate follows the same line, we find that B∞ has no eigenvalue on the imaginary axis. This
yields that there is an exponential dichotomy on R+ and R− for this system. Next since, the spectrum of the linearized
KdV equation about the soliton is on the imaginary axis, we get that the system has an exponential dichotomy on the
real line. We do not detail more since the proof is similar to the previous case.
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2.2.4. End of the proof of Theorem 11
To get (24), it suffices to combine Lemmas 12 and 13.

2.2.5. End of the proof of Theorem 10
By using Theorem 11 and Bessel–Parseval identity, we get that for every T > 0,

T∫
0

e−2γ0t
∣∣v(t)

∣∣2
s
dt �

+∞∫
0

e−2γ0t
∣∣ṽ(t)

∣∣2
s
dt =

∫
R

∣∣w(τ)
∣∣2
s
dτ � C

∫
R

∣∣H(τ)
∣∣2
s+1 dτ =

T∫
0

e−2γ0t
∣∣Fj (t)

∣∣2
s+1 dt

and finally thanks to (18), we get

T∫
0

e−2γ0t
∣∣v(t)

∣∣2
s
dt � C

T∫
0

e2(γ−γ0)t dt � Ce2(γ−γ0)T (44)

since γ0 was fixed such that γ > γ0. To finish the proof, we notice that the energy estimate for Eq. (20) gives

d

dt

∣∣v(t)
∣∣2
s
� C

(∣∣v(t)
∣∣2
s
+ ∣∣Fj (t)

∣∣2
s+1

)
.

Consequently, we can multiply the last estimate by e−2γ0t and use (22) to get

d

dt

(
e−2γ0t

∣∣v(t)
∣∣2
s

)
� C

(
e−2γ0t

∣∣v(t)
∣∣2
s
+ e2(γ−γ0)t

)
.

Next, we integrate in time and use (44) and again the fact that γ > γ0, this yields

e−2γ0t
∣∣v(t)

∣∣2
s
� Ce2(γ−γ0)t .

This ends the proof of Theorem 10 .

2.2.6. Proof of Proposition 9
By induction, it suffices to use Theorem 10 and the fact that Hs(R) is an algebra for s � 1.

2.3. Nonlinear instability: end of the proof of Theorem 2

Of course, we only need to prove the statement for δ small enough. Let us define w by setting v = uap + w, where
uap is defined by (14). Therefore we have that the solution uδ may be decomposed as follows

uδ = Q + uap + w.

If we set

F ≡ (∂t + A)uap + uapu
ap
x ,

where A is defined in (10), then thanks to Proposition 9,∥∥F(t, ·)∥∥
L2(R×TL)

� CM,sδ
M+2e(M+2)σ0t , t ∈ [

0,
∣∣log(δ)

∣∣/σ0
]
.

We have that w solves the problem

(∂t + A)w + ∂x

(
uapw

) + wwx + F = 0, w|t=0 = 0. (45)

We now estimate the solution of (45). Using that∣∣∣∣
∫

R×TL

Fw

∣∣∣∣ �
∥∥F(t, ·)∥∥2

L2(R×TL)
+ ∥∥w(t, ·)∥∥2

L2(R×TL)
,

multiplying (45) by w and integrating R × TL, we get after several integrations by parts

d ∥∥w(t, ·)∥∥2
L2 �

(‖Q′‖L∞ + ∥∥∂xuap(t, ·)∥∥
L∞ + 1

)∥∥w(t, ·)∥∥2
L2 + ∥∥F(t, ·)∥∥2

L2 . (46)

dt
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Observe that

∥∥∂xuap(t, ·)∥∥
L∞(R×TL)

�
M∑

k=0

Ck,sδ
k+1e(k+1)σ0t .

Next, we set

T δ ≡ log(κ/δ)

σ0
,

where κ ∈ ]0,1] is small enough to be chosen after the several restrictions we will impose in the next lines. The number
T δ represents the time when the instability occurs. Coming back to (46), we observe that there exist a constant ΛM,s

depending on s and M but independent of κ and t and an absolute constant C (C is essentially ‖Q′‖L∞ ) such that for
0 � t � T δ ,

d

dt

∥∥w(t, ·)∥∥2
L2 � (C + κΛM,s)

∥∥w(t, ·)∥∥2
L2 + CM,sδ

2(M+2)e2(M+2)σ0t .

Therefore

d

dt

(
e−(κΛM,s+C)t

∥∥w(t, ·)∥∥2
L2

)
� CM,sδ

2(M+2)e2(M+2)σ0t−κΛM,s t−Ct , t ∈ [
0, T δ

]
. (47)

Now we choose M large enough and κ small enough so that

2(M + 2)σ0 − κΛM,s − C > 1.

At this place we fix the value of M (and of s, for example s = M + 1) while we will make two more restrictions on κ .
Since w vanishes for t = 0 an integration of (47) yields∥∥w(t, ·)∥∥

L2(R×TL)
� CM,sδ

M+2e(M+2)σ0t , t ∈ [
0, T δ

]
.

Therefore∥∥w(T δ, ·)∥∥
L2(R×TL)

� CM,sκ
M+2. (48)

Let us denote by Π the projection on the nonzero modes in y i.e.

(Πv)(x, y) ≡ v(x, y) − 1

2πL

2πL∫
0

v(x, y) dy.

Then for every a ∈ R one has Π(Q(x − a)) = 0. On the other hand the first term of uap satisfies Π(u0) = u0 and
therefore

∥∥Π
(
uap(t, ·))∥∥

L2 � csδe
σ0t −

M∑
k=1

δk+1
∥∥Π

(
uk

)∥∥
L2 � csδe

σ0t −
M∑

k=1

Ck,sδ
k+1e(k+1)σ0t ,

where cs is the Hs(R × TL) norm of u0. Therefore for κ small enough one has∥∥Π
(
uap

(
T δ, ·))∥∥

L2(R×TL)
� csκ

2
. (49)

Using (48) and (49), we may write that for every a ∈ R,∥∥uδ
(
T δ, ·) − Q(· − a)

∥∥
L2 �

∥∥Π
(
uδ

(
T δ, ·) − Q(· − a)

)∥∥
L2

= ∥∥Π
(
uδ

(
T δ, ·) − Q(·))∥∥

L2 = ∥∥Π
(
uap

(
T δ, ·) + w

(
T δ, ·))∥∥

L2

� csκ

2
− ∥∥Π

(
w

(
T δ, ·))∥∥

L2 � csκ

2
− ∥∥w

(
T δ, ·)∥∥

L2 � csκ

2
− CM,sκ

M+2.

A final restriction on κ may insure that the right-hand side of the last inequality is bounded from below by a fixed
positive constant η depending only on s (in particular η is independent of δ). This completes the proof of Theorem 2.
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Remark 14. Let us observe that the analysis in the proof of Theorem 2 is quite different from the high frequency
instabilities studied in [18]. In [18], the approximated solution is a high frequency linear wave with modified speed,
perturbed by a low frequency wave. In Theorem 2, the approximated solution is a low frequency object modelled on
the profile u0.

3. Proof of Theorem 5

The proof follows exactly the same lines as the proof of Theorem 2 and thus we shall only sketch it. We again
look for uδ under the form uδ = Q + uap + w. At first, we need to find a most unstable eigenmode for the linearized
equation to begin the construction of uap . The linearized equation about Q reads

iut + Au = 0, Au = �u − u + 2uQ2 + uQ2.

It is more convenient to introduce U = (Reu,�u)t and to rewrite the equation as the system:

Ut +
(

0 −L−
L+ 0

)
U = 0, (50)

L−u = −�u + u − Q2u, L+u = −�u + u − 3Q2u.

We seek unstable eigenmodes under the form

Φσ,k(t, x, y) = eσ t e
iky
L V (x) + eσ t e

−iky
L V (x), Reσ > 0, (51)

where V (x) ∈ C
2 so that we have to solve

σV +
(

0 −L− − k2

L2

L+ + k2

L2 0

)
V = 0 (52)

where

L−u = −uxx + u − Q2u, L+u = −uxx + u − 3Q2u.

We set ε = k
L

and we look for nontrivial solutions of (52) with Reσ > 0 for ε > 0. The first result we shall use is that

Lemma 15. For ε > 0, there is at most one unstable eigenmode and there exists ε0 such that for 0 < ε � ε0, there is
exactly one unstable eigenmode.

In Ref. [14], it is claimed that the result of this lemma is due to Zakharov and Rubenchik. Unfortunately, we were
not able to find a copy of the paper by Zakharov and Rubenchik as this paper is quoted in [14]. We give a proof of this
lemma in Appendix A.

Now, thanks to Lemma 15, for k = 1 and L sufficiently large there exists an unstable eigenmode. We now consider
L as fixed. For every k, we have by Lemma 15 that there exists at most one σ(k) such that Reσ(k) > 0 and (52) has
a solution in L2(R;C

2) with σ = σ(k). Moreover we can easily get that the solutions of (52) satisfy the conservation
law

Reσ

((
L+V1,V1

) + (
L−V2,V2

) + k2

L2
|V |2

)
= 0.

Therefore for large k (depending only on Q) there is no nontrivial solution of (52) with Reσ > 0. Consequently, we
can choose an eigenmode Φσ,k under the form (51) such that

Reσ = sup
{
Reσ(k)

} := σ0

and we set u0 = (Φσ,k)1 + i(Φσ,k)2. Observe that thanks to (52) we have (i∂t + A)u0 = 0. The next step towards the
proof of Theorem 5 is the construction on an high order unstable solution. We use the same method as previously, we
use the same spaces V s

K and we build an approximate solution under the form (14). For 1 � k � M + 1, we need to
solve

i∂tu
k + Auk = −

∑ (
2Qujul + Qujul

) −
∑

ujulum,
(
uk

)
|t=0 = 0 (53)
j+l=k−1 j+l+m=k−2
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where the last sum is zero for k = 1. We have the estimates:

Proposition 16. Let uk the solution of (53), we have the estimate∣∣uk(t)
∣∣
V s

k+1
� Ck,se

(k+1)σ0t , ∀t � 0.

Note that here we do not loose regularity at each step because the nonlinear term does not involve derivatives. To
prove Proposition 16, we need to prove the equivalent of Theorem 10. By using Laplace transform, we can still reduce
the problem to the proof of a resolvent estimate as in Theorem 11. The proof of the low frequencies estimates rely on
the same ODE argument and we shall not detail it. We shall just explain how to get the high frequencies estimates. As
in Lemma 15, it is more convenient to work on the system form of the problem, and thus we consider the equation

(γ0 + iτ )W +
(

0 −L− − k2

L2

L+ + k2

L2 0

)
W = H (54)

and we want to prove that W(τ) satisfies the estimate∣∣W(τ)
∣∣2
s
� C(s, γ0,K)

∣∣H(τ)
∣∣2
s

(55)

for γ0 > σ0, |τ | � M � 1 and s � 1. We first give the proof for s = 1. The conservation law reads for W = (w1,w2)

γ0

((
L+w1,w1

) + (
L−w2,w2

) + k2

L2
|W |2

)
= Re

((
H1,L

+w1
) + (

H2,L
−w2

))
. (56)

At this stage, we shall use the description of the spectrum of L± recalled in Appendix A of this paper. We can write

w2 = αQ + w⊥
2 ,

(
L−w⊥

2 ,w⊥
2

)
� c0

∣∣w⊥
2

∣∣2
.

Similarly, we can write

w1 = βϕ−1 + γQx + w⊥
1 ,

(
L+w⊥

1 ,w⊥
1

)
� c0

∣∣w⊥
1

∣∣2

(ϕ−1 ≡ Q2). Setting W⊥ = (w⊥
1 ,w⊥

2 )t and WF = (α,β, γ )t ∈ C
3, we get from (56)

γ0
∣∣W⊥(τ )

∣∣2 � C
(|H |1|W |1 + |WF |2). (57)

Next, we can take the projection of the equation on the finite dimensional subspace generated by (0,Q), (Qx,0),
(ϕ−1,0) to get(

γ0 + |τ | − C
)|WF |2 � C(K)

(∣∣W⊥∣∣2 + |H |2). (58)

As for the KP-I equation, a suitable combination of (56)–(58) with the use of (30) gives (55) for s = 1 for |τ |
large enough. To get higher order derivatives, we use approximate higher order conservation laws. Namely, if we
set Ls+1w = ∂

2(s+1)
x w then

−Re

(
L−w2 + k2

L2
w2,Ls+1w1

)
+ Re

(
L+w1 + k2

L2
w1,Ls+1w2

)
= O(1)

(|W |2s + |W |s
∣∣∂s+1

x W
∣∣)

which implies

γ0
∣∣∂s+1

x W
∣∣2 � C

(|W |2s + |W |s |W |s+1 + |H |s+1
∣∣∂s+1

x W
∣∣ + |H |s |W |s

)
and we conclude thanks to (30) via an induction argument.

To end the proof of Theorem 5, we seek for a solution of (8) under the form uδ = Q + uap + w, with w/t=0 = 0 so
that w solves the equation

iwt + Aw + 2
∣∣uap

∣∣2
w + (

uap
)2

w + N
(
uap,w

) + |w|2w = F (59)

with

‖F‖Hs(R×TL) � CM,sδ
M+2e(M+2)σ0t ,
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and the bilinear term satisfies∥∥N
(
uap,w

)∥∥
Hs(R×TL)

� C
∣∣uap

∣∣
Ws,∞‖w‖2

s .

Since here we do not have a global existence result available, we shall first prove that this last equation has a smooth
solution w which remains defined on a time scale sufficiently long to see the instability.

A classical existence result for this equation based on Duhamel formula and Sobolev embedding gives that there
exists a local solution w ∈ C([0, T ],H s) for s > 1. Moreover, we can define a maximum time T ∗ such that

T ∗ = sup
{
T , ∀t ∈ [0, T ], ∥∥w(t)

∥∥
Hs � 1

}
.

The Hs energy estimate for (59) gives for t ∈ [0, T ∗) that

d

dt

∥∥w(t)
∥∥2

Hs � C
(
1 + ∣∣uap

∣∣
Ws,∞

)‖w‖Hs + CM,sδ
2(M+2)e2(M+2)σ0t

where C is an absolute constant (which depends on Q). Consequently for

t � Min

(
T δ := log(κ/δ)

σ0
, T ∗

)
,

we get

d

dt

∥∥w(t)
∥∥2

Hs � (C + κΛM,s)‖w‖Hs + CM,sδ
2(M+2)e2(M+2)σ0t

and hence by the choice

2(M + 2)σ0 − κΛM,s − C > 0,

we get that∥∥w(t)
∥∥

Hs(R×TL)
� CM,sκ

M+2, t � Min
(
T δ, T ∗). (60)

In particular for κ sufficiently small, we get that∥∥w(t)
∥∥

Hs(R×TL)
� 1

2
, t � Min

(
T δ, T ∗).

By definition of T ∗, this proves that T ∗ � T δ so that the time of existence of a smooth solution is in any case large
enough to see an instability. The end of the proof follows the same lines as previously, using again the projection Π

on nonzero modes in y, we write for every a ∈ R, γ ∈ R,∥∥uδ
(
T δ, ·) − eiγ Q(· − a)

∥∥
L2 �

∥∥Π
(
uδ

(
T δ, ·) − eiγ Q(· − a)

)∥∥
L2 = ∥∥Π

(
uap

(
T δ, ·) + w

(
T δ, ·))∥∥

L2

� csκ

2
− ∥∥Π

(
w

(
T δ, ·))∥∥

Hs � csκ

2
− ∥∥w

(
T δ, ·)∥∥

Hs � csκ

2
− CM,sκ

M+2,

where we have used (60) in the last inequality. A final restriction of κ gives the instability result.
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Appendix A

A.1. Proof of Theorem 8

In order to have the same equations as in [1], we look for solutions of (10) under the form

u(t, x, y) = e
λt
2 e

iky
L U

(
x

)

2
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with U ∈ L2, Reλ > 0 and k �= 0. Note that this last condition is natural since for k = 0, we cannot find instability
since the KdV soliton is stable in the KdV equation. We get for U the equation

4λUz + 4(ΦU)zz + Uzzzz − 4Uzz + 3η2U = 0 (61)

where we have set

3η2 = 16k2

L2
(62)

and Φ = 3 sech2 z. Since Φ and its derivatives tend to zero exponentially fast when z → ±∞, the solutions of (61)
have the same behaviour as the solutions of

4λUz + Uzzzz − 4Uzz + 3η2U = 0

when z → ±∞. The characteristic values μ of this linear equation are the roots of the polynomial P defined by

P(μ) = μ4 − 4μ2 + 4λμ + 3η2. (63)

Consequently for η �= 0 and γ = Reλ > 0, μ /∈ iR. Indeed, if μ = iξ ∈ iR, then ξ should solve

ξ4 + 4ξ2 + 4λξi + 3η2 = 0

which cannot have a real root ξ for η �= 0 and Reλ �= 0. A consequence of this is that the number of roots μ of positive
real part of P is independent of the parameters. Since the limit η → +∞ gives

μ = 3
1
4 ω

√
η + O(1), ω4 = −1

we finally get that P has two roots of positive real parts and two roots of negative real parts. This proves that the
solutions of (61) either tend to zero or blows-up exponentially fast when z → ±∞. Moreover, the stable manifold and
the unstable manifold have the same dimension 2. Finally, there will be a nontrivial bounded solution of (61) if and
only if U belongs simultaneously to the stable and the unstable manifold.

In our case, this condition can be computed explicitly. Indeed, we notice that for γ > 0, η �= 0 there is a bounded
solution of (61) if and only if U = gzz with g bounded which solves

gzzzz + 4Φgzz + 4λgz − 4gzz + 3η2g = 0. (64)

Note that the asymptotic behaviour of the solutions of this equation is also determined by the characteristic values
given by the roots of P so that this equation also has stable and unstable manifolds of dimension 2. Moreover, if μ is
a root of P , then

gμ(z) = eμz
(
μ3 + 2μ + λ − 3μ2 tanh z

)
(65)

is a solution of (64). In particular, if Reμ > 0, then gμ is in the unstable manifold. Moreover, when P has two simple
roots μ1, μ2 of positive real parts, then one can prove (see [1] for details) that gμ1 , gμ2 are linearly independent so
that they constitute a basis of the unstable manifold. Consequently, any bounded solution of (64) must be a linear
combination of gμ1, and gμ2 .

Now, let us define

C+(μ) = lim
z→+∞ e−μzgμ = μ3 + 2μ + λ − 3μ2.

Then, if C+(μi) �= 0, i = 1,2, we cannot have nontrivial solutions which tend to zero when z → +∞. Consequently,
this proves that when the positive real part roots of P are simple, then a necessary condition to have bounded solutions
of (64) is that C+(μ) = 0 for some root μ of P of positive real part. In the case where μ is a double root, then one can
check that the same condition holds. Indeed it suffices to take gμ and ∂μg as a basis of the unstable manifold (again,
we refer to [1] for details).

It remains to study the equation C+(μ) = 0 with μ a root of P of positive real part. This yields the system of
algebraic equation

P(μ) = 0, μ3 + 2μ + λ − 3μ2 = 0, (66)
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with the constraint Reμ > 0. The elimination of λ between the two algebraic equations gives

λ = −μ(μ − 1)(μ − 2), η2 = μ2(μ − 2)2. (67)

The analysis of this system gives that there is a solution with Reλ > 0, Reμ > 0, if and only if given μ ∈ (0,2), η

and λ are given by

η = μ(2 − μ), λ = −μ(μ − 1)(μ − 2).

Finally, we notice that when C+(μ) = 0, we have

gμ(z) = 3μ2eμz(1 − tanh z) = O
(
e−(2−μ)z

)
and hence limz→+∞ gμ = 0 since 2 − μ > 0. This proves that C+(μ) = 0 with μ a root of P of positive real part is
also a sufficient condition to have a bounded solution on R. This ends the proof.

A.2. Proof of Lemma 15

Set V (x) = (u(x), v(x))t with u,v real valued functions. Then (52) implies that

L+u + ε2u = −σv, L−v + ε2v = σu. (68)

Observe that if (u, v) is a solution of (68) corresponding to a complex number σ then (u,−v) is a solution of (68)
corresponding to −σ . The operators L+ and L− have classical self adjoint realizations on L2(R) and their spectra
are well-known (see e.g. [24,25]). The operator L+ has exactly two simple eigenvalues −3 and 0 with corresponding
eigenfunctions Q2 and Q′. The continuous spectrum of L+ is [1,∞[. The operator L− has only the simple eigenvalue
0 with corresponding eigenfunction Q and the continuous spectrum of L− is [1,∞[. Observe that (68) may be written
as

L
(

u

v

)
:=

(
0 −1
1 0

)(
L+ + ε2 0

0 L− + ε2

)(
u

v

)
= −σ

(
u

v

)
. (69)

Thanks to the above discussion on the spectrum of L+ and L−, we obtain that(
L+ + ε2 0

0 L− + ε2

)

has at most one negative eigenvalue which should be simple. Therefore, thanks to [21, Theorem 3.1], there cannot be
more than one unstable mode.

For ε � 1, the bifurcation of the eigenvalue zero in the case ε = 0 can be explicitly computed. Note that zero
is an isolated eigenvalue so that we can use perturbation methods as in finite dimension (see [16] Theorem 1.8,
Chapter 7). In the case ε = 0, we have that zero is an eigenvalue of multiplicity 4 for the linear map introduced in
the left-hand side of (69) (see [25]). The generalized eigenspace splits into two two-dimensional invariant sub-spaces
corresponding to the eigenvectors (u, v) = (Q′,0) and (u, v) = (0,Q) respectively. As generalized eigenvectors, we
can take 1

2 (Q + xQx,0) and (0, 1
2xQ) which verify

L
( 1

2 (Q + xQx)

0

)
= −

(
0
Q

)
, L

(
0

1
2xQ

)
=

(
Qx

0

)
.

Thanks to the analytic dependence in ε (see [16]), we look for a σ in (68) of the form σ = ω1ε + ω2ε
2 + · · · with

Re(ω1) > 0 which corresponds to an unstable mode. We will see below that the invariant subspace corresponding to
(u, v) = (Q′,0) splits to two one-dimensional invariant spaces corresponding to eigenvalues with ω1 purely imagi-
nary and, what is of importance for our purposes, the invariant subspace corresponding to (u, v) = (0,Q) splits to
two one-dimensional invariant spaces corresponding to eigenvalues with positive and negative ω1. The eigenvector
corresponding to a positive ω1 provides the unstable eigenmode. Assume that u and v are expanded as

u = u0 + u1ε + u2ε
2 + · · · , v = v0 + v1ε + v2ε

2 + · · · .
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Then (u0, v0) satisfy L+(u0) = L−(v0) = 0. Thus there exist two numbers α0 and β0 such that u0 = α0Q
′ and

v0 = β0Q. Then (u1, v1) are solutions of L+(u1) = −ω1β0Q, L−(v1) = ω1α0Q
′. Therefore there exist two numbers

α1 and β1 such that

u1(x) = ω1β0

2

(
xQ′(x) + Q(x)

) + α1Q
′(x), v1(x) = −ω1α0

2

(
xQ(x)

) + β1Q(x).

Next, (u2, v2) are solutions of

L+(u2) = −α0Q
′ − ω1

(
−ω1α0

2
(xQ) + β1Q

)
− ω2β0Q, (70)

L−(v2) = −β0Q + ω1

(
ω1β0

2
(xQ′ + Q) + α1Q

′
)

+ ω2α0Q
′. (71)

The first equation of (70) can be solved if the right-hand side is orthogonal to Q′ (the kernel of L+). This imposes
that either α0 = 0 or

∞∫
−∞

(
−α0Q

′(x) − ω1

(
−ω1α0

2

(
xQ(x)

) + β1Q(x)

)
− ω2β0Q(x)

)
Q′(x) dx = 0,

which implies that ω2
1 = −4θ2, where θ ≡ ‖Q′‖L2(R)/‖Q‖L2(R), i.e. ω1 = ±iθ . Hence if α0 �= 0 we have an eigen-

mode with purely imaginary ω1.
The second equation of (70) can be solved only if the right-hand side is orthogonal to the kernel of L−, i.e. to Q.

This imposes that either β0 = 0 or

∞∫
−∞

(
−β0Q(x) + ω1

(
ω1β0

2

(
xQ′(x) + Q(x)

) + α1Q
′(x)

)
+ ω2α0Q

′(x)

)
Q(x)dx = 0

which implies that ω2
1 = 4, i.e. ω1 = ±2. From the above discussion, we have that either α0 = 0 or β0 = 0. If α0 �= 0

(and thus β0 = 0) we obtain purely imaginary ω1 and have the bifurcation of (Q′,0). These modes are not of interest
for us. If β0 �= 0 (and thus α0 = 0) we indeed have an eigenvalue with positive ω1. This mode corresponds to the
eigenvector which is the bifurcation of (u, v) = (0,Q) to the unstable mode of the form (51) for the linearized about
Q cubic NLS equation.
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