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Abstract

This paper is devoted to the equations of incompressible magnetohydrodynamics (MHD). Its general concern is the “dynamo
effect”, i.e. the growth of magnetic field through the movement of a conducting fluid. Motivated by the so-called “stretch-diffuse
mechanism”, we study the nonlinear stability of solutions (u, b = 0) where the velocity u is a regularized vortex sheet, and the
magnetic component b is zero. We prove that dynamo effect is possible when both curvature of the sheet and magnetic diffusion
are non-zero, and impossible otherwise.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Cet article est consacré aux équations de la magnétohydrodynamique (MHD) incompressible. Le sujet principal en est l’effet
dynamo, c’est-à-dire l’instabilité du champ magnétique, due aux mouvements du fluide conducteur. Motivés par la compréhension
du mécanisme dit d’« étirement-diffusion », nous étudions la stabilité non-linéaire de solutions de la forme (u, b = 0) où la vitesse
u est une feuille de tourbillon régularisée, et la composante magnétique b est nulle. Nous prouvons que l’effet dynamo est possible
si la courbure de la feuille de tourbillon et la diffusion magnétique sont non-nulles, et impossible sinon.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

This paper deals with shear layer solutions of viscous incompressible MHD equations. It is motivated by dynamo
theory. Before we state precisely our main result, let us first specify the general framework.
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The incompressible MHD equations read in a dimensionless form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu + u · ∇u + ∇p − 1

Re
�u = curlb × b + f,

∂tb − curl(u × b) − 1

Rm
�b = 0,

divu = divb = 0.

(1)

They describe the evolution of an incompressible and electrically conducting fluid. They are derived from the incom-
pressible Navier–Stokes equations, the Maxwell equations, and the Ohm’s law in a conducting medium (see [12]).
Functions u = u(t,x) ∈ R

3, b = b(t,x) ∈ R
3 are the fluid velocity and the magnetic field respectively. The source

term f = f (t,x) ∈ R
3 models an external forcing, due for instance to natural convection or mechanical constraints.

The space and time variables are t ∈ R
+, x = (xh, z) = (x, y, z) ∈ Ω ⊂ R

3. We denote

� = ∂2
x + ∂2

y + ∂2
z , ∇ = (∂x, ∂y, ∂z),

and for any v = (vx(x), vy(x), vz(x)) ∈ R
3,

divv = ∂xvx + ∂yvy + ∂zvz, curlv = (∂yvz − ∂zvy, ∂zvx − ∂xvz, ∂xvy − ∂yvx).

Re and Rm are positive constants called the hydrodynamic and magnetic Reynolds numbers. Note that the divergence
free condition on b is preserved by Eq. (1)b. As soon as it is satisfied initially, it is satisfied for all positive times.

In brief, dynamo theory deals with the stability of solutions

(u, b) = (
u(t,x),0

)
of system (1). More precisely, it studies the generation of magnetic field from the fluid flow u. The basic idea is that the
“self-excited” term curl(u× b) may amplify the magnetic field through an exponential instability. As long as the fluid
motion is strong enough, this transfer from kinetic to magnetic energy may thus prevent the decay of the magnetic
field, despite the dissipation term −(Rm−1)�b.

It is widely accepted that dynamo action takes place in the Earth, in the Sun, and in many other planets and
stars. Therefore, the understanding of dynamo mechanisms is a major physical issue. It has been the matter of a huge
literature: we refer to the recent review papers by Gilbert [7] and Fearn [3] for a good introduction and appropriate lists
of references. Note that most of these references are limited to “kinematic dynamos”: the Laplace force is neglected,
and only the induction equation (1)b is considered, at imposed velocity u.

Among the kinematic dynamos that have been suggested, one of the simplest is the Ponomarenko dynamo [11]: in
cylindrical coordinates (r, τ, z), the velocity field is

UP =
{

(0, rΩ,Uz), r < 1,

0, r > 1,

where Ω and Uz are positive constants. The basic idea is the following: due to the shear of u at r = 1, a weak radial
magnetic field br is stretched (through the curl(u×b) term) and gives strong azimuthal field bτ . The radial component
is then renewed by the azimuthal one through diffusion in curved geometry. This is the so-called “stretch-diffuse”
mechanism.

Although it has been the basis of a successful experiment [4], the Ponomarenko dynamo lacks realism. The velocity
field is discontinuous, which is unphysical. Eq. (1)a is not taken into account, which hides the possible influence of
the Laplace force. More generally, it does not account for nonlinearities of system (1). The aim of the present paper is
to remove these restrictions, and to study mathematically the stretch-diffuse mechanism.

We will investigate the stability of solutions (uε,0) of (1), for which the fluid velocity u is some regularized vortex
sheet. More precisely, we will consider flows of the following two types

1. Regularized planar vortex sheets

uε = (
0, uy(x/ε),uz(x/ε)

)
, 0 < ε � 1, (2)

where uy = uy(ζ ) and uz = uz(ζ ) are smooth, constant for |ζ | � 1, and satisfy

lim
ζ→−∞(uy,uz) = (0,0), lim

ζ→+∞(uy,uz) = (Uy,Uz).
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2. Regularized helical vortex sheets

uε = (
ω(s/ε)x⊥

h , uz(s/ε)
)
, 0 < ε � 1, (3)

where s = √
x2 + y2 − 1, ω = ω(ζ ) and uz = uz(ζ ) are smooth, constant for |ζ | � 1, and satisfy

lim
ζ→+∞(ω,uz) = (0,0), lim

ζ→−∞(ω,uz) = (Ω,Uz).

Flows of type (2) and (3), are regularized vortex sheets. Their curl varies in a strip of small width ε, around the surface
Γ : {y = 0}, resp. Γ : {s = 0} . Note that type (3) corresponds to smooth versions of Ponomarenko flows. Note also
that uε is divergence free in both cases.

Remark 1. The results which follow could probably be applied to a larger class of velocity fields, typically

uε = (
ω

(
ϕ(xh)/ε

)∇⊥ϕ(xh), uz

(
ϕ(xh)/ε

))
.

Indeed, most arguments used in the sequel depend on the local properties of Γ : {ϕ(xh) = 0}, and could probably
extend to general functions ϕ. However, it would involve much more technicalities, so that we do not address this
question here.

Remark 2. This article is reminiscent of the former paper [5] by one of the authors. In [5], the emphasis was put on
another dynamo mechanism, generated by solutions (uε,0) of the type:

uε = U
(
x/ε

)
,

with periodic functions U = U(θ). It was shown that these high frequency oscillations were nonlinearly unstable,
leading to instabilities of the magnetic field (“the G.O. Roberts dynamo”). Thus, our paper can be seen as a comple-
ment on small-scale dynamo mechanisms, focusing on concentration effects rather than oscillations.

Substituting u = uε + v into (1), we will rather work with the system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tv + uε · ∇v + v · ∇uε + v · ∇v + ∇p − 1

Re
�v = curlb × b,

∂tb − curl(uε × b) − curl(v × b) − 1

Rm
�b = 0,

divv = divb = 0,

(4)

We will consider domains without boundaries, either Ω = R × T
2
y,z, or Ω = R

2 × Tz, or Ω = T
3. Note that we

consider regularized vortex sheets which are constant outside a compact set of (−π,π)3, so that they can be in
particular considered as periodic. This kind of periodic boundary conditions is very classical in stability problems in
fluid mechanics: it allows to study local instabilities and to avoid complications due to boundary layers. For any given
ε > 0, classical existence theory for Navier–Stokes equations extends straightforwardly to system (4). In particular,
for any (v0, b0) in H 1(Ω)3, divergence-free, there exists a unique maximal strong solution

v, b ∈ C
([0, T );H 1(Ω)3), T = T (ε)

of system (4), with initial data v0, b0.
As briefly described above, the stretch-diffuse mechanism depends on three physical ingredients: the strength of

the shear (for stretching of the magnetic field), the diffusion and the curvature of the sheet (for the renewal process).
We will show rigorously the necessity of these ingredients, through several stability and instability results.

1.1. Antidynamo results

We state here antidynamo results, i.e. stability estimates. We start with the case of planar sheets. In this case, we
work in the domain Rx × T

2
y,z. With a suitable choice of the pressure, we can always assume that the solution verifies∫

vx = 0.
y,z
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We refer to [1] for details. We remind that this condition is necessary to have divergence free vector fields of finite
energy. Therefore, we shall also consider solutions for which the magnetic field verifies∫

y,z

bx = 0.

Note that such condition on the magnetic field is preserved by the evolution. Indeed, the condition gives that
∫
y,z

bx

is independent of x and the equation gives

∂t

∫
y,z

bx =
∫
y,z

∂y

(
(uε + v) × b

)
z
− ∂z

(
(uε + v) × b

)
y

= 0.

We can prove the following stability result.

Theorem 1 (Regularized planar vortex sheets). Let {uε}ε>0 of type (2). There exists δ,C0,C > 0, such that: for all
ε � 1, for all Rm ∈ [1,+∞), and for all

Re−1 > C0

∫
ζ

∣∣(uy,uz)
′(ζ )

∣∣dζ,

system (4) is stable, in the following sense: the strong solutions of (4) are global in time and satisfy

E(v, b)(t) � CE(v, b)(0), ∀t � 0,

if

E(v, b)(0) � δε1/2

Rm7/2
,

where

E(v, b)(t) := ∥∥v(t)
∥∥2 + ∥∥b(t)

∥∥2 + Rm2
∥∥bx(t)

∥∥2 + ε

Rm
‖∇b‖2 + ε‖∇v‖2.

Remark 3. The smallness condition on Re ensures the hydrodynamic stability of the flow.

Remark 4. In the planar geometry, diffusion does not couple the transverse and tangential components of the magnetic
field. This explains why the magnetic energy does not grow.

We now turn to the case of cylindrical sheets, with Ω = R
2 × Tz. The stability estimate of Theorem 1 degenerates

as expressed in

Theorem 2 (Regularized helical vortex sheets). Let {uε}ε>0 of type (3). There exists, C > 0, γ > 0, δ > 0 such that:
for all ε � 1, for Rm = 1/εq, q > 0, and for all Re = O(1), system (4) is stable in the following sense: all strong
solutions v, b satisfy

E(v, b)(t) � C exp(γ t)E(v, b)(0), ∀t ∈ [0, T ),

if

E(v, b)(0) � δε1/2

Rm5/2
,

where

T = T
(
ε,Rm,E(v, b)(0)

)
�

∣∣log
(
Cε−1/2Rm5/2E(v, b)(0)

)∣∣
and

E(v, b)(t) := ∥∥v(t)
∥∥2 + ∥∥b(t)

∥∥2 + Rm
∥∥χbs(t)

∥∥2 + ε

Rm

(∥∥∇b(t)
∥∥2 + ∥∥∇v(t)

∥∥2
),

for some smooth function χ = χ(s) with compact support near s = 0.
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Remark 5. In a curved geometry, diffusion can transfer energy from azimuthal to radial component. This allows am-
plification of the magnetic field, so that we only get an exponential bound. Namely, for Rm and ε almost independent
(since q is arbitrary), the growth of E(b) is controlled by eγ t for γ independent of ε. Hence, we cannot get a dynamo
effect in times less than | logE(b)(0)|.

The estimates can be improved when the magnetic diffusion is weaker. We shall consider the more favorable
geometry Ω = T

3 so that we can assume that
∫

v = ∫
b = 0, and we will make the same assumption as in Theorem 1

for the Reynolds number Re. We can prove:

Theorem 3 (Weak magnetic diffusion). Let {uε}ε>0 of type (3). There exists, C0,C > 0, γ > 0 and δ > 0 such that:
for all ε � 1, for Rm � 1/(ε2ν(ε)) with limε→0 ν(ε) = 0 and for all Re

Re−1 > C0

∫
ζ

|ω′| + |u′
z|dζ

system (4) is stable, in the following sense: all strong solutions v, b satisfy

E(v, b)(t) � C exp
(
γ ν1/3t

)
E(v, b)(0), ∀t ∈ [0, T ),

if

E(v, b)(0) � δε11/2ν13/6,

where

T = T
(
ε,Rm,E(v, b)(0)

)
� 1

γ ν1/3

∣∣log
(
Cε−11/2ν−13/6E(v, b)(0)

)∣∣
and

E(v, b)(t) := ∥∥v(t)
∥∥2 + ∥∥b(t)

∥∥2 + ‖χbs(t)‖2

ε2ν2/3
+ νε3

∥∥∇b(t)
∥∥2 + ε‖∇v‖2,

for some smooth function χ = χ(s) with compact support near s = 0.

Remark 6. Theorem 3 shows stability up to times T = O(ν−1/3), with respect to small enough initial perturbations.
Note that Tν increases when ν goes to zero. It may appear strange at first sight: weakening diffusion has usually a
destabilizing effect. Again, this has to do with the stretch-diffuse mechanism, in which magnetic diffusivity enhances
the magnetic field.

Remark 7. We obtain in Theorem 3 an exponential bound with growth rate O(ν1/3) for small ν. This is consistent
with formal computations of Gilbert [6]. Gilbert studies in [6] linear equation (1)b, for some smooth axisymmetric
flow u (that is ε = 1), and builds formally an exponentially growing solution b, with growth rate O(Rm−1/3). This
suggests that the energy bound in Theorem 3 is optimal.

Remark 8. Again, in Theorem 3, the assumption on the geometry (Ω = T
3) and the assumption on the Reynolds

number Re are sufficient conditions for the hydrodynamical stability of the fluid. It will be clear from the proof that
we can get the same result by keeping the domain Ω = R

2 × Tz and by assuming the restrictive condition Re = ν2/3.

1.2. Dynamo results

We now state a dynamo result, when geometry is curved (uε of type (3)), Ω = R
2 × Tz, and magnetic diffusion is

large enough (we choose Rm = ε−1). Note that in this case, Theorem 2 roughly states that when the initial weighted
energy E(v, b)(0) is under the form ε3+2m for m > 0, we have an estimate of the energy as long as it stays under
the amplitude ε3. This critical amplitude ε3 is the one for which the nonlinear terms in the system begin to play
an important part in the qualitative behavior. We shall prove that the stretch-diffuse mechanism can indeed lead to
dynamo effect: an initial data with energy of order ε3+2m can reach the energy size ε3 on times O(m| ln ε|). After
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these considerations on the scaling, it is natural to study solutions of (1) under the form b = ε3/2b̃, u = uε + ε3/2ṽ so
that forgetting the ,̃ we shall rather work on the system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tv + uε · ∇v + v · ∇uε + ε3/2v · ∇v + ∇p − 1

Re
�v = ε3/2 curlb × b,

∂tb − curl(uε × b) − ε3/2 curl(v × b) − 1

Rm
�b = 0,

divv = divb = 0,

(5)

The dynamo effect is proved by the following nonlinear instability result on (5)

Theorem 4 (Exponential instability). Let {uε}ε>0 of type (3), p, s > 0, Re > 0. Assume Rm = ε−1, and that Ω,Uz = 0,
then for every κ0 > 0 such that

|Ω|2/3

25/3
−

(
1 + Ω2

U2
z

)
> κ0,

there exists κ1 > 0 such that for∣∣∣∣∣
1∫

−1

ω − Ω

Uz

1∫
−1

uz

∣∣∣∣∣ � κ1,

one can find η = η(Re,ω,uz) > 0, times t (ε) = O(| ln(ε)|), and families of smooth solutions {(vε, bε)t }ε>0 of (5) with∥∥(vε, bε)|t=0
∥∥

Hs = O(εp), ε → 0

and

‖bε|t=t (ε)‖2
L2 � η

√
ε, ‖bε|t=t (ε)‖2

L∞ � η.

Remark 9. The solutions of Theorem 4 grow exponentially in time, with growth rate O(1). This shows that instability
develops for times bigger than O(| ln(E(b)(0))|). Thus, the stability result of Theorem 2 cannot be extended to longer
times. Note that the lower bound applies to bε , and not only to (vε, bε). Thus, it is exactly the mathematical expression
of a dynamo: small-scale velocity uε generates destabilization of b = 0.

Remark 10. As will be clear later on, the instability is localized in a boundary layer of size O(
√

ε) around Γ . This
explains why the lower bound of the theorem is O(

√
ε) in the L2 norm and O(1) in the L∞ norm. The derivation of

an O(1) instability in L2 seems much more difficult. Indeed this would require to follow the system on larger times to
see if the layer instability fills the domain.

Remark 11. Again, our proof of dynamo instability is consistent with the seminal paper of Ponomarenko [11], in the
context of linear equation (1)b, with u = UP (see also the first part of [6]). In this simplified setting, the solution b

can be explicitly calculated through Bessel functions. In our framework (ε > 0, nonlinear) such analysis is no longer
possible.

The paper is divided into two main sections. Section 2 is devoted to the antidynamo results, with the proof of
Theorems 1–3. Next Section 3 is devoted to the study of the dynamo effect and the proof of Theorem 4.

2. Stability results

2.1. Proof of Theorem 1

The first step is to use the triangular structure of the singular term for the equation on the magnetic field in (4). We
remind that for divergence-free vector fields v, b,

curl(v × b) = b · ∇v − v · ∇b, curlb × b = b · ∇b + ∇
(

1 |b2|
)

.

2
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The equation for the component bx is

∂tbx + uε · ∇bx + v · ∇bx = 1

Rm
�bx + b · ∇vx

and since ∇ · (uε + v) = 0, we get by a standard energy estimate

1

2

d

dt
‖bx‖2 + 1

Rm
‖∇bx‖2 � ‖bxb‖‖∇vx‖.

Hence after an integration in time, we get

Rm2‖bx‖2 + Rm

t∫
0

‖∇bx‖2 � Rm2
∥∥bx(0)

∥∥2 + CRm2

t∫
0

‖bxb‖‖∇vx‖. (6)

Next, we use the usual energy estimate for the full system (4), we get since

(curlb × b, v) + (
curl(v × b), b

) = 0

the estimate:

1

2

d

dt

(‖b‖2 + ‖v‖2) + 1

Rm
‖∇b‖2 + 1

Re
‖∇v‖2 � 1

ε

∣∣∣∣
∫

bx(u
′
yby + u′

zbz)

∣∣∣∣ + 1

ε

∣∣∣∣
∫

vx(u
′
yvy + u′

zvz)

∣∣∣∣. (7)

To estimate the singular terms, we shall make a crucial use of our geometrical setting and hence of our assumption∫
y,z

vx = 0,

∫
y,z

bx = 0. (8)

To estimate the singular term, we decompose v into

v = v + ṽ, v =
∫
y,z

v,

we can write with k = y, z∫
vxu

′
kvk =

∫
x

u′
k

∫
y,z

vxvk =
∫
x

u′
k

∫
y,z

vxvk +
∫
x

u′
k

∫
y,z

vxṽk

and we notice that the first integral vanishes since thanks to (8), we have∫
y,z

vxvk dy dz = vk

∫
y,z

vx = 0.

To estimate the singular term involving the velocity, we can use the following Sobolev and Poincaré inequalities∣∣f (t, x, ·)∣∣
L2(y,z)

� C‖f ‖1/2‖∂xf ‖1/2, (9)∣∣f (t, x, ·)∣∣
L2(y,z)

�
∣∣∇f (t, x, ·)∣∣

L2(y,z)
, (10)

the second inequality being true if
∫
y,z

f = 0. Consequently, we can write

1

ε

∣∣∣∣
∫

vx(u
′
yvy + u′

zvz)

∣∣∣∣ � 1

ε

∫
x

∣∣∣∣u′
(

x

ε

)∣∣∣∣∣∣ṽ(t, x)
∣∣
L2(y,z)

∣∣vx(t, x)
∣∣
L2(y,z)

dx

� ‖∂xvx‖1/2‖vx‖1/2‖∂xṽ‖1/2‖ṽ‖1/2
∫
ζ

∣∣u′(ζ )
∣∣dζ

� ‖∇v‖2
∫ ∣∣u′(ζ )

∣∣dζ. (11)
ζ
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A similar computation for the singular term involving the magnetic field leads to

1

ε

∣∣∣∣
∫

bx(u
′
yby + u′

zbz)

∣∣∣∣ � C‖∇bx‖‖∇b‖ � 1

2Rm
‖∇b‖2 + CRm‖∇bx‖2. (12)

When∫
ζ

∣∣u′(ζ )
∣∣dζ � 1

2 Re
,

we deduce, using (7) together with (11), (12) that

∥∥b(t)
∥∥2 + ∥∥v(t)

∥∥2 + 1

2Rm

t∫
0

‖∇b‖2 + 1

2 Re

t∫
0

‖∇v‖2 � CRm

t∫
0

‖∇bx‖2. (13)

By appropriate linear combination of (6) and (13), we get

E0(v, b)(t) +
t∫

0

D0(v, b) � CE0(v, b)(0) + CRm2

t∫
0

‖bxb‖‖∇vx‖,

where

E0(v, b)(t) = ∥∥v(t)
∥∥2 + ∥∥b(t)

∥∥2 + Rm2
∥∥bx(t)

∥∥2
,

D0(v, b)(t) = 1

Re
‖∇v‖2 + 1

Rm
‖∇b‖2 + Rm‖∇bx‖2

which gives thanks to the Young inequality

E0(v, b)(t) +
t∫

0

D0(v, b) � CE0(v, b)(0) + CRm4

t∫
0

‖bxb‖2. (14)

The next step is to perform estimates of higher order derivatives. We multiply the equation for b of (4) by −�b, this
yields thanks to the Young inequality

1

2

d

dt
‖∇b‖2 + 1

2Rm
‖�b‖2 �

∣∣(uε · ∇b,�b)
∣∣ + C Rm‖b · ∇uε‖2 + C Rm

(‖v · ∇b‖2 + ‖b · ∇v‖2). (15)

Next, we use that

Rm‖b · ∇uε‖2 � Rm

ε2
‖bxu

′‖2 � C Rm

ε
‖∇bx‖2 (16)

thanks to (9), (10). Additionally, for k = x, y, z,(
uε · ∇b, ∂2

k b
) = −(∂ku

ε · ∇b, ∂kb) − (uε · ∇∂kb, ∂kb) = −(∂ku
ε · ∇b, ∂kb)

since ∇ · uε = 0. This yields the estimate

∣∣(uε · ∇b,�b)
∣∣ � C

ε
‖∇b‖2. (17)

By multiplying the equation for v in (4) by �v, and by using the same kind of estimates as above, we easily get

1

2

d

dt
‖∇v‖2 + 1

Re
‖�v‖2 � C

ε
‖∇v‖2 + C

(‖b · ∇b‖2 + ‖v · ∇v‖2). (18)

Finally, by appropriate linear combination of (14), (15), and (18), using (16) and (17), we get
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E(v, b)(t) +
t∫

0

D(v,b)

� CE(v, b)(0) + C

t∫
0

Rm4‖bxb‖2 + ε
(‖v · ∇b‖2 + ‖b · ∇v‖2 + ‖b · ∇b‖2 + ‖v · ∇v‖2), (19)

where

E(v, b)(t) = ∥∥v(t)
∥∥2 + ∥∥b(t)

∥∥2 + Rm2
∥∥bx(t)

∥∥2 + ε

Rm
‖∇b‖2 + ε‖∇v‖2,

D(v, b)(t) = 1

Re
‖∇v‖2 + 1

Rm
‖∇b‖2 + Rm‖∇bx‖2 + ε

Rm2
‖�b‖2 + ε

Re
‖�v‖2.

To end the proof of Theorem 1, it remains to estimate the nonlinear terms in (19). We shall use extensively the
Gagliardo–Nirenberg inequality

‖f ‖2
L4 � C

(‖f ‖1/2‖∇f ‖3/2 + ‖f ‖2
2

)
� C‖f ‖1/2‖f ‖3/2

H 1 . (20)

Note that lower order terms in (20) disappear as soon as f has zero mean with respect to y, z. Thus, we have

ε

t∫
0

‖b · ∇b‖2 � Cε

t∫
0

‖b‖1/2‖b‖3/2
H 1 ‖∇b‖1/2‖∇b‖3/2

H 1

� Cε1/4 Rm7/4 sup
[0,t]

(‖b‖1/2‖b‖3/2
H 1

) t∫
0

ε

Rm2
‖�b‖2 + 1

Rm
‖∇b‖2

� Cε−1/2 Rm5/2 sup
[0,t]

(
E(v, b)(t ′)

) t∫
0

E(v, b). (21)

In a similar way, we find

ε

t∫
0

‖v · ∇b‖2 � Cε−1/2 Rm7/4 sup
[0,t]

(
E(v, b)(t ′)

) t∫
0

D(v,b), (22)

ε

t∫
0

‖b · ∇v‖2 � Cε−1/2 Rm3/4 sup
[0,t]

(
E(v, b)(t ′)

) t∫
0

D(v,b), (23)

ε

t∫
0

‖v · ∇v‖2 � Cε−1/2 sup
[0,t]

(
E(v, b)(t ′)

) t∫
0

D(v,b). (24)

The only nonlinear term in (19) which requires some care is the term ‖bxb‖2. Since
∫
y,z

bx = 0, we can write

Rm4

t∫
0

‖bxb‖2 � Rm4

t∫
0

‖bx‖1/2‖∇bx‖3/2‖b‖1/2(‖b‖3/2 + ‖∇b‖3/2)

� Rm4

(
sup
[0,t]

‖b‖2

t∫
0

‖∇bx‖2 + sup
[0,t]

‖bx‖1/2‖∇b‖‖b‖1/2

t∫
0

‖∇b‖1/2‖∇bx‖3/2

)

� ε−1/2 Rm7/2 sup
[0,t]

(
E(v, b)(t ′)

) t∫
D(v,b).
0
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By collecting all the previous estimates, we find that

E(v, b)(t) +
t∫

0

D(v,b) � CE(v, b)(0) + Cε−1/2 Rm7/2 sup
[0,t]

(
E(v, b)(t ′)

) t∫
0

D(v,b)

and hence, we easily conclude that if

ε−1/2Rm7/2E(v, b)(0) � δ

for some δ sufficiently small, then we keep the estimate

E(v, b)(t) � CE(v, b)(0)

for every positive time.

2.2. Proof of Theorem 2

We turn to the stability estimates for curved interfaces. We shall use the local coordinates (s := r − 1, τ, z) and the
cylindrical orthonormal frame (es, eτ , ez). For any vector v, we denote (vs, vτ , vz) the components of v in this moving
frame. Note that we are working with an orthonormal basis, so that eτ = 1

1+s
∂τ . Consequently, the expressions that

we give below are different from the usual expressions of differential geometry in local coordinates, where the local
basis is chosen as (∂r , ∂τ , ∂z).

We recall the Frénet formula

ex∂x + ey∂y = 1

1 + s
eτ ∂τ + es∂s .

It allows to compute the operators of (4) in cylindrical coordinates.

• For smooth vector fields w,c, we compute

w · ∇c =
(

w · ∇cs − 1

1 + s
wτ cτ ,w · ∇cτ + 1

1 + s
wτ cs,w · ∇cz

)
, (25)

where, for any scalar function f ,

w · ∇f = ws∂sf + wτ

1 + s
∂τ f + wz∂zf.

• The Laplacian reads in local coordinates

�w =
(

�ws − 2

(1 + s)2
∂τwτ − 1

(1 + s)2
ws,�wτ + 2

(1 + s)2
∂τws − 1

(1 + s)2
wτ ,�wz

)
,

where, for any scalar function f ,

�f = 1

1 + s
∂τ

(
1

1 + s
∂τ

)
f + 1

1 + s
∂sf + ∂2

s f + ∂2
z f.

• The divergence operator is

divv = ∂sws + 1

1 + s
∂τwτ + ∂zwz + 1

1 + s
ws. (26)

Let χ = χ(s) a smooth function, such that χ = 1 on [−1/4,1/4], and χ = 0 outside (−1/2,1/2). The first step is
to perform an energy estimate on χbs which is better thanks to the structure of the singular term. By using cylindrical
coordinates, we find that the equation for bs is

∂tbs + uε · ∇bs + v · ∇bs = 1

Rm

(
�bs − 2

(1 + s)2
∂τ bτ − 1

(1 + s)2
bs

)
+ b · ∇vs.

We perform an energy estimate on χbs multiplying this equation by χ2bs(1 + s), we get
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1

2

d

dt
‖χbs‖2 + 1

Rm

∥∥∇(χbs)
∥∥2 = 1

Rm

∫
(1 + s)χ ′2b2

s − 2

Rm

∫
∂τ bτ − bs

1 + s
χ2bs

− 3

Rm

∫
bs

1 + s
χ2bs +

∫
(1 + s)χ ′χb2

s vs +
∫

b · ∇vs(1 + s)χ2bs.

We deduce

d

dt
‖χbs‖2 + 1

Rm

∥∥∇(χbs)
∥∥2 � C

(
1

Rm
‖b‖2 + 1

Rm
‖∇b‖‖χbs‖ + ∥∥(χbs)b

∥∥(‖∇v‖ + ‖v‖))

since χ vanishes in the vicinity of the singularity at s = −1. The last estimate can be rewritten

d

dt

1

εq
‖χb‖2

s + 1

εq Rm

∥∥∇(χbs)
∥∥2 � 1

8Rm
‖∇b‖2 + C

εq Rm

‖χbs‖2

εq
+ Cε−q

∥∥(χbs)b
∥∥(‖∇v‖ + ‖v‖) (27)

thanks to the Young inequality.
Next, we perform a classical energy estimate on the full system (4). This yields:

1

2

d

dt

(‖b‖2 + ‖v‖2) + 1

Rm
‖∇b‖2 + 1

Re
‖∇v‖2 �

∣∣∣∣
∫

v · ∇uε · v
∣∣∣∣ +

∣∣∣∣
∫

b · ∇uε · b
∣∣∣∣.

Next we notice that thanks to (3), we get∫
b · ∇uε · b =

∫ (
1 + s

ε
ω′bsbτ + 1

ε
u′

zbsbz

)
dx.

Remind that ω′, u′
z have compact support, so that the truncation function χ can be introduced in the last singular term.

To control this singular term on the right-hand side, we use the equivalent of (9) in cylindrical coordinates∣∣f (s, ·)∣∣
L2((1+s)dτ dz)

� C‖f ‖1/2
∥∥∂s(f )

∥∥1/2
. (28)

Consequently, by using (28), we get∣∣∣∣
∫

b · ∇uε · b
∣∣∣∣ � C‖χbs‖1/2

∥∥∇(χbs)
∥∥1/2‖b‖1/2‖∇b‖1/2

∫
ζ

|U ′|dζ

� C

(
(εq Rm)1/2 ‖χbs‖

εq/2

)1/2( ‖∇(χbs‖
εq/2Rm1/2

)1/2( ‖∇b‖
Rm1/2

)1/2

(εq Rm)1/4‖b‖1/2

� Cεq Rm

(
‖b‖2 + ‖χbs‖2

εq

)
+ 1

4Rm
‖∇b‖2 + 1

4εq Rm

∥∥∇(χbs)
∥∥2

,

where in the last line, we have used the inequality

abcd � 1

4

(
a4 + b4 + c4 + d4).

Thanks to the inequality (28), we prove in a similar way that∣∣∣∣
∫

v · ∇uε · v
∣∣∣∣ � 1

2 Re
‖∇v‖2 + C‖v‖2.

Consequently, we finally get that

d

dt

(‖b‖2 + ‖v‖2) + 3

2Rm
‖∇b‖2 + 1

Re
‖∇v‖2

� C
(‖b‖2 + ‖v‖2) + Cεq Rm

(
‖b‖2 + ‖χbs‖2

εq

)
+ 1

4εq Rm

∥∥∇(χbs)
∥∥2

. (29)

We make a linear combination of (27) and (29) to get
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d

dt
E0(v, b) + 3

4εq Rm
‖∇bs‖2 + 11

8
‖∇b‖2 + 1

2 Re
‖∇v‖2

� C

(
1 + εqRm + 1

εq Rm

)
E0(v, b) + Cε−2q

∥∥(χbs)b
∥∥2

� CE0(v, b) + Rm2
∥∥(χbs)b

∥∥2

with the choice εq Rm = 1, where

E0(v, b) = ‖v‖2 + ‖b‖2 + ε−q‖χbs‖2 = ‖v‖2 + ‖b‖2 + Rm‖χbs‖2,

D0(v, b) = 1

Rm
‖∇b‖2 + 1

Re
‖∇v‖2 + ∥∥∇(χbs)

∥∥2
.

The next step is to get an estimate on ∇v and ∇b. We use the same technique as in Section 2 and hence we shall not
give all the details.

We just point out the estimate

Rm‖b · ∇uε‖2 � C

(
Rm‖b‖2 + Rm

ε

(‖χbs‖2 + ∥∥∇(χbs)
∥∥2))

.

We get

E(v, b)(t) +
t∫

0

D(v,b) � CE(v, b)(0) + C

t∫
0

E(v, b) +
t∫

0

Rm2
∥∥(χbs)b

∥∥2

+ ε

t∫
0

‖v · ∇b‖2 + ‖b · ∇v‖2 + ‖b · ∇b‖2 + ‖v · ∇v‖2,

where

E(v, b)(t) = E0(v, b) + ε

Rm
‖∇b‖2 + ε

Rm
‖∇v‖2,

D(v, b)(t) = D0(v, b) + ε

Rm2
‖�b‖2 + ε

Rm
‖�v‖2.

To conclude, we need to estimate the last term in the previous inequality. We use (21)–(25) and we also note that

t∫
0

Rm2
∥∥(χbs)b

∥∥2 � C Rm2

t∫
0

‖χbs‖1/2‖χbs‖3/2
H 1 ‖κb‖1/2‖κb‖3/2

H 1 , (30)

where κ is smooth compactly supported and such that κχ = χ . Next, we write

‖χbs‖2
L2 �

∫
z

( ∫
x,y

|χbs |2 dx dy

)
dz �

∫
z

|Suppχ | sup
r

(|χbs |2L2(r dθ)

)
dz

and hence, thanks to (28), we get

‖χbs‖L2 � C
∥∥∇(χbs)

∥∥. (31)

With a slight variation, we also get the estimate

‖κb‖2
L2 �

∫
z

( ∫
x,y

|κb|2 dx dy

)
dz �

∫
z

|Suppκ| sup
s

(|b|2
L2(r dθ)

)
dz

and hence thanks to a new use of (28), we get

‖κb‖2
L2 � C‖b‖‖∇b‖. (32)

Note that the same estimate holds with κ replaced by ∇κ . Consequently, thanks to (30)–(32), we get
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t∫
0

Rm2
∥∥(χbs)b

∥∥2 � C Rm2 sup
[0,t]

(‖χbs‖1/2‖b‖H 1‖b‖1/2) t∫
0

∥∥∇(χbs)
∥∥3/2‖∇b‖1/2

� Cε−1/2 Rm5/2 sup
[0,t]

E(v, b)

t∫
0

D(v,b). (33)

Since we also have

ε

t∫
0

∫ (‖v · ∇b‖2 + ‖b · ∇v‖2 + ‖b · ∇b‖2 + ‖v · ∇v‖2) � ε−1/2 Rm7/4 sup
[0,t]

E(v, b)

t∫
0

D(v,b),

we finally get

E(v, b)(t) � CE(v, b)(0) + C

t∫
0

E(v, b)

and hence thanks to the Gronwall inequality

E(v, b)(t) � C eCtE(v, b)(0)

as long as

ε−1/2 Rm5/2 sup
[0,t]

E(v, b) � δ

for some δ > 0 sufficiently small and the result of Theorem 2 easily follows.

2.3. Proof of Theorem 3

Up to now, since we work with v, b which have zero mean on T
3, we shall make a constant use of the Poincare

inequality

‖v‖ � C‖∇v‖, ‖b‖ � C‖∇b‖.
Again the first step is to use an estimate on χbs . Thanks to an integration by parts and the use of the Young inequality,
we write it in the slightly different form

1

2

d

dt
‖χbs‖2 + 1

2Rm

∥∥∇(χbs)
∥∥2 � C

Rm
‖bs‖2 + C

Rm
‖bτ‖2 + ∥∥(χbs)b

∥∥(‖∇v‖ + ‖v‖).
Indeed, we have used that∫

∂τ bτ bsχ
2

1 + s
= −

∫
bτ ∂τ bsχ

2

1 + s
� 1

2

∥∥∇(χbs)
∥∥2 + C

(‖bs‖2 + ‖bτ‖2).
Next, we find

‖χbs‖2

ε2ν2/3
+ ν1/3

t∫
0

∥∥∇(χbs)
∥∥2

� ‖χbs(0)‖2

ε2ν2/3
+ Cν1/3

t∫
0

(‖bτ‖2 + ‖bs‖2) + 2

ε2ν2/3

t∫
0

‖bsb‖(‖∇v‖ + ‖v‖). (34)

Next the classical energy estimate on the full system (4) gives

1 d (‖v‖2 + ‖b‖2) + 1 ‖∇v‖2 + 1 ‖∇b‖2 � 1‖χbs‖‖b‖ −
∫

(v · ∇)uε · v dx dy dz,

2 dt Rm Re ε
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where we have used again that u′
z, ω′ have compact support to localize through χ . Next we use that

1

ε
‖χbs‖‖b‖ � ‖χbs‖2

2ε2ν1/3
+ 1

2
ν1/3‖b‖2 � Cν1/3

(
‖b‖2 + ‖χbs‖2

ε2ν2/3

)
.

Moreover, by using cylindrical coordinates, the singular term involving the velocity is under the form∫
v · ∇uε · v =

∫ (
1 + s

ε
ω′vsvτ + 1

ε
u′

zvsvz

)
.

By using (28) and the fact that
∫

v = 0 to replace L2 norms by L2 norms of the gradient, we get∣∣∣∣
∫

v · ∇uε · v
∣∣∣∣ � C‖∇v‖2

∫
ζ

|ω′| + |u′
z|dζ.

Consequently, thanks to (34) and our assumption on the Reynolds number Re, we easily get by collecting all the
estimates that

E0(v, b)(t) +
t∫

0

D0(v, b) � CE0(v, b)(0) + Cν1/3

t∫
0

E0(v, b) + C

ε4ν4/3

t∫
0

∥∥(χbs)b
∥∥2

, (35)

where

E0(v, b) = ‖v‖2 + ‖b‖2 + ‖bs‖2

ε2ν2/3
,

D0(v, b) = 1

Re
‖∇v‖2 + 1

Rm
‖∇b‖2 + ν1/3

∥∥∇(χbs)
∥∥2

.

As usual the next step is to get an estimate on the derivatives. We shall not detail this part since most of the useful
estimates are actually given in the previous sections. We get

E(v, b)(t) +
t∫

0

D(v,b) � CE(v, b)(0) + ν1/3

t∫
0

E(v, b) + C

t∫
0

1

ε4ν4/3
‖χbsb‖2

+ Cε

t∫
0

(‖ curlb × b‖2 + ‖v · ∇v‖2 + ‖v · ∇b‖2 + ‖b · ∇v‖2), (36)

where

E(v, b) = E0(v, b) + ε

Rm
‖∇b‖2 + ε‖∇v‖2, D(v, b) = D0(v, b) + ε

Rm2
‖�b‖2 + ε‖�v‖2.

The only term which requires some details in the derivation of the last estimate is the term
ε

Rm
(b · ∇uε,�b).

Indeed, the estimate (16) does not hold in the curved geometric setting since there is also a term without derivatives
of uε in b · ∇uε . Since �b = − curl curlb, we can write after an integration by parts∫

b · ∇uε · �b = −
∫

b · ∇ curluε · curlb +O(1)

∫
|∇uε||∇b|2

and we notice that in cylindrical coordinates

curluε = −1

ε
u′

zeτ +
(

2ω + (1 + s)

ε
ω′

)
ez

so that

|b · ∇ curluε| � C
(
ε−1|b| + ε−2(|ω′′| + |u′′

z |
)|χbs |

)
.
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Consequently, by using again that
∫

b = 0, and (28), we get∣∣∣∣
∫

b · ∇uε · �b

∣∣∣∣ � C
(
ε−1‖∇b‖2 + ε−3/2‖∇b‖∥∥∇(χbs)

∥∥)
� C

(
ε−1‖∇b‖2 + ε−2

∥∥∇(χbs)
∥∥2)

so that

ε

Rm

∣∣∣∣
∫

b · ∇uε · �b

∣∣∣∣ � CD0(v, b).

which is a good estimate towards the derivation of (36).
To conclude, it remains to use the nonlinear terms, we use the estimates (21)–(24): since 1/Rm = νε2, note that

ε−1/2 Rm7/4 = 1

ε4ν7/4

so that the worst estimate in (21)–(24) is given by

1

ε2ν7/4
sup
[0,t]

E(v, b)

t∫
0

D(v,b).

Since by using the analogous of (33) we have

1

ε4ν4/3

t∫
0

‖χbsb‖2 � C

ε11/2ν13/6
sup
[0,t]

E(v, b)

t∫
0

D(v,b),

we get thanks to the Gronwall inequality

E(v, b)(t) � C exp(γ ν1/3t)E(v, b)(0)

as long as

sup
[0,t]

E(v, b) � δε11/2ν13/6

for some δ > 0 sufficiently small and hence the result of Theorem 3 follows easily.

3. The dynamo

This section is devoted to the description of the dynamo effect. The dynamo mechanism is connected to some
special solutions (v, b) of (5). These solutions are localized near s = 0, and oscillate with respect to τ , z. To understand
the structure of such solutions, we will begin with a WKB analysis. Throughout the text, we will use the following
notation: for all smooth functions a, b defined on an open set U , depending on the parameter ε,

a ≈ b

will mean that, for all m, for all compact subset K of U ,

a − b = O(εm), in C∞(K).

3.1. WKB expansions

We construct here approximate solutions of (5). They involve three types of expansions, corresponding to different
regions of R

3.

• The inner expansion
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It will hold in a vicinity of size ε around the surface {s = 0}. It depends on s/ε, to match the variations of uε . It also
involves tangential oscillations, at high frequency

√
ε
−1. Precisely,

(
vin

app, b
in
app

) ≈ √
ε

2m
∑√

ε
i (

V i,Bi
)(

t,
s

ε
,

τ√
ε
,

z√
ε

)
,

pin
app ≈ √

ε
2m−1 ∑√

ε
i
P i

(
t,

s

ε
,

τ√
ε
,

z√
ε

)
,

(37)

where the inner profiles are smooth:(
V i,Bi,P i

) = (
V i,Bi,P i

)
(t, ζ, θ, λ) ∈ C∞(

R+ × R
3)

and periodic in θ,λ:(
V i,Bi,P i

)
(t, ζ, θ, λ) =

∑
m∈Z,
k∈KZ

ei(mθ+kλ)F
(
V i,Bi,P i

)
(t, ζ,m, k), M,K > 0.

• The outer expansion

It will hold in the region s = O(
√

ε), s � ε. This expansion will correct errors due to truncation of the inner expansion
and describe the boundary layer where the instability takes place. Namely,

(
vout

app, b
out
app

) ≈ √
ε

2m
∑
i�0

√
ε
i (

vi, bi
)(

t,
s√
ε
,

τ√
ε
,

z√
ε

)
,

pout
app ≈ √

ε
2m−1 ∑

i�0

√
ε
i
pi

(
t,

s√
ε
,

τ√
ε
,

z√
ε

)
,

(38)

where the outer “profiles”(
vi, bi,pi

) = (
vi, bi,pi

)
(t, ξ, θ, λ) ∈ C∞(

R+ × R∗ × R
2)

are smooth on each side of ξ = 0, and again periodic in θ,λ:(
vi, bi,pi

)
(t, ξ, θ, λ) =

∑
m∈Z,
k∈KZ

ei(mθ+kλ)F
(
vi, bi,pi

)
(t, ξ,m, k).

These profiles will be shown to decrease fastly at infinity, except for the mean velocity and pressure

vi :=
∫

θ,λ

vi, pi :=
∫

θ,λ

pi.

• The external expansion

It will hold for s � √
ε, and will correct O(1) terms due to the truncation of vi,pi . Namely,

vext
app ≈ √

ε
2m

∑
i�0

√
ε
i
wi(t, s),

pext
app ≈ √

ε
2m−1 ∑

i�0

√
ε
i
qi(t, s),

(39)

where the external profiles wi, qi are smooth outside s = 0.
Following [8], these expansions will be linked with the method of matched asymptotics. Precisely, we expect both

inner and outer expansions to be valid in a matching zone, close to s = 0, of typical length ε � l � √
ε. We can
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express the outer solution in terms of ζ , and through Taylor series obtain the following matching conditions: For all
(t, θ, λ), for all i,

(
V i,Bi,P i

)
(t, ζ, θ, λ) ∼

i∑
j=0

ζ j

j ! ∂
j
ξ

(
vi−j , bi−j ,pi−j

)
(t, ξ = ±0, θ, λ), ζ → ±∞. (40)

Similarly, the outer and external expansions should correspond for
√

ε � s � 1. This means

(
vi,pi

)
(t, ξ) ∼

i∑
j=0

ξj

j ! ∂
j
s

(
wi−j , qi−j

)
(t, s = ±0), ξ → ±∞. (41)

3.1.1. Equations
We plug the various expansions in system (5). The resulting equations are ordered according to powers of

√
ε, and

coefficients of the different powers of
√

ε are set equal to 0. It leads to a collection of equations on the profiles. To
lighten notations, we set(

V i,P i,Bi, vi,pi, bi,wi, qi
) ≡ 0 for i < 0.

• Inner equations

At order O(
√

ε
2m+i−4

) in Eq. (5)a, we get

− 1

Re
∂2
ζ V i + (

0,w′(ζ ),U ′
s(ζ )

)
V i−2

s + (
∂ζ P

i−1,0,0
) − 1

Re

(
∂2
θ + ∂2

λ

)
V i−2 − 1

Re
∂ζ V

i−2 = F i
v, (42)

where F i
v depends on (V k,Bk), k � i − 3, and P k , k � i − 2.

Similarly, order O(
√

ε
2m+i−2

) in (5)b provides

−(
0,w′(ζ ), u′

z(ζ )
)
Bi

s − ∂2
ζ Bi + (

ω(ζ )∂θ + uz(ζ )∂λ

)
Bi−1 = F i

b, (43)

where F i
b depends on (V k,Bk), k � i − 2.

Finally, O(
√

ε
2m+i−2

) terms in divergence free conditions (5)c lead to

∂ζ V
i
s + ∂θV

i−1
θ + ∂λV

i−1
z = Gi

v, (44)

∂ζ B
i
s + ∂θB

i−1
θ + ∂λB

i−1
z = Gi

b, (45)

where Gi
v,b depend on (V k,Bk), k � i − 2.

• Outer equations

At order O(
√

ε
2m+i−2

) in Eq. (5)a, we get

− 1

Re

(
∂2
ξ + ∂2

θ + ∂2
λ

)
vi + (

∂ξ , ∂θ , ∂λ

)
pi + 1R−(ξ)

(
Ω∂θ + Uz∂λ

)
vi−1

+ 1

Re

(
2∂θv

i−1
τ ,−2∂θv

i−1
s ,0

) + 2

Re
ξ∂2

θ vi−1 − 1

Re
∂ξ v

i−1 = f i
v , (46)

where f i
v depends on vk, bk , k � i − 2, and pk , k � i − 1.

At order O(
√

ε
2m+i−1

) in Eq. (5)b, we get

1R−(ξ)(Ω∂θ + Uz∂λ)b
i + ∂tb

i−1 − (
∂2
ξ + ∂2

θ + ∂2
λ

)
bi−1

+ (
2∂θb

i−2
τ ,−2∂θb

i−2
s ,0

) + 2ξ∂2
θ bi−2 − ∂ξ b

i−2 = f i
b , (47)

where f i
b depends on (vk, bk), k � i − 3.

At order O(
√

ε
2m+i−1

) in (5)c, we recover



694 D. Gérard-Varet, F. Rousset / Ann. I. H. Poincaré – AN 24 (2007) 677–710
∂ξ v
i
s + ∂θv

i
τ + ∂λv

i
z + vi−1

s − ξ∂θv
i−1
τ = gi

v, (48)

∂ξ b
i
s + ∂θb

i
τ + ∂λb

i
z + bi−1

s − ξ∂θb
i−1
τ = gi

b, (49)

where gi
v,b depend on (vk, bk), k � i − 2.

• External equations

They resume to wi
s = 0, together with

∂sq
i = 21{s<0}(s)Ωwi−1 +

∑
k+k′=i−2m−4

1

1 + s
wk

τw
k′
τ ,

∂tw
i
τ − 1

Re
�wi

τ + 1

Re (1 + s)2
wi

τ = 0, (50)

∂tw
i
z − 1

Re
�wi

z = 0.

Note that the nonlinear term v · ∇v does not play any part in the equations for wi
τ and wi

z: it vanishes because of the
radial symmetry of the functions.

3.1.2. First profiles
• Velocity

Outer part, i = 0. Eqs. (46) read:⎧⎨
⎩− 1

Re

(
∂2
ξ + ∂2

θ + ∂2
λ

)
v0 + (∂ξ , ∂θ , ∂λ)p

0 = 0,

divv0 = 0.

(51)

Inner part, i = 0. Eq. (44) (which implies (42)a) yields

V 0
s = V 0

s (t, θ, λ),

and thanks to the matching condition (40),[
v0
s

]∣∣
ξ=0 = 0, V 0

s = v0
s (ξ = 0). (52)

Eqs. (42)b, (42)c imply that(
V 0

τ ,V 0
z

) = C1ζ + C2,

where Cj = Cj (t, θ, λ). Using matching condition (40),[(
v0
τ , v

0
z

)]∣∣
ξ=0 = 0,

(
V 0

τ ,V 0
z

) = (
v0
τ , v

0
z

)
(ξ = 0). (53)

Inner part, i = 1. Proceeding with (44), we obtain

V 1
s = C1ζ + C2, Cj = Cj (t, θ, λ),

so that[
∂ξ v

0
s

]∣∣
ξ=0 = 0.

In the same way, (42)b, (42)c, i = 1 lead to[
∂ξ

(
v0
τ , v

0
z

)]∣∣
ξ=0 = 0.

In turn, Eq. (42)a implies that ∂ζ P
0 = 0. Using matching condition (40), we deduce[

p0]∣∣ = 0, P 0 = p0(t,0, θ, λ).

ξ=0
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Combining Stokes equations (51) with the previous jump conditions, we deduce

v0 = 0, p0 = 0.

Back to the inner profiles, we deduce from (52), (53) that V 0 = 0.
External part, i = 0. We get from (50) and the matching condition (41) that

w0 = 0, q0 = 0.

• Magnetic field

Outer part, i = 0. We get from (47)

1R−(ξ)(Ω∂θ + Uz∂λ)b
0 = 0. (54)

We define the orthogonal projector Π as follows:

Πb0 = b0, ξ > 0,

Πb0 =
∑
m,k

Ωm+Uzk=0

ei(mθ+kλ)Fb0, ξ < 0,

so that (54) is equivalent to

Πb0 = b0 (55)

Outer part, i = 1. Eq. (47) provides

1R−(ξ)(Ω∂θ + Uz∂λ)b
1 + ∂tb

0 − (
∂2
ζ + ∂2

θ + ∂2
λ

)
b0 = 0. (56)

Applying (I − Π), we obtain that Πb1 = b1. Applying Π , it becomes

∂tb
0 − (

∂2
ζ + ∂2

θ + ∂2
λ

)
b0 = 0. (57)

Outer part, i = 2. We appy Π to (47), and take its first component, to obtain

∂tb
1
s − (

∂2
ξ + ∂2

θ + ∂2
λ

)
b1
s = −2∂θb

0
τ − 2ξ∂θb

0
s + ∂ξ b

0
s . (58)

Eqs. (57) and (58) will be linked through the jump conditions at ξ = 0. As for the velocity profiles, these jump
conditions will be deduced from the inner equations.

Inner part, i = 0. Eq. (43)a yields

∂2
ζ B0

s = 0.

We deduce that[
b0
s

]∣∣
ξ=0 = 0, B0

s = b0
s (ξ = 0). (59)

The last two components of (43) give(
ω′(ζ ), u′

z(ζ )
)
B0

s − ∂2
ζ

(
B0

τ ,B0
z

) = 0.

We integrate to find:

(
B0

τ ,B0
z

) = b0
s (ξ = 0)

ζ∫
0

(
ω(ζ ′), uz(ζ

′)
)

dζ ′ + C1ζ + C2,

where Cj = Cj (t, θ, λ). Using (40), we end up with b0
s (ξ = 0) = 0, and[

b0
τ,z

]∣∣
ξ=0 = 0, B0

τ,z = b0
τ,z(ξ = 0). (60)

Inner part, i = 1. Eq. (43)a yields

−∂2
ζ B1

s + (
ω(ζ )∂θ + uz(ζ )∂λ∂θ

)
B0

s = 0,
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so that

B1
s = C1 + C2ζ, Cj = Cj(t, θ, λ).

From (40), (60), we get that[
∂ξb

0
s

]∣∣
ξ=0 = [

b1
s

]∣∣
ξ=0 = 0, B1

s = ∂ξb
0
s (ξ = 0)ζ + b1

s (ξ = 0). (61)

The last two components of (43) are:(
ω′(ζ ), u′

z(ζ )
)
B1

s − ∂2
ζ

(
B1

τ ,B1
z

) + (
ω(ζ )∂θ + uz(ζ )∂λ

)(
B0

τ ,B0
z

) = 0.

Remind that ω and uz are constant for |ζ | � 1. In particular, for |ζ | � 1,(
ω(ζ )∂θ + uz(ζ )∂λ

)
B0

τ,z = 1R−(ζ )
(
Ω∂θ + Uz(ζ )∂λ

)
b0
τ,z(ξ = 0) = 0,

using (55). Integration leads to: for all (t, θ, λ), for all ±ζ � 1,

(
B1

τ ,B1
z

) =
ζ∫

0

η∫
0

(
ω′(η), u′

z(η)
)
B1

s (η)dη + ζ

±1∫
0

dζ
(
ω(ζ )∂θ + uz(ζ )∂λ

)(
b0
τ , b

0
z

)
(ξ = 0) + C1ζ + C2,

with Cj = Cj (t, θ, λ). Together with (40), (61), it gives

[
∂ξ

(
b0
τ , b

0
z

)]∣∣
ξ=0 =

( 1∫
−1

ζ
(
ω′(ζ ), u′

z(ζ )
)

dζ

)
∂ξb

0
s (ξ = ±0) + (

Ω,Uz

)
Πb1

s (ξ = ±0)

+
( 1∫

−1

ω(ζ )dζ∂θ +
1∫

−1

uz(ζ )dζ∂λ

)(
b0
τ , b

0
z

)
(ξ = 0).

Inner part, i = 2. In order to close the system, we need to have one more jump condition on ∂ξ b
1
s . As above, we

use (43)a, which reads

−∂2
ζ B2

s + (
ω(ζ )∂θ + uz(ζ )∂λ∂θ

)
B1

s = 0,

from which we deduce[
∂ξb

1
s

]∣∣
ξ=0 = 0.

Gathering previous results, we see that (b0, b
1
s ) satisfies the following system:⎧⎪⎨

⎪⎩
Π

(
b0, b1

s

) = (
b0, b1

s

)
,

∂tb
0 − (

∂2
ξ + ∂2

θ + ∂2
λ

)
b0 = 0,

∂tb
1
s − (

∂2
ξ + ∂2

θ + ∂2
λ

)
b1
s = −2∂θb

0
τ − 2ξ∂θb

0
s + ∂ξ b

0
s ,

with the following conditions at the interface s = 0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0
s (ξ = 0) = 0,

[
b0
τ,z

]∣∣
ξ=0 = 0,

[
∂ξ

(
b0
τ , b

0
z

)]∣∣
ξ=0 =

( 1∫
−1

ζ
(
ω′(ζ ), u′

z(ζ )
)

dζ

)
∂ξ b

0
s (ξ = ±0) + (Ω,Uz)b

1
s (ξ = ±0)

+
( 1∫

−1

ω(ζ )dζ ∂θ +
1∫

−1

uz(ζ )dζ∂λ

)(
b0
τ , b

0
z )(ξ = 0

)
,

[
b1]∣∣ = [

∂ξ b
1]∣∣ = 0.
s ξ=0 s ξ=0
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We shall limit ourselves to solutions with b0
s |t=0 = 0. In this case,

b0
s ≡ 0

and (b0
τ , b

0
z , b

1
s ) is uniquely determined by the initial data Π(b0

τ , b
0
z , b

1
s )|t=0 and by the equations⎧⎪⎨

⎪⎩
Π

(
b0
τ , b

0
z , b

1
s

) = (
b0
τ , b

0
z , b

1
s

)
,

∂t

(
b0
τ , b

0
z

) − (
∂2
ξ + ∂2

θ + ∂2
λ

)(
b0
τ , b

0
z

) = 0,

∂tb
1
s − (

∂2
ξ + ∂2

θ + ∂2
λ

)
b1
s = −2∂θb

0
τ ,

(62)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
b0
τ,z

] = 0,

[
∂ξ

(
b0
τ , b

0
z

)]∣∣
ξ=0 = (Ω,Uz)b

1
s (ξ = ±0) +

( 1∫
−1

ω(ζ )dζ∂θ +
1∫

−1

uz(ζ )dζ∂λ

)(
b0
τ , b

0
z

)
(ξ = 0)

[
b1
s

]∣∣
ξ=0 = [

∂ξb
1
s

]∣∣
ξ=0 = 0.

(63)

Back to (59), (60), it determines the inner term B0.

Remark 12. In the previous lines, we did not take into account Eqs. (49) and (45) to derive the magnetic terms
b0,B0,Πb1

s . Indeed, the collections of Eqs. (47), (49), and (43), (45) are partially redundant. The reason is that the
original system (5) is itself redundant, as the divergence free condition on b is preserved by Eq. (5)b. This will be
clarified in the next subsection.

3.1.3. Higher order profiles
In the previous subsection, we have derived the first profile, namely

X0 = (
V 0,P 0,B0, v0,p0, b0, b1

s ,w
0, q0).

The derivation of higher order profiles

Xi = (
V i,P i,Bi, vi,pi, bi, bi+1

s ,wi, qi
)

follows the same lines. Indeed, they satisfy the same type of equations up to source terms coming from lower order
profiles. For instance, the equations on the outer magnetic terms read{

∂tb
i
τ,z − (

∂2
ξ + ∂2

θ + ∂2
λ

)
bi
τ,z = f i

τ,z,

∂tb
i+1
s − (

∂2
ξ + ∂2

θ + ∂2
λ

)
bi+1
s = −2∂θb

i
τ + f i+1

s ,
(64)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
bi
τ,z

]∣∣
ξ=0 = gi

τ,z,
[
∂ξ

(
bi
τ , b

i
z

)]∣∣
ξ=0 = (Ω,Uz)b

i+1
s (ξ = +0)

+
( 1∫

−1

ω(ζ )dζ∂θ +
1∫

−1

uz(ζ )dζ∂λ

)(
bi
τ , b

i
z

)
(ξ = +0) + (

hi
τ , h

i
z

)
,

[
bi+1
s

]∣∣
ξ=0 = ki+1,

[
∂ξ b

i+1
s

]∣∣
ξ=0 = li+1.

(65)

In this construction, we point out that all the magnetic terms bi will satisfy Πbi = bi . Indeed, the range of Π is stable
by product, derivation, or multiplication by a function of ξ . As all the equations are built from such operations, we
obtain inductively, using (47) that

1R−(ξ)(Ω∂θ + Uz∂λ)b
i = 0, i.e. Πbi = bi.

The outer velocity and pressure terms vi , pi will satisfy Stokes systems, with jump conditions on [vi]|ξ=0,
[∂ξ v

i]|ξ=0, and [pi]|ξ=0. The oscillatory part

ṽi := vi − vi, p̃i := pi − pi
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will decay fast as ξ → ±∞. The average terms vi , pi will satisfy

vi
s = 0, − 1

Re
∂2
ξ vi

τ,z = f i
τ,z, ∂ξp

i = f i
s ,

with jump conditions on [vi
τ,z]|ξ=0, [∂ξ v

i
τ,z]|ξ=0, and [pi]|ξ=0. Even for localized source terms, the solution will not

in general decay as ξ → ±∞. However, we will have a decomposition

vi = V i + wi, pi = P i + q̄i , (66)

where V i (t, ξ) and P i (t, ξ) will decay fast as ξ → ±∞, whereas wi(t, ξ) and q̄i (t, ξ) will be polynomial in ξ . This
will be detailed in the next section, when proving Proposition 1.

Such polynomials require to add the external expansion (39). Profiles qi,wi will satisfy (50), with given jump
conditions on [wi]|s=0, [∂sw

i]|s=0, and [qi]|s=0. One will have solutions such that when considered as functions
defined over R

2, we have

wi(t, x1, x2) ∈ L∞(
0, T ;H 1(

R
2\C))

, ∂sq
i ∈ L∞(

0, T ;L2(
R

2\C))
, (67)

where C is the unit circle, moreover, we also have

1

1 + s
wi

τ (t, s) ∈ L∞(
0, T ;L2((−1,+∞)\{0})).

Indeed, let χ = χ(s) smooth, compactly supported such that χ(s) = 1 near s = 0. We make the change of variables

wi
τ,z := wi

τ,z − 1{s<0}(s)χ(s)
([

wi
τ,z

]∣∣
s=0 + s

[
∂sw

i
τ,z

]∣∣
s=0

)
.

The equations become

∂tw
i
τ − 1

Re
�wi

τ + 1

Re(1 + s)2
wi

τ = gi
τ , ∂tw

i
z − 1

Re
�wi

z = gi
z, (68)

where gi
τ,z are compactly supported. Moreover, the jump conditions become homogeneous[

wi
τ,z

]∣∣
s=0 = 0,

[
∂sw

i
τ,z

]∣∣
s=0 = 0. (69)

System (68), (69) will have a unique solution with zero initial data, such that

wi(t, x1, x2) ∈ L∞(
0, T ;H 1(

R
2)), wi

τ ∈ L∞
(

0, T ;L2
(

1

1 + s
ds

))
. (70)

It follows from the classical a priori estimate

1

2

(∥∥wi
τ (t)

∥∥2
H 1 +

t∫
0

(∥∥∂tw
i
τ

∥∥2
L2 + ∥∥�wi

τ

∥∥2
L2

) + ∥∥wi
τ (t)

∥∥2
L2( 1

1+s
ds)

)
� C

t∫
0

∥∥gi
τ

∥∥2
L2,

1

2

(∥∥wi
z(t)

∥∥2
H 1 +

t∫
0

(∥∥∂tw
i
z

∥∥2
L2 + ∥∥�wi

z

∥∥2
L2

))
� C

t∫
0

∥∥gi
z

∥∥2
L2 .

(71)

Moreover, we easily get that wi
τ,z are smooth up to s = 0 in a vicinity of each side of the circle (actually there are

smooth on every interval I such that Ī ⊂ [0,+∞), or Ī ⊂ (−1,0] ).
Back to the original variables, we obtain (67), as the properties of the pressure term are straightforward conse-

quences of those of wk
τ , k � i.

We emphasize that, throughout the construction of higher order profiles, one has inductively

(
V i,Bi,P i

)(
t, ζ, θ, λ

) =
i∑ ζ j

!j ∂
j
ξ

(
vi−j , bi−j ,pi−j

)
(t,±0, θ, λ), ±ζ � 1, (72)
j=0
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which of course implies (40). Indeed, suppose that relation (72) is satisfied for all indices less than i − 1. Let us take
the limit of (43)a as ζ → ±∞: using the induction assumption together with (47)a, we deduce easily that

∂2
ζ Bi

s = ∂2
ζ

(
i∑

j=0

ζ j

!j ∂
j
ξ b

i−j
s (t,±0, θ, λ)

)
, ±ζ � 1,

which means that

Bi
s =

i∑
j=0

ζ j

!j ∂
j
ξ b

i−j
s (t,±0, θ, λ) + C1 + C2ζ, ±ζ � 1.

Moreover, in the construction process of Bi , one ensures that C1 = C2 = 0. The result follows for Bi
s . Reasoning with

(43)b,c yields the same for Bi
τ ,B

i
z. Similar arguments apply to the velocity and pressure fields.

We finally remark that profiles Xi , as we build them, satisfy only (42), (44), (43), (46), (48), (47), and (50). It
remains a priori to show that Eqs. (49) and (45) are also fulfilled. In terms of the inner and outer approximations, these
conditions read

divbout
app ≈ 0, divbin

app ≈ 0.

We will ensure that

(1) Equation divbout
app|t=0 ≈ 0 is satisfied.

(2) Equation divbin
app|t=0 ≈ 0 is satisfied,

which will be sufficient for our purpose.
By an appropriate choice of bi |t=0 = Πbi |t=0, we ensure that condition (1) is satisfied. Moreover, thanks to (47),

we deduce that

∂tb
out
app + (

uε + ε3/2vout
app

) · ∇bout
app − bout

app · ∇(
uε + ε3/2vout

app

) − ε�bout
app ≈ 0.

By (48), we know that div(uε + ε3/2vout
app) ≈ 0. This yields, taking the divergence of the last equation

∂t divbout
app − (

uε + ε3/2vout
app

) · ∇ divbout
app − ε�divbout

app ≈ 0.

From condition (1) and this last relation, we get that (∂α
t divbout

app)|t=0 ≈ 0 for all α ∈ N. This reads

∂α
t Lout

i (t, ξ, θ, λ)|t=0 = 0, ∀α,∀i, (73)

where equation Lout
i = 0 is exactly (49).

From (43), (44), we also have

∂t divbin
app − (

uε + ε3/2vin
app

) · ∇ divbin
app − ε�divbin

app ≈ 0.

In the same time, we can write

divbin
app ≈

∑
i�0

√
ε

2m+i−2
Lin

i

(
t,

s

ε
,

τ√
ε
,

z√
ε

)
,

where for all i, Lin
i (t, ζ, τ, θ) = 0 is exactly (45). Combining these relations, we infer that

0 ≈ √
ε

2m−4
∂2
ζ Lin

0 + √
ε

2m−3(
∂2
ζ Lin

1 + F1
) + √

ε
2m−2(

∂2
ζ Lin

2 + F2
) + · · · , (74)

where Fi involves Lin
k , ∂tL

in
k and their spatial derivatives, k � i − 1. Using this last relation, we can prove inductively

that (∂α
t Lin

i )|t=0 = 0 for all α, i:

• First, we notice that Lin = ∂2B0
s = 0 satisfies (∂α

t Lin)|t=0 = 0.
0 ζ 0
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• Let us then assume that (∂α
t Lin

k )|t=0 = 0 for all α, k < i. With relation (74), we deduce that(
∂α
t ∂2

ζ Lin
i

)∣∣
t=0 = 0,

which yields(
∂α
t ∂ζ L

in
i

)∣∣
t=0 = C(θ,λ).

For |ζ | > 1, thanks to identity (72), this last equation becomes(
∂α
t Lout

i−1

)∣∣
t=0 = C(θ,λ).

By relation (73), we deduce C ≡ 0. One more integration provides(
∂α
t Lin

i

)∣∣
t=0 = C′(θ, λ).

which for |ζ | > 1, reads(
∂α
t Lout

i

)∣∣
t=0 = C′(θ, λ),

and condition (2) follows. This ends the part on WKB profiles.

3.2. Spectral analysis

We can now describe the exponential instability, leading to Theorem 1. It is connected to the solutions of Eqs. (62),
(63), on which we will perform a spectral analysis. We state

Proposition 1. There exists σ > 0, and a family of profiles

Xi = (
V i,P i−1,Bi, vi,pi, bi, bi+1

s ,wi, qi
)
, i � 0,

such that:

(i) (First profile) For all p ∈ N,∥∥(
b0
τ , b

0
z

)
(t)

∥∥
H

p
ξ,θ,λ

∼ Cpeσ t , t → +∞.

(ii) (Higher order profiles) For all p ∈ N, for all i = 2km + l, for all l ∈ [|0, . . . ,2m|], for all δ̄ > 0,∣∣∣∣∣∣Xi(t)
∣∣∣∣∣∣

p
� Ci,p,δ̄e(k+1)σ telδ̄t , t � 0, (75)

where∣∣∣∣∣∣Xi(t)
∣∣∣∣∣∣

p
= ∥∥(

V i,P i−1,Bi
)
(t)

∥∥
Hp({|ζ |�2}×R2)

+ ∥∥wi(t)
∥∥

H 1(R∗) + ∥∥∂sq
i(t)

∥∥
L2(R∗)

+ ∥∥(
1 + |ξ |2)p(

ṽi ,V i , p̃i ,P i , bi , bi+1
s

)
(t)

∥∥
Hp(R∗×R2)

and V i , P i are given by (66). The polynomials wi and q̄i satisfy for all i = 2km + 4 + l, l ∈ [|0, . . . ,2m|], for all
δ̄ > 0,

∣∣wi(t, ξ)
∣∣ + ∣∣q̄i (t, ξ)

∣∣ � Ci,p,δ̄

k∑
j=0

(
e(j+1)σ t

(
1 + |ξ |2)2(k−j)m)

elδ̄t
(
1 + |ξ |2)1+l

. (76)

Proof. We focus first on part (i) of the proposition, i.e. the existence of a first profile

b0 = (
0, b0

τ , b
0
z

)
,

which grows exponentially with time.
We thus concentrate on Eqs. (62) and (63), and look for modal solutions of the type:
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b0
τ = eσ tei(mθ+kλ)b̂0

τ (ξ) + c.c,

b0
z = eσ tei(mθ+kλ)b̂0

z (ξ) + c.c, (77)

Πb1
s = eσ tei(mθ+kλ)b̂1

s (ξ) + c.c,

where c.c is the complex conjugate. Eq. (62)a becomes

(mΩ + Uzk)b̂0 = 0, ξ > 0.

In order to get increasing solutions, we need

mΩ + Uzk = 0. (78)

Eq. (62)a together with (62)b leads to(
b̂0
τ , b̂

0
z

) = exp(±qξ)
(
b̂0
τ (0), b̂0

z (0)
)
, ±ξ < 0, (79)

where

q = (
σ + m2 + k2)1/2 =

(
σ + m2

(
1 + Ω2

U2
z

))1/2

is the square root with positive real part. We then solve Eq. (62)c, using (79) and the fact that [Πb1
s ]|ξ=0 = 0:

b̂1
s = exp(±qξ)

(
b̂1
s (0) ± im

q
ξb̂0

τ (0)

)
, ±ξ < 0.

We inject this expression in the jump condition [∂ξΠb1
s ]|ξ=0 = 0, and obtain

b̂1
s (0) = − im

q2
b̂0
τ (0).

Finally, using this relation and Eq. (79) in the jump conditions (63)a, (63)b, we derive the following system on
(b̂0

τ (0), b̂0
z (0)):

− 2qb̂0
τ (0) = +−imΩ

q2
b̂0
τ (0) + imαb̂0

τ (0),

− 2qb̂0
z (0) = +−imUz

q2
b̂0
τ (0) + imαb̂0

z (0),

(80)

where

α =
1∫

−1

ω(ζ )dζ − Ω

Uz

1∫
−1

uz(ζ )dζ.

This system has nontrivial solutions if and only if

(
2q + iαm

)(
2q + iαm − imΩ

q2

)
= 0.

We are interested in solutions σ of positive real part, necessarily solving

2q3 + iαmq2 − imΩ = 0. (81)

Since

σ = q2 − m2
(

1 + Ω2

U2
z

)
,

we want to show that this equation in q has at least one root such that σ has positive real part for a suitable choice of
the parameters α,Ω,Uz. At first, we choose Ω and Uz so that

|Ω|2/3

25/3
−

(
1 + Ω2

U2

)
0. (82)
z
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Let us focus on the case where m = 1. We shall investigate the behavior of the solutions of (81) with Ω and Uz fixed
by the previous condition in the limit where α tends to zero. By the implicit function theorem, we have a root q such
that

q =
( |Ω|

2

)1/3

exp

(
iπ sign(Ω)

6

)
+O(α).

This yields

Re(σ ) = |Ω|2/3

25/3
−

(
1 + Ω2

U2
z

)
+O(α).

Consequently, thanks to (82), we have found an unstable solution of positive real part if α is sufficiently small.
Now let us consider Ω , Uz and α fixed by the previous argument, the next step is to study the real part of σ(m)

when the parameter m is in Z or equivalently the three roots q(m) of (81). This will allow us to choose the solution
with the maximal growth rate. Thanks to our suitable choice of the parameters, we have already shown that there is
a root q such that Reσ(1) > 0. Moreover, we notice that the solutions of (81) are such that −q(m) = q(−m) and
hence we have that σ(−m) = σ(m), so that it suffices to study the roots for m positive. We shall prove that for every
solution of (81), Reσ(m) → −∞ when m → +∞. Since the roots depend continuously on m, we can choose m such
that one of the σ(m) has maximal positive real part. It remains to prove that for all the solutions of (81), we have
Reσ(m) → −∞ when m → +∞. Let us set q = mQ, then Q is a root of

2Q3 + iαQ2 − i
Ω

m2
= 0. (83)

In the limit m → +∞, we find the equation

2Q3 + iαQ2 = 0.

Consequently, one root of (83) tend to −iα/2 and the two other ones cross at zero. We can handle very easily the two
roots which vanish. Indeed they verify |Q| � C/m, consequently, we have |q|2 � C and hence we get

Reσ � C − m2(1 + Ω2/U2
z

) → −∞.

The root which does not vanish verifies

Q = − iα

2
+O(m−2),

and this yields

q2 = −α2

4
m2 +O(1)

and hence

Reσ = −α2

4
m2 − m2(1 + Ω2/U2

z

) +O(1) → −∞.

This finally shows the existence of an unstable mode with maximal growth rate σ . Note that the divergence-free
condition (49), i = 0 is well-satisfied, as

∂ξ b
0
s + ∂θb

0
τ + ∂λb

0
z = imb̂0

τ + ikb̂0
z = 0,

where we have used (78), (80).
With part (i) established, to obtain recursively higher order profiles with appropriate growth is classical, and has

been performed in various stability studies, for instance [9,2,5]. Our situation is even simpler: we deal with discrete
tangential Fourier modes, which avoids the construction of localized wavepackets. For the sake of brevity, we only
remind the key elements of the process, and refer to [2] for all necessary details.

• The outer magnetic terms are deduced from a Laplace transform in time of Eqs. (64), (65). For each tangential
Fourier mode

bi = eimθeikλF
(
bi

)
(t, ξ),
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we get an integral formula

F
(
bi

)
(t, ξ) =

∫
Γ

eλt b̂i (λ, ξ)dλ, (84)

where Γ is a contour in the complex domain. We can take for example a parabola Reλ = −A(Imλ)2 + (σ + δ)

such that the zeros of the dispersion relation are in the left hand-side of Γ . The classical theory for analytic semi-
groups (see textbook [10] for example) gives that the semigroup S(t) associated to the evolution equation (62),
(63) enjoys the estimate∥∥S(t)

∥∥
L(Hp)

� Cpe(σ+δ)t (85)

where δ > 0 can be chosen arbitrarily small.
The term b̂i (λ, ξ) is given by the same type of computations as for b̂0, accounting for the additional source terms.
Hence, the exponential bound of (75) follows from the estimate on the semigroup (85).

• The control of ṽi , p̃i is easy: they have zero average with respect to θ,λ (so that Poincaré’s inequality holds) and
satisfy Stokes type equations.

• The control of wi , qi is deduced recursively from (71).
• We remind decomposition (66) on the average velocity and pressure terms. The terms V i , P i satisfy

∂ξP i = f i
s , − 1

Re
∂2
ξ V i

τ,z = f i
τ,z,

where f i
s and f i

τ,z involve quadratically ṽk , bk and linearly Vk , Pk for k � i − 1. They decrease fast as ξ → ∞,
which means

P i =
ξ∫

±∞
f i

s , V i
τ,z = −Re

ξ∫
±∞

ξ ′∫
±∞

f i
τ,z, ±ξ > 0.

The exponential bound (75) follows from the ones on the ṽk’s and b̃k’s. The other terms wi and q̄i are polynomial
in ξ . They satisfy equations of the type

∂ξ q̄
i = 2Ωwi−2 +

∑
i=2m+k+k′+k′′+5

(−1)kξkwk′
τ wk′′

τ ,

− 1

Re
∂2
ξ wi

τ,z =
i−2∑
k=0

bk,τ,zξ
kwi−k−2

τ,z +
i−1∑
k=0

ck,τ,zξ
kwi−k−1

τ,z .

Jump conditions read[
wi

τ,z

]∣∣
ξ=0 = αi

τ,z,
[
∂ξw

i
τ,z

]∣∣
ξ=0 = βi

τ,z,
[
q̄i

]∣∣
ξ=0 = γ i,

where αi
τ,z, βi

τ,z and γ i involve V i , V i+1, P i (coming from the inner expansion) and V i , P i . Note that vi and q̄i

get non-zero as soon as curlb × b is responsible for a quadratic term in the right-hand side. This happens for

2m + i − 2 = 2 + 4m + k + k′, k, k′ ∈ N,

i.e. i � 2m + 4. Hence, we have∣∣w2m+4(t, ξ)
∣∣ + ∣∣w2m+4(t, ξ)

∣∣ � Ce2σ t
(
1 + |ξ |2).

The general bound is then shown recursively. �
3.3. Conclusion

3.3.1. Unstable approximate solution
Let m > 5. Thanks to point (i) of Proposition 1, there exists C0 > 0, such that∥∥(

b0
τ , b

0
z

)
(t)

∥∥
L2 � C0 exp(σ t).
ξ,θ,λ
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We introduce

E(t) = C0ε
m exp(σ t), Tε such that E(Tε) = 1.

Using point (ii) of Proposition 1, we deduce that for all i = 2km + l, for all l ∈ [|0, . . . ,2m|], for all δ̄ > 0,∣∣∣∣∣∣√ε
2m+i

Xi(t)
∣∣∣∣∣∣

p
� Ci,p,δ̄

√
ε

2m+i
exp

(
(k + 1)σ t

)
exp(lδ̄t)

� Ci,p,δ̄

(
εm exp(σ t)

)k+1(√
ε exp(δ̄t)

)l
.

As Tε = −(m ln(C0ε))/σ , we get∣∣∣∣∣∣√ε
2m+i

Xi(t)
∣∣∣∣∣∣

p
� C′

i,p,δ̄
E(t)k+1(ε1/2−mδ̄/σ

)l
. (86)

Let δ̄ < σ/(6m), N a positive integer to be chosen later, and n = 2mN + 2m. Thanks to the choice of n and inequal-
ity (86), we get, for all 0 � k � 2m, and for all 0 � t � Tε ,∣∣∣∣∣∣√ε

2m+n−k
Xn−k

∣∣∣∣∣∣
p

� Cn,pE(t)N+1ε(2m−k)/3. (87)

Besides, the approximate solution will involve terms like

√
ε

2m+i
Ψ

(
s

εγ

)(
wi

(
s√
ε

)
, q̄i

(
s√
ε

))

for 0 < γ < 1/2, and some smooth compactly supported function Ψ . By estimates (76) for i = 2km+4+ l, we obtain∣∣∣∣√ε
2m+i

Ψ

(
s

εγ

)(
wi

(
s√
ε

)
, q̄i

(
s√
ε

))∣∣∣∣
� C

√
ε

2m+i
k∑

j=0

e(j+1)σ t ε(4γ−2)(k−j)melδ̄t ε(2γ−1)(1+l)

� Cεmeσ t

k∑
j=0

(
εjmejσ t

)(
ε(k−j)mε(4γ−2)(k−j)m

)(√
ε
l
elδ̄t

)(
ε2ε(2γ−1)(1+l)

)

� CE(t)

k∑
j=0

E(t)j ε(4γ−1)(k−j)mεl/3(ε2ε(2γ−1)(1+l)
)
. (88)

We choose γ such that

4γ − 1 > 1/2, 2 + (2γ − 1)(1 + 2m) > 0 (89)

to obtain∣∣∣∣√ε
2m+i

Ψ

(
s

εγ

)(
wi

(
s√
ε

)
, q̄i

(
s√
ε

))∣∣∣∣ � CE(t)

k∑
j=0

E(t)jE(t)(k−j)/2εl/3

� CE(t)k/2+1. (90)

As above, we deduce that for all −4 � k � 2m − 4,∣∣∣∣√ε
2m+n−k

Ψ

(
s

εγ

)(
wn−k

(
s√
ε

)
, q̄n−k

(
s√
ε

))∣∣∣∣ � Cn,pE(t)N/2+1ε(2m−k−4)/3. (91)

We now follow the approach of Goodman and Xin [8]. We introduce some smooth function χ = χ(α) with

χ = 1 for |α| � 1, χ = 0 for |α| � 2.

We set, in polar coordinates,
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bapp = χ

(
s

ε

)
B

(
t,

s

ε
,

τ√
ε
,

z√
ε

)
+

(
1 − χ

(
s

ε

))
χ

(
s

εγ

)
b

(
t,

s√
ε
,

τ√
ε
,

z√
ε

)
,

vapp = χ

(
s

ε

)
V

(
t,

s

ε
,

τ√
ε
,

z√
ε

)
+

(
1 − χ

(
s

ε

))
χ

(
s

εγ

)
v

(
t,

s√
ε
,

τ√
ε
,

z√
ε

)
+

(
1 − χ

(
s

εγ

))
w(t, s),

papp = χ

(
s

ε

)
P

(
t,

s

ε
,

τ√
ε
,

z√
ε

)
+

(
1 − χ

(
s

ε

))
χ

(
s

εγ

)
p

(
t,

s√
ε
,

τ√
ε
,

z√
ε

)
+

(
1 − χ

(
s

εγ

))
q(t, s),

where

(V ,B,P )(t, ζ, θ, λ) =
n∑

i=0

√
ε

2m+i(
V i,Bi, ε−1/2P i

)
(t, ζ, θ, λ),

(v, b,p)(t, ξ, θ, λ) =
n∑

i=0

√
ε

2m+i(
vi, bi, ε−1/2pi

)
(t, ξ, θ, λ),

(w,q)(t, s) =
n∑

i=0

√
ε

2m+i(
wi, ε−1/2qi

)
(t, s).

We inject these smooth approximations in (5). We obtain

∂tvapp + uε · ∇vapp + vapp · ∇uε + ε3/2vapp · ∇vapp + ∇p − 1

Re
�vapp = ε3/2bapp · ∇bapp +Rv,

∂tbapp + uε · ∇bapp − bapp · ∇uε + ε3/2vapp · ∇bapp − ε3/2bapp · ∇vapp − 1

Rm
�bapp = Rb.

It remains to estimate Rv and Rb . We claim the following bounds

Proposition 2. We have

‖Rb‖L2 � CεE(t)N/2, ‖∇Rb‖L2 � CE(t)N/2, ‖Rv‖L2 � CεE(t)N/2.

Proof. The remainder Rb reads

Rb = χ

(
s

ε

)
R1

b

(
t,

s

ε
,

τ√
ε
,

z√
ε

)
+

(
1 − χ

(
s

ε

))
χ

(
s

εγ

)
R2

b

(
t,

s√
ε
,

τ√
ε
,

z√
ε

)
+R3

b.

In this expression, R1
b , resp. R2

b involves the inner profiles (V i,Bi,P i), resp. the outer profiles (vi, bi,pi). It is small
because these profiles satisfy (42), (43), resp. (46), (47). Note that vi is involved only through the quadratic term
curlv × b. Hence, the polynomial growth of wi with respect to ξ is killed by the decrease of the bk’s. Consequently,
with estimates (86), (87), one has easily∥∥R1

b(t, ·)
∥∥

H 1(ζ,θ,λ)
�

√
εE(t)N+1,∥∥R2

b(t, ·)
∥∥

H 1(ξ,θ,λ)
� εE(t)N+1.

(92)

The third term R3
b comes from the truncation errors. It is made of two parts: one has support in {ε � |s| � 2ε}

(truncation of the inner expansion), the other has support in {εγ � |s| � 2εγ } (truncation of the outer expansion). The
latter part is O(ε∞), as the outer magnetic terms have fast decrease in ξ (see estimate (75)). The former part is small
because of the matching condition. Indeed,

R3
b = −ε−1χ ′′

(
s

ε

)(
B

(
t,

s

ε
,

τ√
ε
,

z√
ε

)
− b

(
t,

s√
ε
,

τ√
ε
,

z√
ε

))

− 2χ ′
(

s

ε

)
∂s

(
B

(
t,

s

ε
,

τ√
ε
,

z√
ε

)
− b

(
t,

s√
ε
,

τ√
ε
,

z√
ε

))
+ · · · .

From the matching condition (72), we have for all ε � |s| � 2ε,

B

(
t,

s

ε
, θ, λ

)
=

∑ sj

j !
√

ε
2m+k−j

∂
j
ξ bk

(
t, sign(s)0, θ, λ

)
.

j+k�n
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On the other hand, a Taylor expansion yields

b

(
t,

s√
ε
, θ, λ

)
=

n∑
j=0

n∑
k=0

sj

j !
√

ε
2m+k−j

∂
j
ξ bk

(
t, sign(s)0, θ, λ

) + sn+1

(n + 1)!
n∑

k=0

√
ε

2m+k−n−1
∂n+1
ξ bk

(
t, ξ k

s , θ, λ
)
,

where ξk
s ∈ [0, s/

√
ε]. We thus obtain

B

(
t,

s

ε
, θ, λ

)
− b

(
t,

s√
ε
, θ, λ

)
=

∑
j+k>n

sj

j !
√

ε
2m+k−j

∂
j
ξ bk

(
t, sign(s)0, θ, λ

)

+ sn+1

(n + 1)!
n∑

k=0

√
ε

2m+k−n−1
∂n+1
ξ bk

(
t, ξ s

k , θ, λ
)
.

with all 0 � j, k � n. The second term in the r.h.s. is bounded through∣∣∣∣∣ sn+1

(n + 1)!
n∑

k=0

√
ε

2m+k−n−1
∂n+1
ξ bk(t, ξ s

k , θ, λ)

∣∣∣∣∣ � C
√

ε
n+1E(t) � C

√
ε

2m+1E(t)N+1.

The first sum at the r.h.s. can be divided into∣∣∣∣∣
∑

j�n/2,
j+k>n

sj

j !
√

ε
2m+k−j

∂
j
ξ bk

(
t, sign(s)0, θ, λ

)
�

√
ε

n
2 (γ−1)

∣∣∣∣∣ � C
√

ε
n/2E(t) � C

√
ε
mE(t)N/2+1,

∣∣∣∣∣
∑

j�m/2,
j+k>n

sj

j !
√

ε
2m+k

∂
j
ξ bk

(
t, sign(s)0, θ, λ

)∣∣∣∣∣ � Cεm/3E(t)N+1εγ E(t)N+1,

using (87), and∣∣∣∣∣
∑

n/2�j>m/2
j+k>n

sj

j !
√

ε
2m+k

∂
j
ξ bk

(
t, sign(s)0, θ, λ

)∣∣∣∣∣ � Cεm/4E(t)N/2

using that all k in the last sum are more than n/2. We finally get∣∣∣∣B
(

t,
s

ε
, θ, λ

)
− b

(
t,

s√
ε
, θ, λ

)∣∣∣∣ � Cεm/3E(t)N/2.

Proceeding in the same way with the other terms, we end up with∥∥R3
b

∥∥
L2 + ∥∥∇R3

b

∥∥
L2 � Cεm/5E(t)N/2,

and together with (92), it yields the estimate on Rb .
The remainder Rv is similar. Namely,

Rv = χ

(
s

ε

)
R1

v

(
t,

s

ε
,

τ√
ε
,

z√
ε

)
+

(
1 − χ

(
s

ε

))
χ

(
s

εγ

)
R2

v

(
t,

s√
ε
,

τ√
ε
,

z√
ε

)

+
(

1 − χ

(
s

εγ

))
R3

v(t, s) +R4
v.

In this expression, R1
v involves the inner profiles and satisfies∥∥R1

v(t, ·)
∥∥

H 1(ζ,θ,λ)
� C

√
εE(t)N+1.

The outer term R2
v involves the polynomials wi, q̄i , truncated at scale εγ . Using estimates (88)–(91), we get∥∥R1

v(t, ·)
∥∥

1 � CεE(t)N/2+1.

H (ξ,θ,λ)
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The third term R3
v involves the external profiles. It satisfies∥∥R3

v(t, ·)
∥∥

L2((1+s)ds)
� Cε3/2E(t)N+1.

The last term is due to truncation errors, and is treated again thanks to the matching conditions. We obtain∥∥R4
v

∥∥
L2 + ∥∥∇R4

v

∥∥
L2 � Cεm/5E(t)N/2

and the estimate on Rv follows. �
At this point, we still need to add a divergence-free corrector to vapp, bapp, so that the divergence-free conditions

hold.

Proposition 3. There exists ṽ = ṽ(t,x), b̃ = b̃(x), such that

div ṽ = −divvapp, div b̃ = −divbapp|t=0,

and ∥∥∂α
t ṽ

∥∥
Hβ + ∥∥∂α

t b̃
∥∥

Hβ � Cε−βεm/5E(t)N/2,∥∥∂α
t ṽ

∥∥
Wβ,∞ + ∥∥∂α

t b̃
∥∥

Wβ,∞ � Cε−βεE(t)N/2.

Proof. We have

divvapp = χ

(
s

ε

)
D1

(
t,

s

ε
,

τ√
ε
,

z√
ε

)
+ (1 − χ)

(
s

ε

)
χ

(
s

εγ

)
D2

(
t,

s√
ε
,

τ√
ε
,

z√
ε

)

+ 1

ε
χ ′

(
s

ε

)(
Us

(
t,

s

ε
,

τ√
ε
,

z√
ε

)
− us

(
t,

s√
ε
,

τ√
ε
,

z√
ε

))
+ 1

εγ
χ ′

(
s

εγ

)
us

= D
(

t, s,
τ√
ε
,

z√
ε

)
.

As D does not involve the average terms wi(t, ξ) and wi(t, s) (which satisfy notably wi
s = 0, wi

s = 0), we have∫
θ,λ

D = 0. (93)

Moreover, reasoning as for Rv,b, we get( ∫ ∥∥∂α
t ∂β

s D(t, s, ·)∥∥2
Hm

θ,λ
(1 + s)ds

)1/2

� Cα,β

εβ
εm/5E(t)N/2.

We then look for a lift ṽ of the following type:

ṽ = V
(

t, s,
τ√
ε
,

z√
ε

)
, V =

(
∂s,

√
ε
−1 ∂θ

1 + s
,
√

ε
−1

∂λ

)
φ.

This leads to

∂2
s φ + 1

1 + s
∂sφ + 1

ε(1 + s)2
∂2
θ φ + 1

ε
∂2
λφ = D(t, s, θ, λ). (94)

D has a finite number of non-zero tangential Fourier modes (m, k), all satisfying Um + Ωk = 0. Thanks to (93), we
have (m, k) = (0,0), so that k = 0. The Fourier transform of (94) then gives

∂2
s φ̂ + 1

1 + s
∂sφ̂ − k2

ε

(
Ω2

U2(1 + s)2
+ 1

)
φ̂ = D̂(t, s, θ, λ).

Standard energy estimates provide the bounds on V . The same reasoning holds for the magnetic part. �
As the final step of our process, we define

vε
app = vapp + ṽ, bε

app = bapp + b̃.
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It is straightforward from previous work that

∂tv
ε
app + uε · ∇vε

app + vε
app · ∇uε + ε3/2vε

app · ∇vε
app + ∇p − 1

Re
�vε

app = ε3/2bε
app · ∇bε

app +Rε
v(t, s, τ, z),

∂tb
ε
app + uε · ∇bε

app − bε
app · ∇uε + ε3/2vε

app · ∇bε
app − ε3/2bε

app · ∇vε
app − 1

Rm
�bε

app = Rε
b(t, s, τ, z)

with ∥∥Rε
b

∥∥
L2 � CεE(t)N/2,

∥∥∇Rε
b

∥∥
L2 � CE(t)N/2,

∥∥Rε
v

∥∥
L2 � CεE(t)N/2. (95)

3.3.2. Proof of Theorem 4
We can now prove the exponential instability result. Let p, s large, and m = p + s + 1. We introduce (vε, bε) the

solution of (5) with initial data (vε
app, b

ε
app)|t=0. It is possible because both vε

app and bε
app are divergence-free at t = 0.

Note that∥∥(vε, bε)|t=0
∥∥

Hs � εp.

We set v = vε − vε
app, b = bε − bε

app. They satisfy

∂tv + (
uε + ε3/2vε

app

) · ∇v + v · ∇(
uε + ε3/2vε

app

) + ε3/2v · ∇v

+ ∇p − 1

Re
�v = ε3/2bε

app · ∇b + ε3/2b · ∇bε
app + ε3/2b · ∇b +Rε

v

(
t, s, τ, z

)
, divvε

app = 0,

∂tb + (
uε + ε3/2vε

app

) · ∇b − b · ∇(
uε + ε3/2vε

app

) + ε3/2v · ∇bε
app − ε3/2bε

app · ∇v

+ ε3/2v · ∇b − ε3/2b · ∇v − 1

Rm
�b = Rε

b

(
t, s, τ, z

)
.

We take back notations of Theorem 2. Let us split the velocity field vε
app into a smooth part and a singular part

vε
app = vr + vs, vs = (

1 − χ(s/4)
)
w(t, s)

so that vr is smooth, as vs contains the external expansion which is locally smooth but only enjoys the global property
coming from (70) that is because of the truncation

vs ∈ L∞(
0, T ,H 1(

R
2)). (96)

With minor modifications of its proof, accounting for additional source terms, we obtain

E(v, b, t) +
t∫

0

D(v,b) � C
(|U | + |U ′| + ∥∥ε

(
bε

app, v
r
app

)∥∥
W 1,∞

) t∫
0

E(v, b)(s)ds

+
t∫

0

S + C

t∫
0

(‖Rv‖2 + ε−1‖Rb‖2)ds

for some increasing function C. Note that the term ‖ε(bε
app, v

ε
app)‖W 1,∞ and not ‖ε3/2(bε

app, v
ε
app)‖W 1,∞ appears in this

estimate because of the anisotropic weight in the energy E(v, b). It remains to estimate the term S which contains all
the terms involving the singular term vs :

S = ε3/2
∣∣(v · ∇vs, v

)∣∣ + ε3/2
∣∣(b · ∇vs, b

)∣∣ + ε3(∥∥v · ∇vs
∥∥2 + ∥∥vs · ∇v

∥∥2) + ε4(∥∥b · ∇vs
∥∥2 + ∥∥vs · ∇b

∥∥2)
.

We easily estimate these new terms by using the Gagliardo–Nirenberg–Sobolev inequalities, for example, we write

ε4

t∫
0

∥∥b · ∇vs
∥∥2 � Cε4 sup

[0,t]

∥∥∇vs
∥∥2

t∫
0

‖b‖2
L∞ � Cε4 sup

[0,t]

∥∥∇vs
∥∥2

t∫
0

‖b‖2
H 2

� Cε sup
[0,t]

∥∥∇vs
∥∥2

t∫ (
E(v, b) + D(v,b)

)
,

0
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ε4

t∫
0

∥∥vs · ∇b
∥∥2 � Cε4

t∫
0

∥∥vs
∥∥4

L4‖∇b‖4
L4 � Cε4

t∫
0

∥∥vs
∥∥2

H 1‖b‖2
H 2

� Cε sup
[0,t]

∥∥vs
∥∥2

H 1

t∫
0

(
E(v, b) + D(v,b)

)
,

ε3/2
∣∣(b · ∇vs, b

)∣∣ � Cε3/2 sup
[0,t]

∥∥∇vs
∥∥2

t∫
0

‖b‖2
L4 � Cε3/2 sup

[0,t]
∥∥∇vs

∥∥2
t∫

0

‖b‖1/2‖b‖3/2
H 1

� Cε3/4 sup
[0,t]

∥∥∇vs
∥∥2

t∫
0

E(v, b) + D(v,b).

All the other terms can be handled in a similar way, and hence we get

E(v, b, t) +
t∫

0

D(v,b) � C
(
|U | + |U ′| + ∥∥ε

(
bε

app, v
r
app

)∥∥
W 1,∞ + ε3/4 sup

[0,t]
(∥∥vs

∥∥2
H 1

)) t∫
0

E(v, b)(s)ds

+ ε3/4 sup
[0,t]

(∥∥vs
∥∥2

H 1

) t∫
0

D(v,b)(s)ds + C

t∫
0

(‖Rv‖2 + ε−1‖Rb‖2)ds.

Let C0 > C
(|U | + |U ′| + 1

)
. We fix N such that Nσ > C0.

We have

∥∥ε
(
bε

app, v
ε
app

)∥∥
W 1,∞ �

n∑
i=0

λiE(t)i+1 � 1

2
, ε3/4 sup

[0,t]
(∥∥vs

∥∥2
H 1

)
� 1

2

for t � T ε −τ0, τ0 large enough independent of ε. Thanks to the last energy estimate, we deduce by using Proposition 2
and (95) that for all t � T ε − τ0,

E(v, b)(t) � C0

t∫
0

E(v, b)(s)ds + CεεmN

t∫
0

exp(Nσs)ds.

The Gronwall’s lemma implies

E(v, b)(t) � CεεmN exp(Nσ t).

We get, for all t � T ε − τ0,∥∥bε(t)
∥∥2

L2(|s|�√
ε)

�
∥∥bε

app(t)
∥∥2

L2(|s|�√
ε)

− ∥∥b(t)
∥∥2

L2

�
∥∥∥∥b0

(
t,

·√
ε

)∥∥∥∥
2

L2(|s|�√
ε)

−
∥∥∥∥bε

app(t) − b0
(

t,
·√
ε

)∥∥∥∥
2

L2
− E(v, b)

� C0
√

εE(t)2 − C1
√

εE(t)4

� η
√

ε

for η > 0, and t � T ε − τ1, τ1 large enough independent of ε. This ends the proof of the L2 instability. Since∥∥bε
∥∥2

L2(|s|�√
ε)

�
√

ε
∥∥bε

∥∥2
L∞ ,

we also get the instability in the L∞ norm.
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