
Ann. I. H. Poincaré – AN 26 (2009) 39–57
www.elsevier.com/locate/anihpc

On weakly harmonic maps from Finsler to Riemannian manifolds

Heiko von der Mosel a,∗, Sven Winklmann b

a Institut für Mathematik, RWTH Aachen, Germany
b Centro di Ricerca Matematica Ennio De Giorgi, Scuola Normale Superiore, Pisa, Italy

Received 15 March 2007; accepted 21 June 2007

Available online 2 October 2007

Abstract

We prove global C0,α-estimates for harmonic maps from Finsler manifolds into regular balls of Riemannian target manifolds
generalizing results of Giaquinta, Hildebrandt, and Hildebrandt, Jost and Widman from Riemannian to Finsler domains. As con-
sequences we obtain a Liouville theorem for entire harmonic maps on simple Finsler manifolds, and an existence theorem for
harmonic maps from Finsler manifolds into regular balls of a Riemannian target.
© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

Nous démontrons des C0,α-estimations globales pour des applications harmoniques des variétés de Finsler dans des boules
régulières des variétés riemanniennes en généralisant des résultats de Giaquinta, Hildebrandt et de Hildebrandt, Jost et Widman
pour des domaines de Riemann, à des domaines de Finsler. En conséquence nous obtenons un théorème de Liouville pour des
applications harmoniques entières sur des variétés de Finsler simples, et un théorème d’existence pour des applications harmoniques
des variétés de Finsler dans des boules régulières d’une variété riemannienne.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let M m be an m-dimensional oriented smooth manifold and χ :Ω → R
m a local chart on an open subset Ω ⊂

M which introduces local coordinates (x1, . . . , xm) = (xα), α = 1, . . . ,m. We denote by T M = ⋃
x∈M TxM the

tangent bundle consisting of points (x, y), x ∈ M , y ∈ TxM . These points can be identified on π−1(Ω) ⊂ T M by
bundle coordinates (xα, yα), α = 1, . . . ,m, where π :T M → M , π(x, y) := x, is the natural projection of T M onto
the base manifold M , and where y = yα ∂

∂xα |x ∈ TxM . Whenever possible, we will not distinguish between the point
(x, y) and its coordinate representation (xα, yα). Moreover, we employ Einstein’s summation convention: Repeated
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Greek indices are automatically summed from 1 to m. We will also frequently use the abbreviations fyα = ∂f
∂yα ,

fyαyβ = ∂2f

∂yα∂yβ , etc.

A Finsler structure F on M is a function F :T M → [0,∞) with the following properties: F ∈ C∞(T M \ 0),
where T M \ 0 := {(x, y) ∈ T M , y �= 0} denotes the slit tangent bundle;

F(x, ty) = tF (x, y) for all (x, y) ∈ T M , t > 0; (H)

and the fundamental tensor gαβ(x, y) := ( 1
2F 2)yαyβ (x, y) is positive definite for all (x, y) ∈ T M \0. The pair (M ,F )

is called a Finsler manifold.
An explicit fundamental example is given by the Minkowski space (Rm,F ), where F = F(y) does not depend on

x ∈ R
m. A manifold (M ,F ) is called locally Minkowskian, if for every x ∈ M there is a local neighborhood Ω of

x such that F = F(y) on T Ω . Moreover, any Riemannian manifold (M , g) with Riemannian metric g is a Finsler

manifold with F(x, y) :=
√

gαβ(x)yαyβ . A Finsler manifold (M ,F ) with

F(x, y) :=
√

gαβ(x)yαyβ + bσ (x)yσ , ‖b‖ :=
√

gαβbαbβ < 1, (1.1)

is called a Randers space.
In the present paper we study harmonic mappings U : (M ,F ) → (N , h) from a Finsler manifold (M ,F ) into

an n-dimensional Riemannian target manifold N n with metric h and with ∂N = ∅. What does it mean for U to
be harmonic? While it is common knowledge how to measure the differential dU of U in the Riemannian target by
means of the metric h, it is not at all obvious how to integrate the most evident choice of energy density e(U)(x, y) :=
1
2gαβ(x, y) ∂ui

∂xα
∂uj

∂xβ hij (u) over the Finsler manifold. Here, u is the local representation of U with respect to coordinates

(xα), α = 1, . . . ,m, on M , and (ui), i = 1, . . . , n, on N ; hij are the coefficients of the Riemannian metric h, and
(gαβ ) denotes the inverse matrix of (gαβ). In fact, the fundamental tensor gαβ does not establish a well-defined
Riemannian metric on M since it depends not only on x ∈ M but also on y ∈ TxM . In other words, on each tangent
space TxM , x ∈ M , one has a whole m-dimensional continuum of possible choices of inner products formally written
as gαβ(x, y) dxα ⊗ dxβ for y ∈ TxM \ {0}.

We are going to describe in Section 2 how to overcome this conceptual problem by incorporating the “refer-
ence directions” (x, [y]) := {(x, ty): t > 0} as base points for larger vector bundles sitting over the sphere bundle
SM = {(x, [y]): (x, y) ∈ T M \ {0}}. The resulting general integration formula (Proposition 2.2) yields in partic-
ular the integral energy E(U) whose critical points are harmonic mappings. It turns out that for scalar mappings
E(U) is proportional to the Rayleigh quotients studied by Bao, Lackey [1] in connection with eigenvalue problems
on Finsler manifolds. For mappings into Riemannian manifolds E(U) coincides with Mo’s variant [23] of energy.
Mo established a formula for the first variation of the energy, and proved among other things that the identity map
from a locally Minkowskian manifold to the same manifold with a flat Riemannian metric is harmonic. Shen and
Zhang [29] generalized Mo’s work to Finsler target manifolds, derived the first and second variation formulae, proved
non-existence of non-constant stable harmonic maps between Finsler manifolds, and provided with the identity map
an example of a harmonic map defined on a flat Riemannian manifold with a Finsler target thus reversing Mo’s setting.

In contrast to these investigations focused on geometric properties of harmonic maps whose existence and smooth-
ness is generally assumed, Tachikawa [31] has studied the variational problem for harmonic maps into Finsler spaces,
starting from Centore’s [4] formula for the energy density, which can be regarded as a special case of Jost’s [18–20]
general setting of harmonic maps between metric spaces. In particular, Tachikawa [31] has shown a partial regularity
result for energy minimizing and therefore harmonic maps from R

m into a Finsler target manifold for m = 3,4. More
recently, Souza, Spruck, and Tenenblat [30] proved Bernstein theorems and the removability of singularities for mini-
mal graphs in particular Randers spaces (cf. (1.1) above) if ‖b‖ < 1/

√
3, since then the underlying partial differential

equation can be shown to be of mean curvature type studied intensively by L. Simon and many others. For b > 1/
√

3
the equation ceases to be elliptic, and there are minimal cones singular at their vertex.

Here we address the basic question: Do harmonic maps with a Finslerian domain exist, and under what circum-
stances? To answer this question in the affirmative we draw from earlier results by Giaquinta, Hildebrandt, Jost, Kaul
and Widman, in particular [9,14,12], on harmonic maps between Riemannian manifolds with image contained in so-
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called regular balls.1 A geodesic ball BL(Q) := {P ∈ N : dist(P,Q) � L} on N with center Q ∈ N and radius
L > 0 is called regular, if it does not intersect the cut-locus of Q and if L < π

2
√

κ
, where

κ := max
{
0, sup

BL(Q)

KN
}

(1.2)

is an upper bound on the sectional curvature KN of N within BL(Q). It is well-known that on simply connected
manifolds N with KN � 0 all geodesic balls are regular, and that for N := Sn all geodesic balls contained in an
open hemisphere are regular. If N is compact, connected, and oriented with an even dimension n and 0 < KN � κ ,
then all geodesic balls of radius L < π

2
√

κ
are regular, whereas for simply connected manifolds of arbitrary dimension

with sectional curvature pinched between κ/4 and κ any geodesic ball with radius less than π
2
√

κ
is regular; see e.g.

[11, pp. 229, 230, 254].
Introducing also the lower curvature bound

ω := min
{
0, inf

BL(Q)
KN

}
, (1.3)

we can state our results on weakly harmonic maps, i.e. on bounded W 1,2-solutions of the Euler–Lagrange equation of
the energy E(U) (for a detailed definition see Section 3).

Theorem 1.1 (Interior C0,α-estimate). Let (M m,F ) be a Finsler manifold, and let (N n,h) be a complete Rieman-
nian manifold with ∂N = ∅. Suppose that χ :Ω → B4d is a local coordinate chart of M which maps Ω onto the
open ball B4d ≡ B4d(0) := {x ∈ R

m: |x| < 4d}, and suppose that the components of the Finsler metric gαβ(x, y)

satisfy

λ|ξ |2 � gαβ(x, y)ξαξβ � μ|ξ |2 (1.4)

for all ξ ∈ R
m and all (x, y) ∈ T Ω \0 ∼= B4d ×R

m \{0} with constants 0 < λ � μ < +∞. Moreover, let BL(Q) ⊂ N
be a regular ball. Finally, assume that U :M → N is a weakly harmonic map with U(Ω) ⊂ BL(Q). Let u denote the
local representation of U with respect to χ and a normal coordinate chart around Q. Then U is Hölder continuous,
and we have the estimate

Hölα,Bd
u := sup

x,y∈Bd

|u(x) − u(y)|
|x − y|α � Cd−α (1.5)

with constants 0 < α < 1 and C > 0 depending only on m, λ, μ, L, ω and κ , but not on d > 0. Here, ω and κ are the
bounds on the sectional curvature of N on BL(Q) from (1.2) and (1.3), respectively.

Letting d → ∞ in (1.5) we immediately obtain the following Liouville theorem for harmonic maps from simple
Finsler manifolds generalizing [14, Thm. 1]. Here, a Finsler manifold (M ,F ) is called simple if there exists a global
coordinate chart χ :M → R

m for which the Finsler metric satisfies condition (1.4) for all ξ ∈ R
m, (x, y) ∈ T M \

{0} ∼= R
m × R

m \ {0}, with constants 0 < λ � μ < +∞.

Theorem 1.2 (Liouville Theorem). Suppose that (M ,F ) is a simple Finsler manifold and that (N , h) is a complete
Riemannian manifold with ∂N = ∅. Furthermore, suppose that BL(Q) is a regular ball in N . Then any harmonic
map U :M → N with U(M ) ⊂ BL(Q) is constant.

Extending the Hölder estimates to the boundary, and combining them with well-known gradient estimates and
linear theory we obtain

Theorem 1.3 (Global C2,α-estimates). Let (M m,F ) be a compact Finsler manifold, Φ :M → BL(Q) ⊂ N of
class C2,α , BL(Q) a regular ball in the Riemannian target manifold (N n,h), ∂N = ∅. Then there is a constant C

1 Using Jost’s method [21] to prove Hölder regularity of generalized harmonic mappings, Eells and Fuglede later considered weakly harmonic
maps from Riemannian polyhedra into Riemannian manifolds [5–8]. A Finsler manifold, however, does not fall into the category of Riemannian
polyhedra.
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depending only on κ,ω,m,n,λ,μ,α, and Φ such that ‖U‖C2,α(M ,N ) � C for all harmonic maps U :M → N with
U(M ) ⊂ BL(Q) and U |∂M = Φ|∂M .

Theorem 1.3 together with a uniqueness theorem modeled after the corresponding result of Jäger and Kaul [16]
can be employed to prove the existence of harmonic maps with boundary data contained in a regular ball by virtue of
the Leray–Schauder-degree theory:

Corollary 1.4. If for a given mapping Φ ∈ C1,α(∂M ,N ) there is a point Q ∈ N such that Φ(∂M ) is contained in
a regular ball about Q in N , then there exists a harmonic mapping U :M → N with image U(M ) contained in
that regular ball, and with U |∂M = Φ .

This result is optimal in the sense that the less restrictive inequality L � π
2
√

κ
in the definition of a regular ball

admits an example of a boundary map Φ : ∂(M m) → N n := Sn with Φ(∂M ) ⊂ BL(Q), L = π
2
√

κ
, n = m � 7, and

M a Riemannian manifold, such that Φ cannot be extended to a harmonic map of int(M ) into N ; see [15, Sec. 2].
The proof of Theorem 1.1, which will be carried out in detail in Section 3, consists of a local energy estimate and a

subtle iteration procedure based on the observation that |u|2 is a subsolution of an appropriate linear elliptic equation.
We learnt about this approach from M. Pingen’s work [26,27], who utilized ideas of Caffarelli [3] and M. Meier [22]
to study not only harmonic maps between Riemannian manifolds, but also parabolic systems and singular elliptic
systems. With this elegant method we can completely avoid the use of mollified Green’s functions in contrast to [9],
or [5,6].

In Section 4 we sketch the ideas how to extend the Hölder estimates to the boundary. For the gradient estimate we
refer to the Campanato method described in [9, Sec. 7], again avoiding any arguments based on Green’s functions.
Once having established these estimates, the higher order estimates in Theorem 1.3 follow from standard linear theory,
see e.g. [10]. Finally, Corollary 1.4 can be proved in the same way as the corresponding existence theorem in [12].
Therefore, details will be left to the reader. In addition, more detailed but straightforward computations regarding the
transformation behavior of several geometric quantities introduced in Section 2 were suppressed here to shorten the
presentation; they can be found in the extended preprint version [32] of this article.

2. Basic concepts from Finsler geometry and preliminary results

Fundamental tensor and Cartan tensor

Properties (i)–(iii) of the Finsler structure F presented in the introduction imply that F(x, ·) :TxM → [0,∞)

defines a Minkowski norm on each tangent space TxM , x ∈ M . Moreover, from the homogeneity relation (H) together
with Euler’s Theorem on homogeneous functions we infer gαβ(x, y)yαyβ = (FFyαyβ +FyαFyβ )yαyβ = F 2(x, y) for
all (x, y) ∈ T M \ 0, which in particular implies F(x, y) > 0 for all (x, y) ∈ T M \ 0. The coefficients of the Cartan

tensor are given by2 Aαβγ (x, y) := F
2

∂gαβ

∂yγ (x, y) = F
4 (F 2)yαyβyγ . The Cartan tensor measures the deviation of a

Finsler structure from a Riemannian one in the following sense: The Finsler structure is Riemannian, i.e., F(x, y)2 =
gαβ(x)yαyβ , if and only if the coefficients of the Cartan tensor vanish. The following transformation laws for the
fundamental tensor and the Cartan tensor under coordinate changes x̃p = x̃p(x1, . . . , xm), p = 1, . . . ,m, on M can
easily be deduced (see [32, Lemma 2.1]):

g̃pq = ∂xα

∂x̃p

∂xβ

∂x̃q
gαβ and Ãpqr = ∂xα

∂x̃p

∂xβ

∂x̃q

∂xγ

∂x̃r
Aαβγ , (2.1)

respectively.

The Sasaki metric

Let π∗T M be the pull-back of T M and likewise, π∗T ∗M be the pull-back of the co-tangent bundle T ∗M
under π . That is, e.g., one works with the bundle π∗T M := ⋃

(x,y)∈T M\0 TxM with fibers given by (π∗T M )(x,y) =

2 We follow here the convention used in [2].
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Tπ(x,y)M = TxM for all (x, y) ∈ T M \ 0. The vector bundles π∗T M and π∗T ∗M have two globally defined
sections, namely the distinguished section

�(x, y) := �α(x, y)
∂

∂xα
:= yα

F (x, y)

∂

∂xα
(2.2)

and the Hilbert form

ω := ωα(x, y) dxα := ∂F

∂yα
(x, y) dxα. (2.3)

(Here, with a slight abuse of notation, ∂
∂xα and dxα are regarded as sections of π∗T M and π∗T ∗M , respectively.)

The homogeneity condition (H) implies that � and ω are naturally dual to each other, i.e., ω(�) = 1, and one obtains
(see [32, p. 9])

gαβ(x, y)�α�β = 1, gαβ(x, y)ωαωβ = 1, (2.4)

where (gαβ) denotes the inverse matrix of (gαβ). The introduction of the formal Christoffel symbols

γ α
βρ = 1

2
gασ

(
∂gρσ

∂xβ
+ ∂gσβ

∂xρ
− ∂gβρ

∂xσ

)
(2.5)

and the coefficients Nα
β of a non-linear connection on T M \ 0, the so-called Ehresmann connection, defined by

1

F
Nα

β := γ α
βκ�κ − Aα

βκγ κ
ρσ �ρ�σ (2.6)

gives rise to the following local sections of T (T M \ 0) and T ∗(T M \ 0):

δ

δxβ
:= ∂

∂xβ
− Nα

β

∂

∂yα
and δyα := dyα + Nα

β dxβ.

It is easily checked that { δ
δxα ,F ∂

∂yα } and {dxα,
δyα

F
} form local bases for the tangent bundle and co-tangent bundle of

T M \ 0, respectively, which are naturally dual to each other. The reason to introduce these new bases is their nice
behavior under coordinate transformations as stated in the following lemma; for the straightforward but tedious proof
we refer to [32, Appendix].

Lemma 2.1. Let x̃p = x̃p(x1, . . . , xm), p = 1, . . . ,m, be a local coordinate change on M and let ỹp = ∂x̃p

∂xα yα be the
induced coordinate change on T M . Then

δ

δx̃p
= ∂xα

∂x̃p

δ

δxα
,

∂

∂ỹp
= ∂xα

∂x̃p

∂

∂xα
, dx̃p = ∂x̃p

∂xα
dxα, δỹp = ∂x̃p

∂xα
δyα. (2.7)

As an important consequence we deduce from (2.1) and (2.7) that

G = gαβ(x, y) dxα ⊗ dxβ + gαβ(x, y)
δyα

F (x, y)
⊗ δyβ

F (x, y)

defines a Riemannian metric on T M \ 0, the so-called Sasaki metric. It induces a splitting of T (T M \ 0) into
horizontal subspaces spanned by { δ

δxα } and vertical subspaces spanned by {F ∂
∂yα }, respectively. By a straightforward

computation (see Appendix of [32]) one deduces that with respect to this splitting F is horizontally constant, i.e.,

δF

δxα
= 0. (2.8)

The sphere bundle SM

We continue with some remarks on scaling invariance. Denote by SM = {(x, [y]): (x, y) ∈ T M \ 0} the sphere
bundle which consists of the rays (x, [y]) := {(x, ty): t > 0}. Since the objects gαβ , δyα

F
, G, etc. are invariant under the

scaling (x, y) �→ (x, ty), t > 0, they naturally make sense on SM . To be more precise, consider the indicatrix bundle
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I := {(x, y) ∈ T M \ 0: F(x, y) = 1}. I is a hypersurface of T M \ 0 which can be identified with SM via the diffeo-
morphism ι :SM → I , ι(x, [y]) = (x,

y
F(x,y)

). Also note that I carries an orientation, since ν := yα ∂
∂yα is a globally

defined unit normal vector field along I . Indeed, by (2.4), ν has unit length: G(ν, ν) = gαβyτ yσ δyα

F
( ∂
∂yτ )

δyβ

F
( ∂
∂yσ ) =

gαβ
yτ

F
yσ

F
δα
τ δ

β
σ =

(2.4)
1. Furthermore, since F is horizontally constant by (2.8), the differential of F is given by

dF = δF
δxα dxα + F ∂F

∂yα
δyα

F
= ∂F

∂yα δyα, and therefore, for any tangent vector X = Xα δ
δxα + YαF ∂

∂yα on T M \ 0 we

find dF(X) = ∂F
∂yα FYα , which then leads to d(logF)(X) = dF(X)

F
= gαβ(x, y)

yβ

F
Yα = G(ν,X). In particular, if X

is tangent to I at (x, y) ∈ I , i.e., X = dc
dt

(0) for some smooth curve c : (−ε, ε) → I with c(0) = (x, y), we obtain
G(ν,X) = d(logF)(X) = d

dt
(logF)(c(t))|t=0 = 0, where we have used in the last equation that F = 1 on I .

Hence, we can think of SM ⊂ T M \ 0 as being an oriented (2m − 1)-dimensional submanifold of T M \ 0 to
which the above objects pull back. In particular, the Sasaki metric induces a Riemannian metric GSM with a volume
form dVSM on SM . dVSM will be of particular importance in the definition of harmonic mappings from Finsler
manifolds.

Orthonormal frames

For later purposes let us write down some of the preceding formulas in orthonormal frames: Let {eσ } be an oriented
local g-orthonormal frame for π∗T M (i.e. g(eσ , eτ ) = δστ ), such that em = � is the distinguished section defined
in (2.2). Let {ωσ } be the dual frame for π∗T ∗M such that ωm = ω is the Hilbert form (2.3). Then we have local
expansions of the form eσ = uα

σ
∂

∂xα and ωσ = vσ
α dxα . Since em = � and ωm = ω we find uα

m = �α = yα

F
and vm

α = Fyα .

Also note the relations uσ
βvα

σ = δα
β , and uα

σ vσ
β = δα

β , uα
σ u

β
τ gαβ(x, y) = δστ . Hence,

det
(
vσ
α

) = +
√

det(gαβ)(x, y), (2.9)

where the positive sign is due to the specific orientation of the frame. We can now introduce local G-orthonormal
bases {êσ , êm+σ } for T (T M \ 0) and {ωσ ,ωm+σ } for T ∗(T M \ 0) which are dual to each other:

êσ = uα
σ

δ

δxα
, êm+σ = uα

σ F
∂

∂yα
, σ = 1, . . . ,m, (2.10)

and

ωσ = vσ
α dxα, ωm+σ = vσ

α

δyα

F
, σ = 1, . . . ,m. (2.11)

In these frames, the Sasaki metric takes the form G = δστω
σ ⊗ ωτ + δστω

m+σ ⊗ ωm+τ and its volume form on
T M \ 0 is given by

dVT M\0 = ω1 ∧ · · · ∧ ωm ∧ ωm+1 ∧ · · · ∧ ω2m. (2.12)

Since F is horizontally constant by (2.8), and vm
α = Fyα , one easily verifies the relation ω2m = d(logF). Thus, ω2m

vanishes on the indicatrix bundle I , which means that ê2m is a unit normal to I and ê1, . . . , ê2m−1 are tangential. Note
that ê2m coincides with the above defined normal vector field ν. In particular, we may specify the orientation of I such
that {ê1, . . . , ê2m−1} is positively oriented. It follows that dVSM is given by dVSM = ω1 ∧ · · · ∧ ωm ∧ ωm+1 ∧ · · · ∧
ω2m−1. In other words, dVSM can be obtained by plugging ν into the last slot of dVT M\0, i.e.,

dVSM (X1, . . . ,X2m−1) = dVT M\0(X1, . . . ,X2m−1, ν) (2.13)

for all vector fields X1, . . . ,X2m−1 tangential to SM ⊂ T M \ 0.

The volume dVSM in local coordinates

For local computations, in particular for the derivation of the Euler–Lagrange equations for weakly harmonic
mappings, we need to derive an expression for the volume element dVSM in local coordinates.
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Let χ :Ω → R
m be a local coordinate chart of M with coordinates (x1, . . . , xm). We consider the mapping Φ :Ω ×

Sm−1 → I ⊂ T M \ 0 with Φ(x, θ) := (x,
y

F(x,y)
), where

y = y(x, θ) := yα(θ)
∂

∂xα

∣∣∣∣
x

, (2.14)

and yα are Cartesian coordinates of θ ∈ Sm−1, i.e.,

θ = (
y1(θ), . . . , ym(θ)

)
. (2.15)

Let (θ1, . . . , θm−1) be local coordinates for Sm−1. Then we compute

dΦ

(
∂

∂xα

)
= ∂

∂xα
− 1

F 2

∂F

∂xα
yβ ∂

∂yβ
, α = 1, . . . ,m, (2.16)

and

dΦ

(
∂

∂θA

)
=

(
1

F

∂yβ

∂θA
− 1

F 2

∂F

∂yγ

∂yγ

∂θA
yβ

)
∂

∂yβ
, A = 1, . . . ,m − 1. (2.17)

Here note carefully that, on the left-hand side, ∂
∂xα and ∂

∂θA are considered as tangent vectors to Ω and Sm−1 with

respect to (xα) and (θA), respectively, whereas on the right-hand side ∂
∂xα and ∂

∂yα are tangent vectors of T M

associated with the bundle coordinates (xα, yα).

Also notice that ηA := (
∂y1

∂θA , . . . ,
∂ym

∂θA ) and ηm := (y1(θ), . . . , ym(θ)) are nothing but the realizations of ∂
∂θA and θ

as vectors in R
m. In particular we may without loss of generality assume that {η1, . . . , ηm} forms a positively oriented

basis of R
m. We recall that the normal of the indicatrix bundle at Φ(x, θ) = (x,

y(x,θ)
F (x,y(x,θ))

) is given by

ν = ê2m = yα

F (x, y)

∂

∂yα
. (2.18)

Combining (2.16), (2.17) and (2.18) we obtain:

dVT M\0

(
. . . , dΦ

(
∂

∂xα

)
, . . . , dΦ

(
∂

∂θA

)
, . . . , ν

)

= dVT M\0

(
. . . ,

∂

∂xα
, . . . ,

1

F

∂yβ

∂θA

∂

∂yβ
, . . . ,

yγ

F

∂

∂yγ

)
.

From (2.12), (2.9), and (2.10) we infer the relation

dVT M\0|Φ(x,θ) = det
(
gαβ(x, y)

)
dx1 ∧ · · · ∧ dxm ∧ δy1 ∧ · · · ∧ δym,

since F(Φ(x, θ)) = 1 for all x ∈ Ω , θ ∈ Sm−1. Hence, we find

dVT M\0

(
. . . , dΦ

(
∂

∂xα

)
, . . . , dΦ

(
∂

∂θA

)
, . . . , ν

)
= +det(gαβ(x, y))

F (x, y)m

√
det(σAB)

with σAB := ∑m
α=1

∂yα

∂θA

∂yα

∂θB = ηA · ηB . Note that the sign is due to the specific orientation of {η1, . . . , ηm}. We recall
from (2.13) that dVSM is obtained by plugging ν into the last slot of dVT M\0. Hence we arrive at

Φ∗dVSM

(
. . . ,

∂

∂xα
, . . . ,

∂

∂θA
, . . .

)
= dVSM

(
. . . , dΦ

(
∂

∂xα

)
, . . . , dΦ

(
∂

∂θA

)
, . . .

)

= dVT M\0

(
. . . , dΦ

(
∂

∂xα

)
, . . . , dΦ

(
∂

∂θA

)
, . . . , ν

)
= det(gαβ(x, y))

F (x, y)m

√
det(σAB).

That is Φ∗dVSM = det(gαβ(x,y))

F (x,y)m

√
det(σAB)dx1 ∧· · ·∧dxm∧dθ1∧· · ·∧dθm−1. Finally, observe that

√
det(σAB)dθ1 ∧

· · · ∧ dθm−1 is the standard volume form dσ on Sm−1. Thus we have shown: Φ∗dVSM = det(gαβ(x,y))

F (x,y)m
dx1 ∧ · · · ∧

dxm ∧ dσ on Ω × Sm−1.
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Let us summarize this as follows:

Proposition 2.2. Let χ :Ω → R
m be a local coordinate chart of M , and let f :SM ⊂ T M \ 0 → R be an integrable

function with support in π−1(Ω). Then we have∫
SM

f (x, y) dVSM =
∫
Ω

( ∫

Sm−1

f

(
x,

y

F (x, y)

)
det(gαβ(x, y))

F (x, y)m
dσ

)
dx.

Here, dσ is the standard volume form on Sm−1, dx = dx1 ∧ · · · ∧ dxm, and y = y(x, θ) for (x, θ) ∈ Ω × Sm−1, as
defined in (2.14), (2.15).

The Riemannian case – an example

Let α1, . . . , αm > 0 be positive real numbers. As a consequence of the identity (for a derivation see e.g. [32, p. 16])∫

Sm−1

α1 · · ·αm

(α2
1θ2

1 + · · · + α2
mθ2

m)m/2
dσ(θ) = vol

(
Sm−1), (2.19)

we find
∫
Sm−1

√
det(gαβ(x))

(gαβ(x)θαθβ )m/2 dσ(θ) = vol(Sm−1) for any positive definite symmetric matrix (gαβ(x)). Hence, if the

Finsler structure is Riemannian, i.e., F 2(x, y) = gαβ(x)yαyβ , then we have the relation

1

vol(Sm−1)

∫
SM

f (x)dVSM =
∫
Ω

f (x)

√
det

(
gαβ(x)

)
dx =

∫
M

f (x)dVM (2.20)

for all integrable functions f :M → R with support in Ω and trivial extension to SM .

3. Interior regularity of harmonic mappings

The energy functional

Let U :M m → N n be a smooth mapping from the m-dimensional Finsler manifold (M ,F ) into an n-dimensional
Riemannian manifold (N , h). Following [23,29], we define an energy density e(U) :SM → [0,∞) as follows:

e(U)
(
x, [y]) := 1

2
gαβ(x, y)

∂ui

∂xα

∂uj

∂xβ
hij (u). (3.1)

Here, u is the local representation of U with respect to coordinates (xα) and (ui) on M and N , respectively, and
hij are the coefficients of the Riemannian target metric h. Moreover, we extend our summation convention: Repeated
Latin indices are automatically summed from 1 to n. The energy E(U) is then given by

E(U) := 1

vol(Sm−1)

∫
SM

e(U)dVSM . (3.2)

Here, integration is with respect to the Sasaki metric on SM . We also need the localized energies EΩ(U) := E(U |Ω)

for the restriction of U to an open subset Ω ⊂ M . In particular, for mappings between Riemannian manifolds
the above definition of energy coincides with the usual one by virtue of our observation (2.20), i.e., E(U) =
1
2

∫
M gαβ(x) ∂ui

∂xα
∂uj

∂xβ hij (u) dVM .

As in the Riemannian case, U ∈ W
1,2
loc (Ω,N ) ∩ L∞(Ω,N ) is said to be weakly harmonic on Ω � M if the first

variation of EΩ vanishes at U , i.e., d
dε

∣∣
ε=0EΩ(Uε) = 0 for all variations Uε of U of the form Uε = expU(εV + o(ε)),

where V is a smooth vector field along U with compact support in Ω . Here, exp denotes the exponential map on
(N , h). We say that U is (weakly) harmonic on M , if it is (weakly) harmonic on Ω for all Ω � M .
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The weak Euler–Lagrange equation

Let χ :Ω → R
m be a local coordinate chart of M and put D := χ(Ω). In view of the preceding discussion,

in particular (3.1), (3.2) and Proposition 2.2, the energy E is locally given by the quadratic functional EΩ(U) =
1
2

∫
D

Sαβ(x) ∂ui

∂xα
∂uj

∂xβ hij (u) dx, where

Sαβ(x) = 1

vol(Sm−1)

∫

Sm−1

gαβ(x, y)
det(gαβ(x, y))

F (x, y)m
dσ,

and the weak Euler–Lagrange equation of E reads as

∫
D

Sαβ(x)
∂ui

∂xα

∂ϕi

∂xβ
dx =

∫
D

Γ l
ij (u)Sαβ(x)

∂ui

∂xα

∂uj

∂xβ
ϕl dx (3.3)

for all ϕ ∈ C∞
c (D,R

n). Here, Γ l
ij denote the Christoffel symbols of the Riemannian metric h. Suppose now that the

coefficients gαβ of the Finsler metric satisfy condition (1.4) Then the following structure conditions hold for Eq. (3.3):

λ∗|ξ |2 � Sαβ(x)ξαξβ � μ∗|ξ |2 for all ξ ∈ R
m and x ∈ D (3.4)

with λ∗ := λmμ−1− m
2 , and μ∗ := μmλ−1− m

2 .

Jacobi field estimates

According to Jost [17], any two points P1, P2 of a regular ball BL(Q) can be connected by a geodesic completely
contained in BL(Q). This geodesic is shortest among all curves joining P1 and P2 within BL(Q). Moreover, it
contains no pair of conjugate points. In particular, around each point P ∈ BL(Q) one may introduce a normal coor-
dinate chart ψ :BL(Q) → R

n. Denote by (vi) = (v1, . . . , vn) the corresponding coordinates. Then P has coordinates
(0, . . . ,0) and, if P ′ ∈ BL(Q) has coordinates v, then dist(P,P ′) = |v| < π√

κ
. Moreover, the following estimates

hold for the metric and the Christoffel symbols; see e.g. [15, Section 5]:

{
δij − aω

(|v|)hij (v)
}
ζ iζ j � Γ l

ij (v)vlζ iζ j �
{
δij − aκ

(|v|)hij (v)
}
ζ iζ j , (3.5)

b2
κ

(|v|)|ζ |2 � hij (v)ζ iζ j � b2
ω

(|v|)|ζ |2 (3.6)

for all ζ ∈ R
n. Here, the functions aσ and bσ are defined as follows:

aσ (t) =
{

t
√

σctg(t
√

σ) if σ > 0,0 � t < π√
σ
,

t
√−σctgh(t

√−σ) if σ � 0,0 � t < ∞,

and

bσ (t) =
⎧⎨
⎩

sin(t
√

σ)

t
√

σ
if σ > 0,0 � t < π√

σ
,

sinh(t
√−σ)

t
√−σ

if σ � 0,0 � t < ∞.

As a consequence of (3.5) and (3.6) we obtain for every positive semi-definite matrix (Sαβ) ∈ R
m×m, and for every

matrix (pi
α) ∈ R

n×m

Sαβpi
αpi

β − aω

(|v|)Sαβpi
αp

j
βhij (v) � Γ l

ij (v)vlSαβpi
αp

j
β � Sαβpi

αpi
β − aκ

(|v|)Sαβpi
αp

j
βhij (v), (3.7)

b2
κ

(|v|)Sαβpi
αpi

β � Sαβpi
αp

j
βhij (v) � b2

ω

(|v|)Sαβpi
αpi

β . (3.8)
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Moreover, if we use normal coordinates centered around Q, then by (3.6) in connection with our assumption L < π
2
√

κ

we can estimate the distance of two points P1,P2 ∈ BL(Q) with coordinates p1,p2 by3

bκ(L)|p1 − p2| � dist(P1,P2) � bω(L)|p1 − p2|. (3.9)

Subsolutions of elliptic equations and a local energy estimate

Let ψ :BL(Q) → R
n be a normal coordinate chart around some point P ∈ BL(Q). We denote by v = (v1, . . . , vn)

the representation of U with respect to ψ and χ , i.e., v := ψ ◦U ◦χ−1 and we abbreviate ∂α = ∂
∂xα . The weak Euler–

Lagrange equation then takes the form∫
B4d

{
Sαβ(x)∂αvl∂βϕl − f l(v)ϕl

}
dx = 0 for all ϕ ∈ C∞

c (B4d ,R
n), (3.10)

and hence by approximation for all ϕ ∈ W
1,2
0 (B4d ,R

n) ∩ L∞(B4d ,R
n). Here we have set f l(v) := Γ l

ij (v)Sαβ(x) ×
∂αvi∂βvj . Denoting E(v) = Sαβ(x)∂αvi∂βvjhij (v) and P(v) = Sαβ(x)∂αvl∂βvl − f l(v)vl we infer from (3.7)

aκ

(|v|)E(v) � P(v). (3.11)

Lemma 3.1 (Subsolution & local energy estimate). 4 Let v be the representation of U with respect to normal coordi-
nates around P ∈ BL(Q). Then

(i) (Subsolution) If |v| < π
2
√

κ
on a domain G ⊂ B4d ⊂ R

m then ∂α(Sαβ(x)∂β |v|2) � 0 on G.

(ii) (Local energy estimate) If |v| � L on B4R(x0) ⊂ B4d then

R2−m

∫
BR(x0)

E(v) dx � C
[
M2(4R) − M2(R)

]
, (3.12)

where M(r) := supBr(x0)
|v|, 0 � r � 4R. Here, the constant C depends only on m, λ, μ, κ and L.

Proof. (i) Using ϕ = vη, η ∈ C∞
c (G), η � 0, as a test-function in (3.10) we obtain:

−1

2

∫
G

Sαβ(x)∂α|v|2∂βη dx =
∫
G

P(v)η dx. (3.13)

Since aκ(|v|) � aκ( π
2
√

κ
) = 0 on G we infer from (3.11) that P(v) � 0 on G. This gives the desired result.

(ii) By virtue of part (i) the function z := M2(4R) − |v|2 � 0 is a supersolution of the linear elliptic operator
∂β(Sαβ∂α) in G := B4R(x0). Hence Moser’s weak Harnack inequality [24, Thm. 3], [10, Thm. 8.18] implies the
existence of a constant C1 = C1(m,λ∗,μ∗) such that

1

Rm

∫
B2R(x0)

z dx � C1(m,λ∗,μ∗) inf
BR(x0)

z. (3.14)

Let w ∈ W
1,2
0 (B4R(x0)) be a solution of∫

B4R(x0)

Sαβ∂αϕ∂βw dx = 1

R2

∫
B4R(x0)

χB2R(x0)ϕ dx ∀ϕ ∈ W
1,2
0

(
B4R(x0)

)
. (3.15)

3 For the right inequality compare the length of the geodesic connecting P1,P2 with the length of the image of the straight line under exp using
(3.6) in the Riemannian length functional together with bω(|v|) � bω(L). For the left inequality connect P1 and P2 by a minimizing geodesic and
use bκ (|v|) � bκ (L).

4 In the Euclidean context part (i) of this lemma is due to M. Meier [22, p. 5], for part (ii) compare with [9, Proof of Prop. 1].
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Then one has w �≡ 0, and according to [10, Thm. 8.1] the estimate infB4R(x0) w � inf∂B4R(x0)(min{w,0}) = 0. There-
fore, by the weak Harnack inequality, there is a constant C2 = C2(m,λ∗,μ∗) such that

0 <
1

Rm

∫
B2R(x0)

w dx � C2(m,λ∗,μ∗) inf
BR(x0)

w. (3.16)

To estimate the left-hand side from below we choose ϕ := w in (3.15) and obtain from (3.4)

λ∗
∫

B4R(x0)

|∇w|2 dx � 1

R2

∫
B2R(x0)

w dx. (3.17)

On the other hand, we infer from (3.15) and (3.4) by means of Hölder’s inequality

1

R2

∫
B2R(x0)

ϕ dx � μ∗‖∇w‖L2(B4R(x0))
‖∇ϕ‖L2(B4R(x0))

for all ϕ ∈ W
1,2
0

(
B4R(x0)

)
,

which together with (3.17) yields for any non-negative ϕ ∈ W
1,2
0 (B4R(x0))

1

Rm

∫
B2R(x0)

w dx � 1

Rm+2

λ∗‖ϕ‖2
L1(B2R(x0))

μ2∗‖∇ϕ‖2
L2(B4R(x0))

. (3.18)

To estimate the right-hand side we choose ϕ to be the function5

ϕ(x) := 1

2m

[
(4R)2 − |x − x0|2

] ∈ W
1,2
0

(
B4R(x0)

)
, (3.19)

which leads to an explicit lower bound for the left-hand side of (3.16) depending only on m,λ∗,μ∗, but not on R.
Hence, we find a constant C3 = C3(m,λ∗,μ∗) such that

0 < C3 � w in BR(x0). (3.20)

On the other hand, a quantitative version of Stampacchia’s maximum principle (see [13, Lemma 2.1]) yields a constant
C4 = C4(m,λ∗,μ∗) such that

0 � w � C4 in B4R(x0). (3.21)

Inserting ϕ := wz ∈ W
1,2
0 (B4R(x0)) as a test-function in (3.15) leads to

∫
B4R(x0)

Sαβ∂αz∂β(w2) dx �
(3.4)

∫
B4R(x0)

Sαβ∂αz∂β(w2) dx +
∫

B4R(x0)

2Sαβz∂αw∂βw dx

= 2

R2

∫
B2R(x0)

wzdx, (3.22)

where we used ellipticity (3.4) and the fact that z � 0 to obtain the inequality on the left. On the other hand, using
(3.13) together with (3.11) and the fact that aκ(|v|) � aκ(L) > aκ( π

2
√

κ
) = 0, we obtain 0 �

∫
B4R(x0)

E(v)η dx �
1

2aκ (L)

∫
B4R(x0)

Sαβ∂αz∂βη dx for any η ∈ W
1,2
0 (B4R(x0)) ∩ L∞(B4R(x0)). Applying this to η := w2 in combination

with (3.20), (3.22), (3.21), and (3.14) we arrive at

5 The specific function ϕ in (3.19) solves the equation �ϕ = −1 on B4R(x0) thus maximizing the quotient [∫ f ]2/‖∇f ‖2
L2 among functions f

defined on B4R(x0) with zero boundary data. This is related to the classical problem of torsional rigidity of isotropic beams; see [28, Ch. 5], [25].
Note, however, that the L1-norm in the quotient in (3.18) is taken over the smaller ball B2R(x0).
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C2
3

∫
BR(x0)

E(v) dx �
(3.20)

∫
B4R(x0)

E(v)w2 dx � 1

2aκ(L)

∫
B4R(x0)

Sαβ∂αz∂β(w2) dx

�
(3.22)

1

aκ(L)R2

∫
B2R(x0)

wzdx �
(3.21)

C4

aκ(L)R2

∫
B2R(x0)

z dx

�
(3.14)

C1C4R
m−2

aκ(L)
inf

BR(x0)
z = C1C4R

m−2

aκ(L)

[
M2(4R) − M2(R)

]
. �

As a starting point for our iteration argument we will use (cf. [22, p. 5])

Lemma 3.2. Let G ⊂ R
m be a domain in R

m and suppose that w ∈ W 1,2(B4R(x0) ∩ G) is a weak solution of
∂α(Sαβ(x)∂βw) � 0 in B4R(x0) ∩ G, where the coefficients Sαβ ∈ L∞(B4R(x0) ∩ G) satisfy λ∗|ξ |2 � Sαβ(x)ξαξβ �
μ∗|ξ |2 for all ξ ∈ R

m, x ∈ B4R(x0) ∩ G with constants 0 < λ∗ � μ∗ < +∞.

(i) If G = B4R(x0) ⊂ R
m then supBR(x0)

w � (1 − δ0) supB4R(x0)
w + δ0 −

∫
BR(x0)w dx with a constant δ0 ∈ (0,1)

depending only on m, λ∗ and μ∗.
(ii) If L m(BR(x0) \ G) � γL m(BR(x0)) for some constant γ > 0, then supBR(x0)∩G w � (1 − δ0) supB4R(x0)∩G w +

δ0 supBR(x0)∩∂G w with a constant δ0 ∈ (0,1) depending only on m, λ∗, μ∗, and γ .

Proof. (i) We can assume that w �≡ 0, and apply Moser’s weak Harnack inequality [10, Thm. 8.18] to the non-
negative supersolution v := supB4R(x0)

w − w of the elliptic operator ∂α(Sαβ∂β) in B4R(x0) to obtain a constant C =
C(m,λ∗,μ∗) > 0, such that

1

Rm

∫
BR(x0)

v dx � 1

Rm

∫
B2R(x0)

v dx � C inf
BR(x0)

v � (C + lm) inf
BR(x0)

v

for lm := L m(B1(0)), which implies

L m(BR(x0))

Rm

[
sup

B4R(x0)

w − −
∫

BR(x0)

w dx

]
� (C + lm)

[
sup

B4R(x0)

w − sup
BR(x0)

w
]
,

and therefore supBR(x0)
w � supB4R(x0)

w − lm(C + lm)−1[supB4R(x0)
w − −

∫
BR(x0)w dx]. Set δ0 = δ0(m,λ∗,μ∗) :=

lm(C + lm)−1 ∈ (0,1).
(ii) Moser’s weak Harnack inequality [10, Thm. 8.26] applied to the non-negative supersolution

v := sup
B4R(x0)∩G

w − w

yields

1

Rm

∫
B2R(x0)\G

(
sup

B4R(x0)∩G

w − sup
B4R(x0)∩∂G

w
)
dx +

∫
B2R(x0)∩G

inf
{
v, inf

B4R(x0)∩∂G
v
}
dx

� C inf
BR(x0)∩G

v = C
(

sup
B4R(x0)∩G

w − sup
BR(x0)∩G

w
)
� (C + γ lm)

(
sup

B4R(x0)∩G

w − sup
BR(x0)∩G

w
)
.

The second term on the left-hand side is non-negative and the first is bounded from below by γ lm(supB4R(x0)∩G w −
supB4R(x0)∩∂G w), which gives the desired result for δ0 := γ lm(C + γ lm)−1 ∈ (0,1). �
Iteration procedure

As before suppose that B4R(x0) ⊂ B4d . Choose J ∈ N so large that

L(1 + J−1) <
π√ , (3.23)
2 κ
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and set

ε := 1

2KJ
∈ (0,1) (3.24)

with a constant K = K(ω,L) � 1 yet to be specified. Define l to be the smallest integer such that (1 − δ0)
l < ε2 for

δ0 as in Lemma 3.2, and put s := 4−l .

Claim 1. If v is the representation of U with respect to normal coordinates around P in BL(Q) with |v| � L, then
there exists i0 = i0(L,J,ω, κ,m,λ,μ) ∈ N such that

−
∫

BR0 (x0)

|v − v̄R0 |2 dx � L2ε4smJ for R0 = 4−i0R, (3.25)

where v̄R0 := −
∫

BR0 (x0)v dx.

Proof. We have 0 < C5 = C5(m,λ,μ,L,κ) := λ∗b2
κ(L) � λ∗b2

κ(|v|), and therefore by (3.4), (3.8), and part (ii) of
Lemma 3.1 applied to B4ri (x0) ⊂ B4R(x0), ri := 4−iR, i ∈ N,

C5

∫
Bri

(x0)

|∇v|2 dx �
∫

Bri
(x0)

λ∗b2
κ

(|v|)|∇v|2 dx �
(3.4)

∫
Bri

(x0)

b2
κ

(|v|)Sαβ∂αvi∂βvi dx

�
(3.8)

∫
Bri

(x0)

Sαβ∂αvi∂βvjhij (v) dx

�
(3.12)

C(m,λ,μ,L,κ)rn−2
i

[
M2(4ri) − M2(ri)

]
, (3.26)

which implies by the Poincaré inequality

−
∫

Bri
(x0)

|v − v̄ri |2 dx � C
[
M2(4ri) − M2(ri)

] = C

[
M2

(
R

4i−1

)
− M2

(
R

4i

)]
.

Choosing the integer p := [ C

ε4smJ ] + 1 we find i0 ∈ {1, . . . , p} such that

p ·
[
M2

(
R

4i0−1

)
− M2

(
R

4i0

)]
�

p∑
i=1

[
M2

(
R

4i−1

)
− M2

(
R

4i

)]
= M2(R) − M2(4−pR)

� M2(R) = (
sup

BR(x0)

|v|)2 � L2.

Thus our choice of p implies −
∫

BR0 (x0)|v − v̄R0 |2 dx � CL2

p
� L2ε4smJ for R0 := ri0 . �

For k = 0,1, . . . , J let Rk = skR0 and Pk = expQ( k
J
ūR0), i.e., Pk ∈ BL(Q) corresponds to kūR0/J under normal

coordinates around Q, and let v(k) be the representation of U with respect to normal coordinates around Pk . Finally,
let L0 := L and Lk := ( 1

J
+ 1 − k

J
)L � L for k = 1, . . . , J .

Claim 2. We have |v(k)| � Lk in BRk
(x0) for k = 0,1, . . . , J .

Proof. Clearly, the claim holds for k = 0 and we suppose now that it has been shown up to k − 1, k � 1. Then we
estimate on BRk−1(x0)

|v(k)| = dist(U ◦ χ−1,Pk) � dist(U ◦ χ−1,Pk−1) + dist(Pk−1,Pk)

= |v(k−1)| + dist(Pk−1,Pk) � Lk−1 + J−1L � (1 + J−1)L. (3.27)
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In particular we have |v(k)| < π
2
√

κ
by (3.23). Thus we can apply part (i) of Lemma 3.1 and obtain

∂α

(
Sαβ(x)∂β |v(k)|2) � 0 in BRk−1(x0).

Applying Lemma 3.2 l-times to w := |v(k)|2 yields

sup
BsRk−1 (x0)

|v(k)|2 � (1 − δ0)
l sup
BRk−1 (x0)

|v(k)|2 +
l∑

i=1

τi −
∫

B Rk−1
4i

(x0)

|v(k)|2 dx,

where τi := δ0(1 − δ0)
l−i > 0 satisfies

∑l
i=1 τi = 1 − (1 − δ0)

l .
For R∗ ∈ {Rk−1/4i : i = 1, . . . , l} with

−
∫

BR∗ (x0)

|v(k)|2 dx = max
i=1,...,l

−
∫

B Rk−1
4i

(x0)

|v(k)|2 dx

we can deduce by our choice of l the estimate

sup
BsRk−1 (x0)

|v(k)|2 � ε2 sup
BRk−1 (x0)

|v(k)|2 + [
1 − (1 − δ0)

l
] −

∫
BR∗ (x0)

|v(k)|2 dx

� ε2 sup
BRk−1 (x0)

|v(k)|2 + [
1 − ε2(1 − δ0)

] −
∫

BR∗ (x0)

|v(k)|2 dx

� 2ε2 sup
BRk−1 (x0)

|v(k)|2 + (1 − ε2) −
∫

BR∗ (x0)

|v(k)|2 dx. (3.28)

Observe that by (3.9)

|v(k)| = dist(U ◦ χ−1,Pk) � dist(U ◦ χ−1,PJ ) + dist(PJ ,Pk)

= dist(U ◦ χ−1,PJ ) +
(

1 − k

J

)
|ūR0 | �

(3.9)
bω(L)|u − ūR0 | +

(
1 − k

J

)
L,

which by virtue of Young’s inequality leads to

|v(k)|2 � (1 + ε−2)b2
ω(L)|u − ūR0 |2 + (1 + ε2)

(
1 − k

J

)2

L2. (3.29)

If we use (3.27) to estimate the first term in (3.28), and (3.29) for the second term in (3.28), then we obtain in
combination with (3.25) applied to v := u

sup
BRk

(x0)

|v(k)|2 = sup
BsRk−1 (x0)

|v(k)|2 � 2ε2L2(1 + J−1)2 + (1 − ε4)

[
1 − k

J

]2

L2

+ ε2
(

1 − ε4

ε4

)
b2
ω(L) −

∫
BR∗ (x0)

|u − ūR0 |2 dx

�
(3.25)

2ε2L2(1 + J−1)2 + (1 − ε4)

[
1 − k

J

]2

L2 + (1 − ε4)ε2b2
ω(L)L2

� L2
[

8ε2 +
[

1 − k

J

]2

+ ε2b2
ω(L)

]
, (3.30)

where we also used that by sJ R0 � ssk−1R0 = sRk−1 � R∗ � R0

−
∫

B ∗ (x0)

|u − ūR0 |2 dx � 1

smJ
−
∫

BR (x0)

|u − ūR0 |2 dx.
R 0
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Hence, if we specify K :=
√

2 + bω(L)2

4 , we arrive at

sup
BRk

(x0)

|v(k)|2 � L2
{[

2Kε + 1 − k

J

]2

− 4Kε

[
1 − k

J

]
− 4K2ε2 + 8ε2 + ε2b2

ω(L)

}

� L2
(

2Kε + 1 − k

J

)2

=
(3.24)

L2
k.

This proves Claim 2. �
In particular we obtain the estimate

dist(U,PJ ) = |v(J )| � L

J
in BRJ

(x0) = BsJ 4−i0 R(x0),

where s = s(L,J,ω,m,λ,μ), and i0 = i0(L,J,ω, κ,m,λ,μ). In view of (3.9) this leads to the following estimate
for the oscillation of u:

oscBRJ
(x0) u �

(3.9)

1

bκ(L)
oscBRJ

(x0) U ◦ χ−1 � 2

bκ(L)
sup

BRJ
(x0)

dist(U ◦ χ−1,PJ ) � 2L

bκ(L)J
.

Since RJ = sJ 4−i0R = 4−J l−i0R → 0 as J → ∞ we can conclude that U is continuous.

Proof of Theorem 1.1. In view of the preceding discussion there exists an integer i1 = i1(m,λ,μ,ω,κ,L) such that
for all balls B4R(x0) ⊂ B4d and for R̃ := 4−i1R we have

oscB
R̃
(x0) u � L

bω(L)
. (3.31)

Let u′ be the representation of U with respect to normal coordinates around U ◦ χ−1(x0), and define

ω′(ρ) := sup
Bρ(x0)

|u′|2, 0 < ρ � R̃.

Using (3.9) and (3.31) we find on Bρ(x0) for all 0 < ρ � R̃

|u′| = dist
(
U ◦ χ−1,U ◦ χ−1(x0)

)
�

(3.9)
bω(L)

∣∣u − u(x0)
∣∣ � bω(L) osc

Bρ(x0)
u � bω(L) osc

B
R̃
(x0)

u �
(3.31)

L. (3.32)

Thus (3.26) in the proof of Claim 1 for v := u′ and with ri replaced by ρ/4 yields

ρ2−m

∫
Bρ/4(x0)

|∇u′|2 dx � C(m,λ,μ,L,κ)

[
ω′(ρ) − ω′

(
ρ

4

)]
, 0 < ρ � R̃. (3.33)

Next, let P ∈ BL(Q) be the point which corresponds to ūρ/4 under expQ, and let v be the representation of U with
respect to normal coordinates around P . Then, again by (3.9) and (3.31)

|v| = dist(U ◦ χ−1,P ) �
(3.9)

bω(L)|u − ūρ/4| � bω(L) osc
Bρ(x0)

u �
(3.31)

L <
π

2
√

κ
, (3.34)

which by iterated application of Lemma 3.2 implies for ε > 0 and s := 4−l , where l = l(m,λ∗,μ∗, ε) is the smallest
integer with (1 − δ0)

l < ε2 (δ0 = δ0(m,λ∗μ∗) as in Lemma 3.2) the estimate

sup
Bsρ(x0)

|v|2 � 2ε2 sup
Bρ(x0)

|v|2 + (1 − ε2) −
∫

Bρ∗ (x0)

|v|2 dx (3.35)

for some ρ∗ ∈ [sρ,ρ/4], 0 < ρ � R̃ (compare with the proof of Claim 2 above). Using (3.34) and the Poincaré
inequality one can show
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−
∫

Bρ∗ (x0)

|v|2 dx �
(3.34)

b2
ω(L) −

∫
Bρ∗ (x0)

|u − ūρ/4|2 dx � s−mb2
ω(L) −

∫
Bρ/4(x0)

|u − ūρ/4|2 dx

� C(m,λ∗,μ∗, ε,ω,L)ρ2−m

∫
Bρ/4(x0)

|∇u|2 dx,

since s = s(ε, δ0). Thus by (3.35) for 0 < ρ � R̃,

sup
Bsρ(x0)

|v|2 � 2ε2 sup
Bρ(x0)

|v|2 + C(m,λ∗,μ∗, ε,ω,L)ρ2−m

∫
Bρ/4(x0)

|∇u|2 dx. (3.36)

With |u| � L, (3.4) and (3.8) one has

λ∗b2
κ (L)|∇u|2 � Sαβ(x)∂αui∂βujhij (u) � μ∗b2

ω(L)|∇u|2

for all x ∈ BR(x0). Replacing u by u′ (also with |u′| � L by (3.32)) one obtains the analogous estimate for |∇u′|2 and
thus by the invariance of the energy density e(U) (see (3.1)) under change of coordinates

λ∗b2
κ(L)

μ∗b2
ω(L)

|∇u′|2 � |∇u|2 � μ∗b2
ω(L)

λ∗b2
κ(L)

|∇u′|2.

Together with (3.33) this can be used in (3.36) to infer

sup
Bsρ(x0)

|v|2 � 2ε2 sup
Bρ(x0)

|v|2 + C(m,λ∗,μ∗, ε,ω, κ,L)
[
ω′(ρ) − ω′(sρ)

]

since s � 1/4. We note that (3.9), (3.34), and (3.32) also imply

|v| �
(3.34)

bω(L)|u − ūρ/4| � 2bω(L) sup
Bρ(x0)

∣∣u − u(x0)
∣∣ �
(3.9)

2
bω(L)

bκ(L)
sup

Bρ(x0)

|u′| in Bρ(x0),

because |u′| = dist(U ◦ χ−1,U ◦ χ−1(x0)), and

|u′| �
(3.32)

bω(L)
∣∣u − u(x0)

∣∣ � 2bω(L) sup
Bsρ(x0)

|u − ūρ/4| � 2
bω(L)

bκ(L)
sup

Bsρ(x0)

|v| in Bsρ(x0),

since |v| = dist(U ◦ χ−1, expQ ūρ/4). Therefore from (3.35)

ω′(sρ) � C(κ,ω,L)ε2ω′(ρ) + C̃(m,λ∗,μ∗, ε,ω, κ,L)
[
ω′(ρ) − ω′(sρ)

]
,

which becomes ω′(sρ) � θω′(ρ) with θ = (C̃ + 1
2 )(C̃ + 1)−1 < 1, if we choose ε := √

(2C(κ,ω,L)−1. A standard
iteration lemma [10, Lemma 8.23] then gives the growth estimate ω′(ρ) � C(ρ/R̃)2αω′(R̃) for 0 < ρ � R̃, and
according to (3.32) we have

√
ω′(ρ) �

(3.32)
C(ω,L) osc

Bρ(x0)
u � 2C′(κ,ω,L)

√
ω′(ρ),

hence

osc
Bρ(x0)

u � 2C

(
ρ

R̃

)α

osc
B

R̃
(x0)

u � C′
(

ρ

4R

)α(
4R

R̃

)α

osc
BR(x0)

u � C′′
(

ρ

4R

)α

osc
BR(x0)

u

with α = α(m,λ,μ,L,ω,κ) and C′′ = C′′(m,λ,μ,L,ω,κ). A standard covering argument now leads to the estimate
Hölα,Bd

u � C with C depending on m,λ,μ,L,ω,κ and also on d , and from this the desired estimate (1.5) follows
by a simple scaling argument. �
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4. Boundary estimates

Let U :M → N be a harmonic mapping which maps a coordinate neighborhood Ω ⊂ M of a point P ∈ ∂M
into a regular ball BL(Q) ⊂ N , and let χ :Ω → Σ5R be a coordinate chart that maps Ω homeomorphically onto the
closure of the set

Σ5R := {
x = (x′, xm) ∈ R

m: |x′| < 5R,0 < xm < 5R
}

with

χ(∂M ∩ Ω) = Σ0
5R := {

x = (x′,0) ∈ R
m: |x′| � 5R

}
.

For x0 ∈ Σ0
R set SR(x0) := BR(x0) ∩ {xm > 0} and S0

R(x0) := BR(x0) ∩ Σ0
5R .

The a priori estimate for the Hölder semi-norm up to the boundary follows by combining the interior estimate
(1.5) with the following oscillation estimate, Theorem 4.1, near the boundary to obtain the global oscillation estimate
oscΣR∩Bρ(y) u � Cργ for any y ∈ ΣR , where C = C(λ,μ,L,ω,κ,U |∂M ,m) and γ = γ (λ,μ,L,κ,U |∂M ) ∈ (0,1).

Here, as in Theorem 4.1, u = (u1, . . . , un) denotes the normal coordinate representation of U centered at Q. Setting
σ(t) := oscS0

t (x0)
u we formulate

Theorem 4.1. If σ(R) < L/bω(L) and if

2L + bω(L)σ(R) <
π√
κ

, (4.1)

then there is R∗ = R∗(λ,μ,L,ω,κ,m) ∈ (0,R] such that for all ρ ∈ (0,R∗]

osc
Sρ(x0)

u � C

[(
ρ

R∗

)β

osc
SR(x0)

u + σ(
√

ρR)

]
, (4.2)

where C = C(λ,μ,L,ω,κ,m) and β = β(λ,μ,m) ∈ (0,1).

Proof. Setting Mη(t) := supΣ0
t

dist(U ◦ χ−1, expQ η) for η ∈ TQN ∼= R
n, and Mη ≡ Mη(R), we obtain for x0 ∈ Σ0

R

with ξ := u(x0) by (3.9)

Mξ � bω(L) sup
x∈S0

R(x0)

∣∣u(x) − u(x0)
∣∣ � bω(L)σ(R) < L <

π

2
√

κ
. (4.3)

Thus we can choose J ∈ N so large that

2L + Mξ + 3L

J
<

π√
κ

, (4.4)

which is possible by assumption (4.1). We set L0 := L, and Lk := L
J

+ Mξk
for 1 � k � J , where ξk := (k/J )ξ . We

claim that for normal coordinates v(k) of U centered at Pk := expQ ξk one has

|v(k)| � Lk in SRk
(x0) for Rk := R

4kl
. (4.5)

Here, l is the smallest integer such that

(1 − δ0)
l � L2

J 2(L + |ξ |)2
, (4.6)

where δ0 is the constant in part (ii) of Lemma 3.2. We prove this claim by induction. (4.5) is valid for k = 0. Assuming
(4.5) for all indices less or equal to k − 1 we estimate

Mξk−1 � Mξ + dist(Pk−1,PJ ) � Mξ + J − (k − 1)

J
L. (4.7)

Our induction hypothesis, on the other hand, implies for x ∈ SRk−1(x0)

∣∣v(k)(x)
∣∣ � dist

(
U ◦ χ−1(x),Pk−1

) + dist(Pk−1,Pk) � Lk−1 + L
. (4.8)
J
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In addition, we have by definition of Lk and ξk , (4.7), and (4.4)

L + |ξk| + Lk−1 + L

J
� L + k

J
L + L

J
+ Mξk−1 + L

J

�
(4.7)

L + L

J

[
2 + k + J − (k − 1)

] + Mξ � 2L + 3
L

J
+ Mξ <

(4.4)

π√
κ

,

which, together with (4.8) and |v(k)(x)| � dist(U ◦χ−1(x),Q)+ dist(Q,Pk) � L+ |ξk| leads to |v(k)(x)| � 2−1[L+
|ξk| + Lk−1 + L/J ] < π/(2

√
κ) for all x ∈ SRk−1(x0). Thus, by part (i) of Lemma 3.1, |v(k)|2 is a subsolution of the

elliptic operator ∂α(Sαβ∂β) on SRk−1(x0). Applying part (ii) of Lemma 3.2 l-times we obtain by our choice (4.6)

sup
S Rk−1

4l

(x0)

|v(k)|2 � (1 − δ0)
l sup
SRk−1 (x0)

|v(k)|2 +
l−1∑
i=0

δ0(1 − δ0)
l−1−i sup

S0
Rk−1

4i

(x0)

|v(k)|2

� (1 − δ0)
l
(
L + |ξ |)2 + [

1 − (1 − δ0)
l
]
M2

ξk
� L2

J 2
+ M2

ξk
,

which implies |v(k)(x)| � L
J

+Mξk
= Lk for all x ∈ SRk

(x0), thus proving our claim (4.5). Specifically, |v(J )| � L/J +
Mξ <

(4.3)
(1 + 1/J )L <

(4.4)
π/(2

√
κ) in SRJ

(x0), and so |v(J )|2 is a subsolution in SRJ
(x0) according to Lemma 3.1.

Part (ii) of Lemma 3.2 then implies for m(t) := supSt (x0)
dist(U ◦ χ−1,PJ ) the estimate

m2(ρ) � (1 − δ0)m
2(4ρ) + δ0M

2
ξ (4ρ) for all 0 < ρ � RJ

4
.

Iterating as in [10, Lemma 8.23] we obtain m(ρ) � K[( ρ
R∗ )βm(R) + Mξ(

√
ρR∗)] for R∗ := R∗(λ,μ,L,ω,κ,m) :=

RJ and constants K and β ∈ (0,1) depending only on m,λ, and μ. This together with (4.3) proves (4.2). �
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