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Abstract

We study generic distributions D ⊂ T M of corank 2 on manifolds M of dimension n � 5. We describe singular curves of such
distributions, also called abnormal curves. For n even the singular directions (tangent to singular curves) are discrete lines in D(x),
while for n odd they form a Veronese curve in a projectivized subspace of D(x), at generic x ∈ M . We show that singular curves
of a generic distribution determine the distribution on the subset of M where they generate at least two different directions. In
particular, this happens on the whole of M if n is odd. The distribution is determined by characteristic vector fields and their Lie
brackets of appropriate order. We characterize pairs of vector fields which can appear as characteristic vector fields of a generic
corank 2 distribution, when n is even.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let M = Mn denote a smooth, paracompact differential manifold of dimension n � 5. Consider a smooth distri-
bution D of rank m = n − 2 understood as a subbundle of T M of rank m spanned, locally, by m smooth linearly
independent vector fields. Equivalently, we can write locally

D = kerω1 ∩ kerω2,

where ω1, ω2 are C∞ differential 1-forms on M , called later cogenerators of D.
Let I = [0,1] ⊂ R. Recall that horizontal curves of D on I are curves γ : I → M almost everywhere tangent to D.

Let Ω(x0) denote the set of absolutely continuous horizontal curves on I , with locally square integrable derivative,
satisfying γ (0) = x0. This set can be endowed with a structure of a Hilbert manifold. The endpoint map End :Ω(x0) →
M defined by

End(γ ) = γ (1)
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is differentiable (cf. [3], Ch. 1). Its singular points, i.e. curves γ ∈ Ω(x0) such that the tangent map D End(γ ) is not
onto Tγ (1)M , are called singular curves of D, cf. [4,1,11]. Such curves can be rigid as described in [4,2]. Recent
results of Chitour, Jean, and Trélat [5] show that for generic distributions such curves are of minimal order and of
corank 1, but they cannot be rigid if the rank of D is larger then 2.

In sub-Riemannian geometry such curves, called there abnormal, attracted special attention after the discovery that
they can be locally minimizing [10,9]. They are minimizing for generic distributions D of rank 2 [9], but they cannot
be minimizing for generic D of rank larger then 2 [5].

In this paper we are interested in singular curves of corank 2 distributions and in establishing when such curves
determine the distribution, cf. [11,8]. We say that singular curves determine a distribution D on an open subset U ⊂ M

if for any other D̃ with the same singular curves on U we have D|U = D̃|U .
Given D, we denote by SingD(x) the set of smooth singular curves of D starting from x and SingD :=⋃

x∈M SingD(x). The cone of singular vectors S(x) ⊂ D(x) is defined as

S(x) := {
v ∈ TxM: v = γ̇ (0), γ ∈ SingD(x)

}
.

The elements of the projectivization of S(x) in the projective space P(D(x)) will be called singular directions.
Denote by Dm(Mn) the set of smooth distributions of rank m on Mn. Recall that a subset is called residual if it is

a countable intersection of open and dense subsets. Our first main result says the following.

Theorem 1. If M = Mn, n � 5, and M admits a distribution of corank 2 then there exists a subset G ⊂ Dm(Mm+2),
which is residual (and therefore dense) in the Whitney C∞-topology, such that for any D ∈ G the singular curves
determine D in the region R of points x ∈ M where the cone S(x) has at least two different singular directions (if m is
odd then R = M). Additionally, given a D ∈ G and a generic point x ∈ M , the set of singular directions consists of at
most k points in P(D(x)), if m = 2k, and it is a Veronese curve in the projectivization of a subspace Dchar(x) ⊂ D(x)

with dimDchar(x) = k + 1, if m = 2k + 1.

Remark 1. Theorem 1 follows from Theorems 2 and 3. The assumption that M admits a corank 2 distribution can
be omitted if Dm(Mm+2) is replaced by the class Dm

sing(M
m+2) of singular distributions understood as sub-sheaves of

Γ (T M) generated locally by m smooth vector fields, linearly independent almost everywhere. The result also holds
if, instead of such singular distributions, we consider singular co-distributions D∗ ⊂ T ∗M , locally generated by two
1-forms, linearly independent a.e. We recall that a Veronese curve in a projective space P(V ), dimV = r + 1, is the
curve obtained by projectivization of the image of the map R

2 \ {0} � (t1, t2) 	→ ∑r
i=0 t i1t

r−i
2 vi , where v0, . . . , vr is a

basis in V .

Early results in this direction concerned distributions of corank 1. Namely, the results in [17] implied that in many
cases singular curves determine a corank 1 distribution D locally, up to a diffeomorphism. In [7] it was shown that for
corank 1 distributions violating the Darboux condition on a nowhere dense subset of M the singular curves “almost
always” determine the distribution (up to a diffeom.), if M is compact and distributions are close to each other. For
distributions of corank � 3 a stronger property was proved by R. Montgomery [11] in the case of rankD odd: the
singular curves determine the distribution, if it is generic. In [11] the same property was conjectured in the case of
rankD even. This was proved in [8] in the case where rankD is not divisible by 4.

The case of rankD divisible by 4, corankD � 3, is not settled yet. This case is degenerated as the class D4s(Mn)

may contain fat distributions [13] where the set of singular curves is empty. Note that the class of corank 1 distributions
contains contact distributions (rankD even), where the set of singular curves is also empty. In this class, as well as for
quasi-contact distributions (rankD odd), the Darboux theorem says that such distributions are all locally equivalent.
This phenomenon can not hold in the case of distributions of corank D larger then 1. Namely, if 2 � rankD �
dimM − 2 and (rankD,dimM) 
= (2,4) then there must be infinite dimensional (functional) invariants, see [6],
page 21, or [16]. For general results concerning singularities of corank 2 distributions see [12].

In the paper we introduce the notions of characteristic and horizontal characteristic vector fields X of D. We prove
(Theorems 2 and 3) that the singular curves of D are integral curves of (horizontal) characteristic vector fields X

and the (horizontal) characteristic vector fields, together with their Lie brackets, span the distribution in the generic
case. This implies that (horizontal) characteristic vector fields contain all geometric information on D. Throughout
the paper we assume that M admits a distribution of corank 2.
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2. Preliminaries

Consider a smooth distribution D ⊂ T M of arbitrary rank. Let D⊥ ⊂ T ∗M denote the annihilator of D,

D⊥(x) = {
p ∈ T ∗

x M: pD(x) = 0
}
.

By D⊥ \ {0} we denote the annihilator of D with the zero section removed. We shall use

Fact 1. If ω is a section of D⊥ and X,Y are sections of D, then

dω(X,Y ) = −ω
([X,Y ])

and both sides, evaluated at x, depend on the values of ω, X and Y at x, only.

This is a special case of the formula dω(X,Y ) = Xω(Y ) − Yω(X) − ω([X,Y ]). Below we use the usual notation
X�η = η(X, . . .) for the interior product of a vector field X with a differential form η.

Proposition 1. For any pair (ω,X), where ω is a section of D⊥ \ {0} and X is a vector field in D such that Xdω = 0,
the integral curves of X are singular curves of D.

Proof. It follows from the invariant form of the Pontriagin Maximum Principle that singular curves x(t) of D are
projections to M of curves λ(t) = (x(t),p(t)) in D⊥ \ {0} which satisfy the adjoint equation

d

dt

(
p(t)Y

(
x(t)

)) − p(t)
([

ẋ(t), Y
]) = 0, (AE)

for any smooth vector field Y on M , see e.g. Sussmann [14], page 540, Theorem 14.1, statement [II]. Above, given
the vector field Y and p ∈ D⊥(x), v ∈ D(x), the expression p[Y,v] should be understood as the evaluation at x

of the tensor field Γ (D⊥) × Γ (D) → C∞(M) defined by (ω,X) 	→ ω([X,Y ]) = dω(Y,X) + X(ω(Y )), where
ω([X,Y ])(x) =: p[Y,v] depends on the values ω(x) = p and X(x) = v, only.

Consider smooth sections ω ∈ Γ (D⊥ \ {0}) and X ∈ Γ (D) such that Xdω = 0. Let γ , t 	→ x(t), be an integral
curve of X, i.e. ẋ(t) = X(x(t)). Denote p(t) = ω(x(t)). Then for arbitrary vector field Y on M we have

0 = dω(X,Y )
(
x(t)

)
= (

X
(
ω(Y )

) − ω
([X,Y ]))(x(t)

)
= d

dt

(
p(t)Y

(
x(t)

)) − p(t)
([

ẋ(t), Y
])

. (�)

This means that γ satisfies (AE), thus γ is a singular curve. �
The converse statement is also true, for generic D of corank 2, around generic points (statement (i) in Theorems 2

and 3). If no genericity assumptions are made, some singular curves may not be integral curves of a vector field X as
in Proposition 1 (see Example 1).

Fact 2. If Ω is a local volume form and ω, ω1, . . . ,ωr are 1-forms on Mn, with n − r − 1 = 2	, then the vector field
X given by

XΩ = ω1 ∧ · · · ∧ ωr ∧ (dω)	 (1)

satisfies

Xωi = 0, i = 1, . . . , r, (2)

and

X(dω|kerω1∩···∩kerωr ) = 0. (3)

Vice versa, if (2) and (3) hold at x and (ω1 ∧ · · · ∧ ωr ∧ (dω)	)(x) 
= 0, then (1) holds at x, up to a nonzero factor.
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Proof. Denote η = ω1 ∧ · · · ∧ ωr ∧ (dω)	 and assume X(p) 
= 0 (otherwise (2) and (3) are trivial). Then η = ωi ∧ η̂i ,
with some η̂i , and kerη(p) ⊂ kerωi(p). Thus (2) follows from Xη = 0, implied by (1). To prove the remaining
part we fix a point p ∈ M . Then ωj (p) are linearly independent and we can choose local coordinates z0, z1, . . . , zr ,
x1, . . . , x	, y1, . . . , y	 such that at the point p we have ω1(p) = dz1, . . . ,ωr(p) = dzr and dω|D(p) = ∑

j dxj ∧dyj ,

where D(p) = ⋂
j kerωj (p) (use the Darboux algebraic lemma for (dω|D)(p)). In such coordinates X(p) = ∂/∂z0,

up to scalar factor, and checking Fact 2 is straightforward. �
3. Characteristic vector fields: rank D = 2k + 1

We begin our analysis with distributions D ⊂ T M of odd rank m = 2k + 1. Consider local cogenerators ω1, ω2 of
D which are linearly independent 1-forms, sections of D⊥. Let ω be arbitrary smooth local section of D⊥. We define
a characteristic vector field X = Xω of D, corresponding to ω, by the equality

XωΩ = ω1 ∧ ω2 ∧ (dω)k, (CVF)

where Ω is a local volume form on M = M2k+3 and on the right-hand side we have (n − 1)-differential form. Basic
properties of Xω are listed in Proposition 2, in particular we have Xω(x) ∈ D(x).

A nonvanishing section ω of D⊥ is called horizontal if Xωdω = 0. A characteristic vector field Xω is called
horizontal if it is defined by a horizontal section ω of D⊥. Note that the horizontal characteristic pair (ω,Xω) satisfies
the assumption of Proposition 1, i.e., Xωdω = 0. Thus the integral curves of Xω are singular curves of D.

We denote by Cchar(x) (respectively, Chor(x)) the set of characteristic vectors (respectively, horizontal character-
istic vectors), which consists of vectors Xω(x), where Xω are characteristic (respectively, horizontal characteristic)
vector fields of D.

Define local vector fields Y0, . . . , Yk via

Yj Ω = ω1 ∧ ω2 ∧ (dω1)
j ∧ (dω2)

k−j . (VF)

We will later show that Yj (x) ∈ D(x) (Proposition 2). Define a sub-distribution of D,

Dchar(x) = span
{
Y0(x), . . . , Yk(x)

}
.

We recall that Dm(Mn) denotes the set of smooth distributions of rank m, on a smooth manifold Mn, and Mn is
assumed to admit at least one such distribution.

Theorem 2. There exists a subset G ⊂ D2k+1(M2k+3), which is residual (and therefore dense) in the Whitney C∞-
topology, such that for any D ∈ G the following conditions hold.

(i) At generic points in M the singular curves of D are exactly integral curves of horizontal characteristic vector
fields Xω, up to parametrization. At such points

S(x) = Cchar(x) = Chor(x),

where S(x) is the cone of singular vectors at x.
(ii) At a generic point x ∈ M the sub-distribution Dchar(x) ⊂ D(x) is of rank k + 1, the cone Cchar(x) ⊂ D(x)

of characteristic vectors linearly spans Dchar(x) and the projectivization of Cchar(x) is a Veronese curve in
P(Dchar(x)).

(iii) The characteristic vector fields of D, together with their first Lie brackets, span D at a generic point. The same
holds for horizontal characteristic vector fields.

(iv) For any local cogenerators ω1, ω2 of D the following conditions hold at a generic point in M :

Y0(x), Y1(x), . . . , Yk(x) are linearly independent, (G′)

spanr,s,t=0,...,k

{
Yr(x), [Ys,Yt ](x)

} = D(x). (G′′)

Above and further on we say that a property holds at a generic point in M if it holds on an open, dense subset in
M . [X,Y ] denotes the Lie bracket of vector fields X, Y .
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Remark 2. (a) Statements (i), (ii), and (iii) imply Theorem 1, if m = 2k + 1.
(b) The sets of generic points in (i) and (ii) are the sets where (G′) holds, while the set of generic points in (iii) is

given by both (G′) and (G′′).
(c) The subset G ⊂ D2k+1(M2k+3) will be defined as the set of distributions whose 2-jet maps are transversal (in

the sense of Thom transversality theorem) to the subset of 2-jets not satisfying the genericity conditions (G′) or (G′′).

Remark 3. Statement (ii) follows from the relations between vector fields in (CVF) and (VF). Namely, let ω1,ω2 be
local cogenerators of D. Consider an arbitrary section

ω = a1ω1 + a2ω2

of D⊥. Then dω = a1dω2 + a2dω2 + da1 ∧ ω1 + da2 ∧ ω2 and we see that the (n − 1)-form

ω1 ∧ ω2 ∧ (dω)k = ω1 ∧ ω2 ∧ (a1dω1 + a2dω2)
k

depends polynomially on the vector a = (a1, a2). Thus (CVF) gives

Xω =
k∑

j=0

(
k

j

)
a

j

1a
k−j

2 Yj , (CVF′)

where Yj were defined in (VF). Therefore the map ω 	−→ Xω can be treated, at a fixed x ∈ M , as a homogeneous,
degree k polynomial map D⊥(x) → D(x). After [11], this map will be called singular exp and denoted

Sexpx(p) := Xω(x),

where ω is a local section of D⊥ such that ω(x) = p. This map defines the projectivized map PSexpx :P(D⊥(x)) →
P(D(x)). When Y0(x), . . . , Yk(x) are linearly independent, the image of such a map is called a Veronese curve.

Note that spanp∈D⊥(x) Sexpx(p) = Dchar(x), which follows directly from the definitions.

Statement (i) of Theorem 2 implies that the singular cone S(x) coincides with the cone Cchar of characteristic
vectors Xω(x). This, together with Remark 3, implies

Corollary 1. At points where (G′) is satisfied the singular cone S(x) is an algebraic cone in Dchar(x) given by the
Veronese curve (a1, a2) → Xω(x) in P(Dchar(x)), defined by (CVF′).

From the definitions (CVF) and (VF) it is easy to observe the following

Proposition 2. Characteristic vector fields X = Xω and the vector fields Y0, . . . , Yk defined via (VF) have the follow-
ing properties in the domain of their definition:

X(x) ∈ D(x), (P1)

Xω(x) ∈ kerdω|D(x), (P2)

[X,Y ](x) ∈ D(x), (P3)

Yj (x) ∈ D(x), (P4)

[Yi, Yj ](x) ∈ D(x), (P5)

spanj=0,...,k{Yj (x)} = spanp∈D⊥(x) Sexpx(p), (P6)

where (P3) holds for any other characteristic vector field Y and (P4), (P5) hold for all i, j = 0, . . . , k.

Proof. Let ω1,ω2 be cogenerators of D. Properties (P1) and (P4) follow from Xωi = 0 and from Yj ωi , i = 1,2,
which are consequences of definitions (CVF) and (CV) and Fact 2. Similarly, (P2) follows from Fact 2.

(P3) is implied by (P1), (P2). Namely, for X = Xω, Y = Xω̃ and i = 1,2 we have 0 = dωi(X,Y ) = −ωi([X,Y ]),
thus [X,Y ] ∈ D (the first equality follows from (P2) and in the second we use Fact 1 and ωi(X) = ωi(Y ) = 0, i.e.
(P1)).
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Property (P6) is a consequence of the formula (CVF′). Namely, from the definition Sexpx(p) = Xω(x), where
ω(x) = p, and from the fact that the coefficients a1(x), a2(x) ∈ R in (CVF’) are arbitrary we see that (P6) holds.

Finally, property (P5) can be shown using (P3) and (P6) in the following way. Note that spanp∈D⊥(x) Sexpx(p) =
Dchar(x) is the “distribution” spanned by the characteristic vector fields (its rank may vary). Let U ⊂ M be the
open set where this rank is maximal. Then, locally on U , we have Yi = ∑

s ϕisXs , Yj = ∑
s ψjsXs , where Xs are

characteristic vectors fields that span Dchar and ϕis , ψjs are functions. It follows from (P3) and (P1) that [Yi, Yj ](x)

is in D(x) on U . If U is dense in M , we get (P5) on M , by continuity. Otherwise, we get (P5) on the closure clU ,
only. Consider the open set V = M \ clU and the subset U1 ⊂ V where Dchar is of maximal rank on V (smaller then
the rank on U ). Repeating the above argument gives that [Yi, Yj ](x) belongs to D(x) in clU1. After a finite number
of such steps we get that [Yi, Yj ](x) is in D(x) for any x ∈ M . �
Example 1. Let (x, y, z,u,w) be coordinates on R

5. Consider

ω1 = dw − x du,

ω2 = dx + 2(y dz − z dy) + (y2 + z2)2 du.

Then k = 1 and the singular exp is a linear map. For Ω = dx ∧ dy ∧ dz ∧ du ∧ dw we compute

Y0 = 2(y∂y + z∂z),

Y1 = 4
(
∂u + x∂w + (y2 + z2)(z∂y − y∂z) + 2(y2 + z2)2∂x

)
.

We see that (G′) holds everywhere outside S = {y = z = 0}. Therefore, on the set R
5 \ S, all characteristic vector

fields can be written as f0Y0 + f1Y1 for certain functions f0, f1. By Theorem 2 the singular curves on R
5 \ S are

exactly integral curves of characteristic horizontal vector fields. On the other hand, the curve γ : t 	→ (0, t,0,0,0) is
singular since it satisfies the adjoint equation (AE) in Section 2, with p(t) = ω1(0, t,0,0,0) (note that for X = ∂y and
ω = ω1 the calculation (�) in the proof of Proposition 1 is valid). The tangent vector to γ at 0 ∈ R

5 is ∂y . It cannot be
extended to a field of the form f0Y0 + f1Y1. In particular there is no characteristic horizontal vector field such that γ

is its integral curve.

For proving Theorem 2 we need

Lemma 1. The subset G2(x) of 2-jets at x of corank 2 distributions on M2k+3, defined by the conditions (G′) and
(G′′), is open and dense in the space of all 2-jets.

Proof. It follows from the definition of G2(x) that so defined set is open and its complement is a real algebraic subset
in the space of 2-jets. If we show that G2(x) is nonempty, it will follow that it is dense. We can take M = R

2k+3 and
x = 0.

Let R
2k+3 be endowed with linear coordinates p1, . . . , pk+1, q1, . . . , qk , z1, z2. Consider two differential 1-forms

on M

ω1 = dz1 +
k∑
1

pi dqi,

ω2 = dz2 +
k∑
1

qi dpi+1 +
k∑
1

pk+1pi dpi+1,

and the corresponding distribution D(x) = kerω1(x) ∩ kerω2(x). Then

dω1 =
k∑
1

dpi ∧ dqi,

dω2 =
k∑

dqi ∧ dpi+1 +
k∑

pk+1 dpi ∧ dpi+1 −
k−1∑

pi dpi+1 ∧ dpk+1.
1 1 1
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We then compute

(dω1)
k = k!

k∏
i=1

(dpi ∧ dqi),

(dω1)
j ∧ (dω2)

k−j = a

j∏
i=1

(dpi ∧ dqi) ∧
k∏

i=j+1

(dqi ∧ dpi+1)

+ apk+1

j∏
i=1

(dpi ∧ dqi) ∧ dpj+1 ∧ dpj+2 ∧
k∏

i=j+2

(dqi ∧ dpi+1) +
k−1∑
i=1

piηi,

for j = 0, . . . , k−1, where a = j !(k−j)! and ηi are some (n−1)-forms. Consider the volume form Ω = ∏k
i=1(dpi ∧

dqi) ∧ dpk+1 ∧ dz1 ∧ dz2 and the vector fields Yj defined by

Yj Ω = aω1 ∧ ω2 ∧ (dω1)
j ∧ (dω2)

k−j .

Then

Yk = ∂pk+1 ,

Yj = ∂pj+1 + pk+1∂qj+1 +
k−1∑
i=1

piZji,

for j = 0, . . . , k − 1, where Zji are some vector fields. The Lie brackets at 0 ∈ R
n of Yk and Yj are

[Yk,Yj ](0) = ∂qj+1 ,

for j = 0, . . . , k − 1, and, together with Y0, . . . , Yk , span the distribution D at 0. The proof is complete. �
Proof of Theorem 2. We define the exceptional subset E = E ′ ∪ E ′′ in the space of 2-jets on M of smooth distributions
in D2k+1(M2k+3), where E ′ consists of 2-jets which do not satisfy the genericity condition (G′) and E ′′ consists of
2-jets that do not satisfy the condition (G′′). Both these subsets are real algebraic subvarieties defined by a set of
polynomial equations in the space of 2-jets, in a given coordinate system. These equations are expressed in terms of
minors of the matrix of coefficients of the vector fields Y0, . . . , Yk , and [Yi, Yj ], i, j = 0, . . . , k. (Note that these vector
fields are in D, by (P4) and (P5) in Proposition 2.) Moreover, these sets have empty interior as their complement
contains the distribution germ constructed in Lemma 1. The space G of generic distributions is defined as consisting
of those distributions which satisfy the Thom transversality theorem with respect to the stratified submanifolds E ′
and E ′′. In particular, such distributions satisfy conditions (G′) and (G′′) on open dense subsets in M . This statement
implies condition (iv) of the theorem. Using (iv) we will deduce the other statements. Namely, statement (ii) follows
from (G′) and property (P6) in Proposition 2 (note that (P6) can be written as Dchar(x) = span{Y0(x), . . . , Yk(x)},
where Dchar is the distribution spanned by the characteristic vector fields). Condition (iii) follows from (G′′) and (P6).
Namely, using Dchar = span{Y0, . . . , Yk} we see that (G′′) implies Dchar + [Dchar,Dchar] = D at generic points.

In order to finish the proof we show that condition (i) is satisfied on the open subset U of M where condition (G′)
holds. Assume that ω is a horizontal section of D⊥ \ {0} and Xω is the corresponding horizontal vector field. Then
Xωdω = 0 and we may use Proposition 1. Thus every integral curve of Xω is a singular curve of D.

Vice versa, assume that γ , t 	→ x(t), is a singular curve. It follows from the Pontriagin Maximum Principle that
for such a singular curve there exists a nonvanishing section p(t) of D⊥ along γ , which satisfies the adjoint equation
(AE) in the proof of Proposition 1. Then (AE) implies p(t)[ẋ(t), Y ] = 0, for any section Y of D. It follows that the
vector ẋ(t) lies in the kernel of the partial tensor field Γ (D) × Γ (D) → C∞(M) defined by (X,Y ) 	→ ω([X,Y ]) =
dω(Y,X), where ω is any section of D⊥ such that ω(x(t)) = p(t) (cf. Fact 1). This means ẋ(t)(dω|D(x(t))) = 0.
It follows from Fact 2 that if rankdω|D(x) = 2k = m − 1, the vectors v in kerdω(x)|D(x) are exactly those which
satisfy the equality vΩ(x) = (ω1 ∧ ω2 ∧ dωk)(x), or equivalently vμ(x) = (dω|D(x))

k (here μ(x) is a volume
form on D(x)). The condition rankdω|D(x) = 2k holds under the genericity assumption (G′). Namely, dω|D(x) =
a1β1 + a2β2, where βi = dωi |D(x). It follows from (G′) that rank(a1β1 + a2β2) = 2k, for all a = (a1, a2) ∈ R

2,
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a 
= 0. (If rank(a1β1 + a2β2) < 2k then (a1β1 + a2β2)
k = 0 and, by the definition (VF) of Y0, . . . , Yk , we would have∑k

0 ai
1a

k−i
2 Yi = 0, which contradicts (G′).)

We conclude that for a singular curve γ , t 	→ x(t), the field of tangent vectors can be written as v(t) = ẋ(t) =
Xω(x(t)), where Xω is a characteristic vector field corresponding to a section ω of D⊥, which is any extension to
a neighborhood of the curve γ of the field of covectors t 	→ p(t) along γ . Therefore, any singular curve in U is an
integral curve of a characteristic vector field.

It remains to show that the section ω can be taken horizontal. Take a point x = x(t) on the curve γ . Since
rankdω|D(x) = 2k = m − 1, the kernel of dω|D(x) is of dimension one and v = ẋ(t) is in the kernel. This implies
that there is a well defined, up to multiplicative factor, nonzero vector w tangent to D⊥ at p = ω(x). Namely, let
v ∈ kerdω|D(x) and let X be any extension of v to a local section of D. It is not hard to verify that the Hamiltonian
vector field �HX corresponding to the Hamiltonian HX :T ∗M → R, HX(λ) = λ(X), is tangent to D⊥ at λ = (x,p)

and depends only on v = X(x). (If D = span{X1, . . . ,Xm}, take the unique u such that v = ∑
i uiXi(x) and then

take w = ∑
i ui

�HXi
(x,p).) A field of such vectors defines a bi-characteristic vector field �H locally on D⊥, which is

nonvanishing over the region of x where (G′) holds. It is unique up to multiplicative factor (a function of λ ∈ D⊥).
Its trajectories t 	→ (x(t),p(t)) satisfy (AE). The singular curves are exactly projections to M of the integral curves
of �H . We can choose a submanifold S ⊂ D⊥ which is a single cover of a neighborhood of the singular curve γ and
coincides with the field of covectors t 	→ p(t) over the curve γ . For example, we can take a submanifold in S0 ⊂ D⊥
of dimension n − 1 which intersects the curve t 	→ λ(t) = (x(t),p(t)) transversally at a single point and projects
regularly on M . Then we define S as a submanifold of local integral curves of �H passing through S0. Since ẋ(t) 
= 0
the submanifold S has a nonsingular projection πS : S → M on a neighborhood of γ , and πS is a diffeomorphism onto
πS(S). The foliation of trajectories of �H projects on a foliation of singular curves of D, onto a neighborhood of γ . The
section ω(x) := π−1

S (x) is the desired section and Xω has all trajectories being singular curves of D, including the
curve γ . It follows from the second and the third equality in (�) and from (AE) that Xωdω = 0, i.e., the constructed
section ω is horizontal.

We have shown that the sets of smooth singular curves and of integral curves of horizontal vector fields coincide
on the set U where (G′) holds. Thus, S(x) = Chor(x). Clearly, Chor(x) ⊂ Cchar(x). We have shown in the preced-
ing paragraph that any vector v ∈ Cchar(x) belongs to Chor(x), thus Chor(x) = Cchar(x). This finishes the proof of
statement (i) and of Theorem 2. �
Remark 4. Notice that we do not need the distribution D to be jet-transversal to the exceptional sets E ′ and E ′′. In
order that conditions (i)–(iv) hold it is enough that it meets the sets E ′ and E ′′ at a nowhere dense subset of M .

4. Characteristic vector fields: rank D = 2k

Consider smooth distribution D on M2k+2 of even rank m = 2k. Locally we can write D = kerω1 ∩ kerω2, with
smooth cogenerators ω1, ω2. A section ω of D⊥ is called characteristic 1-form of D if it satisfies the characteristic
equation

ω1 ∧ ω2 ∧ (dω)k = 0. (CE)

Given a local volume form Ω on M , the local vector field X = Xω satisfying

XωΩ = ω ∧ (dω)k (CVF)

is called characteristic vector field of D, if ω is characteristic 1-form.
A characteristic 1-form ω is called horizontal if Xωdω = 0 and the corresponding characteristic vector field Xω

is called horizontal characteristic vector field of D. We denote by Cchar(x) ⊂ TxM (resp. Chor(x) ⊂ TxM) the cone
of vectors at x generated by characteristic (resp. horizontal characteristic) vector fields.

Proposition 3. Characteristic vector fields Xω have properties (P1), (P2), (P3) from Proposition 2, i.e.,Xω(x) ∈ D(x),
Xω(x) ∈ kerdω|D(x), and [Xω,Y ](x) ∈ D(x), for any other characteristic vector field Y .

Proof. Definition (CVF) and Fact 2 imply Xωω = 0 and Xω ∈ kerdω|kerω . Therefore we obtain (P2) as D ⊆ kerω.
Moreover ω̄∧ω ∧ (dω)k = 0 for any section ω̄ of D⊥ since ω is characteristic. This gives 0 = Xω(ω̄ ∧ω ∧ (dω)k) =
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(Xωω̄)∧ω∧(dω)k , since Xω(ω∧(dω)k) = Xω(XωΩ) = 0. Therefore, Xωω̄ = 0. This, together with Xωω = 0,
gives (P1). Property (P3) follows from (P1) and (P2), exactly as in the odd-rank case. �

Contrary to the case of odd rank, if m = 2k the characteristic 1-forms and characteristic vector fields fill “discrete”
subsets in D⊥ and D. In order to explain this better we represent ω = λ1ω1 +λ2ω2 and re-introduce the characteristic
equation of D,

ω1 ∧ ω2 ∧ (λ1 dω1 + λ2 dω2)
k = 0, (CE)

with the unknown λ = (λ1, λ2) ∈ R
2 depending on x. If Ω is a local volume form on M , we can write the characteristic

equation in the equivalent form

P(λ1, λ2) :=
k∑

j=0

ajλ
k−j

1 λ
j

2 = 0, (CE′)

where

aj =
(

k

j

)
ω1 ∧ ω2 ∧ (dω1)

k−j ∧ (dω2)
j

Ω

are locally defined functions on M . This is a homogeneous equation, thus its nonzero solutions at a given point x can
be considered as points in the projective line.

Note that the characteristic polynomial P is defined by the distribution D uniquely, up to invertible factor, since the
transformation ω1 → a11ω̃1 + a12ω̃2 and ω2 → a21ω̃1 + a22ω̃2 changes ω1 ∧ ω2 into detAω̃1 ∧ ω̃2, where A = {aij }.
The solutions of (CE), when understood as elements ω = λ1ω1 + λ2ω2 of the annihilator D⊥, depend only on D and
not on the choice of ω1 and ω2.

We fix two cogenerators ω1, ω2 of D so that a0(x) 
= 0. This can be done, locally, if P 
≡ 0 and it means that (1,0)

is not a root of P = 0. Let Q = Q(a0, . . . , ak) denote the discriminant of the polynomial P̃ (t) := P(t,1), which
is a polynomial of the coefficients a0, . . . , ak . Denote Discr(x) = Q(a0(x), . . . , ak(x)). We introduce the genericity
condition

Discr(x) 
= 0, (G0)

equivalent to all roots of (CE′) being single. If a root λ0 = (t0,1) is single then P̃ (t0) = 0 and P̃ ′(t0) 
= 0, thus the
implicit function theorem is applicable. Consequently, the solution (t0,1) has a locally unique continuation which
depends smoothly on the coefficients of P .

We see that if rankD is even, the characteristic vector fields are locally defined and smooth in the region where
Discr 
= 0 (the condition a0(x) 
= 0 is no more needed). They are unique up to order and multiplication by nonvanishing
functions. There are at most k of them and they are given via the formula (CVF) where ω = λi

1ω1 +λi
2ω2 is a solution

of ω1 ∧ ω2 ∧ (dω)k = 0, or equivalently, λi = (λi
1, λ

i
2) is a solution of (CE) or (CE′).

In what follows we shall mostly work in the region R2 of points in M , where the characteristic equation (CE) has
at least 2 single real roots (counted in the projective line).

The region R2 is an open subset in M , which follows from continuous dependence of (complex) solutions of
polynomial equations with respect to the coefficients. The roots λ1 = (λ1

1, λ
1
2) and λ2 = (λ2

1, λ
2
2) being single, they

depend analytically on the coefficients of the equation (treated as elements of the projective line). In particular, we can
choose smooth sections λi(x) = (λi

1(x), λi
2(x)) so that each ω̃i = λi

1ω1 + λi
2ω2 is a smooth section of D⊥ and ω̃1, ω̃2

are cogenerators of D. Such cogenerators satisfy the following equations (we omit tildes)(
ω1 ∧ ω2 ∧ (dω1)

k
)
(x) = 0, (C1)

(
ω1 ∧ ω2 ∧ (dω2)

k
)
(x) = 0, (C2)

and will be called characteristic cogenerators. Thus we have proved
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Proposition 4. For any point x ∈ R2 we can choose cogenerators ω1 and ω2 of D in a neighborhood of x so that (C1)
and (C2) hold.

Remark 5. Note that if k > 2 then the characteristic equation may have r > 2 real solutions. If they are all different
and single at a given point, we may define in the same way r different characteristic 1-forms ωi , i = 1, . . . , r in a
neighborhood of this point. In that case we can choose any two of them as characteristic cogenerators.

In order to state the main result consider two vector fields X1,X2 defined on an open subset U ⊂ M2k+2. We define
two distributions

Γ1(x) := span{X1,X2, adi
X1

X2: i = 1, . . . ,2k − 1}(x), (D1)

Γ2(x) := span{X1,X2, adi
X2

X1: i = 2, . . . ,2k − 1}(x), (D2)

where adX Y = [X,Y ] denotes the Lie bracket of vector fields and we define inductively adi
X Y = adX(adi−1

X Y). We
introduce genericity conditions, imposed on the pair (X1,X2),

dimΓ1(x) = 2k + 1, (G1)

dimΓ2(x) = 2k + 1, (G2)

equivalent to pointwise linear independence of the vector fields defining Γ1 and Γ2. Denote

Y−1 := X1, Y0 := X2, Y1 := adX1 X2, . . . , Y2k−1 := ad2k−1
X1

X2.

Suppose (G1) be satisfied at x ∈ M and define a nonvanishing 1-form ω1 which satisfies

ω1(Yi) = 0, i = −1,0, . . . ,2k − 1. (F1)

Then ω1 is defined locally around x uniquely, up to a nonvanishing factor. Another useful genericity conditions is

rank
{
ω1

([Yi, Yj ]
)
(x)

}2k−1
i,j=−1 = 2k. (G3)

The matrix in (G3) is antisymmetric, thus its rank is even, equal at most 2k. Interchanging the role of X1, X2 and
assuming (G2) we analogously define the vector fields

Z−1 := X2, Z0 := X1, Z1 := adX2 X1, . . . , Z2k−1 := ad2k−1
X2

X1

and a nonvanishing 1-form ω2 which satisfies

ω2(Zi) = 0, i = −1,0, . . . ,2k − 1. (F2)

The next genericity condition is

rank
{
ω2

([Zi,Zj ]
)
(x)

}2k−1
i,j=−1 = 2k. (G4)

We will also need

dim
(
Γ1(x) + Γ2(x)

) = 2k + 2 (G5)

and

dω1
(
X2, [X2,X1]

) 
= 0, dω2
(
X1, [X1,X2]

) 
= 0. (G6)

Theorem 3. There exists a subset G ⊂ D2k(M2k+2), residual and therefore dense in Whitney C∞-topology, such that
for any distribution D ∈ G the following conditions hold.

(i) At generic points in M the singular curves of D are exactly integral curves of characteristic (equivalently, hori-
zontal characteristic) vector fields, up to parametrization, and (G0) holds. At such points

S(x) = Cchar(x) = Chor(x).

(ii) Around generic points x ∈ R2 there exist two characteristic vector fields X1,X2 of D which satisfy conditions
(G1)–(G6). Moreover, at such x we have

D(x) = Γ1(x) ∩ Γ2(x).
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Remark 6. (a) Clearly, statements (i) and (ii) imply Theorem 1, if m = 2k.
(b) If k is odd then a generic distribution is not determined by characteristic vector fields in the region where the

characteristic equation (CE′) has only one real single root as, by statement (i), all singular curves are orbits of a single
vector field. If k is even then (CE′) has no or at least 2 real single roots at generic points.

(c) Any smooth distribution D ⊂ T M can be modified on a contractible neighborhood of a point p so that its germ
at p is an a priori given germ (this follows from connectedness of the Grassmannians). Thus, the region R2 can always
be made nonempty, by Lemma 2.

Remark 7. The open subset U ⊂ M where condition (G0) holds is a disjoint union U = U0 ∪ U1 ∪ · · · ∪ Uk , where
Ur denotes the open subset on which the characteristic equation (CE′) has exactly r real roots. Characteristic vector
fields X1, . . . ,Xr corresponding to different real roots are linearly independent on Ur . (These vector fields span a
local r-dimensional distribution Dchar on Ur .) More precisely, at points in Ur there are r distinct local characteristic
1-forms ω1, . . . ,ωr . The corresponding characteristic vector fields X1, . . . ,Xr belong to the kernels kerdωi |D , by
property (P2) in Proposition 3. The kernels kerdωi |D , i = 1, . . . , r , are 2-dimensional and span rank 2r subdistribution
of D. This can be shown using e.g. Theorem 5 in [15] on the canonical form of two nondegenerate exterior 2-forms.
Thus X1, . . . ,Xr are linearly independent. It follows from Lemma 3 that the characteristic equation of a generic
2k-distribution on M2k+2 may have k distinct real roots, thus Uk is nonempty for some generic distributions.

Statement (ii) admits the following converse. We introduce the invariance condition

[X1,Γ1] ⊂ Γ1, (I1)

[X2,Γ2] ⊂ Γ2. (I2)

(For brevity, we write [X,Δ] ⊂ Δ instead of [X,Γ ∞(Δ)] ⊂ Γ ∞(Δ), with Γ ∞(Δ) denoting the set of local sections
of Δ.) (I1) and (I2) mean invariance of Γi under the flow of Xi .

Theorem 4. If X1,X2 are vector fields satisfying (G1)–(G5), and (I1), (I2), on an open subset U ⊂ M , then X1,X2 are
characteristic vector fields of D(x) = Γ1(x) ∩ Γ2(x), corresponding to nonvanishing characteristic 1-forms ω1,ω2
given by (F1), (F2).

Proof. Let ω1,ω2 be given by (F1), (F2). Then kerω1(x) and kerω2(x) are uniquely defined (which follows from
(G1), (G2)) and Γi = kerωi , i = 1,2. Take D = Γ1 ∩ Γ2, then codimD(x) = 2, by (G5). Conditions (I1), (I2), and
Fact 1 give Xi ∈ kerdωi |Γi

. This and Xi ∈ D imply Xi(ω1 ∧ ω2 ∧ (dωi)
k) = 0, therefore ω1 ∧ ω2 ∧ (dωi)

k = 0 (if
an n-form has nontrivial kernel then it vanishes). Thus ωi , i = 1,2, are characteristic cogenerators of D. From (G3)
and (G4) it follows that the kernels of dωi |Γi

are of dimension 1, thus kerdωi |Γi
(x) = span{Xi(x)}. This is equivalent

to existence of nonvanishing f1, f2 such that XiΩ = fiωi ∧ (dωi)
k , which completes the proof. �

In the proof of Theorem 3 we will need the following

Lemma 2. There exist polynomial vector fields X1 and X2 on R
2κ+4, κ � 1, which satisfy (I1), (I2), (G1), (G2),

(G3), (G4), (G5) and (G6) at generic points. Moreover, introducing the coordinates x1, x2, z1, z2, and p1, . . . , pκ ,
q1, . . . , qκ , we can take them in the form

X1 = ∂x1 +
κ∑
1

(
xi+1

2 ∂pi
+ xκ+i+1

2 ∂qi

) +
κ∑
1

xi+1
2 qi∂z1 + x2∂z2 ,

X2 = ∂x2 +
κ∑
1

(
xi+1

1 ∂qi
+ xκ+i+1

1 ∂pi

) +
κ∑
1

xi+1
1 pi∂z2 + x1∂z1 ,

and then their germ at any point where x1 = x2 = 0 and p1 = q1 = 1 satisfies (I1), (I2) and (G1)–(G6), with k = κ +1.
In neighborhood of such points the characteristic equation of D(x) = Γ1(x)∩Γ2(x) has all roots real, ω1, ω2 defined
by (F1), (F2) are characteristic cogenerators of D, and X1, X2 are characteristic vector fields corresponding to
ω1, ω2.
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Proof. We will compute the Lie brackets defining Γ1. Note that no coordinate function in X1 and X2 depends on
z1, z2 (the corresponding terms in Lie brackets will vanish) and only some of them depend, linearly, on pi or qi . By
direct computation we find

Y1 = [X1,X2] =
κ∑
1

(
(i + 1)xi

1 − (κ + i + 1)xκ+i
2

)
∂qi

+
κ∑
1

(
(κ + i + 1)xκ+i

1 − (i + 1)xi
2

)
∂pi

+
κ∑
1

(i + 1)xi
1pi∂z2 −

κ∑
1

(i + 1)xi
2qi∂z1

+
κ∑
1

(
1 − xi+1

1 xi+1
2

)
(∂z1 − ∂z2),

Y2 = ad2
X1

X2 =
κ∑
1

(i + 1)ixi−1
1 ∂qi

+
κ∑
1

(κ + i + 1)(κ + i)xκ+i−1
1 ∂pi

+
κ∑
1

(i + 1)ixi−1
1 pi∂z2 +

κ∑
1

κxκ+2i+1
2 ∂z1

+ 2
κ∑
1

(i + 1)xi
1x

i+1
2 (∂z2 − ∂z1),

Y3 = ad3
X1

X2 =
κ∑
2

(i + 1)i(i − 1)xi−2
1 ∂qi

+
κ∑
1

(κ + i + 1)(κ + i)(κ + i − 1)xκ+i−2
1 ∂pi

+
κ∑
2

(i + 1)i(i − 1)xi−2
1 pi∂z2

+ 3
κ∑
1

(i + 1)ixi−1
1 xi+1

2 (∂z2 − ∂z1),

Y4 = ad4
X1

X2 =
κ∑
3

(i + 1)!
(i − 3)!x

i−3
1 ∂qi

+
κ∑
1

(κ + i + 1)!
(κ + i − 3)!x

κ+i−3
1 ∂pi

+
κ∑
3

(i + 1)!
(i − 3)!x

i−3
1 pi∂z2

+4
κ∑
2

(i + 1)!
(i − 2)!x

i−2
1 xi+1

2 (∂z2 − ∂z1).

To be more precise, if κ = 1 then the sum at ∂pi
is empty, similarly as the other sums in the formula for Y4, and

thus Y4 = Y2κ+2 = 0. In this case we stop our calculations here. If κ � 2 we continue the recursive procedure and get

Yκ+1 = adκ+1
X1

X2 = (κ + 1)!∂qκ +
κ∑
1

(κ + i + 1)!
i! xi

1∂pi

+ (κ + 1)!pκ∂z2
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+ (κ + 1)

κ∑
κ−1

(i + 1)!
(i − κ + 1)!x

i−κ+1
1 xi+1

2 (∂z2 − ∂z1),

Yκ+2 = adκ+2
X1

X2 =
κ∑
1

(κ + i + 1)!
(i − 1)! xi−1

1 ∂pi
+ (κ + 2)!xκ+1

2 (∂z2 − ∂z1),

Yκ+3 = adκ+3
X1

X2 =
κ∑
2

(κ + i + 1)!
(i − 2)! xi−2

1 ∂pi
,

...

Y2κ = ad2κ
X1

X2 =
κ∑

κ−1

(κ + i + 1)!
(i − κ + 1)!x

i−κ+1
1 ∂pi

,

Y2κ+1 = ad2κ+1
X1

X2 = (2κ + 1)!∂pκ .

We see that [X1, Y2κ+1] = 0 and [X1, Yj ] = Yj+1, for j = 0, . . . ,2κ , thus (I1) holds. By the symmetry of X1 and X2
condition (I2) also holds.

At the points where x1 = x2 = 0 the above vector fields take much simpler form

Y−1 = X1 = ∂x1 ,

Y0 = X2 = ∂x2 ,

Y1 = adX1 X2 = ∂z1 − ∂z2 ,

Y2 = ad2
X1

X2 = 2!∂q1 + 2!p1∂z2 ,

Y3 = ad3
X1

X2 = 3!∂q2 + 3!p2∂z2 ,

...

Yκ+1 = adκ+1
X1

X2 = (κ + 1)!∂qκ + (κ + 1)!pκ∂z2 ,

Yκ+2 = adκ+2
X1

X2 = (κ + 2)!∂p1 ,

...

Y2κ = ad2κ
X1

X2 = (2κ)!∂pκ−1 ,

Y2κ+1 = ad2κ+1
X1

X2 = (2κ + 1)!∂pκ

and we see that condition (G1) is satisfied at such points. By the symmetry we see that condition (G2) is also satisfied
at these points.

From the definition of Yj we get

(i) [Y−1, Yj ] = [X1, Yj ] = Yj+1, for 0 � j < 2κ + 1, and [Y−1, Y2κ+1] = 0.

Moreover, at the points where x1 = x2 = 0 we have

(ii) [Y0, Yj ] = [X2, Yj ] = 0, for all 1 < j � 2κ + 1, and [Y0, Y1] = −2∂p1 − 2q1∂z1 .

The Lie brackets of vector fields Yr , Ys which are tangent to the submanifold

S = {x1 = x2 = 0}
can be correctly computed at the points in S using the formulas for Yr , Ys restricted to S. All Yj , 1 � j � 2κ + 1, are
tangent to S.

From the above formulas for Yj restricted to S we easily find that:
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(iii) Y1 commutes on S with all Yj , 1 < j � 2κ + 1.
(iv) Yr and Ys commute on S if 2 � r, s � κ + 1 or κ + 2 � r, s � 2κ + 1.
(v) Yr and Ys commute on S if 2 � r � κ + 1, κ + 2 � s � 2κ + 1, s − r 
= κ .

(vi) [Yr,Yr+κ ] = −r!(κ + r)!∂z2 on S if 2 � r � κ + 1.

We easily see that the 1-form ω1 annihilating the vector fields Y−1, Y0, Y1, . . . , Y2κ+1 restricted to S is

ω1 = dz1 + dz2 −
κ∑
1

pi dqi.

Thus the above calculations give the matrix ω1([Yi, Yj ]) on the submanifold S. Namely, by (i)–(vi) we have on S

ω1
([Yr,Ys]

) = 0

for all −1 � r, s � 2κ + 1, with the following exceptions:

ω1
([Y0, Y1]

) = −ω1
([Y1, Y0]

)
(0) = −2q1,

ω1
([Yr,Yr+κ ]) = −ω1

([Yr+κ , Yr ]
) = −r!(κ + r)!,

for 2 � r � κ + 1. Therefore (G3) and the first part of (G6) hold at all points where x1 = x2 = 0 and q1 
= 0. By the
symmetry between X1 and X2 we see that (G4) and the second part of (G6) hold, too, at the points where x1 = x2 = 0
and p1 
= 0.

Finally, at S = {x1 = x2 = 0} the corresponding 1-form ω2 annihilating Γ2 is

ω2 = dz1 + dz2 −
κ∑
1

qi dpi.

We see that at points where p = (p1, . . . , pκ) 
= 0 or q = (q1, . . . , qκ) 
= 0 we have kerω1(x) 
= kerω2(x), thus
corankΓ1(x) ∩ Γ2(x) = 2 at such points and dimΓ1(x) + Γ2(x) = 2κ + 4, i.e., (G5) holds.

The set of points where (I1), (I2), and (G1)–(G6) are satisfied is open and dense in R
n, n = 2κ + 4. This follows

from the fact that X1 and X2 have polynomial coefficients. Namely, negations of conditions (G1), (G2) and (G5) mean
linear dependence of some Lie brackets of X1 and X2. Since the coefficients of Y−1 = X1, Y0 = X2 and of the Lie
brackets Yj = adj

X1
X2 defining Γ1 (respectively, Γ2) depend polynomially on the coordinates, the negations of (G1),

(G2) and (G5) can be expressed as polynomial equations. These equations are nontrivial as we have shown that they
are not satisfied at some point in R

n. Therefore, the set of their solutions is closed and nowhere dense in R
n and the

set U ⊂ R
n of points where (G1), (G2) and (G5) are satisfied is open and dense in R

n. The 1-form ω1 is defined by the
equations ω1(Yj ) = 0, j = −1,0, . . . ,2κ + 1, and can be taken with rational coefficients, the common denominator
of which is nonzero on U . The negation of condition (G3) can then be expressed as a nontrivial polynomial equation
on U . The same applies to (G4) and (G6). Therefore, negations of conditions (G3), (G4), (G5), and (G6) hold on
closed, nowhere dense subsets of U . This means that (G1)–(G6) are satisfied on an open, dense subset V in R

n.
Finally, it follows from our proof that [X1, Yj ] = Yj+1, for j = −1,0, . . . ,2κ + 1, with Y2κ+2 := 0. Thus (I1) and (I2)
hold on V .

To show that all characteristic roots are real note that (1,0) and (0,1) are such roots, at points in S, since ω1, ω2 are
characteristic cogenerators. We will show that λ = (1,1) is the remaining root, which is of multiplicity κ − 1 = k − 2.
In fact, consider the sub-distribution N ⊂ D given by D ∩ T S. Then codimN = 4 for a generic point in S. Take
ω = ω1 + ω2, which corresponds to λ = (1,1). We see from the form of ωi |S , i = 1,2, that dω1|N = −dω2|N , thus
dω|N = (dω1 + dω2)|N = 0. This means that dω is of rank at most codimN = 4 at a generic point in S. Therefore,
λ = (1,1) is a solution of (CE) of multiplicity at least k − 4/2 = k − 2. On the other hand, it can not have higher
multiplicity as there are two other real roots. The proof is complete. �
Lemma 3. There exists a corank 2 distribution germ D at 0 ∈ R

2k+2, k � 2, which satisfies (G0), all k roots
of characteristic equation are real, and it has a pair of characteristic vector fields (X1,X2) that fulfill conditions
(G1)–(G6).
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Proof. We shall first perturb the example in Lemma 2 so that condition (G0) is satisfied. (We were unable to find
out, by hand calculations, whether the distribution in Lemma 2 satisfies (G0) at some points.) Consider a distribution
D and its cogenerators ω1,ω2. Fix a local volume form Ω . The coefficients a0, . . . , ak of the characteristic poly-
nomial (CE′) depend polynomially on the first jet of (ω1,ω2). The map j1(ω1,ω2) 	→ (a0, . . . , ak) is submersive
at generic jets. (For polynomial maps it is enough to check submersivity at one point. It is easy to do it on the 1-
jet j1ω1 = dz1 + ∑k

1 xi dyi , j1ω2 = dz2 + ∑k
1 bixi dyi , where the coefficients a0, . . . , ak are symmetric functions

ar = ∑
j1···jr

bj1 · · ·bjr of b1, . . . , bk .) The equation Discr = 0 defines an algebraic subset of codimension 1 in the

space of coefficients a0, . . . , ak . Thus there exist arbitrarily small perturbations of a given 1-jet j1(ω1,ω2) which give
Discr 
= 0.

Consider the distribution germ D = D(ω1,ω2) defined in Lemma 2, with cogenerators (ω1,ω2) satisfying the
genericity conditions (G1)–(G6) for a fixed pair of characteristic vector fields (X1,X2). Applying a shift, we may
assume that this is a germ at 0 ∈ R

2k+2. Choose cogenerators ω̃1 and ω̃2 so that the coefficient a0 of the characteristic
equation (CE′), relative to these cogenerators, is nonzero (this is equivalent to (1,0) not being solution of (CE′)).
By the above argument, a slight perturbation of the first jet of (ω̃1, ω̃2) will satisfy (G0) at 0 and, by continuity, in
its neighborhood. By surjectivity, we can choose the perturbation so that all roots of the characteristic equation will
remain real. (The unperturbed polynomial equation has real roots, thus it is a product of linear terms.)

At the same time we can choose the perturbation so small that conditions (G1)–(G6) are still satisfied for the pair
(X1,X2). This follows from the fact that the roots λi = (λi

1, λ
i
2) of the characteristic equation (CE′) depend smoothly,

as elements of the projective line, on the coefficients a0, . . . , ak (the implicit function theorem is applicable here since
they are single roots). Similarly, finite jets of λi(x) depend smoothly on finite jets of a0, . . . , ak , thus they depend
smoothly on finite jets of (ω̃1, ω̃2). The lemma is proved. �
Proof of Theorem 3. Consider the space of homogeneous degree k real polynomials

∑k
j=0 ajλ

k−j

1 λ
j

2 and let Discr
denote the subset of such polynomials having Discr = 0. As algebraic subset, it has a stratification into a finite number
of submanifolds. The complement of this set is open and dense.

We first prove statement (ii). In the proof we will use the following condition.

(A) The characteristic equation (CE) has at least 2 single real roots (in the projective line).

Denote by E0 the subset, in the space of finite jets of distributions, which consists of D for which (G0) does not
hold, that is Discr(x) = 0 (this equation is independent of the choice of cogenerators). For i = 1,2 denote by Ei the
subset, in the space of finite jets of distributions, which consists of those distributions D for which the implication
((G0) and (A)) �⇒ (Gi) does not hold at a given x, for a pair of characteristic vector fields X1,X2. Similarly, let E3 be
the subset consisting of those distributions D for which the implication ((G0), (A) and (G1)) �⇒ (G3) does not hold
for a pair (X1,X2) and let E4 denote the subset of D for which the implication ((G0), (A) and (G2)) �⇒ (G4) does not
hold for a pair (X1,X2). Finally, let E6 be the subset of D such that the implication ((G0), (A), (G1) and (G2)) �⇒
(G6) does not hold at a given x, for a pair of characteristic vector fields X1,X2. (In the definition of different subsets
Ei the pair (X1,X2) is the same.) From the form of conditions (Gi), i = 0, . . . ,4,6, it is easy to see that the subset Ei ,
at a given x, is a real stratified submanifold and it has nonzero codimension as, by Lemma 3, there exist distribution
jets which satisfy all (A) and (G0)–(G6). Note that ((G0), (A), (G1) and (G2)) �⇒ (G5) automatically holds, as (G0)
means that the characteristic cogenerators defined by (F1), (F2) are linearly independent.

We define the set G ⊂ D2k(M2k+2) of generic distributions as those smooth distributions which have the 1-jet ex-
tensions transversal to all submanifolds in the stratified set E0 and, moreover, their finite jet extensions are transversal
to the exceptional subsets Ei , i = 1, . . . ,4,6, in the space of appropriate jets. By the Thom transversality theorem, the
set of such distributions is residual in the Whitney C∞ topology.

Since all exceptional subsets E0, . . . , E4, E6 have nonzero codimension, and a distribution D ∈ G meets the subsets
E0, . . . , E4, E6 at a closed, nowhere dense subset in M , it follows that D satisfies (G0) on an open, dense subset in M

and it satisfies (G1)–(G6) on an open, nowhere dense subset in the region R2 (note that (G5) is implied by (G0)).
Moreover, at generic points in R2 there are characteristic vector fields X1,X2 of D ∈ G which fulfill (G1)–(G5),

as well as (I1), (I2). They correspond to characteristic 1-forms ω1,ω2 satisfying (G0). Using Theorem 4 we conclude
that D = Γ1 ∩ Γ2. This proves statement (ii).
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In order to prove statement (i) it is enough to show that if Xω is a characteristic vector field, then there exists a
function f on M such that f ω is horizontal. Then the proof will follow from equation (AE) as in the odd-rank case.

Note that if ω is characteristic, then Xω ∈ kerdω|kerω (Proposition 3). Consider a vector field Y satisfying
ω(Y ) = 1. It is enough to find a function f such that d(f ω)(Xω,Y ) = 0. Since ω(Xω) = 0, we have

d(f ω)(Xω,Y ) = df (Xω)ω(Y ) + f dω(Xω,Y ) = Xω(f ) + f dω(Xω,Y ).

Each nontrivial solution of the ordinary differential equation Xω(f ) + f dω(Xω,Y ) = 0 gives a horizontal section
f ω. The proof is complete. �
Remark 8. It seems that statement (ii) in Theorem 3 and Theorem 4 can be modified so that similar results can be
shown concerning a family of r > 2 characteristic vector fields, in the region where the characteristic equation has
more then 2 real roots. However, proving an appropriate version of Lemma 2 is not easy. Complete understanding of
this problem is left for further research.

Remark 9. If we admit complex solutions to the characteristic equation (CE) or (CE′), we obtain complex valued
characteristic 1-forms and the corresponding complex vector fields, being sections of complexified cotangent and
tangent bundles T ∗CM and T CM (the n-form Ω in (CVF) is still real). Denote by C ⊂ M the subset where the
characteristic equation has at least one nonreal root. It seems that arguments analogous to above, provided that an
appropriate version of Lemma 2 is shown, should lead to a proof of the following analog of statement (ii) in Theorem 3.

Conjecture. For any generic distribution D = D2k on M2k+2, around generic points x ∈ C, there exists a pair of
complex conjugated characteristic vector fields X1,X2 of D which satisfy conditions (G1)–(G6) in the complex sense
and D(x) = Re{Γ1(x) ∩ Γ2(x)}.
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