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Abstract

We study the gravitational Vlasov–Poisson system ∂t f + v · ∇xf − E · ∇vf = 0, E(x) = ∇φ(x), �φ(x) = ∫
f (x, v)dv, in

dimension N = 4 where the problem is L1 critical. We proved in [M. Lemou, F. Méhats, P. Raphael, On the orbital stability of the
ground states and the singularity formation for the gravitational Vlasov Poisson system, preprint] a sharp criterion for the global
existence of weak solutions based on the variational characterization of the polytropic steady states solutions. From the existence
of a pseudo-conformal symmetry, this criterion is sharp and there exist critical mass blow up solutions. We prove in this paper the
uniqueness of the critical mass blow up solution. This gives in particular a first dynamical classification of the polytropic stationary
solutions. The proof is an adaptation of a similar result by Frank Merle [F. Merle, Determination of blow-up solutions with minimal
mass for nonlinear Schrödinger equations with critical power, Duke Math. J. 69 (2) (1993) 427–454] for the L2 critical nonlinear
Schrödinger equation.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Nous considérons le système de Vlasov–Poisson ∂t f + v · ∇xf − E · ∇vf = 0, E(x) = ∇φ(x), �φ(x) = ∫
f (x, v)dv, en

dimension N = 4 où le problème est L1 critique. En se basant sur une caractérisation variationnelle des solutions stationnaires
polytropiques, nous avons établi dans [M. Lemou, F. Méhats, P. Raphael, On the orbital stability of the ground states and the
singularity formation for the gravitational Vlasov Poisson system, preprint] un critère optimal garantissant l’existence globale
de solutions faibles pour ce système. L’optimalité de ce critère est une conséquence directe de l’existence d’une symétrie pseudo-
conforme qui permet d’exhiber des solutions explosives de masse critique. Nous démontrons ici l’unicité de la solution explosive de
masse critique. La preuve est une adaptation d’un résultat similaire de Frank Merle [F. Merle, Determination of blow-up solutions
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with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J. 69 (2) (1993) 427–454] pour l’équation
de Schrödinger non linéaire L2 critique.
© 2006 Elsevier Masson SAS. All rights reserved.

1. Introduction

1.1. Setting of the problem

We consider the gravitational Vlasov–Poisson system in dimension 4:

(VP)

⎧⎪⎪⎨
⎪⎪⎩

∂tf + v · ∇xf − Ef · ∇vf = 0, (t, x, v) ∈ R+ × R4 × R4,

f (t = 0, x, v) = f0(x, v) � 0,

Ef (x) = ∇xφf , φf (x) = − 1
4π2

∫
R4

1
|x−y|2 ρf (y)dy,

ρf (t, x) = ∫
R4 f (t, x, v)dv.

(1.1)

It is a generalization of the three dimensional Vlasov–Poisson system which describes the mechanical state of a stellar
system subject to its own gravity, see for instance [5,10] and [7]. From the mathematical point of view, the four
dimensional case is a model problem to study the singularity formation.

From Horst, Hunze [13] and Diperna, Lions [8,9], this system is locally well-posed in the energy space

Ep = {
f (x, v) � 0 with |f |Ep

= |f |L1 + |f |Lp + ∣∣|v|2f ∣∣
L1 < +∞}

for p ∈ (2,+∞]
in the sense that given an initial data f0 ∈ Ep , there exists a maximal time T > 0 and a weak solution f ∈
L∞

loc([0, T ),Ep), and either T = +∞, we say the solution is global, or T < +∞ and then limt→T ||v|2f (t)|L1 = +∞,
we say the solution blows up in finite time. Moreover, this solution satisfies the conservation of the Lp norms:

∀t ∈ [0, T ), ∀q ∈ [1,p], ∣∣f (t)
∣∣
Lq = |f0|Lq , (1.2)

the conservation of the total momentum:

∀t ∈ [0, T ),

∫∫
R4×R4

vf (t, x, v)dx dv =
∫∫

R4×R4

vf (0, x, v)dx dv (1.3)

and a uniform bound on the Hamiltonian:

∀t ∈ [0, T ), H(f (t)) =
∫∫

R4×R4

|v|2f (t, x, v)dx dv −
∫
R4

∣∣Ef (t, x)
∣∣2 dx � H(f0). (1.4)

In this text, by a weak solution we will always mean one constructed in Ep from the standard regularization procedure
and satisfying (1.2), (1.3) and (1.4).

Let us recall that in the framework of weak solutions, the exact conservation of the Hamiltonian is related to the
uniqueness of the solution in the energy space which is a major open problem and is known only for more regular
initial data, see in particular Lions, Perthame [18].

A large group of symmetries in the energy space Ep leaves (1.1) invariant: if f (t, x, v) solves (1.1), then
∀μ0, λ0, x0, v0 ∈ R

∗+ × R
∗+ × R

4 × R
4, so does(

μ0

λ0

)2

f

(
t

λ0μ0
,
x + x0 + v0t

λ0
,μ0(v + v0)

)
.

Note in particular that the two parameter scaling symmetry leaves invariant the quantity

|f |L1 |f |
p

p−2
Lp .

Moreover, (1.1) admits another symmetry which is not in the energy space Ep but in the virial space

Σ = Ep ∩ {|x|2f ∈ L1}, (1.5)
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the so-called pseudo-conformal symmetry: if f (t, x) solves (1.1), then ∀T ∈ R
∗, so does:

fT (τ, x, v) = f

(
T τ

T + τ
,

T x

T + τ
,
(T + τ)v − x

T

)
. (1.6)

The pseudo-conformal symmetry (1.6) formally induces the conservation of the conformal Hamiltonian:

H
(

fT

(
T t

T − t

))
=

(
T − t

T

)2

H
(
f (t)

) + 2(T − t)

T 2

∫∫
R4×R4

v · xf (t, x, v)dx dv

+ 1

T 2

∫∫
R4×R4

|x|2f (t, x, v)dx dv = H
(
f (0)

)
. (1.7)

This property is more often expressed as the virial law for regular solutions [11]:

∀t ∈ [0, T ),
d2

dt2

∫∫
R4×R4

|x|2f (t, x)dx dv = 2H(f0). (1.8)

In particular, given a smooth enough f0 with nonpositive Hamiltonian H(f0) < 0, (1.8) implies that the quantity∫∫ |x|2f (t, x)dx dv must become nonpositive in finite time and thus the solution blows up in finite time.

1.2. Variational structure and critical mass blow up solutions

Using variational tools and the Hamiltonian structure of (1.1), we exhibited in [16,15] a sharp criterion for the
existence of a global weak solution to (1.1). More precisely, let 2 < p < +∞ and Qp be the polytropic stationary
solution to (1.1) given by:

Qp(x, v) =
⎧⎨
⎩ (−1 − |v|2

2 − φp(x))
1

p−1 for |v|2
2 + φp(x) < −1,

0 for |v|2
2 + φp(x) > −1,

(1.9)

where φp is the unique nontrivial radially symmetric nonpositive solution to:{
�φp − γp max{0, (−1 − φp)} 2p−1

p−1 = 0,

φp(r) → 0 as r → +∞,
(1.10)

with

γp = 2π2

1∫
0

2t (1 − t)
1

p−1 dt = 4π2(p − 1)2

p(2p − 1)
.

We proved in [16] the following variational characterization of Qp:

Proposition 1 (Variational characterization of Qp , [16]). Let 2 < p < +∞. Let g ∈ Ep with

H(g) = H(Qp) = 0 and |g|L1 |g|
p

p−2
Lp = |Qp|L1 |Qp|

p
p−2
Lp ,

then there exists μ0, λ0, x0 ∈ R
∗+ × R

∗+ × R
4 such that

g(x, v) =
(

μ0

λ0

)2

Qp

(
x + x0

λ0
,μ0v

)
.

Moreover, we have the sharp Gagliardo–Nirenberg interpolation inequality:

∀f ∈ Ep, H(f ) �
∣∣|v|2f ∣∣

L1

(
1 −

(
|f |L1 |f |

p
p−2
Lp

|Qp|L1 |Qp|
p

p−2
Lp

) p−2
2(p−1)

)
. (1.11)
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The conservation of the Hamiltonian and the Lp norm now implies:

Theorem 1 (Sharp global well posedness criterion, [16]). Let 2 < p < +∞ and f0 ∈ Ep with

|f0|L1 |f0|
p

p−2
Lp < |Qp|L1 |Qp|

p
p−2
Lp , (1.12)

then there exists a global weak solution f ∈ L∞([0,+∞),Ep) to (1.1).

Under (1.12), one in fact expects the solution to asymptotically disperse, this remains to be done. Note also from
(1.11) that, under condition (1.12), the Hamiltonian is nonnegative. Because the solution in this case is global, the
sign of the Hamiltonian can also be deduced from (1.8).

Now a striking feature is that this criterion is sharp. Indeed, the ground state solution f (t, x) = Qp(x) is a global
nondispersive solution to (1.1). We now apply the pseudo-conformal symmetry (1.6) to it and get the explicit finite
time blow up solution

Sp(t, x, v) = Qp

(
x

1 − t
, (1 − t)v + x

)
(1.13)

for which∣∣Sp(t)
∣∣
L1

∣∣Sp(t)
∣∣ p

p−2
Lp = |Qp|L1 |Qp|

p
p−2
Lp .

1.3. Statement of the result

Our aim in this paper is to prove the uniqueness of the critical mass finite time blow up solution to (1.1). We claim:

Theorem 2 (Uniqueness of the critical mass blow up solution). Let 2 < p < +∞. Let f0 ∈ Ep with

|f0|L1 |f0|
p

p−2
Lp = |Qp|L1 |Qp|

p
p−2
Lp

and f be a weak solution to (1.1) which blows up at 0 < T < +∞, i.e.:

lim
t→T

∣∣|v|2f (t)
∣∣
L1 = +∞. (1.14)

Then we have the gain of regularity:

∀t ∈ [0, T ), f (t) ∈ Σ, (1.15)

where Σ is the virial space defined by (1.5). In particular, the pseudo-conformal symmetrization fT given by (1.6) is
in the energy space:

∀τ ∈ [0,+∞), fT (τ ) ∈ Ep.

Assume moreover the exact conservation of the conformal Hamiltonian defined by (1.7):

∀τ ∈ [0,+∞), H
(
fT (τ)

) = H
(
fT (0)

)
. (1.16)

Then, up to the set of symmetries of (1.1), we have

f (t) = Sp(t),

where Sp is the explicit critical mass blow up solution given by (1.13).

Remark 1. Let us recall that the exact conservation of the pseudo-conformal Hamiltonian (1.16) formally holds but
is known only if one assumes more regularity on the initial data, see Lions and Perthame [18].

Similarly like in [16], the proof of Theorem 2 relies on a systematic comparison between (1.1) and the L2 critical
nonlinear Schrödinger equation

(NLS)

{
iut = −�u − |u| 4

N u, (t, x) ∈ [0, T ) × R
N,

u(0, x) = u (x) ∈ H 1(RN), u : RN → C.
(1.17)
0 0



M. Lemou et al. / Ann. I. H. Poincaré – AN 24 (2007) 825–833 829
A sharp criterion for the global well-posedness of the solutions to (1.17) was first derived by Weinstein, [24], and again
the existence of critical mass blow up solutions holds as a consequence of an explicit pseudo-conformal symmetry.
Let us say that in the context of nonlinear dispersive equations, the existence or the nonexistence of critical mass blow
up solutions, and then their possible classification, is in general a difficult open problem. For (1.17), the classification
is a fundamental result by Merle, [21]. But for example, if we now consider (1.17) on a domain Ω in R2:⎧⎨

⎩
iut = −�u − |u|2u, (t, x) ∈ [0, T ) × Ω,

u|∂Ω = 0,

u(0, x) = u0(x) ∈ H 1(Ω), u0 : R2 → C

then the existence of critical mass blow up solutions is known, see Burq, Gérard and Tzvetkov [6], but their classifi-
cation is a major open problem. On the other hand, if we consider the critical generalized KdV equation

(KdV)

{
ut + (uxx + u5)x = 0, (t, x) ∈ [0, T ) × R,

u(0, x) = u0(x) ∈ H 1(R), u0 : R → C

which shares the same variational structure like (1.17), then there are no critical mass blow up solutions, see Martel
and Merle, [19].

More generally, Theorem 2 lies in the framework of obtaining a dynamical classification of the stationary polytropic
solution among the solutions to the Hamiltonian system. This kind of issues has turned out to be fundamental for the
description of the asymptotic dynamics of (NLS) and (KdV) type equations both in the subcritical and critical cases,
see for example Martel and Merle [20], Merle and Raphaël [23]. Let us stress that there is in this context a major
difference between (NLS) or (KdV) type systems and the gravitational (VP) system. The variational study of the
first class of problem as pursued by Berestycki, Lions [4], Weinstein [24], Kwong [14], exhibits a unique ground
state solitary wave up to the set of H 1 symmetries which is isolated among the set of stationary solutions – up to a
finite number of parameters related to the symmetries of the equation. This is in deep contrast with the (VP) system
where both in dimensions 3 and 4, any smooth enough convex functional j generates a solitary wave, see [16,3].
The polytropic steady state Qp corresponds to j (f ) = f p , see [16] for a further discussion. Applying the pseudo-
conformal symmetry to these solutions yields explicit finite time blow up solutions with a blow up profile arbitrarily
close but not equal to Qp , and thus the asymptotic dynamics of (1.1) are much richer than the one of (NLS) or
(KdV) type of systems. In this context, it is remarkable that Merle’s proof of the classification of the critical mass
blow up solution for (1.17) may still be adapted for (1.1) and the very key here is the existence in both cases of a
pseudo-conformal symmetry.

2. Proof of Theorem 2

The proof of Theorem 2 is an adaptation of the original proof by Merle for the L2 critical (NLS), [21], and incor-
porates the technical simplifications further obtained by Merle [22], Antonini [1], Banica [2], Hmidi and Keraani [12].
Let us briefly recall the strategy.

Let f (t, x) be a critical mass finite time blow up solution. We may assume up to a fixed rescaling that |f |L1 =
|Qp|L1 . The variational characterization of the ground state Qp , Proposition 1, together with the conservation of the
Hamiltonian and the Lp norm imply that the solution forms a Dirac mass in L1 as t → T at some point x(T ):

ρf

(
t, · + x(t)

) =
∫
R4

f
(
t, · + x(t), v

)
dv ⇀ |Q|L1δx=x(T ) as t → T .

The fact that the point x(t) remains bounded in space is an issue we will have to deal with. Now observe that the mass
that is put into blow up equals the total and conserved amount of L1 mass of the initial data from the critical mass
assumption, and in this sense the solution is nondispersive. The key is now to prove that even though there is a priori
an infinite speed of propagation of mass due to the blow up solution – the support in v is unbounded, the fact that
there is no mass away from the blow up point at time T implies that there was “no mass” far away at time zero. This
is measured in term of the weighted norm:

|x|2f (0) ∈ L1 and
∣∣∣∣x − x(T )

∣∣2
f (t)

∣∣
1 → 0 as t → T .
L
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This is the gain of regularity (1.15) which is the heart of the proof. Now a global obstructive argument based on the
pseudo-conformal symmetry and the variational characterization of Qp allows one to conclude.

Proof. Let f0 ∈ Ep such that the corresponding weak solution f (t) to (1.1) blows at time 0 < T < +∞ and satisfies
the hypothesis of Theorem 2. Up to a fixed rescaling of the initial data and using (1.2), we may without loss of
generality assume:

∀t ∈ [0, T ),
∣∣f (t)

∣∣
L1 = |Qp|L1 and

∣∣f (t)
∣∣
Lp = |Qp|Lp . (2.18)

Step 1. The solution is nondispersive. Let

h(t, x) = f

(
t, λ(t)x,

v

λ(t)

)
with λ(t) =

( ||v|2Qp|L1

||v|2f (t)|L1

)1/2

,

then from (2.18):∣∣h(t)
∣∣
L1 = |Qp|L1 ,

∣∣h(t)
∣∣
Lp = |Qp|Lp ,

∣∣|v|2h(t)
∣∣
L1 = ∣∣|v|2Qp

∣∣
L1 . (2.19)

Moreover, from (1.4),

H
(
h(t)

) = λ2(t)H
(
f (t)

)
� λ2(t)H

(
f (0)

)
,

and thus the blow up assumption on f (t), i.e. λ(t) → 0, implies:

lim sup
t→T

H
(
h(t)

)
� 0. (2.20)

From standard concentration techniques as introduced by Lions, [17], and the variational characterization of Qp , see
explicitly Proposition 5.1 in [16], (2.19) and (2.20) imply the existence of y(t) ∈ RN such that

h
(
t, x + y(t), v

) → Qp in Ep as t → T .

In particular, this shows that f (t) does not disperse and accumulates all its L1 mass at blow up time:

ρf

(
t, · + x(t)

) =
∫
R4

f
(
t, · + x(t), v

)
dv ⇀ |Q|L1 δx=0 as t → T , (2.21)

where x(t) = λ(t)y(t).
Step 2. Refined Cauchy–Schwarz inequality. We claim the following refined Cauchy–Schwarz inequality which is

crucial for the control of the flux type of terms: ∀g ∈ Ep with |g|L1 |g|
p

p−2
Lp � |Qp|L1 |Qp|

p
p−2
Lp , ∀φ(x) ∈ C∞(R4),∣∣∣∣

∫∫
R4×R4

∇xφ · vg(x, v)dx dv

∣∣∣∣ �
(
H(g)

)1/2
( ∫∫

R4×R4

|∇xφ|2 g(x, v)dx dv

)1/2

. (2.22)

Indeed, let a ∈ R and ga(x, v) = g(x, v − a∇φ), then |ga|L1 |ga|
p

p−2
Lp � |Qp|L1 |Qp|

p
p−2
Lp implies H(ga) � 0

from (1.11). Now H(ga) is a second order polynomial in a which discriminant must be nonpositive, this is (2.22).
Step 3. Control of the concentration point. We now claim that the concentration point x(t) does not run to infinity

as t → T :

∃R0 > 0 such that ∀t ∈ [0, T ),
∣∣x(t)

∣∣ � R0. (2.23)

Indeed, this follows from (2.21) and the fact that f is L1 compact at blow up time:

∀ε > 0, ∃A > 0 such that ∀t ∈ [0, T ),

∫
|x|>A

ρf (t, x)dx < ε. (2.24)

Proof of (2.24): Let φ(x) be a bounded C∞(R4) function. Multiplying (1.1) by φ and integrating on R4 × R4 gives:

d

dt

∫
4

φ(x)ρf (t, x)dx =
∫∫
4 4

∇xφ · vf (t, x, v)dx dv. (2.25)
R R ×R
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Remark that this calculation can be justified when f is a weak solution of (1.1) by a standard truncation argument (i.e.
by replacing φ by a regularization of φ1|x|<R1|v|<R then passing to the limit as R → +∞).

We now apply (2.25) with φ(x) = χA(x) = χ( x
A

) for some smooth radially symmetric cut off function χ(r) = 0
for r � 1/2, χ(r) = 1 for r � 1, and estimate the right-hand side using (2.22) and (1.4) to conclude:∣∣∣∣ d

dt

∫
R4

χA(x)ρf (t, x)dx

∣∣∣∣ �
(
H

(
f (t)

))1/2
( ∫

R4

|∇xχA|2 ρf (t, x)dx

)1/2

� C

A

(
H(f0)

)1/2∣∣f (t)
∣∣ 1

2
L1 = C

A

(
H(f0)

)1/2|f0|1/2
L1 .

Integrating this in time between 0 and t yields: ∀t ∈ [0, T ),∫
R4

χA(x)ρf (t, x)dx � C(f0)T

A
+

∫∫
R4×R4

χA(x)f0(x, v)dx dv � ε

for A large enough, and (2.24) is proved.
Step 4. Dispersive control in the virial space Σ . From (2.23), there exists a point xT ∈ R

4 and a sequence tn → T

such that

x(tn) → xT as n → +∞. (2.26)

Consider now a nonnegative radial cut-off function ψ(r) such that ψ(r) = r2 for r � 1, ψ(r) = 6 for r � 2, and
(ψ ′(r))2 � Cψ(r). Consider then (2.25) with

φ(x) = ψA(x) := A2ψ

( |x − xT |
A

)
, A � 1.

The inequality∣∣∇xψA(x)
∣∣2 � CψA(x)

together with (2.22) and (1.4) yields:∣∣∣∣ d

dt

∫
R4

ψA(x)ρf (t, x)dx

∣∣∣∣ � C
(
H(f0)

)1/2
( ∫

R4

ψA(x)ρf (t, x)dx

)1/2

,

and thus:∣∣∣∣ d

dt

( ∫
R4

ψA(x)ρf (t, x)dx

)1/2∣∣∣∣ � C
(
H(f0)

)1/2
.

An integration between t and tn gives∣∣∣∣
∫
R4

ψA(x)ρf (t, x)dx

∣∣∣∣
1/2

�
∣∣∣∣
∫
R4

ψA(x)ρf (tn, x)dx

∣∣∣∣
1/2

+ C
(
H(f0)

)1/2|tn − t |.

Now (2.21), (2.24) and (2.26) imply:∫
R4

ψA(x)ρf (tn, x)dx → 0 as n → +∞,

hence:

∀A � 1, ∀t ∈ [0, T ),

∣∣∣∣
∫
R4

ψA(x)ρf (t, x)dx

∣∣∣∣
1/2

� C(f0)
(
H(f0)

)1/2
(T − t),

where the constant C(f0) is independent of A. Letting A → +∞, we conclude that

|x|2ρf ∈ L∞(
(0, T ),L1(

R
4))
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and ∫
R4

|x − xT |2ρf (t, x)dx → 0 as t → T . (2.27)

Step 5. Conclusion. The conclusion now follows from a global rigidity property which is a consequence of the
pseudo-conformal symmetry (1.6). Indeed, from f (t) ∈ Σ ,

g(τ, x, v) = f

(
T τ

T + τ
,

T x

T + τ
+ xT ,

(T + τ)v − x

T

)

is a weak solution in Ep of the Vlasov–Poisson system (1.1) defined for τ ∈ [0,∞) with∣∣g(0)
∣∣
L1 = |Qp|L1 and

∣∣g(0)
∣∣
Lp = |Qp|Lp . (2.28)

Remark that, in view of (1.7), we have

g(τ, x, v) = fT

(
τ, x + T + τ

T
xT , v + xT

T

)

so that the Hamiltonian of g can be deduced from the one of fT defined by (1.6) thanks to

H
(
g(τ)

) = H
(
fT (τ)

) − 2
xT

T
·

∫∫
R4×R4

vfT (τ, x, v)dx dv + |xT |2
T 2

∫∫
R4×R4

fT (τ, x, v)dx dv.

Observe now from the conservation of the L1 norm (1.2), the momentum (1.3) and the assumption (1.16) that this
implies the conservation of the Hamiltonian of g(τ):

∀τ ∈ [0,+∞), H
(
g(τ)

) = H
(
g(0)

)
. (2.29)

We now claim:

H
(
g(τ)

) → 0 as τ → +∞. (2.30)

Indeed, a direct calculation gives with t = T τ
T +τ

:

H
(
g(τ)

) = 1

T 2

∫∫
R4×R4

|x − xT |2 f (t, x, v)dx dv + 2

T + τ

∫∫
R4×R4

(x − xT ) · vf (t, x, v)dx dv

+
(

T

T + τ

)2

H
(
f (t)

)
.

The first term and the third term are controlled using respectively (2.27) and (1.4). For the second term, we use (2.22)
with φ(x) = 1

2 (x − xT )2 to derive:∣∣∣∣
∫∫

R4×R4

(x − xT ) · vf (t, x, v)dx dv

∣∣∣∣ � H
(
f (t)

)1/2
( ∫∫

R4×R4

|x − xT |2f (t, x, v)dx dv

)1/2

→ 0 as τ → +∞,

where we used (1.4) and (2.27) in the last step. This concludes the proof of (2.30).
From (2.29) and (2.30), we conclude:

H
(
g(0)

) = 0.

Together with (2.28) and the variational characterization of the ground state given by Proposition 1, this implies

g(0) = Qp,

up to symmetries, and concludes the proof of Theorem 2. �
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