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Abstract

We study a two-dimensional system in solid rotation at constant angular velocity driven by a self-consistent three-dimensional
gravitational field. We prove the existence of stationary solutions of such a flat system in the rotating frame as long as the angular
velocity does not exceed some critical value which depends on the mass. The solutions can be seen as stationary solutions of
a kinetic equation with a relaxation-time collision kernel forcing the convergence to the polytropic gas solutions, or as stationary
solutions of an extremely simplified drift-diffusion model, which is derived from the kinetic equation by formally taking a diffusion
limit. In both cases, the solutions are critical points of a free energy functional, and can be seen as localized minimizers in an
appropriate sense.
© 2007 Elsevier Masson SAS. All rights reserved.
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0. Introduction

In this paper, we look for some special solutions of flat systems in rotation made of gravitating particles. We adopt
the point of view of continuum mechanics, at two different levels of description. At the kinetic level, the system is
described by a distribution function on the phase space. The microscopic structure of the system is revealed by the fact
that at some point in the physical space, the dispersion of velocities is taken into account. At the macroscopic level,
we consider only the spatial density of mass in the physical space. Although the distribution of velocities is observable
in some cases, the macroscopic density of mass is by far a more interesting and fundamental object.

Many solutions of the equations of mechanics for gravitational systems have been identified over the last two
centuries, from a numerical point of view as well as by explicit calculations, which reflect well the diversity of
observational data, see, e.g., [9]. In celestial mechanics, the key question consists less in finding solutions than in
understanding their stability, since in most of practical cases, time scales are such that the observation of an unsta-
ble solution is highly improbable. Stability issues for finite dimensional dynamical systems of particles have been
studied for about a century but the corresponding investigations in continuum mechanics are much more recent. We
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may for instance quote the use of Casimir functionals in fluid mechanics in [1,2] as one of the earliest contributions,
and also [61,59]. At the level of kinetic equations for gravitating systems, the topic has been developed mostly by
G. Wolansky, G. Rein and Y. Guo, see for instance [49,60,35,36], and the review papers [38,53]. Only very simple
configurations have been tackled up to now, see [37,51,52,27,55,10,54,25,41] and references therein for some other
recent contributions. Roughly speaking, stability properties have been established only for radially symmetric station-
ary solutions (in the reference frame of the center of mass) characterized as minima of a free energy functional, after
taking into account the Galilean invariance. Notice here that we are going to restrict the topic to classical mechanics,
hence discarding any further consideration involving relativity or quantum mechanics. See [40] and [46,24] for some
contributions in this direction.

Our goal is to make a first step towards more complex geometries than the ones which have been considered up
to now, and to open a new field of research in kinetic models. Typical examples one would like to study are double
systems, or systems with a spiral geometry. For the moment, nobody knows how to deal with such systems at the
kinetic level. We will expose later some results obtained with fluid models of gravitating particles. In this paper, we
will use a dramatic simplification, which consists in reducing the problem to the study of nonlinear diffusion equations
by taking an appropriate diffusion limit and consider solutions at the macroscopic level. Such a limit makes a lot of
sense when one is interested in quantities like the mass density. A rigorous derivation in the case of a given potential
has recently been done in [26], but the diffusion limit is still formal in presence of a self-consistent potential as it is
the case here. One could argue that the solutions found in this paper are solutions both at the kinetic and macroscopic
levels, but this would be somewhat excessive since, after formally deriving the diffusion limit, we will systematically
adopt the macroscopic level point of view.

Let us insist on several important features of the model we shall consider. First of all, one is interested in compactly
supported solutions. This can be mathematically enforced by imposing boundary conditions and many papers in
physics and astrophysics journals do it, but it is in most of the cases rather unphysical. We will use artificial boundary
conditions as a technical step in our proofs, but we will be able to remove them in the end. Another important issue is
the type of statistical distribution one wants to take into consideration. Although Maxwellian (Gaussian) distributions
are very popular in statistical physics, such distributions turn out not to make much sense in astrophysics since they
give rise to equilibrium solutions with infinite mass, while one is clearly interested in systems with finite mass, even
if it can be huge when measured in standard units. One of the proposed remedies is to consider Gibbs states, i.e.,
equilibrium solutions, which are polytropic type distribution functions at the kinetic level. By polytropic, we simply
mean that the distribution function is assumed to be a power law of the microscopic energy. In astrophysics, such
models are known as the model of polytropic gases, or polytropes. These Gibbs states turn out to give porous media
equations in the diffusion limit. Such equations are well known in mathematics and various areas of physics, and
have always raised lots of interest. Coupled with a gravitational Poisson interaction, they have the nice property of
having stationary solutions with finite mass and compact support (which is also the case of King’s model). Another
feature that we want to include is that the solutions under consideration can be characterized as critical points, and
eventually localized minimizers if some judicious constraints are imposed on the system, of some functionals which
can be interpreted from a thermodynamical point of view as free energies. In astrophysics and in the case of the
porous media equations, such functionals are sometimes called Tsallis’ entropies [58]. They are perfectly consistent
with the free energies involving the so-called Casimir functionals at the kinetic level (in the polytropic gases case),
and they provide useful estimates for diffusion limits, see [26]. How to select one such functional has to be determined
by physics and should involve a collision mechanism whose discussion goes far beyond the scope of this introduction.
We refer again to [26] for more detailed comments.

Many gravitating systems are rotating and the total angular momentum determines a global axis of rotation. Since
the goal of this paper is only to make a first mathematical step into a whole world of models, we are going to assume
several simplifying hypotheses. First of all, we will consider a system in a solid motion of rotation: in the rotating
reference frame, we look for stationary solutions, and the only novelty is that a centrifugal force term has to be added.
We will see however that even such a small change produces tremendous differences at the level of the solutions. For
instance, solutions with a given mass may exist only as long as the angular velocity is not too big. We will further
restrict the model to flat systems, so that two-dimensional coordinates can be used, but we will keep the gravitational
interaction in its three-dimensional version. Although highly simplified, such a model could for instance be quite
relevant for some physical situations like accretion disks of self-gravitating dust. Many features could be added to
the model, like the presence of a given central force field created by a dense core or a massive object, say a star. To
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keep our analysis as elementary as possible, we shall only consider self-consistent gravitational interactions. From the
mathematical point of view, scalings are crucial. We will therefore consider mostly power law dependences, which
are easier to handle. That is the case of polytropic gases, or polytropes, which have already been mentioned above.

Strictly speaking, we are not going to prove any stability result neither at the kinetic level nor at the macroscopic
level of nonlinear diffusions. As far as we know, such questions for systems in a solid motion of rotation are completely
unknown. Our purpose is to characterize some special critical points of the free energy in the rotating reference frame,
the localized minimizers, which are good candidates for a local stability analysis, that is still to be done.

This paper is organized as follows. The first section is devoted to a precise description of the model at the kinetic
level and to the formal diffusion limit. The main results are then stated. For the convenience of the reader who is
interested only in the mathematical results, all definitions and notations needed for the understanding of these results
have been summarized in Appendix A. In the second section, the results of G. Rein [50] in the nonrotational case are
adapted to our setting. See [30] for a more recent presentation of essentially the same results, which appeared as a
preprint during the completion of this paper, and [29] for a related paper. Although mostly not original, the sketches
of the proofs are given, since we will reuse them in the case of a nonzero angular velocity. The third section is devoted
to the proof of the main results and some additional properties of the solutions, and the last one to some additional
properties of the solutions.

As one can infer from this rather long introduction, our results are connected with many topics in modeling.
Establishing an exhaustive list of relevant references would be a difficult task. Let us mention only a few papers in
which the interested reader will be able to find a more complete list of references.

For an introduction to statistical physics of gravitating systems and issues about bounded domains models, we
refer to [48]. An interesting list of issues concerning Maxwellian statistics and gravitational Vlasov–Poisson sys-
tems has been developed in [3]. Concerning power laws in astrophysics and Gibbs states, see [9], and [38] for some
mathematical properties of such equilibrium states. From a physics point of view, see [15] for a recent justification
of diffusion models and related thermodynamical functionals in astrophysics and two-dimensional turbulence, and
references therein for earlier papers. Lyapunov functionals corresponding to porous media in an astrophysical con-
text are usually called Tsallis’ entropies, referring to [58], and the evolution equation is often called the generalized
Smoluchowski–Poisson equation. See [6–8] for some related papers. A whole series of papers concerning Lyapunov
functionals, diffusion equations and formal diffusion limits has been written by Chavanis et al., see [12–19]. For a
justification of the diffusion limits from a more mathematical point of view, let us quote [5,34], and also [26] and ref-
erences therein. We will not insist on the following point in the paper, but it deserves to be mentioned that the energy
profile of the Gibbs state is related with the entropy generating function by some convex duality, see [5,57,20,14,17].
This last paper and [5] contain formal Chapman–Enskog expansions of the type we are going to use in Section 1. As
a last observation, we quote two recent papers, [40,39], which are devoted to local minimizers, in the sense that they
are local in the function space. We will consider a different notion of minimizers, which is based on the localization
of the support of the solutions, and for this reason, we shall call them localized minimizers.

Further references will be quoted throughout this paper whenever appropriate.

1. A kinetic model and its diffusion limit

Our goal is to describe steady state solutions of a flat rotating gravitational system. We start with a dynamical
kinetic model and show at a formal level how solutions converge in a certain diffusion limit to solutions of a nonlinear
drift-diffusion equation.

1.1. A kinetic model

At the kinetic level, we consider a flat gravitational system in three dimensions. In our model, the support of the
mass distribution is contained in a two-dimensional plane and we assume that the system rotates around an axis of
symmetry which is perpendicular to the plane. This amounts to consider a nonnegative solution of the following
gravitational three-dimensional Vlasov–Poisson–Boltzmann system{

∂tF + v · ∇xF − ∇xψ · ∇vF = Qω(F ),

�ψ = ∫
2 F dv dw,
R ×R
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where the distribution function F is a measure concentrated on the manifold{(
(x, z), (v,w)

) ∈ (R2 × R) × (R2 × R): z = 0,w = 0
}

and Qω(F ) is a collision kernel which depends on the angular velocity ω, to be specified later. We will consider
the nonnegative distribution function F as a function of t ∈ R, x ∈ R2 and v ∈ R2, and impose ψ to be given as a
solution of the three-dimensional gravitational Poisson equation, corresponding to a measure valued distribution of
mass whose support is constrained to the plane

ψ(t, x) = − 1

4π |x| ∗
∫

R2

F(t, x, v) dv.

Relevant position and velocity variables, respectively x and v, being in R
2, we shall identify R

2 with C. Instead of
x = (x1, x2) and v = (v1, v2), we shall write x = x1 + ix2 and v = v1 + iv2, with the convention that v · ∇xF means
Re[(v1 + iv2)(∂f/∂x1 − i∂f/∂x2)] = Re[v∇xf ], and so on. We are interested in the effects of a rotation with constant
angular velocity, and as a first step in this direction, we investigate the simple case where the solution has a global
solid motion of rotation. For our purpose, it is therefore convenient to rewrite the equations in a rotating frame with
constant angular velocity ω. Using complex notations, we make the change of variables

(x, v) �→ (
xeiωt , (v + iωx)eiωt

) =: Rω,t (x, v)

and define a new distribution function f by

F(t, x, v) = f
(
t, xeiωt , (v + iωx)eiωt

) = (f ◦ Rω,t )(x, v).

The equation satisfied by f can be written as

∂tf + v · ∇xf + ω2 x · ∇vf + 2 Re(iωv∇vf ) − ∇xφ · ∇vf = Q(f )

where the collision kernel Q is defined by Q(f ) := Qω(F ) ◦ R−1
ω,t and the potential φ is given by

φ(t, x) = − 1

4π |x| ∗
∫

R2

f (t, x, v) dv.

Written in Cartesian coordinates, the equation satisfied by f is

∂tf + v · ∇xf + ω2 x · ∇vf + 2ωv ∧ ∇vf − ∇xφ · ∇vf = Q(f ),

φ = − 1

4π |x| ∗
∫

R2

f dv,

where a ∧ b := a⊥ · b = (−a2, a1) · (b1, b2) = a1b2 − a2b1 = Re[i(a1 + ia2)(b1 − ib2)].
We are interested in stationary solutions and in the relaxation towards stationary solutions. For that purpose, we

introduce a collision kernel which relaxes the distribution function towards a local Gibbs state in the rotating frame.
By a local Gibbs state, we mean a function

Gf (t, x, v) = γ

(
1

2
|v|2 + φ(t, x) − 1

2
ω2|x|2 + μf (t, x)

)
,

where γ is a given energy profile and μf a local Lagrange multiplier associated to the constraint∫

R2

Gf (t, x, v) dv =
∫

R2

f (t, x, v) dv. (1)

Several kernels can be chosen, see for instance [17,26]. Here we simply consider the relaxation time approximation
kernel which relaxes to the local Gibbs state in the rotating frame

Qω(F ) = Gf ◦ Rω,t − F

or, equivalently,

Q(f ) = Gf − f.
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At this point we want to stress that such a kernel does not have any deep physical signification, but should be consid-
ered as a sound simplification of more realistic collision kernels. From a mathematical point of view, it is only a kind
of a projection operator onto the local Gibbs state. See [26] for more comments. Notice that the local Gibbs state Gf

has no mean velocity in the rotating reference frame. This justifies why Q does not depend on ω while Qω explicitly
depends on the angular velocity. Taking Q independent of ω simply means that the collision kernel tends to relax the
solution towards a state in solid motion rotating at constant angular velocity ω.

Condition (1) can be solved as follows: Define μ̄ implicitly by the condition∫

R2

γ

(
1

2
|v|2 + μ̄(ρ)

)
dv = ρ,

which means that

μ̄(ρ) = Γ −1(ρ) (2)

where

Γ (s) := 2π

∞∫
s

γ (σ ) dσ.

It is straightforward to check that the local Lagrange multiplier associated to (1) is such that

μf (t, x) = μ̄
(
ρ(t, x)

) − φ(t, x).

If Γ is not invertible, an appropriate notion of generalized inverse has to be defined.
Collecting all these remarks, the problem written in the rotating frame solves the system

∂tf + v · ∇xf + ω2 x · ∇vf + 2ωv ∧ ∇vf − ∇xφ · ∇vf = Gf − f,

φ = − 1

4π |x| ∗
∫

R2

f dv. (3)

The angular velocity parametrizes the set of the solutions. For simplicity, we will restrict our statements to the case of
polytropic gases, or polytropes, which corresponds to an energy profile given by a power law:

γ (s) :=
( −s

k + 1

)k

+
and μ̄(ρ) = −(k + 1)

(
ρ

2π

) 1
k+1

for some parameter k ∈ R
+. The generalization to other nonincreasing energy profiles γ is easy and we leave it to the

reader, but in any case, for a reason that will be made clear later on, we shall assume that γ ≡ 0 on [0,+∞). In the
polytropes case, we get

Γ (s) := 2π

( −s

k + 1

)k+1

+
∀s ∈ R.

We are going to focus on stationary solutions with fixed mass

M =
∫∫

R2×R2

f dx dv > 0. (4)

For that purpose, let

β(s) :=
0∫

s

γ −1(σ ) dσ

and define the free energy functional

Fω[f ] :=
∫∫
2 2

[
f

(
1

2
|v|2 − 1

2
ω2|x|2 + 1

2
φ

)
+ β(f )

]
dx dv.
R ×R
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At a formal level, if f is a solution of (3), then

d

dt
Fω

[
f (t, ·, ·)] :=

∫∫

R2×R2

(Gf − f )

(
1

2
|v|2 + β ′(f )

)
dx dv,

so that by writing 1
2 |v|2 − 1

2ω2|x|2 +φ+μf = −β ′(Gf ), and using (1) and β ′(f ) = −γ −1(f ), the entropy production
term takes the form

d

dt
Fω

[
f (t, ·, ·)] :=

∫∫

R2×R2

(Gf − f )
(
γ −1(Gf ) − γ −1(f )

)
dx dv, (5)

which has a negative sign if γ is nonincreasing. Moreover, if γ is decreasing on its support, it vanishes if and only if
Gf = f almost everywhere on the support of f . As a consequence, f is in the kernel of the collision operator. Any
stationary state f has therefore to be a global Gibbs state in the sense that

μf (x) = φ(x) − 1

2
ω2|x|2 − μ∗

on the support of ρ := ∫
R2 f (·, v) dv, for some constant μ∗ ∈ R. To be precise, there is one such constant for each

connected component of the support of ρ. This is easily deduced by reinjecting the local Gibbs state in the left-hand
side of (3). As a consequence, such a stationary distribution function is a critical point of the free energy functional
under the mass constraint

∫∫
R2×R2 f dx dv = M > 0, fixed, and μ∗ can be identified as the Lagrange multiplier

associated to this constraint. Note that because of the centrifugal force term −ω2x, which gives rise to the potential
energy term − 1

2ω|x|2, the free energy does not have any global minimizer and is actually not even bounded from
below. It is however easy to recover that a global Gibbs state taking the form

f ∞(x, v) := γ

(
1

2
|v|2 + φ∞(x) − 1

2
ω2|x|2 − μ∗

)

with φ∞(x) := − 1
4π |x| ∗ ∫

R2 f ∞(x, v) dv and μ∗ such that
∫∫

R2×R2 f ∞(x, v) dx dv = M is a critical point of Fω

under constraint (4).
In the special case of the polytropes, we can choose

β(f ) = f q

q − 1
with k = 1

q − 1
⇐⇒ q = 1 + 1

k
.

Note that β is defined up to a constant. The functional f �→ ∫∫
R2×R2 β(f )dx dv is convex as soon as γ is nonincreas-

ing, which holds true in the case of the polytropes. Looking for stationary solutions with compact support requires
q > 1 or equivalently k > 0, and the problem is reduced to solve the fixed point equation

φ = − 1

4π |x| ∗ ρ with ρ = Γ

(
φ − 1

2
ω2 |x|2 − μ∗

)
, (6)

where the last identity has to be satisfied only on the support of ρ, and μ∗ is implicitly fixed by the condition∫
R2 ρ dx = M . Since

Γ (s) = 2π

(
−q − 1

q
s

) q
q−1

,

this amounts to write

− q

q − 1
ρq−1 + φeff − μ∗ = 0

on the support of ρ, where the effective potential in the rotating frame is defined by

φeff(x) := − 1

4π |x| ∗ ρ − 1

2
ω2|x|2.
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1.2. Reduced variational problem

Because of (5), if γ is decreasing on its support, stationary solutions of (3) are Gibbs states and therefore critical
points of the free energy functional. But they are not global minimizers of the free energy functional, which, as said
before, turns out to be unbounded from below for any nonzero angular velocity. However, since ρ = ∫

R2 Gf dv, we
can write

Fω[f ] − Fω[Gf ] =
∫

R2

dx

{ ∫

R2

[
β(f ) − β(Gf ) − β ′(Gf )(f − Gf )

]
dv

}
,

so that to any critical point of

ρ �→ Fω[Gρ] =: Gω[ρ] with Gρ(x, v) := γ

(
1

2
|v|2 + μ̄(ρ)

)

and φ(x) := − 1
4π |x| ∗ ρ, we may associate a critical point, Gρ , of Fω under constraint (4). This reduced variational

problem takes the form

Gω[ρ] =
∫

R2

[
h(ρ) +

(
1

2
φ(x) − 1

2
ω2|x|2

)
ρ

]
dx

with

h(ρ) :=
∫

R2

[
(β ◦ γ )

(
1

2
|v|2 + μ̄(ρ)

)
+ 1

2
|v|2γ

(
1

2
|v|2 + μ̄(ρ)

)]
dv

= 2π

∞∫
0

[
(β ◦ γ )

(
s + μ̄(ρ)

) + sγ
(
s + μ̄(ρ)

)]
ds

= 2π

∞∫
μ̄(ρ)

[
(β ◦ γ )(s) + sγ (s)

]
ds − ρμ̄(ρ)

= H
(
μ̄(ρ)

) − ρμ̄(ρ)

with H(s) := ∫ s

0 Γ (σ)dσ . Here we used the fact that G(μ̄(ρ)) = ρ. Notice that h′(ρ) = −μ̄(ρ). In the special case
of the polytropes, we obtain

h(ρ) = κ

m − 1
ρm with m = 2 − 1

q
= 1 + 1

k + 1
, κ = 1

m
(2π)1−m.

Hence finding stationary solutions to (3) is equivalent to find critical points of Gω on the set {ρ ∈ L1(R2): ρ � 0 a.e.,∫
R2 ρ dx = M}.

1.3. Diffusion limit

The stationary states of the kinetic equation are also the stationary states of a nonlinear drift-diffusion problem,
whose associated free energy is the functional Gω. This can be seen at a formal level by taking the diffusion limit in
Eq. (3). By diffusion limit, we mean that the physical parameters of the problem have to be adjusted in order that in
the corresponding regime the dynamics is dominated by the collision kernel and studied on a large time scale. After
an appropriate adimensionalization, this means that we consider the equations

ε∂tf + v · ∇xf + ω2x · ∇vf + 2ωv ∧ ∇vf − ∇xφ · ∇vf = 1

ε
(Gf − f ),

φ = − 1

4π |x| ∗
∫

2

f dv
R
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in the singular limit ε → 0. Multiply the first equation by 1 and v, and integrate with respect to v. The corresponding
system is

∂tρ + ∇x · j = 0, (7)

ε2∂t j + ∇x ·
∫

R2

v ⊗ vf dv − ω2xρ + ρ∇xφ = −j, (8)

where

ρ =
∫

R2

f dv and j := 1

ε

∫

R2

vf dv.

At a heuristic level, it is quite easy to identify the limit by an appropriate Chapman–Enskog expansion, see for instance
[4,5,17]. For a rigorous approach, but in the case where there is no self-consistent potential, we refer to [26] and
references therein. Let f = f0 + εf1 + O(ε2) and formally identify the limits order by order. At order O(ε−1), we get

Gf0 − f0 = O(ε).

By passing to the limit ε → 0, this means

f0 = γ

(
1

2
|v|2 + μ̄(ρ)

)

where ρ is the solution of (7). To complete the description of the diffusion limit, we only need to identify j . Consider
therefore (8). Again at a formal level, by identifying the first order term in ε, we get

j = −∇x ·
∫

R2

v ⊗ vf0 dv + ω2xρ − ρ∇xφ + O(ε).

Passing formally to the limit ε → 0, we get

j = −∇x

(
ν(ρ)

) + ω2xρ − ρ∇xφ,

where ν is given in terms of ρ by

ν(ρ) := 1

2

∫

R2

|v|2γ
(

1

2
|v|2 + μ̄(ρ)

)
dv. (9)

Notice that

ν′(ρ) = 2π

∞∫
0

sγ ′(s + μ̄(ρ)
)
ds · μ̄′(ρ) = −2π

∞∫
0

γ
(
s + μ̄(ρ)

)
ds · μ̄′(ρ) = −ρ · μ̄′(ρ),

using again the fact that Γ (μ̄(ρ)) = ρ, so that

ν(ρ) = −
ρ∫

0

σμ̄′(σ ) dσ.

Summarizing, we have obtained that, in the limit ε → 0, ρ = ρ(t, x) is a solution of

∂tρ = ∇ · [∇ν(ρ) − ω2xρ + ρ∇xφ
]
,

φ = − 1

4π |x| ∗ ρ
(10)

with μ̄ and ν given by (2) and (9). In the case of the polytropes, we have

ν(ρ) = κρm with κ = 1

m
(2π)1−m.
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1.4. Ranges of validity

We will refer to [4,5,17,13] for further discussions on formal asymptotics and applications in physics, and to [26]
and references therein for rigorous proofs of diffusion limits providing nonlinear diffusion equations.

As quoted in [5], the functional Gω is a Lyapunov functional for (10). For a solution, using the fact that
h′(ρ) = −μ̄(ρ), we get

d

dt
Gω

[
ρ(t, ·)] = −

∫

R2

ρ
∣∣∇μ̄(ρ) − (∇xφ − ω2x)

∣∣2
dx.

This expression can be recovered by taking the limit as ε → 0 of (5). See [4,5] for more details. As a consequence, we
recover that for the nonlinear diffusion equation (10) as for the kinetic model (3), stationary states are given by (6).

The assumption γ ≡ 0 on [0,+∞) guarantees the existence of solutions with finite mass. At the kinetic level,
see [38]. This can also be seen at the level of the diffusion equation. With porous media type diffusion, which is
the case for all polytropes, the diffusion coefficient ν′(ρ) becomes 0 as the density decays to 0 and stationary solu-
tions have compact support. Otherwise, all mass would diffuse and runaway because of the centrifugal force. Such a
runaway phenomenon occurs for instance with linear diffusions, or more elaborate nonlinear diffusions like the one
based on the Fermi–Dirac distribution, see for instance [13]. For completeness, let us mention a related work in three
dimensions, [47], and references therein. We will come back to this paper in the conclusion.

Up to now, no restrictions have been imposed on the power k ∈ R
+. Since

m = 2 − 1

q
= k + 2

k + 1
,

the range of m is therefore (1,2), which corresponds to q ∈ (1,∞). However, in the case ω = 0, the existence of a
minimizer is achieved if and only if q is big enough to prevent concentration of minimizing sequences. The reason
goes as follows. By a standard interpolation method, one can prove that for ρ = ∫

R2 f dv, f � 0 a.e.,

‖ρ‖Lm(R2) � CInterp‖f ‖
q

2q−1

Lq(R2×R2)

( ∫∫

R2×R2

|v|2f dx dv

) q−1
2q−1

with m = 2 − 1

q

for some positive constant CInterp, see for instance [23]. Then∫∫

R2×R2

ρ(x)ρ(y)

|x − y| dx dy � CHLS‖ρ‖2
L4/3(R2)

for some positive constant CHLS, by the Hardy–Littlewood–Sobolev inequality, see, e.g., [43]. The free energies Fω

and Gω are therefore bounded from below if 4/3 ∈ (1,m), which amounts to

q ∈ (3/2,∞) ⇐⇒ m ∈ (4/3,2) ⇐⇒ k ∈ (0,2).

We refer to [50] for more details. The critical case corresponds to q = 3
2 , m = 4

3 , k = 2 and will not be dealt with here
since it requires a specific analysis which is out of the scope of this paper.

In [50], Rein considers flat distribution functions f as in Section 1.1, which solve the Vlasov–Poisson system with-
out collision kernel, in the case with no angular motion, i.e., ω = 0, and proves the existence of a radially symmetric
and compactly supported minimizer of the free energy functional Fω on the set{

f ∈ L1(R4): f � 0, f is radially symmetric,
∫∫

R2×R2

f dx dv = M

}
.

Here by radially symmetric we mean that f depends only on |x|, |v| and (x · v), and β is assumed to be a convex
function verifying appropriate conditions both near the origin and at infinity. In Section 2 we expose the results of
[50,30] without the radial symmetry assumption, but in the simpler setting of nonlinear diffusions. These results can
also be seen as relevant for the Euler–Poisson equation, see [30]. The more general case of a nonzero angular velocity
ω is considered in Section 3.
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Before giving more details, let us mention again that a major difficulty appears when ω is turned on, since there are
no more global minimizers of the free energy. The difficulty can be overcome by solving the problem with positions in
a fixed ball of radius R, which from a physical point of view prevents the runaway of the particles when the centrifugal
force dominates the gravitational attraction. In this compactly supported case, the results for the nonrotational case can
be adapted, see Section 3 for details, and as ω tends to 0, minimizers converge, up to a subsequence, to a minimizer
corresponding to ω = 0. The minimizers in the rotational case are however not known to be radial, not even for very
small angular velocities, but their support is close to the one of solutions with ω = 0. The nonradiality of the minimiz-
ers, at least for sufficiently large angular velocities, would not be a complete surprise. Indeed the results of [33,32] and
their extensions do not apply because the centrifugal force term has the wrong monotonicity, and a phenomenon of
symmetry breaking has been observed for instance in the case of Caffarelli–Kohn–Nirenberg inequalities, see [11,28],
and of the Hénon problem, see [56], which share some qualitative features with our minimization problem. If R has
been taken large enough initially, solutions are global stationary solutions not only in the ball of radius R, but also
in the whole euclidean space. By a continuation argument, one can prove that such an R can be found for larger and
larger values of ω, until some critical value is reached. This critical value depends on the mass M of the solution.

1.5. Main results

From now on, we assume that the setting is the one of the polytropes:

β(f ) = f q

q − 1
, h(ρ) = κ

m − 1
ρm,

with q ∈ (3/2,∞), m ∈ (4/3,2) or k ∈ (0,2). More general settings are not very difficult to handle, but require case
by case technical assumptions, and will therefore not be considered here. Unless it is explicitly specified, variables are
all in R

2. Integrals are also supposed to be extended to the whole space unless otherwise stated.
The above derivation of the model is quite lengthy, so for the convenience of the reader, we have summarized all

useful equations and notations in an appendix. Recall that

Gω[ρ] := κ

m − 1

∫

R2

ρm dx − ω2

2

∫

R2

|x|2ρ dx − 1

8π

∫∫

R2×R2

ρ(x)ρ(y)

|x − y| dx dy

is the so called reduced free energy functional, and consider the set

XM :=
{
ρ ∈ L(R2): ∃R > 0 such that supp(ρ) ⊂ B(0,R) and

∫

R2

ρ dx = M

}
,

where L(R2) is the set of nonnegative functions ρ in L1(R2) satisfying the assumption

ρ(x) = ρ(−x) ∀x ∈ R
2 a.e. (11)

Definition. A localized minimizer is a critical point ρ of Gω which is compactly supported in a ball B(0,R − ε) for
some R > 0 and ε ∈ (0,R), and which is a minimizer of Gω restricted to the set {ρ ∈ L1+(R2): supp(ρ) ⊂ B(0,R) and∫

R2 ρ dx = M}.

We will also consider radial localized minimizers which are radial critical points as above, with the minimization
set further restricted to radial functions.

Theorem 1. For any M > 0, there exists ω∗(M) = ω∗ > 0 and ω∗(M) = ω∗ > 0 with ω∗ � ω∗ such that

(i) If ω ∈ [−ω∗,ω∗], Gω[ρ] admits a localized minimizer ρω∞ ∈ XM .
(ii) If |ω| > ω∗, Gω[ρ] admits no localized minimizer.
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Our next goal is to give a characterization of ω∗. The idea is simpler to explain in the case of radial functions.
Define therefore S ω

M,rad as the set of radial localized minimizers of mass M . Each ρω∞ ∈ S ω
M,rad can be explicitly

written in terms of its own potential

ρω∞(x) = Am

(
λ
[
ρω∞

] + ω2

2
|x|2 − φω∞(x)

) 1
m−1

+
where φω∞ = − 1

4π | · | ∗ ρω∞,

with Am := [m−1
κm

]1/(m−1), and λ[ρω∞] < 0 a parameter which is determined by M , but eventually depending on ρω∞.
We define

R1
[
ρω∞

] := min
{
r > 0: supp

(
ρω∞

) ⊂ B(0, r)
}

and notice that for any x ∈ ∂B(0,R1[ρω∞]), λ[ρω∞] = φω∞(x) − ω2

2 |x|2. Let

h
[
ρω∞

] := sup

{
φω∞(x) − ω2

2
|x|2: |x| > R1

[
ρω∞

]}
.

We observe that λ[ρ0∞] < h[ρ0∞] = 0. This suggests to consider

sup
{
ω � 0: sup

ρω∞∈S ω
M,rad

(
λ
[
ρω∞

] − h
[
ρω∞

])
< 0

}
.

Since, even for radial functions, uniqueness of localized minimizers is not known if ω �= 0, further precautions are
therefore needed. Let

R2
[
ρω∞

] = max

{
r > R1

[
ρω∞

]
: ∃x ∈ ∂B(0, r) such that φω∞(x) − ω2

2
|x|2 = h

[
ρω∞

]}
.

In fact, in the radial case with ω �= 0, the effective potential φω∞(x) − ω2

2 |x|2 attains it maximum at only one point.
We shall say that Property P rad

ω holds true if and only if there exists R(ω) such that R1[ρω∞] < R(ω) < R2[ρω∞] for
any ρω∞ ∈ S ω

M,rad.

Theorem 2. For any M > 0, the maximal interval in ω containing ω = 0 for which Property P rad
ω holds true is an

open interval.

Let ωrad∗ := sup{ω � 0: P rad
ω holds true}. Observe that if there is at most one localized minimizer ρω for any

given value of ω, then P rad
ω holds true as long as λ[ρω∞] < h[ρω∞]. On the other hand, for any M > 0 and for any

ω ∈ (−ωrad∗ ,ωrad∗ ), there exists a radial localized minimizer and λ[ρω∞] < h[ρω∞] for any ρω∞ ∈ S ω
M,rad. The proof is

based on a continuation argument: we shall prove that for any ω0 � 0, if P rad
ω0

holds true, then one can construct radial
localized minimizers for any ω > ω0, ω − ω0 small enough, and Property P rad

ω still holds true, see Section 3.5 for
more details. If Gωrad∗ has a unique radial compactly supported critical point, then

λ
[
ρ

ωrad∗∞
] = h

[
ρ

ωrad∗∞
]
.

If localized minimizers are not radial, one can also define λ[ρω∞] and h[ρω∞] for each ρω∞ using a set of paths
connecting supp(ρω∞) to infinity. Under an additional technical assumption, we will be able to extend the statement of
Theorem 2 to this situation. See Theorem 25 in Section 3 for more details. Notice that as soon as symmetry is broken,
uniqueness is also lost due to the invariance under rotation of the equations.

Because of the technical assumption in the nonradial case, we will only give a lower bound for ω∗. It is an open
question to decide whether ω∗ = ω∗ or not, but one can reasonably conjecture that localized minimizers exists for any
ω ∈ (0,ω∗).

Notice that with the above definition of localized minimizers, an endpoint of the family (ρω∞)ω∈(0,ω∗] cannot be
considered as a localized minimizer. On the opposite, if ω → 0, the localized minimizers converge, up to a subse-
quence, to a global radial minimizer of G0 verifying condition (11), as we shall see later.
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2. Preliminary results: the case ω = 0

We start by fixing ω = 0 and study the existence of minimizers of the energy for the following nonrotational
problem. On the set

XM =
{
ρ ∈ L1+(R2) :

∫

R2

ρ(x)dx = M

}
,

where L1+(R2) denotes the set of functions ρ ∈ L1(R2) that are positive almost everywhere, and with φρ given in
terms of ρ by

φρ = − 1

4π

∫

R2

ρ(y)

|x − y| dy,

consider the reduced free energy

G0[ρ] = κ

m − 1

∫

R2

ρm dx + 1

2

∫

R2

φρ ρ dx = κ

m − 1

∫

R2

ρm dx − 1

8π

∫∫

R2×R2

ρ(x)ρ(y)

|x − y| dx dy.

Problem 1. Fix M > 0 and m ∈ (3/2,2) and find all minimizers of

I 0
M = inf

{
G0[ρ]: ρ ∈ XM

}
.

This problem has been considered by Rein in [50] in view of stability results for kinetic equations, and more
recently in [30] using a reduced free energy functional and tools of the concentration-compactness method. We will
therefore give only the sketches of the proofs, for the completeness of this paper, and also because we are going to
reuse several intermediate results and techniques in the rotational case, ω �= 0. Our presentation differs from the ones
of [50,30] only by minor details (see below) and we do not claim any originality here.

Theorem 3. Fix M > 0 and m ∈ (3/2,2). The infimum I 0
M is achieved by at least one minimizer ρ0∞ ∈ XM of G0. All

minimizers are compactly supported, radially symmetric, monotone nonincreasing and take the form

ρ0∞(x) =
(

m − 1

κm

) 1
m−1 (

λ0 − φ0∞(x)
) 1

m−1+ ∀x ∈ R
2,

for some λ0 < 0 which is the same for all of them. Here φ0∞ := φρ0∞ denotes the potential associated to the density ρ0∞.

To prove this result, one has to consider a minimizing sequence (ρn)n∈N for Problem 1 and it is sufficient to prove
that there exists ρ0∞ ∈ XM such that, up to the extraction of a subsequence, ρn weakly converges ρ0∞ in L1 ∩ Lm(R2)

and limn→∞ G0[ρn] � G0[ρ0∞]. The proof of Theorem 3 relies on a series of lemmata. Observe that in the setting of
Theorem 3, m > 3/2 > 4/3 so that L4/3(R2) ⊂ L1 ∩ Lm(R2).

Lemma 4. For any ρ ∈ L1(R2) ∩ Lm(R2), m ∈ (4/3,2), φρ is in Lq(R2) for 1
q

= 1
m

− 1
2 and there exists a positive

constant C such that

1

4π

∫∫

R2×R2

ρ(x)ρ(y)

|x − y| dx dy � C‖ρ‖2θ
L1(R2)

‖ρ‖2(1−θ)

Lm(R2)

where θ = 3m−4
4 (m−1)

. As a consequence,

G0[ρ] � κ

m − 1
‖ρ‖m

Lm(R2)
− C

2
‖ρ‖2θ

L1(R2)
‖ρ‖2(1−θ)

Lm(R2)
(12)

is bounded from below for any m ∈ (3/2,2).
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Proof. By the usual Hardy–Littlewood–Sobolev inequality, φρ belongs to Lq(R2). Using Hölder’s inequality, we get

1

4π

∫∫

R2×R2

ρ(x)ρ(y)

|x − y| dx dy � C‖ρ‖2
L4/3(R2)

,

and ‖ρ‖2
L4/3(R2)

can be interpolated between L1 and Lm again by Hölder’s inequality. Concerning the reduced free
energy, observe that

x �→ κ

m − 1
xm − C

2
M2θ x2(1−θ)

is bounded from below as long as 2(1 − θ) < m, that is for m ∈ (3/2,2). �
Lemma 5. With the above notations, −∞ < I 0

M < 0 if m ∈ (3/2,2). As a consequence, I 0
M is achieved on the set

{ρ ∈ XM : ‖ρ‖Lm(R2) � A} for some positive constant A which only depends on M and m.

Proof. This follows from a scaling argument. Consider ρ ∈ XM and for any λ > 0, define ρλ ∈ XM by

ρλ(x) := λ2ρ(λx) ∀x ∈ R
2.

Then

G0[ρλ] = λ2(m−1)

(
κ

m − 1

∫

R2

ρm dx − λ3−2m

8π

∫∫

R2×R2

ρ(x)ρ(y)

|x − y| dx dy

)

is negative for λ small enough, and so is I 0
M . Then by (12), x = ‖ρ‖Lm(R2) is such that κ

m−1xm − C
2 M2θ x2(1−θ) � 0,

which determines an explicit expression of

A :=
(

(m − 1)C

2κ

) 2(m−1)
m(2m−3)

M
3m−4

m(2m−3) . �
Lemma 6. Let 0 < M1 < M2. Then

I 0
M1

�
(

M1

M2

) 3m−4
2m−3

I 0
M2

.

Proof. This also follows from a scaling argument. For ρ ∈ XM2 , take μ, λ > 0 and define ρλ,μ by

ρλ,μ(x) = μρ(λx) ∀x ∈ R
2.

Then ρλ,μ ∈ XM1 if and only if M1 = μλ−2M2. Since

G0[ρλ,μ] = μmλ−2κ

m − 1

∫

R2

ρm dx − 1

8π
μ2λ−3

∫∫

R2×R2

ρ(x)ρ(y)

|x − y| dx dy,

by taking μmλ−2 = μ2λ−3, i.e., λ = μ2−m, we get G0[ρλ,μ] = μ3m−4 G0[ρ]. Hence

μ =
(

M1

M2

) 1
2m−3

and G0[ρλ,μ] =
(

M1

M2

) 3m−4
2m−3

G0[ρ],

which completes the proof. �
Observe that by Lemmata 5 and 6, we can relax the mass constraint in Problem 1 and simply require that∫

R2 ρ dx � M .
Denote by ρ∗ the radially symmetric decreasing rearrangement associated to a given function ρ.
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Lemma 7. For any ρ ∈ XM ,

G0[ρ∗] � G0[ρ].
Moreover, the inequality is strict unless ρ and ρ∗ are equal up to a translation.

Proof. It is an immediate consequence of the preservation of the Lp norm, for any p � 1, by the symmetric rear-
rangement, and of Riesz’ inequality, see [44] for more details. �

Define

M(R) :=
∫

|x|>R

ρ(x)dx.

Lemma 8. (See [50].) There exists a constant K > 0 such that, for any radially symmetric ρ ∈ L1+ ∩ L4/3(R2) and
any R > 0

−
∫

|x|>R

φρρ dx � K M(R)√
R

‖ρ‖L4/3(R2).

For any α � 2, there exists a positive constant C(α) such that

1 − (1 − x)α − xα � C(α)x (1 − x) ∀x ∈ (0,1).

With m ∈ (3/2,2), take α = 3m−4
2m−3 > 2. Let Cm := C( 3m−4

2m−3 ) and A be the constant in Lemma 5. If ‖ρ‖Lm(R2) � A,

then ‖ρ‖L4/3(R2) � MθA1−θ , with θ = 3m−4
4(m−1)

.

Lemma 9. (See [50].) For any radially symmetric ρ ∈ XM such that ‖ρ‖Lm(R2) � A and any R > 0,

G0[ρ] − I 0
M � −

(
CmI 0

M

M2

(
M − M(R)

) + KMθA1−θ

√
R

)
M(R).

Proof. Let ρ1 := ρ IB(0,R) and ρ2 := ρ − ρ1 and φi = φρi
. By Lemma 8

G0[ρ] = κ

m − 1

( ∫

R2

ρm
1 dx +

∫

R2

ρm
2 dx

)
+ 1

2

∫

R2

φ1ρ1 dx + 1

2

∫

R2

φ2ρ2 dx +
∫

R2

φ1ρ2 dx

is bounded from below by

I 0
M−M(R) + I 0

M(R) − KMθA1−θM(R)√
R

.

By Lemma 6 and since I 0
M < 0, with x = M

M(R)
, we get

G0[ρ] − I 0
M + KMθA1−θM(R)√

R
�

[
(1 − x)α + xα − 1

]
I 0

M � −Cmx(1 − x)I 0
M,

so the proof is complete. �
Proof of Theorem 3. Consider a minimizing sequence (ρn)n∈N for Problem 1. We can further assume that all ρn are
radial and such that ‖ρn‖Lm(R2) � A. By Lemma 9, we can also require that the functions ρn are supported in a fixed
ball of radius

R �
(

KM1+θA1−θ

C |I 0 |
)2

.

m M
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Hence, up to the extraction of a subsequence, ρn converges as n → ∞ to some limit ρ0∞ ∈ XM weakly in L1 ∩Lm(R2).
By the Fréchet–Kolmogorov criterion, φρn strongly converges to φρ0∞ in L4(R2), which shows that G0[ρ0∞] = I 0

M .
See [50] for more details.

The expression of ρ0∞ follows from the Euler–Lagrange equations, where the Lagrange multiplier λ0 associated
to the mass constraint comes out to be negative. For the assertion that the Lagrange multiplier is the same for all
minimizers, for any ρ0∞ a minimizer consider the scaling ρμ(x) := μ2ρ0∞(μx). Then the function F(μ) = G0(ρ

μ)

attains a minimum at μ = 1. This means that

2κ

∫

R2

(
ρ0∞

)m
dx − 1

8π

∫∫

R2×R2

ρ0∞(x)ρ0∞(y)

|x − y| dx dy = 0.

So

I 0
M = 3 − 2m

m − 1
κ

∫

R2

(
ρ0∞

)m
dx,

so the Lm norm and the potential energy of all the minimizers is the same. Since

λ0
[
ρ0∞

]
M = κm

m − 1

∫

R2

(
ρ0∞

)m
dx +

∫

R2

φ0∞ρ0∞ dx,

the result follows. �
Up to our knowledge, uniqueness of minimizers for a given mass has not been proved yet, although it seems quite

probable.
As a conclusion to this section, we observe that the inequality G0[ρ] � I 0

M for all ρ ∈ XM can be rewritten as

κ

m − 1
‖ρ‖m

Lm(R2)
dx + |I 1

0 |‖ρ‖
3m−4
2m−3

L1(R2)
� 1

8π

∫∫

R2×R2

ρ(x)ρ(y)

|x − y| dx dy ∀ρ ∈ XM.

Written for ρλ(x) := λ3/2ρ(λx), the right-hand side of the above inequality is independent of λ. By optimizing with
respect to λ > 0, we get∫∫

R2×R2

ρ(x)ρ(y)

|x − y| dx dy � Cm‖ρ‖
3m−4

2(m−1)

L1(R2)
‖ρ‖

m
2(m−1)

Lm(R2)
∀ρ ∈ XM,

with Cm := 16πκ
1

2(m−1) ( m−1
2m−3 |I 1

0 |) 2m−3
2(m−1) . Using κ = 1

m
(2π)1−m, we get

Cm := 8
√

2π m
− 1

2(m−1)

(
m − 1

2m − 3
|I 1

0 |
) 2m−3

2(m−1)

.

By homogeneity, we observe that the constraint ‖ρ‖L1(R2) = M does not play any role anymore and that the inequality
is invariant under scalings.

Corollary 10. Let m ∈ ( 3
2 ,2). For any ρ ∈ L1+ ∩ Lm(R2),∫∫

R2×R2

ρ(x)ρ(y)

|x − y| dx dy � Cm‖ρ‖
3m−4

2(m−1)

L1(R2)
‖ρ‖

m
2(m−1)

Lm(R2)
,

the constant Cm is optimal and the equality case is achieved by

ρ(x) = (−1 − φρ(x)
) 1

m−1+ ∀x ∈ R
2

where ρ is radially symmetric and φρ = 1
4π |·| ∗ ρ.
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3. The case ω �= 0

3.1. The variational problem

Consider now the case ω �= 0 and recall that for a density ρ ∈ L1+(R2), the reduced free energy is

Gω[ρ] = κ

∫

R2

ρm

m − 1
dx − ω2

2

∫

R2

|x|2ρ dx − 1

8π

∫∫

R2×R2

ρ(x)ρ(y)

|x − y| dx dy.

For a given M > 0, the set XM is the set of nonnegative functions ρ with compact support in L1(R2) satisfying
condition (11) and such that

∫
R2 ρ dx = M .

Problem 2. Fix M > 0, m ∈ (3/2,2), and find a critical point of Gω in XM .

Because of the centrifugal force term, Gω is not bounded from below if ω �= 0 and there is therefore no global
minimizer. Our strategy is to find localized minimizers, i.e., functions ρ in XM with compact support and such that
for some R > 0, supp(ρ) ⊂ B(0, r) with r < R and ρ minimizes Gω on the set of functions in XM with support in
B(0,R). From the proof of existence of minimizers in the nonrotational case it can be concluded that there exists a
radius R0 = R0(M) such that the supports of all the minimizers verifying the symmetry condition (11) are contained
in B(0,R0).

3.2. Minimization for densities supported in a fixed ball

As a first step, we fix R > 0 and prove the existence of minimizers with densities supported in the ball B(0,R).
The scheme is basically the one of Section 2, so we shall skip most of the details.

Lemma 11. Consider ρ ∈ Lm(R2), m ∈ (4/3,2), with compact support in B(0,R) for some R > 0. Then

Gω[ρ] � G0[ρ] − ω2

2
R2‖ρ‖L1(R2),

which is bounded from below by I 0
M − ω2R2M/2 with M = ‖ρ‖L1(R2).

Proof. The proof is a straightforward consequence of Lemma 4 after noticing that functions in Lm(R2) with compact
support are also in L1(R2). �
Lemma 12. For any M > 0 and any R > R0(M),

−∞ < I ω
M(R) := inf

{
Gω[ρ]: ρ ∈ XM, supp(ρ) ⊂ B(0,R)

}
< 0.

Proof. The minimizer of the nonrotational problem is an admissible function in XM , and its energy is negative. �
Proposition 13. For any M > 0 and any R > R0(M), there exists a function ρω∞ ∈ XM with supp(ρ) ⊂ B(0,R) such
that Gω[ρω∞] = I ω

M(R). Moreover, there exists λω ∈ R such that

ρω∞ = Am

(
λω + ω2

2
|x|2 − φω∞(x)

) 1
m−1

+
∀x ∈ B(0,R).

Here Am := [m−1
κm

]1/(m−1) and φω∞ denotes the potential associated to the density ρω∞.

Proof. Let (ρω
n )n∈N be a minimizing sequence. There exists ρω∞ ∈ L1 ∩ Lm(R2) such that

ρω
n ⇀ ρω∞ in L1 ∩ Lm(R2).
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As in Theorem 3, ‖ρω∞‖L1(R2) = M and limn→∞ Gω[ρω
n ] = Gω[ρω∞]. On B(0,R), x �→ |x|2 is bounded, so the con-

vergence of
∫

R2 |x|2ρω
n dx to

∫
R2 |x|2ρω∞ dx is straightforward. �

Observe that we have not proven yet that supp(ρω∞) ⊂ B(0, r) for some r < R with R well chosen, i.e., that ρω∞ is
a localized minimizer. This is the purpose of the next section, at least when ω is small.

3.3. Existence of a localized minimizer for small values of ω

For a given R > 0, the family (ρω∞)ω is uniformly bounded in Lm(R2) as ω → 0. This follows from (12) written
for ρ = ρω∞, namely

κ

m − 1
‖ρ‖m

Lm(R2)
− C

2
‖ρ‖2θ

L1(R2)
‖ρ‖2(1−θ)

Lm(R2)
� G0[ρ] = Gω

[
ρω∞

] + ω2

2

∫

R2

|x|2ρω∞ dx <
ω2

2
MR2

using Gω[ρω∞] = I ω
M(R) < 0. Hence, (ρω∞)ω is weakly relatively compact in L1 ∩ Lm(R2) as ω → 0 and, up to a

subsequence, the limit can be identified with a minimizer ρ0∞ for the nonrotational case.

Theorem 14. Let ρω∞ be a minimizer in the sense of Proposition 13, for some R > R0(M). Then, up to a subsequence,
(ρω∞)ω strongly converges in L1 ∩ Lm(R2) as ω → 0 to a radial minimizer ρ0∞ of Problem 1 verifying condition (11).

Proof. Let ρ∞ be the weak limit of a convergent subsequence (ρn)n∈N = (ρ
ωn∞ )n∈N, with limn→∞ ωn = 0. Since ρn

is a minimizer of I ωn

M (R) and any limit ρ0∞ is in the corresponding set of admissible functions, it follows that

Gωn

[
ρ0∞

] − ω2
n

2

∫

R2

|x|2ρ0∞ dx � Gωn[ρn] � G0[ρn] − ω2
n

2
MR2 � G0

[
ρ0∞

] − ω2
n

2
MR2,

thus showing that G0[ρ∞] = limn→∞ Gωn[ρn] = I 0
M using arguments similar to those of Theorem 3: (ρn)n∈N is a

minimizing sequence for Problem 1. If the convergence in Lm(R2) was not strong, then we would get G0[ρ∞] < I 0
M .

Up to the extraction of a further subsequence, the convergence also holds almost everywhere and in L1(R2). Using
condition (11), the proof is complete. �
Corollary 15. Let λω be defined as in Proposition 13. Then limω→0 λω = λ0 where λ0 is defined in Theorem 3.

Proof. Since up to a subsequence φω∞ strongly converges to some φ0∞ in L4(R2), the result follows from the obser-
vation that on B(0,R0(M)),

λω =
(

1

Am

ρω∞
)m−1

− ω2

2
|x|2 + φω∞ →

(
1

Am

ρ0∞
)m−1

− ω2

2
|x|2 + φρ0 = λ0 a.e.

and the fact that the Lagrange multiplier is the same for all the minimizers of the nonrotational case. �
Lemma 16. Let ω > 0 and assume that Problem 2 admits a localized minimizer, ρω∞. Then there exists ε > 0 such that
ρω∞ ∈ L2+ε(R2).

Proof. Take μ > λω + ω2

2 R2, and observe that by Proposition 13,
∫

R2(ρ
ω∞)2+ε dx = A2+ε

m (I1 + I2) with

I1 :=
∫

|φω∞|<μ

(
λω + ω2

2
|x|2 − φω∞

) 2+ε
m−1

+
dx � M

(
μ − |λω| + ω2

2
R2

) 2+ε
m−1 −1

,

I2 :=
∫

ω

(
λω + ω2

2
|x|2 − φω∞

) 2+ε
m−1

+
dx � 2

μs

∫
ω

(
φω∞

) 2+ε
m−1 dx,
|φ∞|�μ |φ∞|�μ
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with s = q − 2+ε
m−1 > 0, 1/q = 1/m − 1/2 as given by Lemma 4, and with both integrals I1 and I2 restricted to the

support of ρω∞. Now, also from the first part of Lemma 4, the result will follow as long as ε is small. �
Lemma 17. The potential φω∞ is a continuous function.

Proof. By Hardy’s inequality, for any x, y ∈ R
2,

∣∣φω∞(x) − φω∞(y)
∣∣ �

∥∥ρω∞
∥∥

L2+ε (R2)

( ∫
K

∣∣∣∣ 1

|z − x| − 1

|z − y|
∣∣∣∣

2+ε
1+ε

dz

) 1+ε
2+ε

with K := B(x,R) ∪ B(y,R). �
Corollary 18. With the above notations, there exists φ0∞ such that, up to a subsequence,

lim
ω→0

∥∥φω∞ − φ0∞
∥∥

L∞(R2)
= 0.

Proof. This is an easy consequence of Theorem 14 and Lemma 17. �
Corollary 19. For any ε ∈ (0,1), there exists ωε such that supp(ρω∞) ⊂ B(0, (1 + ε)R0) for any ω ∈ (0,ωε).

As a consequence, for any R > R0, if ω is small enough, ρω∞ is a localized minimizer for Problem 2. This proves
Theorem 1(i).

Proof. Since a minimizer ρ0∞ of Problem 1 is radial, it solves the following fixed point identity

φ0∞(r) = − 1

2π

∞∫
0

s

r
f

(
s

r

)
ρ0∞(s) ds, ρ0∞(r) = (

λ0 − φ0∞(r)
) 1

m−1+ I[0,R](r),

where λ0 is implicitly fixed by the condition: 2π
∫ ∞

0 ρ0∞(r)r dr = M . By writing the kernel − 1
4π |x| in radial coordi-

nates and by integrating with respect to the angle, we obtain

f (t) =
π∫

0

dθ√
1 + t2 − 2t cos θ

.

See [50] for more details. A simple calculation shows that

dφ0∞
dr

(r) = 1

2πr2

∞∫
0

π∫
0

1 − (s/r) cos θ

(1 + s2/r2 − 2(s/r) cos θ)3/2
dθρ0∞(s)s ds,

so that the potential φ0∞ is an increasing function at least for |x| � R0.
Take R = (1 + ε0)R0 and consider minimizers ρω∞ supported in the ball B(0,R). For any ε ∈ (0, ε0), we define

Aε := B(0,R) \ B(0, (1 + ε)R0). Because of the monotonicity property of φ0∞, there exists δ = δ(ε) such that

λ0 − φ0∞ < −2δ ∀x ∈ Aε .

By Corollaries 15 and 17, for ω small enough,

λω − φω∞ + ω2

2
|x|2 < −δ ∀x ∈ Aε,

which proves that supp(φω∞) ⊂ B(0, (1 + ε)R0). �
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3.4. There are no solutions for large values of ω

Lemma 20. Let ω1 > ω2 � 0 and consider two minimizers ρ
ω1∞ and ρ

ω2∞ in the sense of Proposition 13. Then

(i) Gω[ρω1∞ ] � Gω[ρω2∞ ],
(ii)

∫
R2 |x|2ρω1∞ dx �

∫
R2 |x|2ρω2∞ dx.

Proof. Since ρ
ω2∞ is a minimizer for angular velocity ω2, we observe that

κ

m − 1

∫

R2

(
ρω2∞

)m
dx − 1

2
ω2

2

∫

R2

|x|2ρω2∞ dx − 1

8π

∫∫

R2×R2

ρ
ω2∞ (x)ρ

ω2∞ (y)

|x − y| dx dy

� κ

m − 1

∫

R2

(
ρω1∞

)m
dx − 1

2
ω2

2

∫

R2

|x|2ρω1∞ dx − 1

8π

∫∫

R2×R2

ρ
ω1∞ (x)ρ

ω1∞ (y)

|x − y| dx dy

� κ

m − 1

∫

R2

(
ρω1∞

)m
dx − 1

2
ω2

1

∫

R2

|x|2ρω1∞ dx − 1

8π

∫∫

R2×R2

ρ
ω1∞ (x)ρ

ω1∞ (y)

|x − y| dx dy

which is the statement of (i). By adding the following two inequalities

κ

m − 1

∫

R2

(
ρω1∞

)m
dx − 1

2
ω2

2

∫

R2

|x|2ρω1∞ dx − 1

8π

∫∫

R2×R2

ρ
ω1∞ (x)ρ

ω1∞ (y)

|x − y| dx dy

� κ

m − 1

∫

R2

(
ρω2∞

)m
dx − 1

2
ω2

2

∫

R2

|x|2ρω2∞ dx − 1

8π

∫∫

R2×R2

ρ
ω2∞ (x)ρ

ω2∞ (y)

|x − y| dx dy

and

κ

m − 1

∫

R2

(
ρω2∞

)m
dx − 1

2
ω2

1

∫

R2

|x|2ρω2∞ dx − 1

8π

∫∫

R2×R2

ρ
ω2∞ (x)ρ

ω2∞ (y)

|x − y| dx dy

� κ

m − 1

∫

R2

(
ρω1∞

)m
dx − 1

2
ω2

1

∫

R2

|x|2ρω1∞ dx − 1

8π

∫∫

R2×R2

ρ
ω1∞ (x)ρ

ω1∞ (y)

|x − y| dx dy,

we obtain (ii). �
Lemma 21. Let ρω∞ be a critical point for Problem 2. There exists a positive constant C such that, if ρ0∞ is a radial
minimizer for Problem 1, then

ω2 � C∫
R2 |x|2ρ0∞(x) dx

.

Proof. Observe that if ρω∞ ∈ XM , the rescaled functions x �→ ρ
ω,λ∞ (x) := λ2ρω∞(λx) are also in XM for any λ > 0.

Hence the function Fω(λ) := Gω[ρω,λ∞ ] attains a minimum at λ = 1, which means that

2κ

∫

R2

(
ρω∞

)m
dx + ω2

∫

R2

|x|2ρω∞ dx − 1

8π

∫∫

R2×R2

ρω∞(x)ρω∞(y)

|x − y| dx dy = 0,

ω2 = −2κ
∫

R2(ρ
ω∞)m dx + 1

8π

∫∫
R2×R2

ρω∞(x)ρω∞(y)

|x−y| dx dy∫
R2 |x|2ρω∞ dx

.

On the one hand, by Lemma 20(ii),

ω2 � − G0[ρω∞]
(m − 1)

∫ |x|2ρω dx
� | G0[ρω∞] |

(m − 1)
∫ |x|2ρ0 dx

.

R2 ∞ R2 ∞
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On the other hand, by (12),

∣∣G0
[
ρω∞

]∣∣ � C

2
M2θ

∥∥ρω∞
∥∥2(1−θ)

Lm(R2)
− κ

m − 1
‖ρω∞‖m

Lm(R2)

is bounded because the function t �→ C
2 M2θ t2(1−θ) − κ

m−1 tm is bounded on R
+ for any m ∈ (3/2,2). �

Since all the minimizers for the nonrotational setting have the same Lm norm, by interpolation,
∫

R2 |x|2 ρ0∞(x) dx

can be uniformly bounded by a constant which depends only on the mass and I 0
M , and we obtain the statement (ii) of

Theorem 1.

3.5. A continuation method for radial minimizers

Lemma 22. Let ρ be a nonnegative radial function and assume that supp(ρ) ⊂ B(0,R) for some R > 0. If for some
x0 ∈ R

2 \ B(0,R) x0 · (∇φρ(x0) − ω2x0) � 0 holds, where φρ = − 1
4π |·| ∗ ρ, then x0 · (∇φρ(μx0) − ω2(μx0)) < 0 for

any μ > 1.

Proof. If ρ is a radial function,

φρ(x) = − 1

4π

∫

R2

ρ(y)

|x − y| dy

can be rewritten as

φρ(x) = − 1

4π

∞∫
0

sρ(s)

π∫
−π

dθ√
r2 + s2 − 2rs cos θ

= − 1

2π

∞∫
0

ρ(s)
s

r
f

(
s

r

)
ds

with r = |x| and

f (t) :=
π∫

0

dθ√
1 + t2 − 2t cos θ

.

Hence

x

|x| · ∇φρ(x) = 1

2π

∞∫
0

ρ(s)
s

r2

[
f

(
s

r

)
+ s

r
f ′

(
s

r

)]
ds.

We observe that

f (t) + tf ′(t) =
π∫

0

1 − t cos θ

(1 + t2 − 2t cos θ)3/2
dθ

is nonnegative for t < 1, that is s < r . If ρ is radial, supp(ρ) ⊂ B(0,R) and x ∈ R
2 \ B(0,R), then

x

|x| · ∇φρ(x) > 0.

Moreover, for any t ∈ (0,1),

d

dt

[
t2(f (t) + tf ′(t)

)] =
π∫

0

t
(3 cos(2θ) + 1)t2 − 8 cos θt + 4

2(t2 − 2 cos θt + 1)5/2
dθ

= t
(t − 1)2K(4t/(t + 1)2) + (3 − t2)E(4t/(t + 1)2)

2
√

2
,

(t − 1) (t + 1)
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where K and E are respectively the complete elliptic integrals of the first and second kind, and satisfy the relations

K(0) = π

2
and 0 � dK

dk
=

1∫
0

dt√
(1 − t2)[1 − (1 − k2)t2] = E(k)

k(1 − k2)
− K(k)

k
.

Since K and E take positive values for t ∈ (0,1), it follows that K(4t/(t + 1)2) and E(4t/(t + 1)2) take positive
values for t ∈ (0,1). Hence

d

dt

[
t2(f (t) + tf ′(t)

)]
� 0

and we conclude that μ �→ x
|x| · ∇φρ(μx) is decreasing for μ > 1. �

Consider a critical point ρ of Gω and assume that ρ is radial and compactly supported. Then ρ can be explicitly
written in terms of its own potential, which amounts to consider the integral equation

ρ(x) = Am

(
λ[ρ] + ω2

2
|x|2 − φω∞(x)

) 1
m−1

+
where φω∞ = − 1

4π | · | ∗ ρ.

We can also define R1[ρ] := min{r > 0: supp(ρ) ⊂ B(0, r)} and notice that for any x ∈ ∂B(0,R1[ρ]), λ[ρ] =
φω∞(x) − ω2

2 |x|2. Let

h[ρ] := sup

{
φω∞(x) − ω2

2
|x|2: |x| > R1[ρ]

}
.

From Lemma 22, we deduce the

Corollary 23. Let ρ be a nonnegative radial compactly supported function in L(R2). If ρ is a critical point of Gω

such that
∫

R2 ρ dx = M and h[ρ] > λ[ρ], then x · (∇φρ − ω2x) > 0 for any x ∈ ∂B(0,R1[ρ]).

As in Section 1.5, define S ω
M,rad as the set of radial localized minimizers with angular velocity ω. We recall that by

definition of a radial localized minimizer, for any ρω∞ ∈ S ω
M,rad, there exists ε[ρω∞] > 0 such that

Gω

[
ρω∞

] = min

{
Gω[ρ]: ρ ∈ Lrad(R

2), supp(ρ) ⊂ B
(
0,R1

[
ρω∞

] + ε
[
ρω∞

])
and

∫

R2

ρ dx = M

}

where Lrad(R
2) is the set of nonnegative radial functions ρ in L1(R2). Notice that the assumption (11) is automatically

satisfied.

Proof of Theorem 2. We have already seen in Section 3.3 that P rad
0 is true. Now fix ω0 > 0 such that P rad

ω is true in
[0,ω0]. First of all observe that, up to a subsequence, ρω∞ converges strongly in L1 ∩ Lm(R2) as ω → ω0 to a radial
localized minimizer ρ

ω0∞ . It is also true that λ(ρω∞) → λ(ρ
ω0∞ ). Moreover, it is easy to see that Lemmata 16 and 17, and

Corollary 18 also hold for ω → ω0. So, in order to complete the proof we only need to get an analog of Corollary 19.
But to do so, only the monotonicity property of the potential in a small neighborhood of the support of ρ

ω0∞ is needed.
In our case this is ensured by Corollary 23. �
3.6. Strict localized minimizers

In the nonrotational case the minimizer is radial. Here by radial we mean radial in the plane, or axially symmetric if
we consider the three-dimensional flat system, with mass concentrated on the plane. The key point is the fact that the
potential energy term is decreased under symmetric rearrangements whereas the other term appearing in the energy
remains unchanged. On the other hand, in the rotational case the term

∫
R2 |x|2ρ dx behaves in the opposite direction,

and the resulting behaviour of the energy is unclear. Is the minimizer of the rotational problem radial? We have no
answer yet for this question, although it seems reasonable to expect that minimizers are not radial at least for angular
velocities large enough.
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The strategy of proof for radial localized minimizers (Lemma 22) cannot be extended to the nonradial case, as it is
shown by the following result.

Proposition 24. Assume that supp(ρ) ⊂ B(0,R) for some R > 0. There exists t0 ∈ (1,
√

3/2) such that, if for some
x0 ∈ B(0, t0 R)c ,

x0 · (∇φρ(x0) − ω2x0
)
� 0, (13)

and if we define

t �→ f (t) := x0 · (∇φρ(tx0) − ω2(tx0)
)
,

then f ′ takes negative values for any t > t0. Alternatively, if supp(ρ) ⊂ B(0,3R/5), the same result holds with t0 = 1.
On the contrary, there exists a nonnegative function ρ ∈ L1(R2) with supp(ρ) ⊂ B(0,R) for some R > 0 such that

f defined as above takes negative (respectively, positive) values in an interval (1,1 + ε) (respectively (1 + ε,1 + 2ε))
for some ε > 0.

Proof. This proof is based on a computation. We start with the following observations:

(1) x0 · y � |x0|2 for any y ∈ supp(ρ), so that

−x0 · (x0 − y)

|x0 − y|3 � 0.

(2) Using the expression of φρ , we get

f (t) =
∫

R2

x0 · (tx0 − y)

|tx0 − y|3
ρ(y)

4π
dy − tω2|x0|2.

(3) Assumption (13) means f (1) � 0, that is

ω2|x0|2 �
∫

R2

x0 · (x0 − y)

|x0 − y|3
ρ(y)

4π
dy.

Hence

f (t) �
∫

R2

[
x0 · (tx0 − y)

|tx0 − y|3 − t
x0 · (x0 − y)

|x0 − y|3
]

ρ(y)

4π
dy.

With r := |y|/|x0| ∈ [0,1] and α := (x0 · y)(|x0| |y|)−1 ∈ [−1,1], we observe that

|tx0 − y|2 − |x0 − y|2 = |x0|2
(
t2 − 1 − 2tr(α − 1)

)
� |x0|2(t2 − 1) � 0

for any t � 1. For any given (r,α) ∈ [0,1] × [−1,1], define

g(t) := |x0|
[
x0 · (tx0 − y)

|tx0 − y|3 − t
x0 · (x0 − y)

|x0 − y|3
]
.

We compute

g′(t) = |x0|5
|tx0 − y|5

(
t2 − 2trα + r2 − 3(t − rα)2) − |x0|x0 · (x0 − y)

|x0 − y|3
and either (t2 − 2trα + r2 − 3(t − rα)2) � 0, or not. In the first case, g′(t) � 0. Assume from now on that the second
case holds. With s := rα ∈ [−1,1], this means

0 � t2 − 2st + r2 − 3(t − s)2 = −2t2 + 4st + r2 − 3s2,
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Fig. 1.

which defines a family of domains whose boundary are ellipses Er parametrized by r ∈ [0,1], all of them contained
in E1 corresponding to r = 1, which is itself included in the half-plane corresponding to s > 0 and has a nonempty
intersection with the half-plane corresponding to t > 1. Using |tx0 − y|5 � |x0 − y|5, we get

g′(t) � |x0|5
|x0 − y|5 (−2t2 + 4st + r2 − 3s2) − |x0|x0 · (x0 − y)

|x0 − y|3 =: h(t)

|x0 − y|5 ,

where

h(t) = −2t2 + 4st − 1 + 3s + r2s − 5s2.

For s > 0, the function h is nonnegative inside a family of ellipses parametrized by r ∈ [0,1], all of them contained in
the one corresponding to r = 1, which itself contains E1. See Fig. 1. However, h(t) < 0 in the half-plane corresponding
to t >

√
3/2 ≈ 1.22474 . . . .

Notice that the condition h(1) > 0 means s ∈ (3/5,1).
For more accurate estimates, one has to use

g′(t) = r2 − 3s2 − 2t2 + 4st

(r2 + t2 − 2st)5/2
− 1 − s

(r2 − 2s + 1)3/2
.

Numerically, one finds that the optimal value for t0 is t0 ≈ 1.17355 . . . , which, for r = 1 and s ≈ 0.898872 . . . , gives
g′(t0) = 0 and g′(t) > 0 for any t ∈ (0, t0). Explicit but ugly algebraic computations can be done, which show that
g′(t) takes negative values in a neighborhood of t = 1+ and changes sign for higher values of t . Details are left to the
reader. �

In Proposition 24, we only used the Poisson equation but did not take into account the fact that we are interested in
the sign of f only for critical points of Gω. It is an open question to decide whether in such a case f is automatically
positive or not.

Because of the above considerations and in order to extend the method which has been proposed for the radial case
to the nonradial one, we have to impose an additional restriction on the notion of localized minimizers.

Definition. A strict localized minimizer ρ is a localized minimizer of Gω for which there exists an open simply
connected set Ω with the two properties:

(1) supp(ρ) ⊂ Ω ,

(2) {x ∈ R2: ρ(x) − ω2

2 |x|2 > λ[ρ]} = Ω \ supp(ρ).
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3.7. A continuation method for nonradial but strict localized minimizers

Define S ω
M as the set of strict localized minimizers. Exactly as for radial minimizers, each ρω∞ ∈ S ω

M can be explic-
itly written in terms of its own potential, which amounts to consider the integral equation

ρω∞(x) = Am

(
λ
[
ρω∞

] + ω2

2
|x|2 − φω∞(x)

) 1
m−1

+
where φω∞ = − 1

4π | · | ∗ ρω∞,

Am := [m−1
κm

]1/(m−1) and λ[ρω∞] < 0 is a parameter which is determined by M , but eventually depends on ρω∞. Let

μ[ρω∞] := minx∈supp(ρω∞)(φ
ω∞(x) − ω2

2 |x|2) and consider the set of paths

Γ
[
ρω∞

] :=
{
γ ∈ C0([0,∞);R

2): γ (0) ∈ supp
(
ρω∞

)
, (φeff)

ω∞
(
γ (0)

) = μ
[
ρω∞

]
, lim
s→∞

∣∣γ (s)
∣∣ = ∞

}

where (φeff)
ω∞(x) := φω∞(x) + ω2

2 |x|2. Along a path γ ∈ Γ [φω∞], define the highest altitude of the effective potential
(φeff)

ω∞ as

h
[
γ,ω,ρω∞

] := sup
s∈[0,∞)

(
φω∞

(
γ (s)

) − ω2

2

∣∣γ (s)
∣∣2

)
.

We shall say that Property Pω holds true if and only if there exists an open set D(ω) such that for any ρω∞ ∈ S ω
M , there

exists a rotation R around the origin such that

(1) supp(ρω∞) ⊂ R−1(D(ω)),

(2) If φω∞(x) − ω2

2 |x|2 = infγ∈Γ [φω∞] h[γ,ω,ρω∞], then Rx ∈ R
2 \ D(ω).

Observe that, since λ[ρω∞] − h[γ,ω,ρω∞] � 0, Property Pω true implies that every minimizer ρω∞ ∈ S ω
M is a strict

localized minimizer. We could also consider only the case R = Id but this would probably be by far more restrictive.

Theorem 25. For any M > 0, the maximal interval in ω containing ω = 0 for which Property Pω holds true is an
open interval.

Proof. First of all observe that, up to a subsequence, (ρω∞)ω converges strongly to some minimizer ρ
ω0∞ as ω → ω0 in

L1 ∩ Lm(R2). The analogues of Lemmata 16 and 17, and Corollaries 15 and 18 also hold for ω → ω0. Suppose that
Pω0 holds. It follows that for any ρ

ω0∞ ∈ S ω0
M

h
[
γ,ω0, ρ

ω0∞
]
> λ

[
ρω0∞

]
.

By continuity, the same will be true for any ρω∞ ∈ S ω
M as long as |ω − ω0| is small enough. Since Property Pω holds

true for ω → 0, the proof is complete. �
Observe that Theorem 1(i) is a consequence of Theorem 25.
As in the radial case, if we knew that localized minimizers are all strict, then we could characterize the supremum

of ω > 0 such that Pω holds as

sup
{
ω0 > 0: ∀ω ∈ (0,ω0), sup

ρω∞∈S ω
M

(
inf

γ∈Γ [ρω∞]
h
[
γ,ω,ρω∞

] − λ
[
ρω∞

])
> 0

}
.

4. Concluding remarks

4.1. Ground states and critical points

In the porous medium context, ground states, or to be precise, nonnegative solutions converging to 0 at infinity,
have been studied already long ago, see for instance [22,21]. It has been proved that such solutions may have several
connected components. It has also to be noted that such ground states are not minimizers of an energy, but only critical
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points, which can be somewhat misleading from the point of view of physics. There is usually no external potential to
interact with.

From a variational point of view, after the seminal paper [31], a very extended literature has been devoted to the
construction of critical points concentrated at specific locations determined by an external potential, and it is out of
the scope of this paper to review even the latest contributions. Finding such critical points has however been done
mostly in the context of the Schrödinger operator and we are not aware of any contribution which applies to porous
media equations coupled to the gravitational Poisson equations.

4.2. Fluid models and axial symmetry

Various stationary solutions of fluid models have been studied. In [42], the existence of steady, compactly sup-
ported, axisymmetric solutions of the Euler–Poisson system in the three-dimensional space is considered, for pre-
scribed mass and angular momentum. In this paper, the author proves that stationary solutions, which are seen as
critical points of a free energy functional, exist as long as the angular velocity is not too big, whereas no solution
exists for angular velocities bigger than some critical value. This result is quite similar to Theorem 1, but in a three-
dimensional setting and in the case of axisymmetric densities. Let us emphasize that a function f is axisymmetric if,
in a cylindrical coordinates system (r, θ, z) ∈ [0,∞) × [0,2π) × R, f only depends on r and z. We will use below a
weaker notion of partial symmetry.

Steady, spherically symmetric solutions of the three-dimensional Euler–Poisson system are also considered in [45],
but instead of fixing the mass as a constraint, the authors prescribe the value of the central density, i.e., the density at
the origin. They prove the existence of steady solutions as long as the central density is bigger than some critical value
which depends on the angular velocity. Moreover, for a fixed central density, the radius of the support increases with
angular velocity.

Concerning the existence of solutions with fixed mass and large angular momenta, but without symmetry assump-
tion, McCann in [47] builds critical points of the free energy functional made of solutions with support splitted into
two disjoint components, rotating at constant angular velocity. To each component is associated a mass, and the mass
ratio is specified. Such critical points are local minimizers, where local has to be understood with respect to the
Wasserstein metric, see [47] for more details.

The results of our paper are concerned with the simplified situation of flat systems, but such a simplified framework
allows us to give more detailed results, for instance on the continuation of the solutions or on how to characterize the
critical angular velocity.

4.3. Scalings

The centrifugal force term in the free energy introduces a length scale. Scalings are therefore of no use to study the
problem corresponding to ω �= 0, fixed, but there is a scaling invariance exactly as in the case ω = 0 if one also varies
ω in terms of the scaling parameter.

Proposition 26. For any M > 0, the critical angular velocities ω∗(M) and ω∗(M) in the sense of Theorems 1 and 25
satisfy

ω∗(M) = M
1
2

m−3
2m−3 ω∗(1) and ω∗(M) = M

1
2

m−3
2m−3 ω∗(1).

Moreover, ρω∞ ∈ XM is a localized minimizer with angular velocity ω if and only if (ρω∞)λ ∈ X1 with ρλ(x) :=
λρ(λ2−mx), λ = M−1/(2m−3), is also a localized minimizer, with angular velocity λ(m−3)/2ω.

For any given ω > 0,

(1) there is a localized minimizer in XM if M > (ω/ω∗(1))2(2m−3)/(m−3),
(2) there is no localized minimizer in XM if M < (ω/ω∗(1))2(2m−3)/(m−3).

Proof. For any λ > 0, let ρλ(x) := λρ(λ2−mx) and observe that supp(ρλ) = λm−2 supp(ρ),∥∥ρλ
∥∥

1 2 = λ2m−3‖ρ‖L1(R2) and Gω2

[
ρλ

] = λ3m−4 Gλ(m−3)/2ω [ρ].

L (R ) 1
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With λ = (M2/M1)
1/(2m−3) and λ(m−3)/2ω2 = ω1, it is clear that ρλ is a localized minimizer of Gω2 if ρ is a localized

minimizer of Gω1 . �
4.4. Dynamical stability

As far as we know, the notion of localized minimizers is new and seems particularly well adapted to gravitational
problems. Such a notion is motivated by the study of the dynamical stability, which is still to be understood. However,
at a formal level, we can state a result and formulate an open problem which should attract interest.

Proposition 27. Fix M > 0 and ω ∈ (0,ω∗(M)) such that Pω holds and consider a strict localized minimizer
ρω∞ ∈ XM with associated Lagrange multiplier λω such that, a.e. on the support of ρω∞,

λω =
(

1

Am

ρω∞
)m−1

− ω2

2
|x|2 + φω∞.

For any ε > 0, sufficiently small, there exists η > 0 such that the following property holds. Let ρ be a solution of the
evolution equation (10), that is

∂tρ = ∇ · [∇ν(ρ) − ω2xρ + ρ∇xφ
]
,

φ = − 1

4π |x| ∗ ρ

with initial datum ρ(x, t = 0) = ρ0 ∈ XM and assume that

Gω[ρ0] < I ω
M + ε.

Then there exists η > 0 such that, if for any t > 0,(
1

Am

ρ(·, t)
)m−1

− ω2

2
|x|2 + φρ(·, t) < λω + f (ε), x ∈ supp

(
ρ(·, t)) a.e., (14)

for some continuous function f with f (0) = 0, f (s) > 0 for any s > 0, then

sup
ρω∞∈S ω

M

∥∥ρ(·, t) − ρω∞
∥∥

Lm(R2)
< η ∀t > 0.

Such a stability result is a rather easy consequence of the localized minimization method developed in this paper,
but proving that a bound like (14) holds for any t > 0 if it holds at t = 0 is an open question.

An alternative approach based on McCann’s approach in [47] can also be used. Since Eq. (10) is formally the
gradient flow of the reduced free energy with respect to the Wasserstein distance, a dynamical stability result should
hold in the corresponding sense.

4.5. Partial symmetry

One of the features that we have not established in this paper is the symmetry breaking, which is known to be
a difficult question. See for instance [11,28] for related issues in the simpler case of the Caffarelli–Kohn–Nirenberg
inequality. Using the Schwarz foliated symmetrization, see for instance [56], the symmetry assumption (11) results in
a partial symmetry property of the localized minimizers which can be described as follows.

Proposition 28. If ρ is a localized minimizers of Gω in the sense of Theorem 1, up to a rotation, in radial coordinates
(r, θ) ∈ (0,∞) × [0,2π),

ρ(r, θ + π) = ρ(r, θ) and ρ(r,2π − θ) = ρ(r, θ),

and for any r > 0, θ �→ ρ(r, θ) is monotone nonincreasing on (0,π/2).

The proof is left to the reader.
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Appendix A. Summary of the notations

To a given energy profile γ , we associate a local Gibbs state

Gf (t, x, v) := γ

(
1

2
|v|2 + φ(t, x) − 1

2
ω2|x|2 + μf (t, x)

)
.

Here Gf is defined with respect to a given distribution function f and μf is the local Lagrange multiplier associated
to the constraint∫

R2

Gf (t, x, v) dv =
∫

R2

f (t, x, v) dv =: ρf . (1)

With μ̄ implicitly by the condition
∫

R2 γ ( 1
2 |v|2 + μ̄(ρ)) dv = ρ, which means that

μ̄(ρ) = Γ −1(ρ) (2)

where Γ (s) := 2π
∫ ∞
s

γ (σ ) dσ , then μf is explicitly given by μf = μ̄◦ρf −φ. At the kinetic level, the main purpose
of the paper is to find a stationary solution (f,φ) of

∂tf + v · ∇xf + ω2x · ∇vf + 2ωv ∧ ∇vf − ∇xφ · ∇vf = Gf − f =: Q(f ),

φ = − 1

4π |x| ∗
∫

R2

f dv, (3)

where Q is a relaxation time approximation kernel. The free energy functional is defined as

Fω[f ] :=
∫∫

R2×R2

[
f

(
1

2
|v|2 − 1

2
ω2|x|2 + 1

2
φ

)
+ β(f )

]
dx dv

with β(s) := ∫ 0
s

γ −1(σ ) dσ .
The reduced free energy functional, is

Gω[ρ] :=
∫

R2

[
h(ρ) +

(
1

2
φ − 1

2
ω2|x|2

)
ρ

]
dx

with h(ρ) = H(μ̄(ρ)) − ρ μ̄(ρ) and H(s) := ∫ s

0 Γ (σ)dσ . Notice that Γ (μ̄(ρ)) = ρ, h′(ρ) = −μ̄(ρ) and Gω[ρ] is

such that Gω[ρ] = Fω[Gρ] with Gρ(x, v) := γ ( 1
2 |v|2 + μ̄(ρ)). In the diffusion limit, with ν(ρ) := 1

2

∫
R2 |v|2γ ( 1

2 |v|2 +
μ̄(ρ)) dv, ρf converges to a solution of the system

∂tρ = ∇ · [∇ν(ρ) − ω2xρ + ρ∇xφ
]
,

φ = − 1

4π |x| ∗ ρ,
(10)

and Gω is the associated free energy functional (Lyapunov functional). Hence finding stationary solutions to (3) or
(10) is equivalent to find critical points of Gω on the set {ρ ∈ L1(R2): ρ � 0 a.e.,

∫
R2 ρ dx = M}.

The case of polytropic gases, or polytropes, corresponds to

γ (s) :=
( −s

k + 1

)k

and μ̄(ρ) = −(k + 1)

(
ρ

2π

) 1
k+1
+
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for some parameter k ∈ R
+. As a consequence, we have

Γ (s) = 2π

( −s

k + 1

)k+1

+
and β(f ) = f q

q − 1
with k = 1

q − 1
⇐⇒ q = 1 + 1

k
,

h(ρ) = κ

m − 1
ρm with m = 2 − 1

q
= 1 + 1

k + 1
, κ = 1

m
(2π)1−m,

and the nonlinear diffusion equation holds with ν(ρ) = κρm.
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