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Abstract

This article is devoted to characterize all possible effective behaviors of composite materials by means of periodic homogeniza-
tion. This is known as a G-closure problem. Under convexity and p-growth conditions (p > 1), it is proved that all such possible
effective energy densities obtained by a Γ -convergence analysis, can be locally recovered by the pointwise limit of a sequence
of periodic homogenized energy densities with prescribed volume fractions. A weaker locality result is also provided without any
kind of convexity assumption and the zero level set of effective energy densities is characterized in terms of Young measures.
A similar result is given for cell integrands which enables to propose new counter-examples to the validity of the cell formula in
the nonconvex case and to the continuity of the determinant with respect to the two-scale convergence.
© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

Cet article est consacré à la caractérisation de toutes les limites effectives possibles de matériaux composites en terme d’homo-
généisation périodique. Ce problème est connu sous le nom de G-fermeture. Il est démontré, sous des hypothèses de convexité et
de croissance p > 1, que toutes ces densités d’énergies effectives, obtenues lors d’une analyse par Γ -convergence, peuvent être
localement vues comme la limite ponctuelle d’une suite de densités d’énergies périodiquement homogénéisées avec une fraction de
volume fixée. Un résultat plus faible est obtenu sans aucune hypothèse de convexité et l’ensemble des zéros de ce type de densités
d’énergies effectives est caractérisé en terme de mesures d’Young. Un résultat similaire est donné pour des intégrandes cellulaires,
permettant ainsi de proposer de nouveaux contre-exemples quant à la validité de la formule de cellule dans le cas non convexe,
ainsi qu’à la continuité du déterminant par rapport à la convergence à double échelle.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Composites are structures constituted by two or more materials which are finely mixed at microscopic length scales.
Despite the high complexity of their microstructure, composites appear essentially as homogeneous at macroscopic
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length scale. It suggests to give a description of their effective properties as a kind of average made on the respective
properties of the constituents. The Homogenization Theory renders possible to define properly such an average, by
thinking of a composite as a limit (in a certain sense) of a sequence of structures whose heterogeneities become finer
and finer. There is a wide literature on the subject; we refer the reader to [29] for a starting point.

Many notions of convergence have been introduced to give a precise sense to such asymptotic analysis. One of the
most general is the H -convergence (see [33,40]), which permits to describe the asymptotic behavior of a sequence of
second order elliptic operators in divergence form. This notion appears as a generalization of the G-convergence (see
[19, Chapter 22]) introduced independently for symmetric operators. Specifically, given a bounded open set Ω ⊆ Rn,
a sequence {Ak} ⊂ L∞(Ω;Rn×n) of uniformly elliptic tensors H -converges to A∞ ∈ L∞(Ω;Rn×n) if, for every
g ∈ H−1(Ω), the sequence of solutions uk of

−div(Ak∇u) = g in D′(Ω), u ∈ H 1
0 (Ω)

satisfies{
uk ⇀ u∞ weakly in H 1

0 (Ω),

Ak∇uk ⇀ A∞∇u∞ weakly in L2(Ω;Rn).

In particular, u∞ is the solution of

−div(A∞∇u) = g in D′(Ω), u ∈ H 1
0 (Ω).

If the tensors Ak describe a certain property (for instance the conductivity) of the structures approximating the com-
posite, it is assumed that A∞ describes the effective behavior with respect to that property.

Composite materials are characterized by three main features: the different constituents (or phases), their volume
fraction and their geometric arrangement. A natural question which arises is the following: given two constituents
as well as their volume fraction, what are all possible effective behaviors with respect to a certain property? In the
language of H -convergence this problem reads as follows: given two tensors A(1) and A(2) ∈ Rn×n corresponding
to the conductivities of both constituents of the composite and given a volume fraction θ ∈ [0,1], determine all the
tensors A∗ ∈ L∞(Ω;Rn×n) such that there exists a sequence of characteristic functions {χk} ⊂ L∞(Ω; {0,1}) (the
geometry of the finer and finer mixture) satisfying⎧⎨⎩

Aχk
H -converges to A∗,

−
∫

Ω

χk dx = θ for all k ∈ N,

where Aχk
(x) := χk(x)A(1) + (1 − χk(x))A(2). The family of these effective tensors is called the G-closure of

{A(1),A(2)} with fixed volume fraction θ . Its determination is known as a G-closure problem and is, in general,
very difficult to solve except in some particular cases that we shall briefly discuss later. Indeed, there is, in general, no
“explicit” formula to compute a H -limit. An exception occurs in the periodic case, i.e., when

Ak(x) = A
(〈kx〉) for x ∈ Ω,

where 〈·〉 denotes the fractional part of a vector componentwise. In this very particular case it is possible to prove (see
[2, Theorem 1.3.18]) that the sequence {Ak} H -converges to a constant tensor Acell given by

(Acell)ij =
∫
Q

A(y)
[
ei + ∇φi(y)

] · [ej + ∇φj (y)
]
dy for i, j ∈ {1, . . . , n}, (1.1)

where {e1, . . . , en} is the canonical basis of Rn, Q := (0,1)n and φi is a solution (unique up to an additive constant)
of the problem

−div
(
A[ei + ∇φ])= 0 in D′(Q), φ ∈ H 1

per(Q).

With the aim of finding optimal bounds and an analytical description of the G-closure set of two isotropic con-
ductors in dimension two, it has been proved independently in [28] and [38] a locality property which underlines
the importance of periodic structures. It states that every effective tensors, obtained by mixing two materials with a
volume fraction θ , can be locally recovered by the pointwise limit of a sequence of effective tensors, each of them
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obtained by a periodic mixture with the same proportion θ . In other words, in that case, periodic mixtures capture
every kind of mixtures, which enables to reduce the study of such problems to periodic geometries and materials with
homogeneous effective behavior, since periodic homogenization produces homogeneous limiting ones. This locality
result has been subsequently generalized by Dal Maso and Kohn in an unpublished work to higher dimension and not
necessarily isotropic conductors (a proof can be found e.g. in [2, Chapter 2]). Given two tensors A(1) and A(2) ∈ Rn×n,
for any θ ∈ [0,1], define

Pθ :=
{
A∗ ∈ Rn×n: there exists χ ∈ L∞(

Q; {0,1}) such that
∫
Q

χ dx = θ and A∗ = (Aχ)cell

}
,

where Aχ(x) := χ(x)A(1) + (1 − χ(x))A(2) and (Aχ)cell is defined as in (1.1). Denote by Gθ the closure of Pθ in
Rn×n. The local representation of G-closure states that if A∗ ∈ L∞(Ω;Rn×n) and θ ∈ L∞(Ω; [0,1]), then A∗(x0) ∈
Gθ(x0) for a.e. x0 ∈ Ω if and only if there exists a sequence of characteristic functions {χk} ⊂ L∞(Ω; {0,1}) such that{

Aχk
H -converges to A∗,

χk ⇀ θ weakly* in L∞(
Ω; [0,1]).

Later, a further generalization has been given in [35] to the case of nonlinear elliptic and strictly monotone operators
in divergence form, using an extension of the H -convergence to the nonlinear monotone setting which can be found
in [16].

In this paper, we wish to study similar G-closure problems in the framework of nonlinear elasticity. Of course, this
degree of generality makes it quite impossible to characterize analytically a G-closure set. However, it is still possible
to formulate a locality result which finds a similar statement also in that case. As nonlinear elasticity rests on the study
of equilibrium states, or minimizers, of a suitable energy, we fall within the framework of the Calculus of Variations
and it is natural to use the notion of Γ -convergence (see [13]) to describe the effective properties of a composite. It is
a variational convergence which permits to analyze the asymptotic behaviour of a sequence of minimization problems
of the form

mk = min
{
Fk(u): u ∈ U

}
, (1.2)

where U is a suitable functional space (in the sequel W 1,p(Ω;Rm) with p ∈ (1,+∞)) and Fk is a sequence of
functionals representing in our case the energies of the structures approximating the composite. The Γ -limit F∞ of
the sequence Fk has the following fundamental property: if uk is a solution of the minimization problem (1.2) and
uk → u∞ in U , then Fk(uk) → F∞(u∞) and u∞ is a solution of the minimization problem

m∞ = min
{
F∞(u): u ∈ U

}
.

This fact supports the assumption that F∞ describes in a good way the effective energy of the composite.
Let us briefly explain our study in the special case of mixtures of two different materials. Let W(1) and

W(2) : Rm×n → [0,+∞) be two functions satisfying standard p-growth and p-coercivity conditions. The func-
tions W(1) and W(2) stand for the stored energy densities of two homogeneous nonlinearly elastic materials. If
χ ∈ L∞(Ω; {0,1}) is a characteristic function, we use the notation Wχ(x, ξ) := χ(x)W(1)(ξ) + (1 − χ(x))W(2)(ξ).
The function Wχ can be thought of as the stored energy density of a composite material obtained as a mixture of both
previous ones.

Without any kind of convexity assumption on W(1) and W(2), we prove a weaker locality property about effective
energy densities (Theorem 3.5) which states that if W ∗ :Ω × Rm×n → [0,+∞) is a Carathéodory function and
θ ∈ L∞(Ω; [0,1]), then the following conditions are equivalent:

(i) there exists a sequence of characteristic functions {χk} ⊂ L∞(Ω; {0,1}) such that⎧⎪⎨⎪⎩
∫
Ω

W ∗(x,∇u(x)
)
dx = Γ - lim

k→+∞

∫
Ω

Wχk

(
x,∇u(x)

)
dx,

χk ⇀ θ weakly* in L∞(
Ω; [0,1]); (1.3)
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(ii) for a.e. x0 ∈ Ω , there exists a sequence of characteristic functions {χ̃k} ⊂ L∞(Q; {0,1}) such that⎧⎪⎨⎪⎩
∫
Q

W ∗(x0,∇u(y)
)
dy = Γ - lim

k→+∞

∫
Q

Wχ̃k

(
y,∇u(y)

)
dy,

χ̃k ⇀ θ(x0) weakly* in L∞(
Q; [0,1]).

We interpret this result as being enough to consider homogeneous effective energies with asymptotically homogeneous
microstructure. In Theorem 4.1 we perform another characterization of the effective energy densities through a fine
analysis of their zero level set. It is realized by means of gradient Young measures supported in the union of the zero
level sets of W(1) and W(2).

When the functions W(1) and W(2) are both convex, we can carry out a deeper locality result. As before, for any
θ ∈ [0,1], we define the set Pθ made of all effective energy densities obtained by a periodic homogenization of a
mixture of W(1) and W(2) in proportions θ and 1 − θ :

Pθ :=
{
W ∗ : Rm×n → [0,+∞): there exists χ ∈ L∞(

Q; {0,1})such that
∫
Q

χ dx = θ and W ∗ = (Wχ)hom

}
,

where

(Wχ)hom(ξ) := inf
j∈N+ inf

{
−
∫

(0,j)n
Wχ

(〈y〉, ξ + ∇φ(y)
)
dy: φ ∈ W

1,p
per

(
(0, j)n;Rm

)}
. (1.4)

The function (Wχ)hom is called homogenized integrand associated to Wχ and it is possible to prove (independently of
the convex assumption) that if χk(x) = χ(〈kx〉) for x ∈ Ω , then∫

Ω

(Wχ)hom
(∇u(x)

)
dx = Γ - lim

k→+∞

∫
Ω

Wχk

(
x,∇u(x)

)
dx.

In general, the set Pθ is not closed for the pointwise convergence so that it is natural to consider its closure denoted
as before by Gθ . Indeed, there exist effective energies that are not exactly reached by a periodic mixture: thanks
to Theorem 4.1, we built an example in the case of a mixture of four materials (Example 5.2). Our main result,
Theorem 5.1, states that if W ∗ :Ω × Rm×n → [0,+∞) is a Carathéodory function and θ ∈ L∞(Ω; [0,1]), then there
exists a sequence of characteristic functions {χk} ⊂ L∞(Ω; {0,1}) satisfying (1.3) if and only if W ∗(x0, ·) ∈ Gθ(x0)

for a.e. x0 ∈ Ω .
This result was stated in [21, Conjecture 3.15] and it was useful to study a quasi-static evolution model for the

interaction between fracture and damage. Indeed the authors used this conjecture to prove the wellposedness of an
incremental problem at fixed time step.

If we assume the functions W(1) and W(2) to be differentiable, one can write the Euler–Lagrange equation associ-
ated to the minimization problem. It is a nonlinear elliptic partial differential equation in divergence form and the first
order convexity condition means that the operators

ξ �→ ∂W(1)

∂ξ
(ξ) and ξ �→ ∂W(2)

∂ξ
(ξ)

are monotone. Hence our locality result reduces to a particular case of [35]. Furthermore, if W(1)(ξ) = A(1)ξ · ξ

and W(2)(ξ) = A(2)ξ · ξ for some symmetric matrices A(1) and A(2) ∈ Rn×n, then Theorem 5.1 is nothing but Dal
Maso and Kohn’s result in the special case of symmetric operators. Note that since H -convergence problems have, in
general, no variational structure, our result do not generalize the preceding ones, but rather gives a variational version
of them.

Our proof of Theorem 5.1 works only when the functions W(1) and W(2) are both convex. The nonconvex case
seems to be much more delicate to address. The reason is that the homogenization formula (1.4) in the convex case is
reduced to a single cell formula, i.e., (Wχ)hom = (Wχ)cell, where

(Wχ)cell(ξ) := inf

{∫
Wχ

(
y, ξ + ∇φ(y)

)
dy: φ ∈ W

1,p
per

(
Q;Rm

)}
.

Q
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On the contrary, it is known that both formula do not coincide even in the quasiconvex case because of the counter-
example [31, Theorem 4.3]. To illustrate this phenomena, we present here another much simpler counter-example,
Example 6.1, based on a rank-one connection argument and on the characterization of the zero level set of cell
integrands under quasiconvex assumption, Lemma 4.4. Indeed we prove that when m = n = 2, there exist suitable
densities W(1) and W(2) (one of them being nonconvex) and a suitable geometry χ such that

(Wχ)cell(C) > 0 while (Wχ)hom(C) = 0

for some matrix C ∈ R2×2. Moreover, exploiting the lower semicontinuity property of certain integral functionals
with respect to the two-scale convergence and noticing that the functions W(1) and W(2) in the previous example can
be taken polyconvex, we also show that, in general, one cannot expect the determinant to be continuous with respect
to the two-scale convergence (Example 6.5).

The paper is organized as follows: in Section 2, we introduce notations used in the sequel and we recall basic facts
about Γ -convergence, periodic homogenization, Young measures and two-scale convergence. In Section 3, we prove
a locality property, Theorem 3.5, enjoyed by effective energy densities obtained by mixing N different materials.
Section 4 is devoted to a fine analysis of the zero level set of such effective energy densities by means of Young
measures: this is achieved in Theorem 4.1. We also perform a similar analysis for cell kind integrands. In Section 5,
we give a proof of our main result, Theorem 5.1, which states the local property with respect to the set Gθ in the case
of convex stored energy densities. Moreover, thanks to the previous Young measure analysis, we show by an example
based on the four matrices configuration (Example 5.2) that in general Pθ � Gθ . Finally, we present in Section 6 a
new counter-example to the validity of the cell formula in the nonconvex case (Example 6.1) and to the continuity of
the determinant with respect to the two-scale convergence (Example 6.5).

2. Notations and preliminaries

Throughout the paper, we employ the following notations:

• Ω is a bounded open subset of Rn;
• Q is the unit cell (0,1)n;
• if a ∈ Rn and ρ > 0, Bρ(a) stands for the open ball in Rn of center a and radius ρ while Qρ(a) := a + (0, ρ)n is

the open cube in Rn with corner a and edge length ρ;
• O(Ω) denotes the family of all open subsets of Ω ;
• Ln denotes the n-dimensional Lebesgue measure;
• the symbol −

∫
E stands for the average Ln(E)−1

∫
E

;
• if μ is a Borel measure in Rs and E ⊆ Rs is a Borel set, the measure μ E stands for the restriction of μ to E,

i.e. for every Borel set B ⊆ Rs , (μ E)(B) = μ(E ∩ B);
• W

1,p
per (Q;Rm) is the space of W

1,p

loc (Rn;Rm) functions which are Q-periodic;
• given x ∈ Rn, 〈x〉 stands for the fractional part of x componentwise;

• ⇀ (resp.
∗
⇀) always denotes weak (resp. weak*) convergence.

2.1. Γ -convergence

Let α ∈ R3 with α1, α2, α3 > 0 and p ∈ (1,+∞). We denote by F (α,p) the set of all continuous functions
f : Rm×n → [0,+∞) satisfying the following coercivity and growth conditions:

α1|ξ |p − α2 � f (ξ) � α3
(
1 + |ξ |p) for any ξ ∈ Rm×n. (2.1)

Moreover, we denote by F (α,p,Ω) the set of all Carathéodory functions f :Ω × Rm×n → [0,+∞) such that
f (x, ·) ∈ F (α,p) for a.e. x ∈ Ω .

We recall the definition of Γ -convergence, referring to [12,13,19] for a comprehensive treatment on the subject.

Definition 2.1. Let f , fk ∈ F (α,p,Ω) and define the functionals F , Fk :W 1,p(Ω;Rm) → [0,+∞) by

F(u) :=
∫

f (x,∇u)dx and Fk(u) :=
∫

fk(x,∇u)dx.
Ω Ω
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We say that the sequence {Fk} Γ -converges to F (with respect to the weak topology of W 1,p(Ω;Rm)) if for every
u ∈ W 1,p(Ω;Rm) the following conditions are satisfied:

(i) liminf inequality: for every sequence {uk} ⊂ W 1,p(Ω;Rm) such that uk ⇀ u in W 1,p(Ω;Rm),

F(u) � lim inf
k→+∞Fk(uk);

(ii) recovery sequence: there exists a sequence {uk} ⊂ W 1,p(Ω;Rm) such that uk ⇀ u in W 1,p(Ω;Rm) and

F(u) = lim
k→+∞Fk(uk).

In the following remark, we state without proof standard results on Γ -convergence of integral functionals which
can be found in the references given.

Remark 2.2.

(i) Thanks to the coercivity condition (2.1), Definition 2.1 coincides with the standard definition given in a topolog-
ical space (see [19, Proposition 8.10]).

(ii) If {fk} is a sequence in F (α,p,Ω), then there exist a subsequence {fkj
} and a function f ∈ F (α,p,Ω) such

that {Fkj
} Γ -converges to F (see [12, Theorem 12.5]).

(iii) If {Fk} Γ -converges to F , then F is sequentially weakly lower semicontinuous in W 1,p(Ω;Rm) and therefore f

is quasiconvex with respect to the second variable (see [1, Statement II-5]). Moreover, for every U ∈ O(Ω) and
every u ∈ W 1,p(U ;Rm), we have∫

U

f (x,∇u)dx = Γ - lim
k→+∞

∫
U

fk(x,∇u)dx.

(iv) If {Fk} Γ -converges to F , defining F̃k :W 1,p(Ω;Rm) → [0,+∞) by

F̃k(u) :=
∫
Ω

Qfk(x,∇u)dx,

then {F̃k} Γ -converges to F as well, where Qfk(x, ·) denotes the quasiconvex envelope of fk(x, ·).
(v) Given f and fk ∈ F (α,p,Ω), if the functions fk(x, ·) are quasiconvex for a.e. x ∈ Ω and for all ξ ∈ Rm×n

fk(·, ξ) → f (·, ξ) pointwise a.e. in Ω,

then {Fk} Γ -converges to F (see [24, Lemma 7 and Remark 15]);
(vi) If {uk} ⊂ W 1,p(Ω;Rm) is a sequence such that uk ⇀ u in W 1,p(Ω;Rm) and Fk(uk) → F(u), then one can

assume that uk = u in a neighborhood of ∂Ω (see [12, Proposition 11.7]).

The following technical result will be useful in the analysis of the local properties of mixtures in Section 3.

Lemma 2.3. Let f ∈ F (α,p,Ω) be quasiconvex with respect to the second variable. There exists a set Z ⊆ Ω with
Ln(Z) = 0 such that for every {ρj } ↘ 0+ and every x0 ∈ Ω \ Z,

Γ - lim
j→+∞

∫
Q

f
(
x0 + ρjy,∇u(y)

)
dy =

∫
Q

f
(
x0,∇u(y)

)
dy for all u ∈ W 1,p

(
Q;Rm

)
.

Proof. By [3, Lemma 5.38], there exists a Ln-negligible set Z ⊆ Ω such that for any x0 ∈ Ω \ Z and any sequence
{ρj } ↘ 0+, one can find a subsequence {ρjk

} of {ρj } and a set E ⊆ Q with Ln(E) = 0 such that

f (x0 + ρjk
y, ξ) → f (x0, ξ)
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for every ξ ∈ Rm×n and every y ∈ Q \ E. Hence from Remark 2.2(v), one gets that

Γ - lim
k→+∞

∫
Q

f
(
x0 + ρjk

y,∇u(y)
)
dy =

∫
Q

f
(
x0,∇u(y)

)
dy, for every u ∈ W 1,p(Q;Rm).

Since the Γ -limit does not depend upon the choice of the subsequence, we conclude in light of [19, Proposition 8.3]
that the whole sequence Γ -converges. �
2.2. Periodic homogenization

We now recall standard results concerning periodic homogenization. We call cell integrand (resp. homogenized
integrand) associated to f ∈ F (α,p,Q), the function fcell ∈ F (α,p) (resp. fhom ∈ F (α,p)) defined by

fcell(ξ) := inf

{∫
Q

f (y, ξ + ∇φ)dy: φ ∈ W
1,p
per (Q;Rm)

}
(

resp. fhom(ξ) := inf
j∈N+ inf

{
−
∫

(0,j)n
f
(〈y〉, ξ + ∇φ

)
dy: φ ∈ W

1,p
per

(
(0, j)n;Rm

)})
. (2.2)

Remark 2.4. If f is quasiconvex in the second variable, then from standard lower semicontinuity results

fcell(ξ) = min

{∫
Q

f (y, ξ + ∇φ)dy: φ ∈ W
1,p
per (Q;Rm)

}
.

The following theorem is well known in the theory of Γ -convergence (See [12, Section 14], [11] or [31]).

Theorem 2.5. Let f ∈ F (α,p,Q) and {εk} ↘ 0+, then the functionals Fk :W 1,p(Ω;Rm) → [0,+∞) defined by

Fk(u) :=
∫
Ω

f

(〈
x

εk

〉
,∇u

)
dx

Γ -converges to Fhom :W 1,p(Ω;Rm) → [0,+∞), where

Fhom(u) :=
∫
Ω

fhom(∇u)dx.

In particular fhom is a quasiconvex function. Under the additional hypothesis that f is convex with respect to the
second variable, then fhom = fcell.

2.3. Young measures

Let s ∈ N, we denote by P (Rs) the space of probability measures in Rs and by Y (Ω;Rs) the space of maps
μ :x ∈ Ω �→ μx ∈ P (Rs) such that the function x �→ μx(B) is Lebesgue measurable for every Borel set B ⊆ Rs (see
[3, Definition 2.25]).

The following result is a version of the Fundamental Theorem on Young Measures (a proof can be found in [5,32]).
Under suitable hypothesis, it shows that the weak limit of a sequence of the type {f (·,wk(·))} can be expressed
through a suitable map μ ∈ Y (Ω;Rs) associated to {wk}.

Theorem 2.6. Let {wk} be a bounded sequence in L1(Ω;Rs). There exist a subsequence {wkj
} and a map μ ∈

Y (Ω;Rs) such that the following properties hold:

(i) if f : Ω × Rs → [0,+∞) is a Carathéodory function, then

lim inf
j→+∞

∫
f
(
x,wkj

(x)
)
dx �

∫
f̄ (x) dx
Ω Ω
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where

f̄ (x) :=
∫
Rs

f (x, ξ) dμx(ξ);

(ii) if f :Ω × Rs → R is a Carathéodory function and {f (·,wk(·))} is equi-integrable, then f (x, ·) is μx -integrable
for a.e. x ∈ Ω , f̄ ∈ L1(Ω) and

lim
j→+∞

∫
Ω

f
(
x,wkj

(x)
)
dx =

∫
Ω

f̄ (x) dx;

(iii) if A ⊆ Rs is compact, then suppμx ⊆ A for a.e. x ∈ Ω if and only if dist(wkj
,A) → 0 in measure.

Definition 2.7. The map μ ∈ Y (Ω;Rs) is called the Young measure generated by {wkj
}.

Remark 2.8. We denote by μ̄x := ∫
Rs ξ dμx the barycenter of μ. If the sequence {wk} is equi-integrable and gener-

ates μ, then wk ⇀ μ̄ in L1(Ω;Rs). To see this, it is sufficient to apply Theorem 2.6(ii) with f (x, ξ) = ϕ(x)ξ (i) where
ϕ ∈ L∞(Ω) and ξ (i) is the ith component of ξ (i ∈ {1, . . . , s}).

In the sequel we are interested in Young measures generated by sequences of gradients. We refer the reader
to [32,34] and references therein for a more exhaustive study.

Definition 2.9. A map ν ∈ Y (Ω;Rm×n) is called gradient Young measure if there exists a bounded sequence {uk} in
W 1,p(Ω;Rm) such that {∇uk} generates ν.

A probability measure σ ∈ P (Rm×n) is called homogeneous gradient Young measure if there exists a gradient
Young measure ν such that σ = νx for a.e. x ∈ Ω .

Remark 2.10. If ν is a gradient Young measure, then for a.e. x ∈ Ω the measure νx is a homogeneous gradient Young
measure (see [34, Theorem 8.4]).

2.4. Two-scale convergence

We here briefly gather the definition and some of the main results about two-scale convergence.

Definition 2.11. Let {wk} be a bounded sequence in Lp(Ω;Rs) and {εk} ↘ 0+. We say that {wk} two-scale converges
to a function w = w(x,y) ∈ Lp(Ω × Q;Rs) (with respect to {εk}) if

lim
k→+∞

∫
Ω

ϕ(x)φ

(
x

εk

)
wk(x)dx =

∫
Ω×Q

ϕ(x)φ(y)w(x, y) dx dy

for any ϕ ∈ C∞
c (Ω) and any φ ∈ C∞

per(Q); we simply write wk � w.

Remark 2.12.

(i) Every bounded sequence in Lp(Ω;Rs) admits a two-scale converging subsequence (see [27, Theorem 7]).
(ii) Let f :Q×Rs → [0,+∞) be a Carathéodory function convex with respect to the second variable and {εk} ↘ 0+.

If wk � w (with respect to {εk}), then

lim inf
k→+∞

∫
Ω

f

(〈
x

εk

〉
,wk(x)

)
dx �

∫
Ω×Q

f
(
y,w(x, y)

)
dx dy.

This result is a direct consequence of [8, Theorem 4.14] together with Jensen’s Inequality.
(iii) Let {uk} be a sequence weakly converging in W 1,p(Ω;Rm) to a function u. Then uk � u and there exist a

subsequence (not relabeled) and v ∈ Lp(Ω;W 1,p
per (Q;Rm)) such that ∇uk � ∇u + ∇yv (see [27, Theorem 13]).
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3. Local properties of mixtures

Let W(1), . . . ,W(N) belong to F (α,p). We interpret these functions as the stored energy densities of N different
nonlinearly elastic materials and we are interested in mixtures between them.

Definition 3.1. Let X (Ω) be the family of all functions χ = (χ(1), . . . , χ(N)) ∈ L∞(Ω; {0,1}N) such that∑N
i=1 χ(i)(x) = 1 in Ω . Equivalently, χ ∈ X (Ω) if there exists a measurable partition {P (i)}i=1,...,N of Ω such

that χ(i) = χP(i) for i = 1, . . . ,N .

If χ ∈ X (Ω), we define Wχ ∈ F (α,p,Ω) by

Wχ(x, ξ) :=
N∑

i=1

χ(i)(x)W(i)(ξ), for every x ∈ Ω and ξ ∈ Rm×n

and the functional Fχ :W 1,p(Ω;Rm) → [0,+∞) by

Fχ(u) :=
∫
Ω

Wχ(x,∇u)dx.

The function Wχ can be thought of as the stored energy density of a composite material obtained by mixing N

components having energy density W(i) and occupying the reference configuration P (i) in Ω at rest. The elastic
energy of this composite material under a deformation u ∈ W 1,p(Ω;Rm) is given by Fχ(u).

To describe efficiently the complexity of a composite material at the level of the effective energy, it is convenient
to identify it with the (Γ -)limit of a sequence of mixtures. Let {χk} be a sequence in X (Ω), we say that W ∗ ∈
F (α,p,Ω) is the effective energy density associated to {(W(i), χ

(i)
k )}i=1,...,N if the functional F :W 1,p(Ω;Rm) →

[0,+∞) defined by

F(u) :=
∫
Ω

W ∗(x,∇u)dx

is the Γ -limit of the sequence {Fχk
}. The sequence {χk} is referred as the microstructure (or micro-geometry) of

W ∗. If the effective energy density does not depend on x we say that it is homogeneous while if, for some θ =
(θ(1), . . . , θ (N)) ∈ [0,1]N with

∑N
i=1 θ(i) = 1, the equality

−
∫

Ω

χk dx = θ

holds for all k ∈ N, we say that the micro-geometry {χk} has fixed volume fractions θ(1), . . . , θ (N).
The next lemma shows that every effective energy density can be generated by a micro-geometry with fixed volume

fractions.

Lemma 3.2. Let {χk} be a sequence in X (Ω) and let W ∗ ∈ F (α,p,Ω) be the effective energy density associated to
{(W(i), χ

(i)
k )}i=1,...,N . Suppose that

χk
∗
⇀θ in L∞(

Ω; [0,1]N )
and set θ̄ := −

∫
Ωθ dx. Then there exists another sequence {χ̃k} in X (Ω) satisfying

χ̃k
∗
⇀θ in L∞(

Ω; [0,1]N ), −
∫

Ω

χ̃k dx = θ̄ for all k ∈ N

and such that W ∗ is the effective energy density associated to {(W(i), χ̃
(i)
k )}i=1,...,N .

Proof. For every k ∈ N, let θk := (θ
(1)
k , . . . , θ

(N)
k ) where

θ
(i)
k := −

∫
χ

(i)
k dx, for every i ∈ {1, . . . ,N}.
Ω
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Let I 1
k , I 2

k and I 3
k be three disjoint subsets of indexes in {1, . . . ,N} such that⎧⎪⎪⎨⎪⎪⎩

θ̄ (i) > θ
(i)
k if i ∈ I 1

k ,

θ̄ (i) = θ
(i)
k if i ∈ I 2

k ,

θ̄ (i) < θ
(i)
k if i ∈ I 3

k .

We denote P
(i)
k := {χ(i)

k = 1} so that θ
(i)
k = Ln(P

(i)
k )/Ln(Ω). For every i ∈ I 2

k , we define P̃
(i)
k := P

(i)
k and χ̃

(i)
k :=

χ
P̃

(i)
k

. Let R > 0 be such that Ω ⊆ BR(0). Fix i ∈ I 3
k and consider the function �k(ρ) := Ln(Bρ(0) ∩ P

(i)
k )/Ln(Ω);

�k is a continuous and nondecreasing function satisfying �k(0) = 0 and �k(R) = θ
(i)
k . Hence one can find a radius

ρk ∈ (0,R) such that �k(ρk) = θ̄ (i) and, for any i ∈ I 3
k , we set P̃

(i)
k := P

(i)
k ∩ Bρk

(0) and χ̃
(i)
k := χ

P̃
(i)
k

. It remains to

treat the indexes i ∈ I 1
k . Set

Zk :=
⋃
i∈I 3

k

P
(i)
k \ P̃

(i)
k ;

Since

N∑
i=1

θ̄ (i) =
N∑

i=1

θ
(i)
k = 1

it follows that

Ln(Zk) =
∑
i∈I 3

k

Ln(Ω)
(
θ

(i)
k − θ̄ (i)

)=
∑
i∈I 1

k

Ln(Ω)
(
θ̄ (i) − θ

(i)
k

)
.

Hence the measure of the set Zk (that we have removed) is equal to the sum of the measures of the sets that we need
to add to each P

(i)
k (for i ∈ I 1

k ) to get a larger set P̃
(i)
k with Lebesgue measure θ̄ (i)Ln(Ω). Thus we have enough

room to find disjoint measurable sets {Z(i)
k }i∈I 1

k
⊆ Zk such that Ln(Z

(i)
k ) = Ln(Ω)(θ̄ (i) − θ

(i)
k ) and it suffices to define

P̃
(i)
k := P

(i)
k ∪ Z

(i)
k and χ̃

(i)
k := χ

P̃
(i)
k

for all i ∈ I 1
k . As

Ln

( N⋃
i=1

(
P

(i)
k �P̃

(i)
k

))=
∑
i∈I 1

k

Ln(Ω)
(
θ̄ (i) − θ

(i)
k

)+
∑
i∈I 3

k

Ln(Ω)
(
θ

(i)
k − θ̄ (i)

)

= Ln(Ω)

N∑
i=1

∣∣θ̄ (i) − θ
(i)
k

∣∣−−−−→
k→+∞ 0, (3.1)

one immediately gets that χ̃k
∗
⇀θ in L∞(Ω; [0,1]N).

It remains to show that the Γ -limit is unchanged upon replacing χk by χ̃k . Extracting a subsequence (not relabeled)
if necessary, one may assume without loss of generality (see Remark 2.2(ii–iii)) that there exists a function W̃ ∈
F (α,p,Ω) such that∫

U

W̃(x,∇u)dx = Γ - lim
k→+∞

∫
U

Wχ̃k
(x,∇u)dx,

for every U ∈ O(Ω) and every u ∈ W 1,p(U ;Rm). Let us show that W̃ (x, ξ) = W ∗(x, ξ) for all ξ ∈ Rm×n and a.e.
x ∈ Ω . Fix ξ ∈ Rm×n and let {uk} ⊂ W 1,p(U ;Rm) be a sequence such that uk ⇀ ξ · in W 1,p(U ;Rm) and∫

W̃ (x, ξ) dx = lim
k→+∞

∫
Wχ̃k

(x,∇uk) dx.
U U
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Thanks to the Decomposition Lemma (see [22, Lemma 1.2]) one can assume without loss of generality that the
sequence {∇uk} is p-equi-integrable. By the p-growth condition (2.1) and (3.1), we get that∫

U

∣∣Wχ̃k
(x,∇uk) − Wχk

(x,∇uk)
∣∣dx � 2α3

∫
U∩⋃N

i=1(P
(i)
k �P̃

(i)
k )

(
1 + |∇uk|p

)
dx → 0.

Hence∫
U

W̃(x, ξ) dx = lim
k→+∞

∫
U

Wχk
(x,∇uk) dx �

∫
U

W ∗(x, ξ) dx

and the opposite inequality follows from a similar argument. Since the equality∫
U

W̃(x, ξ) dx =
∫
U

W ∗(x, ξ) dx

holds for every open subset U of Ω , we deduce that W̃ (x, ξ) = W ∗(x, ξ) for a.e. x ∈ Ω . �
In order to state the localization result for mixtures, namely Theorem 3.5, it will be more convenient to introduce

the set of functions Gθ (Ω) which is made of all possible homogeneous energy densities obtained as Γ -limits of
mixtures of W(1), . . . ,W(N) and having asymptotically homogeneous microstructure.

Definition 3.3. Let θ = (θ(1), . . . , θ (N)) ∈ [0,1]N be such that
∑N

i=1 θ(i) = 1. We define Gθ (Ω) as the set of all
functions W ∗ ∈ F (α,p) for which there exists a sequence {χk} in X (Ω) with the properties that

χk
∗
⇀θ in L∞(

Ω; [0,1]N )
and that W ∗ is the effective energy density associated to {(W(i), χ

(i)
k )}i=1,...,N .

Lemma 3.4. The set Gθ (Ω) is independent of the open set Ω ⊆ Rn.

Proof. Consider Ω and Ω ′ two arbitrary open subsets of Rn and assume that W ∗ ∈ Gθ (Ω). Let us show that it belongs
to Gθ (Ω

′) too. From the definition of Gθ (Ω), there exists a sequence of characteristic functions {χk} in X (Ω) such

that χk
∗
⇀θ in L∞(Ω; [0,1]N) and

Γ - lim
k→+∞

∫
Ω

Wχk
(x,∇u)dx =

∫
Ω

W ∗(∇u)dx.

Let a ∈ Ω and ρ > 0 be such that a+ρΩ ′ ⊆ Ω . It turns out that χk
∗
⇀θ in L∞(a+ρΩ ′; [0,1]N) and, by a localization

argument (see Remark 2.2(iii)),

Γ - lim
k→+∞

∫
a+ρΩ ′

Wχk
(x,∇u)dx =

∫
a+ρΩ ′

W ∗(∇u)dx.

Define χ̃k(x) := χk(a + ρx) for all x ∈ Ω ′. Since θ is constant, it is easily seen that χ̃k
∗
⇀θ in L∞(Ω ′; [0,1]N).

Moreover a simple change of variables together with the fact that W ∗ does not depend on x ∈ Ω implies that

Γ - lim
k→+∞

∫
Ω ′

Wχ̃k
(x,∇u)dx =

∫
Ω ′

W ∗(∇u)dx. �

Since Gθ (Ω) is independent of Ω , we simply denote it from now on by Gθ . We next show that every effective
energy density can be locally seen as homogeneous. Note that this result is independent of any kind of convexity
assumption on the densities W(1), . . . ,W(N).
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Theorem 3.5. Let W(1), . . . ,W(N) ∈ F (α,p) and θ ∈ L∞(Ω; [0,1]N) be such that
∑N

i=1 θ(i)(x) = 1 a.e. in Ω . Given
W ∗ ∈ F (α,p,Ω), the following conditions are equivalent:

(i) there exists a sequence {χk} in X (Ω) such that χk
∗
⇀θ in L∞(Ω; [0,1]N) and W ∗ is the effective energy density

associated to {(W(i), χ
(i)
k )}i=1,...,N ;

(ii) W ∗(x, ·) ∈ Gθ(x) for a.e. x ∈ Ω .

Proof. Thanks to Remark 2.2(iv) we can suppose without loss of generality that the functions W(1), . . . ,W(N) are
quasiconvex.

(i)⇒(ii). Let {ρj } ↘ 0+ and fix a point x0 ∈ Ω \ Z, where Z ⊆ Ω is the set of Lebesgue measure zero given by
Lemma 2.3 (with f = W ∗), which is also a Lebesgue point of θ . Define χj,k(y) := χk(x0 + ρjy), by Lemma 2.3 we
have that

Γ - lim
j→+∞

(
Γ - lim

k→+∞

∫
Q

Wχj,k

(
y,∇u(y)

)
dy

)
= Γ - lim

j→+∞

(
Γ - lim

k→+∞

∫
Q

Wχk

(
x0 + ρjy,∇u(y)

)
dy

)

= Γ - lim
j→+∞

∫
Q

W ∗(x0 + ρjy,∇u(y)
)
dy

=
∫
Q

W ∗(x0,∇u(y)
)
dy. (3.2)

Moreover, for every ϕ ∈ Cc(Q) and any i ∈ {1, . . . ,N},

lim
j→+∞ lim

k→+∞

∣∣∣∣∫
Q

(
χ

(i)
j,k(y) − θ(i)(x0)

)
ϕ(y)dy

∣∣∣∣= lim
j→+∞ lim

k→+∞

∣∣∣∣−∫
Qρj

(x0)

(
χ

(i)
k (y) − θ(i)(x0)

)
ϕ

(
y − x0

ρj

)
dy

∣∣∣∣
= lim

j→+∞

∣∣∣∣−∫
Qρj

(x0)

(
θ(i)(y) − θ(i)(x0)

)
ϕ

(
y − x0

ρj

)
dy

∣∣∣∣
� lim

j→+∞‖ϕ‖L∞(Q) −
∫

Qρj
(x0)

∣∣θ(i)(y) − θ(i)(x0)
∣∣dy = 0 (3.3)

since x0 is a Lebesgue point of θ . By density, (3.3) remains true for any ϕ ∈ L1(Q). By (3.2), (3.3), the metrizable char-
acter of Γ -convergence for lower semicontinuous and coercive functionals on W 1,p(Q;Rm) [19, Corollary 10.22(a)]
and the metrizability of the weak* convergence in L∞(Q; [0,1]N), we deduce through a standard diagonalization ar-

gument the existence of a sequence kj ↗ +∞ as j → +∞ (possibly depending on x0) such that χ̃j := χj,kj

∗
⇀θ(x0)

in L∞(Q; [0,1]N) and

Γ - lim
j→+∞

∫
Q

Wχ̃j

(
y,∇u(y)

)
dy =

∫
Q

W ∗(x0,∇u(y)
)
dy.

(ii)⇒(i). By the Lusin and the Scorza–Dragoni Theorems (see [20]), for every k ∈ N, there exists a compact set
Kk ⊆ Ω satisfying Ln(Ω \ Kk) < 1/k and such that θ(1), . . . , θ (N) are continuous on Kk and W ∗ is continuous on
Kk × Rm×n. Let h ∈ N, split Ω into h disjoint open sets Ur,h such that δh := max1�r�h diam(Ur,h) → 0 as h → +∞
and set

Ih,k := {
r ∈ {1, . . . , h}: Ln(Kk ∩ Ur,h) > 0

}
.



J.-F. Babadjian, M. Barchiesi / Ann. I. H. Poincaré – AN 26 (2009) 351–373 363
Hence for each r ∈ Ih,k , one can find a point xk
r,h ∈ Kk ∩ Ur,h such that W ∗(xk

r,h, ·) ∈ Gθ(xk
r,h). As a consequence of

Lemma 3.4, there exist sequences {χr,h,k
j } = {((χr,h,k

j )(1), . . . , (χ
r,h,k
j )(N))} in X (Ur,h) such that χ

r,h,k
j

∗
⇀θ(xk

r,h) in

L∞(Ur,h; [0,1]N) as j → +∞ and

Γ - lim
j→+∞

∫
Ur,h

W
χ

r,h,k
j

(x,∇u)dx =
∫

Ur,h

W ∗(xk
r,h,∇u

)
dx. (3.4)

Define now

W ∗
h,k(x, ξ) :=

∑
r∈Ih,k

χUr,h
(x)W ∗(xk

r,h, ξ
)+ χUc

h,k
(x)W ∗(x, ξ)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(χ

h,k
j )(1)(x) :=

∑
r∈Ih,k

(χ
r,h,k
j )(1)(x)χUr,h

(x) + χUc
h,k

(x),

(χ
h,k
j )(i)(x) :=

∑
r∈Ih,k

(χ
r,h,k
j )(i)(x)χUr,h

(x), i ∈ {2, . . . ,N},

where Uc
h,k := Ω \⋃r∈Ih,k

Ur,h. Then χ
h,k
j := ((χ

h,k
j )(1), . . . , (χ

h,k
j )(N)) ∈ X (Ω) and for every ϕ ∈ L1(Ω)

lim
j→+∞

∫
Ω

(
χ

h,k
j

)(1)
(x)ϕ(x) dx = lim

j→+∞
∑

r∈Ih,k

∫
Ur,h

(
χ

r,h,k
j

)(1)
(x)ϕ(x) dx +

∫
Uc

h,k

ϕ(x) dx

=
∑

r∈Ih,k

∫
Ur,h

θ (1)
(
xk
r,h

)
ϕ(x)dx +

∫
Uc

h,k

ϕ(x) dx, (3.5)

while for each i ∈ {2, . . . ,N}
lim

j→+∞

∫
Ω

(
χ

h,k
j

)(i)
(x)ϕ(x) dx =

∑
r∈Ih,k

∫
Ur,h

θ (i)
(
xk
r,h

)
ϕ(x)dx. (3.6)

On the other hand, since ‖θ(i)‖L∞(Ω) � 1 we get that for any i ∈ {1, . . . ,N}∑
r∈Ih,k

∫
Ur,h

∣∣θ(i)
(
xk
r,h

)− θ(i)(x)
∣∣∣∣ϕ(x)

∣∣dx �
∑

r∈Ih,k

∫
Ur,h∩Kk

∣∣θ(i)
(
xk
r,h

)− θ(i)(x)
∣∣∣∣ϕ(x)

∣∣dx + 2
∫

Ω\Kk

|ϕ|dx

� ω
(i)
k (δh)

∫
Ω

|ϕ|dx + 2
∫

Ω\Kk

|ϕ|dx, (3.7)

where ω
(i)
k : [0,+∞) → [0,+∞) is the modulus of continuity of θ(i) on Kk . Since θ(i) is uniformly continuous on Kk ,

it follows that ω
(i)
k is a continuous and nondecreasing function satisfying ω

(i)
k (0) = 0. Hence taking first the limit as

h → +∞ and then as k → +∞, we deduce from (3.5)–(3.7) and the fact that Ln(Uc
h,k) � Ln(Ω \ Kk) → 0 (as

k → +∞ uniformly with respect to h ∈ N), that

lim
k→+∞ lim

h→+∞ lim
j→+∞

∫
Ω

(
χ

h,k
j

)(i)
(x)ϕ(x) dx =

∫
Ω

θ(i)(x)ϕ(x) dx. (3.8)

Moreover, by virtue of the uniform continuity of W ∗ on Kk × BR(0) for every k ∈ N and R > 0, we get that∫
Ω

sup
|ξ |�R

∣∣W ∗
h,k(x, ξ) − W ∗(x, ξ)

∣∣dx �
∑

r∈Ih,k

∫
Ur,h∩Kk

sup
|ξ |�R

∣∣W ∗(xk
r,h, ξ

)− W ∗(x, ξ)
∣∣dx

+ 2α3
(
1 + Rp

)
Ln(Ω \ Kk)

� ωk,R(δh)Ln(Ω) + 2α3
(
1 + Rp

)
Ln(Ω \ Kk)
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where ωk,R : [0,+∞) → [0,+∞) is the modulus of continuity of W ∗ on Kk × BR(0) which is a continuous and
nondecreasing function satisfying ωk,R(0) = 0. Hence taking the limit as h → +∞ and then as k → +∞ we obtain
that for every R > 0,

lim
k→+∞ lim

h→+∞

∫
Ω

sup
|ξ |�R

∣∣W ∗
h,k(x, ξ) − W ∗(x, ξ)

∣∣dx = 0. (3.9)

By (3.8), (3.9) and the fact that L1(Ω) is separable, one can apply a standard diagonalization technique to get the
existence of a sequence hk ↗ +∞ as k → +∞ such that, setting χ̃ k

j := χ
hk,k
j and W ∗

k := W ∗
hk,k

, then for any i ∈
{1, . . . ,N},

lim
k→+∞ lim

j→+∞

∫
Ω

(
χ̃ k

j

)(i)
(x)ϕ(x) dx =

∫
Ω

θ(i)(x)ϕ(x) dx. (3.10)

and for every R > 0

lim
k→+∞

∫
Ω

sup
|ξ |�R

∣∣W ∗
k (x, ξ) − W ∗(x, ξ)

∣∣dx = 0. (3.11)

In particular, (3.11) shows that (at least for a not relabeled subsequence) for every ξ ∈ Rm×n, W ∗
k (·, ξ) → W ∗(·, ξ)

pointwise a.e. in Ω and by Remark 2.2(v), we obtain that

Γ - lim
k→+∞

∫
Ω

W ∗
k (x,∇u)dx =

∫
Ω

W ∗(x,∇u)dx.

Furthermore, thanks to (3.4), one can show that

Γ - lim
j→+∞

∫
Ω

Wχ̃k
j
(x,∇u)dx =

∫
Ω

W ∗
k (x,∇u)dx.

Indeed, the lower bound is immediate while the construction of a recovery sequence can be completed using the
fact that, inside each Ur,hk

, there exists an optimal sequence which matches u on a neighborhood of ∂Ur,hk
(see

Remark 2.2(vi)). In this way, we can glue continuously each pieces on Ur,hk
and extend by u on the whole set Ω to

construct an optimal sequence. Thus we have that

Γ - lim
k→+∞

(
Γ - lim

j→+∞

∫
Ω

Wχ̃k
j
(x,∇u)dx

)
=
∫
Ω

W ∗(x,∇u)dx. (3.12)

Appealing once again to the metrizability of Γ -convergence of lower semicontinuous and coercive functionals on
W 1,p(Ω;Rm) and the metrizability of the weak* convergence in L∞(Ω; [0,1]N), from (3.10) and (3.12) we obtain,
by a diagonalization process, the existence of a sequence jk ↗ +∞ as k → +∞ such that, upon setting χ̃k := χ̃ k

jk
,

then χ̃k ⇀ θ in L∞(Ω; [0,1]N) and

Γ - lim
k→+∞

∫
Ω

Wχ̃k
(x,∇u)dx =

∫
Ω

W ∗(x,∇u)dx,

which completes the proof of the theorem. �
4. Characterization of zero level sets

4.1. Effective energy densities

The first aim of this section is to study the zero level set of an effective energy density. This will be done by means
of gradient Young measures. As an application to the G-closure problem in the convex case, one will show thanks to
this result that they may exist effective energy densities that cannot be exactly reached by a periodic microstructure
(Example 5.2).
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Theorem 4.1. Let W(1), . . . ,W(N) ∈ F (α,p) and suppose that the compact sets A(i) := {ξ ∈ Rm×n: W(i)(ξ) = 0} are
pairwise disjoint. If u ∈ W 1,p(Ω;Rm) and θ ∈ L∞(Ω; [0,1]N) with

∑N
i=1 θ(i)(x) = 1 a.e. in Ω , then the following

conditions are equivalent:

(i) there exists a gradient Young measure ν ∈ Y (Ω;Rm×n) such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
suppνx ⊆ A :=

N⋃
i=1

A(i) for a.e. x ∈ Ω,

νx(A
(i)) = θ(i)(x) for all i ∈ {1, . . . ,N} and a.e. x ∈ Ω,

ν̄x = ∇u(x) for a.e. x ∈ Ω;
(ii) there exists a micro-geometry {χk} in X (Ω) such that, denoting by W ∗ ∈ F (α,p,Ω) the effective energy density

associated to {(W(i), χ
(i)
k )}i=1,...,N , then⎧⎪⎪⎨⎪⎪⎩

−
∫

Ω

χk dx = −
∫

Ω

θ dx for all k ∈ N,

χk
∗
⇀θ in L∞(

Ω; [0,1]N ),
W ∗(x,∇u(x)

)= 0 for a.e. x ∈ Ω.

Proof. (i)⇒(ii). For sake of clarity, we divide the proof into four steps.
Step 1. By using Theorem 2.6(iii) and the Decomposition Lemma [22, Lemma 1.2], we can suppose that there exists
a sequence {uk} ⊂ W 1,p(Ω;Rm) such that uk ⇀ u in W 1,p(Ω;Rm), {∇uk} is p-equi-integrable, generates ν and
dist(∇uk,A) → 0 in measure. For any i ∈ {1, . . . ,N}, we define the Borel subsets of Rm×n

C(i) := {
ξ ∈ Rm×n: dist(ξ,A(i)) � dist(ξ,A(h)) for h �= i

}
and, for every fixed k ∈ N, the following measurable partitions {P (i)

k }i=1,...,N of Ω

P
(1)
k := {

x ∈ Ω: ∇uk(x) ∈ C(1)
}
,

P
(2)
k := {

x ∈ Ω: ∇uk(x) ∈ C(2) \ C(1)
}
,

...

P
(N)
k :=

{
x ∈ Ω: ∇uk(x) ∈ C(N)

∖N−1⋃
i=1

C(i)

}
.

Finally, we define the sequence {χk} in X (Ω) by χk := (χ
P

(1)
k

, . . . , χ
P

(N)
k

). Extracting a subsequence (not rela-

beled) if necessary, we may assume that there exists an effective energy density W ∗ ∈ F (α,p,Ω) associated to
{(W(i), χ

(i)
k )}i=1,...,N and that the sequence {wk} := {(χk,∇uk)} generates a Young measure μ ∈ Y (Ω;RN × Rm×n).

Step 2. Denoting by {e1, . . . , eN } the canonical basis of RN , we claim that for a.e. x ∈ Ω,

μx =
N∑

i=1

δei
⊗ (

νx A(i)
)
. (4.1)

Given x ∈ Ω and k ∈ N, we may find some h ∈ {1, . . . ,N} so that x ∈ P
(h)
k and thus

dist

(
wk(x),

N⋃
i=1

({ei} × A(i)
))

� dist
(
wk(x), {eh} × A(h)

)
= dist

(∇uk(x),A(h)
)= dist

(∇uk(x),A
)
.

Then by Theorem 2.6(iii) we obtain that

suppμx ⊆
N⋃({ei} × A(i)

)
for a.e. x ∈ Ω.
i=1
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Since the sets A(1), . . . ,A(N) are pairwise disjoint, for any Borel set B ⊆ A(i), we get that

μx

({ei} × B
)= μx

(
RN × B

)= νx(B)

and therefore

μx

({ei} × A(i)
)= δei

⊗ (
νx A(i)

)
.

Step 3. We prove that W ∗(x,∇u(x)) = 0 for a.e. x ∈ Ω . By (4.1) and applying Theorem 2.6(ii) with f (x, z, ξ) =∑N
i=1 z(i)W(i)(ξ) (where z(i) is the ith component of z), we have that∫

Ω

W ∗(x,∇u(x)
)
dx � lim

k→+∞

∫
Ω

N∑
i=1

χ
(i)
k (x)W(i)

(∇uk(x)
)
dx

=
∫
Ω

( ∫
RN×Rm×n

N∑
i=1

z(i)W(i)(ξ) dμx(z, ξ)

)
dx

=
∫
Ω

N∑
i=1

( ∫
A(i)

W (i)(ξ) dνx(ξ)

)
dx = 0,

where we used the fact that the sequence {∇uk} is p-equi-integrable in the first equality.

Step 4. We prove that χk
∗
⇀θ in L∞(Ω; [0,1]N). Fix i ∈ {1, . . . ,N} and ϕ ∈ L1(Ω), by (4.1) and Theorem 2.6(ii)

(with f (x, z, ξ) = ϕ(x)z(i)), we have that

lim
k→+∞

∫
Ω

ϕ(x)χ
(i)
k (x) dx =

∫
Ω

( ∫
RN×Rm×n

ϕ(x)z(i) dμx(z, ξ)

)
dx

=
∫
Ω

ϕ(x)νx

(
A(i)

)
dx =

∫
Ω

ϕ(x)θ(i)(x) dx.

Through Lemma 3.2 we can now modify the sequence {χk} in order to get another one satisfying (ii).
(ii)⇒(i). Let {uk} be a recovery sequence such that uk ⇀ u in W 1,p(Ω;Rm) and

lim
k→+∞

∫
Ω

Wχk
(x,∇uk) dx =

∫
Ω

W ∗(x,∇u)dx = 0. (4.2)

Up to a subsequence (not relabeled), we may assume that the sequences {∇uk} and {wk} := {(χk,∇uk)} generate,
respectively, the Young measures ν ∈ Y (Ω;Rm×n) and μ ∈ Y (Ω;RN × Rm×n). According to Remark 2.8, we get
that ν̄x = ∇u(x) for a.e. x ∈ Ω .

From (4.2) and Theorem 2.6(i), we get that∫
Ω

( ∫
RN×Rm×n

N∑
i=1

z(i)W(i)(ξ) dμx(z, ξ)

)
dx � lim inf

k→+∞

∫
Ω

N∑
i=1

χ
(i)
k (x)W(i)

(∇uk(x)
)
dx = 0

and therefore by [7, Lemma 3.3]

suppμx ⊆
N⋃

i=1

({ei} × A(i)
)

for a.e. x ∈ Ω.

Thanks to the inequality

dist

(
wk(x),

N⋃({ei} × A(i)
))

� dist
(∇uk(x),A

)
,

i=1
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we obtain from Theorem 2.6(iii) that suppνx ⊆ A for a.e. x ∈ Ω . Moreover, since the sets A(1), . . . ,A(N) are pairwise
disjoint, as in steps 2 of the previous implication we have that

μx =
N∑

i=1

δei
⊗ (

νx A(i)
)
.

Finally, for all i ∈ {1, . . . ,N} and all ϕ ∈ L1(Ω),∫
Ω

ϕ(x)νx

(
A(i)

)
dx =

∫
Ω

( ∫
RN×Rm×n

ϕ(x)z(i)dμx(z, ξ)

)
dx

= lim
k→+∞

∫
Ω

ϕ(x)χ
(i)
k (x) dx =

∫
Ω

ϕ(x)θ(i)(x) dx,

and thus, by the arbitrariness of ϕ, it follows that νx(A
(i)) = θ(i)(x) for a.e. x ∈ Ω . �

As a consequence of the localization result for effective energy densities (Theorem 3.5) and of gradient Young
measures (Remark 2.10), we deduce the following homogeneous version of Theorem 4.1.

Corollary 4.2. Under the same hypothesis than that of Theorem 4.1, if A ∈ Rm×n and θ ∈ [0,1]N with
∑N

i=1 θ(i) = 1,
then the following conditions are equivalent:

(i) there exists a homogeneous gradient Young measure σ ∈ P (Rm×n) such that

suppσ ⊆ A, σ̄ = A and σ
(
A(i)

)= θ(i) for all i ∈ {1, . . . ,N};
(ii) there exists W ∗ ∈ Gθ such that W ∗(A) = 0.

4.2. Cell integrands

We now characterize the zero level set of (Wχ)cell and point out its dependence on χ and on the zero level sets of
W(1), . . . ,W(N). We refer to [9] for a similar characterization of the zero level set of (Wχ)hom. The result obtained
has a lot of interesting consequences because it will enable us to build new counter-examples to the validity of the
cell formula even in the quasiconvex case (Example 6.1) and to the continuity of the determinant with respect to the
two-scale convergence (Example 6.5).

Definition 4.3. Given a measurable partition {P (i)}i=1,...,N of the unit cell Q and a family of compact sets
{A(i)}i=1,...,N , we define Acell as the set of matrices ξ ∈ Rm×n such that there exists φ ∈ W

1,∞
per (Q;Rm) satisfying

ξ + ∇φ(y) ∈ A(i) for a.e. y ∈ P (i) and all i ∈ {1, . . . ,N}.
We call Acell the cell set associated to {(A(i),P (i))}i=1,...,N .

Lemma 4.4. Let {P (i)}i=1,...,N be a measurable partition of the unit cell Q and define χ ∈ X (Q) by χ(i) := χP(i) for
i ∈ {1, . . . ,N}. Assume that the functions W(1), . . . ,W(N) ∈ F (α,p) are quasiconvex and also that the compact sets
A(i) := {ξ ∈ Rm×n: W(i)(ξ) = 0} are not empty. Then we have

Acell = {
ξ ∈ Rm×n: (Wχ)cell(ξ) = 0

}
,

i.e., the zero-level set of the cell integrand (Wχ)cell associated to Wχ coincides with the cell set Acell associated to
{(A(i),P (i))}i=1,...,N .

Proof. We only prove the inclusion (Wχ)−1
cell(0) ⊆ Acell, since the opposite one is immediate. If (Wχ)cell(ξ) = 0, then

by Remark 2.4 there exists φ ∈ W
1,p
per (Q;Rm) such that∫

Wχ

(
y, ξ + ∇φ(y)

)
dy = 0
Q
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and so W(i)(ξ + ∇φ(y)) = 0 for a.e. y ∈ P (i). As A(1), . . . ,A(N) are compact sets and ξ + ∇φ(y) ∈ ⋃N
i=1 A(i) for

a.e. y ∈ Q, it follows that ∇φ ∈ L∞(Rn;Rm×n) and thus φ is Lipschitz continuous. Consequently φ ∈ W
1,∞
per (Q;Rm)

which proves that ξ ∈ Acell. �
5. G-closure in the convex case

In this section we focus on effective energy densities with periodic microstructure. Let θ = (θ(1), . . . , θ (N)) ∈
[0,1]N satisfying

∑N
i=1 θ(i) = 1, we define Pθ to be the set of all functions W ∗ ∈ F (α,p) for which there exists

χ ∈ X (Q) such that
∫
Q

χ dx = θ and, defining the sequence {χk} by

χk(y) = χ
(〈ky〉) for y ∈ Q,

W ∗ is the effective energy density associated to {(W(i), χ
(i)
k )}i=1,...,N . Since by the Riemann–Lebesgue Lemma

χk
∗
⇀θ in L∞(Ω; [0,1]N), we always have the inclusion Pθ ⊆ Gθ . In view of Theorem 2.5,

Pθ =
{
W ∗ ∈ F (α,p): there exists χ ∈ X (Q) such that

∫
Q

χ dy = θ and W ∗ = (Wχ)hom

}
.

Note that, in general, one cannot expect the set Pθ to be already closed with respect to the pointwise convergence (see
Example 5.2 below). Hence we also define

Gθ := {
W ∗ ∈ F (α,p): there exists a sequence {W ∗

k } in Pθ such that W ∗
k → W ∗ pointwise

}
.

Remark 2.2(v), the metrizability of Γ -convergence of lower semicontinuous and coercive functionals in
W 1,p(Q;Rm) and a standard diagonalization argument show that the sets Gθ and Gθ are closed for the pointwise
convergence. Thus, since Pθ ⊆ Gθ , it follows that Gθ ⊆ Gθ . The following result states that, at least in the convex
case, this inclusion is actually an equality and thus it makes more precise the result on locality of mixtures Theo-
rem 3.5.

Theorem 5.1. Let W(1), . . . ,W(N) ∈ F (α,p) be N convex functions and let θ ∈ L∞(Ω; [0,1]N) be such that∑N
i=1 θ(i)(x) = 1 a.e. in Ω . Given W ∗ ∈ F (α,p,Ω), the following conditions are equivalent:

(i) there exists a sequence {χk} in X (Ω) such that χk
∗
⇀θ in L∞(Ω; [0,1]N) and W ∗ is the effective energy associ-

ated to {(W(i), χ
(i)
k )}i=1,...,N ;

(ii) W ∗(x, ·) ∈ Gθ(x) for a.e. x ∈ Ω .

Proof. From Theorem 3.5, it is sufficient to prove that Gθ = Gθ for any fixed θ ∈ [0,1]N . Let W ∗ ∈ Gθ . By Lem-
mas 3.2 and 3.4, there exists a sequence {χk} in X (Q) such that

∫
Q

χk dy = θ for all k ∈ N and

Γ - lim
k→+∞

∫
Q

Wχk
(y,∇u)dy =

∫
Q

W ∗(∇u)dy. (5.1)

As a consequence of the classical property of convergence of minimal values (see e.g. [12,19])

W ∗(ξ) = min

{∫
Q

W ∗(ξ + ∇φ)dy: φ ∈ W
1,p
per (Q;Rm)

}

= lim
k→+∞ min

{∫
Q

Wχk
(y, ξ + ∇φ)dy: φ ∈ W

1,p
per (Q;Rm)

}
= lim

k→+∞(Wχk
)cell(ξ) (5.2)

and the conclusion follows from the very definition of Gθ and the convexity assumption. �
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As the following example shows, even in the convex case the inclusion Pθ ⊆ Gθ is in general strict and thus we
cannot expect Pθ to be closed with respect to the pointwise convergence.

Example 5.2. Consider the following four matrices in R2×2:

A1 := diag(−1,−3), A2 := diag(−3,1), A3 := diag(1,3) and A4 := diag(3,−1)

and let A := {A1, . . . ,A4}. This set has a peculiarity: despite the absence of rank-one connections, its quasiconvex hull
is not trivial. The relevance of this kind of sets has been discovered independently by many authors and in different
contexts ([4,15,30,36,39], see also [10]). We refer to [32] for a basic description and to [26,37] for an advanced
analysis. By [32, Lemma 2.6 and Example d in Section 3.2], if θ := (8/15,4/15,2/15,1/15), then

σ := θ(1)δA1 + θ(2)δA2 + θ(3)δA3 + θ(4)δA4

is a homogeneous gradient Young measure. For i ∈ {1, . . . ,4}, we consider the convex functions W(i) defined by

W(i)(ξ) := |Ai − ξ |p.

Since σ̄ = −I , where I := diag(1,1), from Corollary 4.2 and Theorem 5.1, there exists some W ∗ ∈ Gθ such
that W ∗(−I ) = 0. On the other hand, if W ∗ ∈ Pθ , then from Lemma 4.4, there would exist χ ∈ X (Q) and
φ ∈ W

1,∞
per (Q;R2) such that ∇φ(x) − I = Ai for a.e. y ∈ P (i) := {χ(i) = 1}. Defining ϕ(y) := φ(y) − y, it fol-

lows that ϕ is Lipschitz continuous and that ∇ϕ(y) = Ai for a.e. y ∈ P (i) which is impossible since the matrices
A1, . . . ,A4 are not rank-one connected (see [17] or [25]). Thus W ∗ /∈ Pθ .

Remark 5.3. Note that it is also possible to adapt the proofs of [2] and [35] to our setting. Let us briefly explain how
to proceed. We first need to introduce a suitable metric space structure. Specifically, let Ep be the space made of all
continuous functions f : Rm×n → R such that there exists the limit

lim|ξ |→+∞
f (ξ)

1 + |ξ |p+1
= 0.

The space Ep endowed with the norm

‖f ‖ := sup
ξ∈Rm×n

|f (ξ)|
1 + |ξ |p+1

is a normed space. In fact, only its metric structure will be useful for our purpose. Using the Ascoli–Arzela Theorem
and the fact that all the functions we are considering here satisfy uniform p-growth and p-coercivity conditions, one
can show that the sets Gθ and Gθ are closed subsets of Ep and that Gθ is the closure of Pθ in Ep . Moreover, if W ∗ ∈ Gθ

and {χk} ⊂ X (Q) is a sequence of characteristic functions as in the definition of Gθ , by convergence of minimizers, we
always have that (Wχk

)cell → W ∗ pointwise and also in Ep . The idea now consists in using a Hausdorff convergence
argument to deduce directly from the previous property that W ∗ ∈ Gθ . We recall the definition of the Hausdorff
distance between two closed sets G1 and G2 in Ep:

dH(G1,G2) := max
{

sup
g∈G2

inf
f ∈G1

‖f − g‖, sup
f ∈G1

inf
g∈G2

‖f − g‖
}
.

To do that, we need to prove that θ �→ Gθ is continuous for the Hausdorff metric. Indeed, if so, setting θk := ∫
Q

χk dx,
since (Wχk

)cell ∈ Pθk
⊆ Gθk

and θk → θ , it follows that Gθk
→ Gθ in the sense of Hausdorff. Hence remembering

that (Wχk
)cell → W ∗ in Ep , it implies that W ∗ ∈ Gθ .

To show that Gθ depends continuously on θ , we prove an estimate on dH(Gθ1 ,Gθ2) for any θ1 and θ2 ∈ [0,1]N .
This is done using a Meyers type regularity result to the solutions of the minimization problem (2.2). Indeed, one
can adapt the proof of e.g. [23, Theorem 3.1] to get the existence of two universal constants c > 0 and q > p (both
depending only on n, p, α1, α2 and α3) such that any solution ϕ ∈ W

1,p
per (Q;Rm) of (2.2) has a higher integrability

property, namely that(∫
|∇ϕ|q dx

)1/q

� c
(
1 + |ξ |).
Q
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Using this estimate together with the standard uniform p-Lipschitz property satisfied by functions in Gθ1 and Gθ2 ,
one can show that

dH(Gθ1 ,Gθ2) � c′|θ1 − θ2|(q−p)/q,

(where c′ > 0 depends only on n, p, α1, α2 and α3) which proves the desired result.
This gives an alternative proof to the equality Gθ = Gθ and stresses the fact that the Meyers type regularity result

can be seen as a stronger version of the Decomposition Lemma of [22].

6. Some counter-examples

An example obtained in [31] shows that the equality between cell and homogenized integrands does not hold, even
in the quasiconvex case. Precisely, this result is obtained through a rank-one laminated structure assembled by mixing
two polyconvex functions with 4-growth in the case n = m = 2. In this last section, we present an alternative counter-
example. Namely we show that when n = m = 2, there exist functions W(1) and W(2) ∈ F (α,p) (with p > 1 arbitrary)
and a measurable set P ⊆ Q such that, setting Wχ(y, ξ) := χP (y)W(1)(ξ) + χQ\P (y)W(2)(ξ), then (Wχ)hom <

(Wχ)cell. We use an argument based on the characterization of the zero level set stated in Lemma 4.4 to show that
Wcell is not rank-one convex.

Example 6.1. Consider the following matrices (see Fig. 1):

O := diag(0,0), I := diag(1,1), A := diag(−1,1), B := diag(0,1) and C := diag(0,1/2).

Let W(1) and W(2) ∈ F (α,p) be two quasiconvex functions such that(
W(1)

)−1
(0) = {O,A} and

(
W(2)

)−1
(0) = {O,I }, (6.1)

and define the function

Wχ(y, ξ) := χP (y)W(1)(ξ) + χQ\P (y)W(2)(ξ), (6.2)

where P = (0,1/2) × (0,1). Then, the function (Wχ)cell is not rank-one convex. Moreover, Wcell(C) > 0 while
Whom(C) = 0.

Proof. Obviously (Wχ)cell(O) = (Wχ)hom(O) = 0. Let φ ∈ W
1,∞
per (Q;R2) be defined by φ(y) := (|y1 − 1/2|,0).

It is immediate to check that ∇φ(y) = χP (y)diag(−1,0) + χQ\P (y)diag(1,0) and therefore (Wχ)cell(B) =
(Wχ)hom(B) = 0. Since (Wχ)hom is rank-one convex (because it is quasiconvex), necessarily (Wχ)hom(C) = 0. We
shall prove that on the contrary, (Wχ)cell(C) > 0. If not, by Lemma 4.4, there exists φ ∈ W

1,∞
per (Q;R2) such that

C + ∇φ(y) ∈
{ {O,A} for a.e. y ∈ P ;

{O,I } for a.e. y ∈ Q \ P.

Fig. 1. A representation of the matrices O , I , A, B and C in R2, identified with the set of the diagonal matrices.
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Since rank(I ) = rank(A) = 2, it follows from a classical result on rigidity of Lipschitz functions (see e.g. [6, Proposi-
tion 1]) that φ is an affine function on P and Q \ P and that either

C + ∇φ(y) = O

or

C + ∇φ(y) = χP (y)A + χQ\P (y)I

for a.e. y ∈ Q. But in both cases we get a contradiction with the fact that φ should be Q-periodic and thus
(Wχ)cell(C) �= 0. �
Remark 6.2. Since the sets {O,A} and {O,I } are quasiconvex, we can take as W(1) (resp. W(2)) the quasiconvexifi-
cation of D(1)(ξ) := distp(ξ, {O,A}) (resp. D(2)(ξ) := distp(ξ, {O,I })).

Remark 6.3. If a function φ ∈ W 1,∞(Q;R2) is affine on P and

C + ∇φ(y) ∈
{ {O,A} for a.e. y ∈ P ;

{O,I }co for a.e. y ∈ Q \ P,

then it cannot be Q-periodic (the superscript co denotes the convex hull of a set). By a straightforward modification of
Example 6.1, we can take W(2)(ξ) := distp(ξ, {O,I }co). This proves that also by mixing a quasiconvex function and
a convex function, the equality (Wχ)cell = (Wχ)hom could not occur.

Remark 6.4. If p � 2, then we can take W(1) and W(2) polyconvex. We recall that a function W : R2×2 → R is said
to be polyconvex if there is a convex function V : R2×2 × R → R such that W(ξ) = V (ξ,det(ξ)) for all ξ ∈ R2×2. We
refer to [18,32] for more details.

We define V (1) and V (2) : R2×2 × R → [0,+∞) by

V (1)(ξ, z) := max
{
distp

(
ξ, {O,A}co),dist

p
2
(
(ξ, z),

{
(O,0), (A,−1)

}co)}
,

V (2)(ξ, z) := max
{
distp

(
ξ, {O,I }co),dist

p
2
(
(ξ, z),

{
(O,0), (I,1)

}co)}
.

Setting

W(1)(ξ) := V (1)
(
ξ,det(ξ)

)
and W(2)(ξ) := V (2)

(
ξ,det(ξ)

)
, (6.3)

we can verify that W(1) and W(2) ∈ F (α,p) for a suitable α and that (6.1) holds. In particular (Wχ)hom(C) = 0 while
(Wχ)cell(C) > 0.

This last remark enables to underline the lack of continuity of the determinant with respect to the two-scale con-
vergence. It is known (see e.g. [18, Theorem 2.6 in Chapter 4]) that if p > 2 and {uk} is a sequence in W 1,p(Ω;R2),
then

uk ⇀ u in W 1,p(Ω;R2) implies that det(∇uk) ⇀ det(∇u) in Lp/2(Ω).

It would be interesting to ask whether this result still holds in the two-scale convergence framework. The answer is
negative as the following example shows.

Example 6.5. Let u(x) := Cx, where C = diag(0,1/2). By Theorem 2.5, there exists a sequence {uk} in W 1,p(Ω;R2)

such that uk ⇀ u in W 1,p(Ω;R2) and

lim
k→+∞

∫
Ω

Wχ

(〈
x

εk

〉
,∇uk(x)

)
dx = Ln(Ω)(Wχ)hom(C) = 0,

where Wχ is defined by (6.2) with W(1) and W(2) given by (6.3) for some p > 2. By Remark 2.12(i)–(iii), there

exist a subsequence (not relabeled), v ∈ Lp(Ω;W 1,p
per (Q;R2)) and w ∈ Lp/2(Ω × Q) such that ∇uk � C + ∇yv and

det(∇uk) � w. Suppose now that w = det(C + ∇yv), then by Remark 2.12(ii),
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Ln(Ω)(Wχ)cell(C) �
∫

Ω×Q

Wχ

(
y,C + ∇yv(x, y)

)
dx dy

=
∫

Ω×Q

[
χP (y)V (1)

(
C + ∇yv(x, y),w(x, y)

)
+ χQ\P (y)V (2)

(
C + ∇yv(x, y),w(x, y)

)]
dx dy

� lim inf
k→+∞

∫
Ω

[
χP

(〈
x

εk

〉)
V (1)

(∇uk,det(∇uk)
)+ χQ\P

(〈
x

εk

〉)
V (2)

(∇uk,det(∇uk)
)]

dx

= lim
k→+∞

∫
Ω

Wχ

(〈
x

εk

〉
,∇uk(x)

)
dx = 0,

which is against the fact that (Wχ)cell(C) > 0. Hence w �= det(C +∇yv). This example can be connected to the recent
investigation of the validity of the div-curl lemma in two-scale convergence (see [14,41]).

Acknowledgements

The authors wish to thank Gianni Dal Maso for having suggested this problem and for stimulating discussions on
the subject. They also gratefully acknowledge Grégoire Allaire, Andrea Braides, Adriana Garroni, Jan Kristensen and
Enzo Nesi for their useful comments and suggestions.

The research of J.-F. Babadjian has been supported by the Marie Curie Research Training Network MRTN-CT-
2004-505226 “Multi-scale modelling and characterisation for phase transformations in advanced materials” (MULTI-
MAT).

References

[1] E. Acerbi, N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984) 125–145.
[2] G. Allaire, Shape Optimization by the Homogenization Method, Lecture Series in Mathematics and its Applications, vol. 146, Springer,

Berlin, 2002.
[3] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The

Clarendon Press, Oxford University Press, New York, 2000.
[4] R.J. Aumann, S. Hart, Bi-convexity and bi-martingales, Israel J. Math. 54 (1986) 159–180.
[5] J.M. Ball, A version of the fundamental theorem for Young measures, in: PDEs and Continuum Models of Phase Transition, Nice, 1988,

Lecture Notes in Phys., vol. 344, Springer, Berlin, 1989, pp. 207–215.
[6] J.M. Ball, R.D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal. 100 (1987) 13–52.
[7] J.M. Ball, R.D. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem, Philos. Trans. Roy. Soc.

London Ser. A 338 (1992) 389–450.
[8] M. Barchiesi, Multiscale homogenization of convex functionals with discontinuous integrand, J. Convex Anal. 14 (2007) 205–226.
[9] M. Barchiesi, Loss of polyconvexity by homogenization: a new example, Calc. Var. Partial Differential Equations 30 (2007) 215–230.

[10] K. Bhattacharya, N. Firoozye, R.D. James, R. Kohn, Restrictions on microstructure, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 843–878.
[11] A. Braides, Homogenization of some almost periodic coercive functional, Rend. Accad. Naz. Sci. XL. Mem. Mat. 9 (5) (1985) 313–321.
[12] A. Braides, A. Defranceschi, Homogenization of Multiple Integrals, Oxford Lecture Series in Mathematics and its Applications, vol. 12, The

Clarendon Press, Oxford University Press, New York, 1998.
[13] A. Braides, A handbook of Γ -convergence, Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 3, Elsevier,

Amsterdam, 2006, pp. 101–213.
[14] M. Briane, J. Casado-Díaz, Lack of compactness in two-scale convergence, SIAM J. Math. Anal. 37 (2005) 343–346.
[15] E. Casadio Tarabusi, An algebraic characterization of quasi-convex functions, Ricerche Mat. 42 (1993) 11–24.
[16] V. Chiadò Piat, G. Dal Maso, A. Defranceschi, G-convergence of monotone operators, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990)

123–160.
[17] M. Chlebík, B. Kirchheim, Rigidity for the four gradient problem, J. Reine Angew. Math. 551 (2002) 1–9.
[18] B. Dacorogna, Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, vol. 78, Springer, Berlin, 1989.
[19] G. Dal Maso, An Introduction to Γ -Convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8, Birkhäuser

Boston Inc., Boston, MA, 1993.
[20] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, Classics in Applied Mathematics, vol. 28, Society for Industrial and

Applied Mathematics (SIAM), Philadelphia, PA, 1999, English edition.



J.-F. Babadjian, M. Barchiesi / Ann. I. H. Poincaré – AN 26 (2009) 351–373 373
[21] I. Fonseca, G.A. Francfort, Relaxation in BV versus quasiconvexification in W1,p ; a model for the interaction between fracture and damage,
Calc. Var. Partial Differential Equations 3 (1995) 407–446.

[22] I. Fonseca, S. Müller, P. Pedregal, Analysis of concentration and oscillation effects generated by gradients, SIAM J. Math. Anal. 29 (1998)
736–756.

[23] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, vol. 105,
Princeton Univ. Press, Princeton, 1983.

[24] A. Gloria, An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies, Multiscale
Model. Simul. 3 (2006) 996–1043.

[25] B. Kirchheim, Rigidity and Geometry of Microstructures, Habilitation thesis, University of Leipzig, 2003 (Lecture notes 16/2003 Max Planck
Institute).

[26] B. Kirchheim, S. Müller, V. Šverák, Studying nonlinear pde by geometry in matrix space, in: Geometric Analysis and Nonlinear Partial
Differential Equations, Springer, Berlin, 2003, pp. 347–395.

[27] D. Lukkassen, G. Nguetseng, P. Wall, Two scale convergence, Int. J. Pure Appl. Math. 2 (2002) 35–86.
[28] K.A. Lurie, A.V. Cherkaev, Exact estimates of the conductivity of a binary mixture of isotropic materials, Proc. Roy. Soc. Edinburgh

Sect. A 104 (1986) 21–38.
[29] G.W. Milton, The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics, vol. 6, Cambridge University

Press, Cambridge, 2002.
[30] G.W. Milton, V. Nesi, Polycrystalline configurations that maximize electrical resistivity, J. Mech. Phys. Solids 39 (1991) 525–542.
[31] S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rational Mech. Anal. 99 (1987) 189–212.
[32] S. Müller, Variational models for microstructure and phase transitions, in: Calculus of Variations and Geometric Evolution Problems, Cetraro,

1996, Lecture Notes in Math., vol. 1713, Springer, Berlin, 1999, pp. 85–210.
[33] F. Murat, L. Tartar, H -convergence, in: Topics in the Mathematical Modelling of Composite Materials, Progress in Nonlinear Differential

Equations and their Applications, vol. 31, Birkhäuser Boston Inc., Boston, 1997, pp. 21–43.
[34] P. Pedregal, Parametrized Measures and Variational Principles, Progress in Nonlinear Differential Equations and their Applications, vol. 30,

Birkhäuser Boston Inc., Boston, 1997.
[35] U. Raitums, On the local representation of G-closure, Arch. Rational Mech. Anal. 158 (2001) 213–234.
[36] V. Scheffer, Regularity and irregularity of solutions to nonlinear second order elliptic systems of partial differential equations and inequalities,

Dissertation, Princeton University, 1974.
[37] L. Székelyhidi, Rank-One Convex Hulls in M2×2, Calc. Var. Partial Differential Equations 22 (2005) 253–281.
[38] L. Tartar, Estimations fines des coefficients homogénéisés, in: P. Kree (Ed.), Ennio De Giorgi Colloquium, Res. Notes in Math., vol. 125,

Pitman, Boston, 1985, pp. 168–187.
[39] L. Tartar, Some remarks on separately convex functions, in: Microstructure and Phase Transition, The IMA Vol. Math. Appl., vol. 54, Springer-

Verlag, New York, 1993, pp. 191–204.
[40] L. Tartar, An introduction to the homogenization method in optimal design, in: Optimal Shape Design, Tróia, 1998, Lecture Notes in Math.,

vol. 1740, Springer, Berlin, 2000, pp. 47–156.
[41] A. Visintin, Two-scale convergence of some integral functionals, Calc. Var. Partial Differential Equation 29 (2007) 239–265.


	A variational approach to the local character of G-closure:  the convex case
	Introduction
	Notations and preliminaries
	Gamma-convergence
	Periodic homogenization
	Young measures
	Two-scale convergence

	Local properties of mixtures
	Characterization of zero level sets
	Effective energy densities
	Cell integrands

	G-closure in the convex case
	Some counter-examples
	Acknowledgements
	References


